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1   Introduction: History of Computing

• Number Systems & Tetrapods

• Rhind Papyrus 
– Egyptian numerals (as 

Hieroglyphs) 
– Egyptian multiplication (as 

binary arithmetic)

• Abacus
– Background
– Applet

• First Stored Program 
Computer (EDVAC)

• First Computer Bug



2   Real Numbers:    

• Integers, Rational, Irrational Numbers

• Properties (Commutative, Associative,  
Distributive, Identity, & Inverse)

• Zero
– As Positional Place Holder
– As a Number Itself

• Complex Numbers



2   Real Numbers:   Positional Number System

• Baseless System (e.g., Roman Numerals)

• Positional system (a.k.a. Digital System)

– Base 60 (Babylonians … clocks, latitudes)

– Base 10 (a.k.a.  Decimal, Arabic/Indian)

– Base 2 (a.k.a. Binary,  Computerized Logic)



2   Real Numbers:   Binary Conversion

• Decimal to Binary
– Decimal Fractions to Binary
– Infinite Binary Fractions

• Binary to Decimal



2   Real Numbers:   Binary Arithmetic

• Addition

• Subtraction

• Multiplication

• Division



2   Real Numbers:   Binary Bits

• System Digits: 0 and 1
• Bit (short for binary digit): a single binary digit 
• Bitstring:  a string of bits
• LSB (least significant bit): the rightmost bit 
• MSB (most significant bit): the leftmost bit 



2   Real Numbers:   Binary  Equivalents

• 1 Nybble (or nibble) = 4 bits

• 1 Byte = 2 nybbles = 8 bits
• Upper Byte : right-hand byte of a pair 
• Lower Byte : left-hand byte of a pair 
• 1 Kilobyte (KB) = 1024 bytes 
• 1 Megabyte (MB) = 1024 kilobytes
• 1 Gigabyte (GB) = 1024 megabytes
• 1 Terabyte (TB) = 1024 gigabytes 
• 1 Petabyte (PB) = 1024 terabytes

• Word:  4 consecutive bytes of storage
• Double word:   8 consecutive bytes of storage



3   Comp. Rep. of Num.: Logic Gates

• Logic Gates
– Basic Functions
– Binary Addition

• History of Gate Size/Speed
– Vacuum Tube
– Transistor
– Integrated Circuit
– Microprocessor



3   Comp. Rep. of Num.: 2’s Complement

• Most computers represent negative integers as 2’s complements

• Algorithm
– Express number in binary
– Invert the digits
– Add one to the result

• Allows subtraction to be replace by (negative addition)

• Worked example



3   Comp. Rep. of Num.: Over/Under Flow

• Underflow

• Overflow (ditto)



3   Comp. Rep. of Num.: Fixed Point

• Fixed Point Number – A value 
with an integer and a fractional 
part

• Fixed Point Arithmetic



3   Comp. Rep. of Num.: Scientific Notation

10Ex S= ± ×• Express a real number x in scientific notation
– where  S is the mantissa (a.k.a. significand) 
– and E is the integer exponent

• Decimal place ‘floats’ to position immediately 
after first non-zero digit in the decimal expansion 
of a number

1 9S≤ ≤



3   Comp. Rep. of Num.: Floating Point

10Ex S= ± ×• On a computer, we use base 2: 

• Binary expansion of significand is: (with               )

• Also called normalized representation

• Since                we represent significand as:
– Leading bit is not explicitly stored (implied)

1 2S≤ ≤

( )1 2 3.oS b b b b= …1ob =

1ob = ( )1 2 31.S b b b= …



3   Comp. Rep. of Num.: Number Storage

• Computer words shared into three fields (sign, exponent, and significant)

• e.g., a 32-bit word shared as: 1 sign bit, 8 exponent bits, 23 significant
– Sign bit (0 for positive; 1 for negative)
– Exponent (represents -128 to 127)
– Significant (stores first 23 bits after bo,, namely b1…b23 )

• Real number x exactly representable is a floating point number
– Otherwise, real number must be rounded to next floating point number



3   Comp. Rep. of Num.: Precision

• precision versus accuracy (scientific meanings)

• precision (denoted p) of the floating point system 
is the number of bits in the significand (including 
the hidden bit).

