Lecture #1: Floating Point Numbers
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Introduction: History of Computing

Number Systems & Tetrapods

Rhind Papyrus

— Eqgyptian numerals (as
Hieroglyphs)

— Eqgyptian multiplication (as
binary arithmetic)

Abacus

— Backaground
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First Stored Program
Computer (EDVAC)

First Computer Bug




2 Real Numbers:

 [Integers, Rational, Irrational Numbers

e Properties (Commutative, Associative,
Distributive, Identity, & Inverse)

e Jero

— As Positional Place Holder
— As a Number Itself

» Complex Numbers




2 Real Numbers: Positional Number System

 Baseless System (e.g., Roman Numerals)

o Positional system (a.k.a. Digital System)

— Base 60 (Babylonians ... clocks, latitudes)

— Base 10 (a.k.a. Decimal, Arabic/Indian)

— Base 2 (a.k.a. Binary, Computerized Loqgic)




2 Real Numbers: Binary Conversion

e Decimal to Binary
— Decimal Fractions to Binary
— Infinite Binary Fractions

e Binary to Decimal




2 Real Numbers: Binary Arithmetic

e Addition

e Subtraction

 Multiplication

e Division



2 Real Numbers: Binary Bits

 System Digits: Oand 1

« Bit (short for binary digit): a single binary digit
e Bitstring: a string of bits

« LSB (least significant bit): the rightmost bit

« MSB (most significant bit): the leftmost bit



2 Real Numbers: Binary Equivalents

e 1 Nybble (or nibble) = 4 bits

« 1 Byte = 2 nybbles = 8 bits

« Upper Byte : right-hand byte of a pair
 Lower Byte : left-hand byte of a pair
e 1 Kilobyte (KB) = 1024 bytes

e 1 Megabyte (MB) = 1024 kilobytes

« 1 Gigabyte (GB) = 1024 megabytes
1 Terabyte (TB) = 1024 gigabytes

1 Petabyte (PB) = 1024 terabytes

 Word: 4 consecutive bytes of storage
 Double word: 8 consecutive bytes of storage



3 Comp. Rep. of Num.: Logic Gates

Input 1li

* Logic Gates npuc 13
— Basic Functions B
— Binary Addition Tmput 28

Output 2¥

WCC
Input 4B
Input 4i

Output 47

Input 3B

Input 34

Ground Output 37

e History of Gate Size/Speed
— Vacuum Tube
— Transistor
— Integrated Circuit
— Microprocessor




Comp. Rep. of Num.: 2’s Complement

Most computers represent negative integers as 2's complements

Algorithm

— Express number in binary
— Invert the digits

— Add one to the result

Allows subtraction to be replace by (negative addition)

Worked example




3 Comp. Rep. of Num.: Over/Under Flow

 Underflow

o Overflow (ditto)



Comp. Rep. of Num.: Fixed Point

Fixed Point Number — A value
with an integer and a fractional
part

Fixed Point Arithmetic

5 M integer hits I fractional hits
i

As=um ed binary point

Fig 1: Fixed point representation



3 Comp. Rep. of Num.: Scientific Notation

_ E
 EXxpress a real number x in scientific notation X =£5x10
— where S is the mantissa (a.k.a. significand) 1<S<9
— and E is the integer exponent

« Decimal place ‘floats’ to position immediately
after first non-zero digit in the decimal expansion
of a number



3 Comp. Rep. of Num.: Floating Point

 Onacomputer, we use base 2:  x = +S x10° 1<S<?2
+  Binary expansion of significand is: (with h =1 ) S = (bo.blbzb3 . )

« Also called normalized representation

S =(Lbjyb,...)

e Since bO —1 we represent significand as:
— Leading bit is not explicitly stored (implied)



3 Comp. Rep. of Num.: Number Storage

e Computer words shared into three fields (sign, exponent, and significant)

 e.g., a 32-bit word shared as: 1 sign bit, 8 exponent bits, 23 significant
— Sign bit (O for positive; 1 for negative)
— Exponent (represents -128 to 127)
— Significant (stores first 23 bits after b, , namely b;...b,;)

oA g9 31 (big-endian)
1| & bits 23 bits
3130 2322 1 (little-enddian)

SINGLE-PRECISION

{big-endian)

oo 11 12 63
1 11 bits b2 bits
63 62 52 & 0

{little-endizan)
DOUEBLE-PRECISION

EaFarcty

 Real number x exactly representable is a floating point number
— Otherwise, real number must be rounded to next floating point number



3 Comp. Rep. of Num.: Precision

e precision versus accuracy (scientific meanings)

e precision (denoted p) of the floating point system
IS the number of bits in the significand (including
the hidden bit).