• Any normalized floating point number with 
precision p can be expressed: 

( )1 2 2 1 2
.1 2E

p px b b b b− −= ± ×…



3   Comp. Rep. of Num.: Machine Epsilon

( ) ( )1
2

1 00 01 1 2. px − −= ± = +…
• The smallest  x  such that  x is greater 

than 1:

• machine epsilon defined as the gap 
between the number above and 1
itself:

( ) ( )1
2

00 010. 2 pε − −= ± =…



3   Comp. Rep. of Num.: Ulp

• Ulp is an acronym for ‘unit in the last place’

• Defined as:

• For x > o, then ulp(x) is the gap between x 
and the next larger floating point number

( ) ( ) ( )1
2

00 01 2 20 2 2. pE E EUlp x ε− −= ± × = × = ×…



3   Comp. Rep. of Num.: Zero

• Zero cannot be normalized
– the hidden bit is always implied to be 1

• Two solution strategies

– 1) give up on concept of hidden bit and 
represent  bo explicitly

– 2) use special string in exponent field to 
signal the number is zero (IEEE approach)



4   IEEE Floating Point: Institute(s)

• IEEE – Institute for Electronics and Electrical Engineers

• ANSI – American National Standards Institute 
– on-line store (document 754-1985)

• The need for a standard
– Portable code was elusive in the 1960s (prior to standard)
– What every computer scientist should know about floating 

point arithmetic

• Non-standard implementation
– How Java’s floating point hurts everyone everywhere



4   IEEE Floating Point: Standard Requirements

• Consistent representation of floating point numbers by all 
machines adopting the standard

• Correctly rounded floating point operations, using various 
rounding modes

• Consistent treatment of exceptional situations, such as 
division by zero



4   IEEE Floating Point: Special Numbers

• Zero, and negative zero

• Plus and minus infinity

• Not a number (NaN)

• How to represent these numbers in floating point
– Special pattern of exponent field ?



4   IEEE Floating Point: Basic Formats

• Single precision – 32 bit word
• Double precision – 64 bit double word
• Extend precision – (up to) 128 bit quad word

• Minimum Range of numbers
– Single  :   2-126 ~  1.2 x 10-38

– Double :  2-1022 ~ 2.2 x 10-308

• Maximum Range of numbers
– Single  :   2+128 ~  3.4 x 10+38

– Double :  2+1024 ~ 1.8 x 10+308

• Greater precision needed in some scientific calculations
• Lesser precision needed in some routine operations



4   IEEE Floating Point: Single Precision

• 32 bits available:
– 1 bit sign;   8 bit exponent;  23 bit significand

• Special numbers: (zero and subnormal)
– If exponent    (00000000)2 = (0)10

– Then number    (0.b1b2…b23) x 2-126

• Special numbers: (+/- infinity and Nan)
– If exponent    (11111111)2 = (255)10

– Then number    +/- infinity   if b1=b2…=b23=0
– Else Nan  otherwise

• Normal Numbers
– Exponent is biased (need to subtract 127)
– Examples of single precision standard (Pittsburgh 

Supercomputing Center)



4   IEEE Floating Point: Subnormals

• Arises in situation of zero exponent (hence zero hidden bit)
– If all fraction bits are zero, b1=b2…=b23=0 
– Then the number is zero
– Else a subnormal number is obtained

• Can represent 2-127 through to 2-149

• Subnormals cannot be normalized
– (if they did, the exponent would not fit in the exponent field)



4   IEEE Floating Point: Double Precision

• 64 bits available:
– 1 bit sign;   11 bit exponent;  52 bit significand

• Conceptually identical to single precision

• Examples of double precision standard (Pittsburgh 
Supercomputing Center)

• Under what circumstances does user want single versus 
double precision ?
– Scientific measurement ?
– Scientific calculation ?