* Any normalized floating point number with y _ J_r(l.blbz b

E
. . : p—2bp—1)2 X 2
precision p can be expressed:



3 Comp. Rep. of Num.: Machine Epsilon

« The smallest x such that x is greater
than 1: x =+(1.00...01) =1+2"""

 machine epsilon defined as the gap
between the number above and 1 ¢ =+(0.00...01), = o~(p-1)
itself:



3 Comp. Rep. of Num.. Ulp

e Ulp is an acronym for ‘unit in the last place’
« Defined as: Ulp(x)=£(0.00...01), x 25 =27 x2F = ¢ x 2°

 For x> o0, then ulp(x) is the gap between x
and the next larger floating point number



3 Comp. Rep. of Num.: Zero

e Zero cannot be normalized
— the hidden bit is always implied to be 1

« Two solution strategies

— 1) give up on concept of hidden bit and
represent b, explicitly

— 2) use special string in exponent field to
signal the number is zero (IEEE approach)



IEEE Floating Point: Institute(s)

|EEE — Institute for Electronics and Electrical Engineers

ANS| — American National Standards Institute

— on-line store  (document 754-1985)

The need for a standard
— Portable code was elusive in the 1960s (prior to standard)

— What every computer scientist should know about floating
point arithmetic

Non-standard implementation
— How Java’s floating point hurts everyone everywhere




4 |EEE Floating Point: Standard Requirements

e Consistent representation of floating point numbers by all
machines adopting the standard

« Correctly rounded floating point operations, using various
rounding modes

« Consistent treatment of exceptional situations, such as
division by zero



IEEE Floating Point: Special Numbers

Zero, and negative zero

Plus and minus infinity

Not a number (NaN)

How to represent these numbers in floating point
— Special pattern of exponent field ?



IEEE Floating Point. Basic Formats

Single precision — 32 bit word
Double precision — 64 bit double word
Extend precision — (up to) 128 bit quad word

Minimum Range of numbers
— Single : 2126~ 1.2 x 1038
— Double : 21022~ 2 2 x 10-308

Maximum Range of numbers
— Single : 2+128~ 3.4 x 10*38
— Double : 2+1024~ 1 8 x 10+308

Greater precision needed in some scientific calculations
Lesser precision needed in some routine operations



IEEE Floating Point: Single Precision

21 =3 1= F LE)
. | ) | ) ) N I |
EEE::‘I Exponent Bits 1] Menticsa Bits

The 24 mantkssa kit is
implizd o i Amwarsens

32 bits available:
— 1 bit sign; 8 bit exponent; 23 bit significand

Special numbers: (zero and subnormal)
— If exponent (00000000), = (0),,
— Then number (0.b;b,...b,;) x 212

Special numbers: (+/- infinity and Nan)

— Ifexponent (11111111),=(255),,

— Then number +/-infinity if b,=b,...=b,;=0
— Else Nan otherwise

Normal Numbers
— Exponent is biased (need to subtract 127)

— Examples of single precision standard (Pittsburgh
Supercomputing Center)




4 |EEE Floating Point. Subnormals

« Avrises in situation of zero exponent (hence zero hidden bit)
— If all fraction bits are zero, b,=Db,...=b,;=0
— Then the number is zero

— Else a subnormal number is obtained
« Can represent 2-127 through to 2149

e Subnormals cannot be normalized
— (if they did, the exponent would not fit in the exponent field)



IEEE Floating Point. Double Precision

64 bits available:
— 1 bitsign; 11 bit exponent; 52 bit significand

Conceptually identical to single precision

Examples of double precision standard (Pittsburgh
Supercomputing Center)

Under what circumstances does user want single versus
double precision ?