4   IEEE Floating Point: Extended Precision

• 80 bits available:
– 1 bit sign;   15 bit exponent;  64 bit significand

• Differ from single/double precision in that no ‘hidden bit’

• Intel implements extended precision in hardware (fast);
• Sparc implements in 128 bit software (slow)



4   IEEE Floating Point: Significant Digits

• Single precision p=24 bits gives 
~7 significant digits

• Double precision p=53 bits gives 
~15 significant digits

• Single precision p=64 bits gives 
~19 significant digits



4   IEEE Floating Point: Big/Little Endian

• Given a single precision number is stored as a 
word  (i.e., 4 contiguous bytes)
– where to store sign bit and first seven exponent 

bits?  (to the left or to the right of a 4 byte 
sequence)

– To the left is BIG ENDIAN
• (e.g., SUN, IBM)

– To the right is LITTLE ENDIAN 
• (e.g., Intel)

• Important when passing data between different 
Endian computers  (some example software)

• Word Endian originates in reference to 
Gulliver’s Travels in discussion of which end of 
a boiled egg to open … the little or big end?

1 2 7 8 1 2 22 23... ...a a a a b b b bσ



5   Rounding: Real Numbers

• Finite IEEE floating point numbers:

• Real number x is in the normalized range of the 
floating point system if:  

• If a real number x is not a floating point 
number, one (or both) of the following is true:
– x is outside the normalized range (Nmax, Nmin)
– binary expansion of x requires more than p bits 

to exactly specify the number

( )1 2 2 1 2
1 2. E

p pb b b b− −± ×…

min maxN x N≤ ≤



5   Rounding: Neighbor Numbers

( )1 2 2 1 21.1 2E
p p p px b b b b b b− +−= ± ×… …

• Consider a real number:

• The closest floating point number 
less than or equal is  (obtained 
by truncating the significand) 

• The closest floating point number 
greater than or equal is (obtained 
by increment the least significant 
bit)

• The gap between x- and x+ is 
ulp(x):

( )1 2 2 1 2
.1 2E

p px b b b b− − −= ± ×…

( )
( )

1 2 2 1 2

2

.

0

1 2

00 01 2.

E
p p

E

x b b b b+ − −= × +

×

…

…

( 1)( ) 2 2p EUlp x − −= ×



5   Rounding: Correctly Rounded Values

• IEEE defines correctly rounded as being 
round(x)

• Four rounding modes in effect:
– Round down:   

• round(x)=x-

– Round up:  
• round(x)=x+

– Round towards zero:  
• If x > 0 then round(x)=x-

• If x<0 then round(x)=x+

– Round to nearest:
• round(x) is either x- or x+, whichever is nearer to x
• In case of tie, the one with its least significant bit 

equal to zero is chosen



5   Rounding: Absolute Rounding Error

( )1 2 2 1 21.1 2E
p p p px b b b b b b− +−= ± ×… …

• Define absolute rounding error:

• Consider a real number:

• The absolute rounding error is less than the 
gap between x- and x+

• Absolute rounding error is less than one  Ulp

• When round to nearest in effect, then absolute 
rounding error is less than or equal to ½ of an 
Ulp

( ) ( )abserr x round x x= −

( 1)( ) ( ) 2 2p Eabserr x round x x − −= − < ×

( ) ( ) 2 2Epabserr x round x x −= − < ×



5   Rounding: Relative Rounding Error

( )round x x
x

δ
−

=
• Relative rounding error (for nonzero x) is 

defined:

• Relative error satisfies the bound:

• For round to nearest we get:

• Theorem:  

• Thus, no matter how x is stored, we can think 
of its values as exact tihin a factor of 1+epsilon

( )relerr x δ=

( 1)
( 1)( ) 2 2 2

2
2

p E
p

E

E

round x x
x

where x

δ ε
− −

− −− ×
= < = =

>

2
εδ <

( ) (1 )round x x
for some

δ
δ ε

= +

<