— Scientific measurement ?

— Scientific calculation ?

) b 3 7 a
ﬁ'gtn Expanent Bitw EI ilontiess Bt



IEEE Floating Point. Extended Precision

v =¥ | = o
. . Hponenk ik P
80 bits available: it

— 1 bit sign; 15 bit exponent; 64 bit significand
Differ from single/double precision in that no ‘hidden bit’

Intel implements extended precision in hardware (fast);
Sparc implements in 128 bit software (slow)



IEEE Floating Point: Significant Digits

_ . _ ) Measurement and Significant Digits
Single precision p=24 bits gives

~7 significant digits

|IIII|IIII|IIII|IIII|IIIII I|IIII|III|IIII|IIIIII
Double precision p=53 bits gives : 1 / 3 /4 /Z
/

~15 significant digits

Single precision p=64 bits gives 472 0r4.73 cm

~19 significant digits

‘llll“li/ll'}la‘ll

4 5




4 |EEE Floating Point: Big/Little Endian

e Given a single precision number is stored as a
word (i.e., 4 contiguous bytes)
— where to store sign bit and first seven exponent

bits? (to the left or to the right of a 4 byte
sequence)

— To the left is BIG ENDIAN 0a,a,...8,3;,0,b,...n,,0b,,
* (e.g., SUN, IBM)

— Totherightis LITTLE ENDIAN
* (e.g., Intel)

* Important when passing data between different
Endian computers (some example software)

e Word Endian originates in reference to
Gulliver’'s Travels in discussion of which end of
a boiled egg to open ... the little or big end?



Rounding: Real Numbers

Finite IEEE floating point numbers: J_r(l.blbz...bp_sz_l)2 x 2"

Real number x is in the normalized range of the N_ < X‘ <N__
floating point system If:

If a real number x is not a floating point
number, one (or both) of the following is true:

— x is outside the normalized range (N, Ni)

— binary expansion of x requires more than p bits
to exactly specify the number



5 Rounding: Neighbor Numbers

X=#(Lbb,...b, bbb, ..) x2F

« Consider a real number: pp+L

 The closest floating point number c
less than or equal is (obtained  X_ = i(l.b1b2 . “bp—pr—1)2 X 2
by truncating the significand)

 The closest floating point number _ E
greater than or equal is (obtained X, = (1'b1b2 '”bp—ZbP—l)z x2" 4
by increment the least significant (O 00 01) w DE

UU...U1),

bit)

 The gap between x_and x, is

ulp(x): Ulp(x) = 27" x 2F



5 Rounding: Correctly Rounded Values

 |EEE defines correctly rounded as being
round(x)

* Four rounding modes in effect:
— Round down:
o round(x)=x_
— Round up:
o round(x)=x,
— Round towards zero:
e If x>0 then round(x)=x.
 If x<0 then round(x)=x,
— Round to nearest:
* round(x) is either x_or x,, whichever is nearer to x

* In case of tie, the one with its least significant bit
equal to zero is chosen



5 Rounding: Absolute Rounding Error

Define absolute rounding error: abserr(x) =|round (x) — x|

I+

. Consider areal number: ~ X=%(Lbb,...b, bbb ...} x2F

 The absolute rounding error is less than the
ap between x_and x
dap ‘ " abserr(x) =|round (x) — x| < 27" x 2°

e Absolute rounding error is less than one Ulp

 When round to nearest in effect, then absolute
rounding error is less than or equal to %2 of an
Ulp
abserr(x) = |round (x) — x| < 27" x 2°



5 Rounding: Relative Rounding Error

| | relerr(x) = ||
« Relative rounding error (for nonzero x) is

defined: 5 = lround (9 -

X

round (x) — x| 27 x 2F
= <
X 2F
where |x| > 2F

=2 D) _ ¢

 Relative error satisfies the bound: s

e For round to nearest we get: 5<%

round (x) = x(1+ )
e Theorem: for some |d]< ¢

 Thus, no matter how x is stored, we can think
of its values as exact tihin a factor of 1+epsilon



