Lecture #1: Floating Point Numbers

- 1 Introduction
- 2 Real Numbers
- 3 Computer Representation of Numbers
- 4 IEEE Floating Point Representation
- 4 Rounding
- 6 Correctly Rounding Floating Point Operations
- 7 Exceptions

Reference

Numerical Computing with IEEE Floating Point Arithmetic written by Michael L. Overton published by SIAM

Available at NYU Bookstore

1 Introduction: History of Computing

- Number Systems & Tetrapods
- Rhind <u>Papyrus</u>
 - Egyptian numerals (as Hieroglyphs)
 - Egyptian multiplication (as binary arithmetic)
- Abacus
 - Background
 - Applet
- First Stored Program Computer (EDVAC)
- First Computer Bug

2 Real Numbers:

- Integers, Rational, Irrational Numbers
- Properties (Commutative, Associative, Distributive, Identity, & Inverse)
- Zero
 - As Positional Place Holder
 - As a Number Itself
- Complex Numbers

2 Real Numbers: Positional Number System

- Baseless System (e.g., <u>Roman Numerals</u>)
- Positional system (a.k.a. Digital System)
 - Base 60 (<u>Babylonians</u> ... <u>clocks</u>, <u>latitudes</u>)
 - Base 10 (a.k.a. Decimal, <u>Arabic/Indian</u>)
 - Base 2 (a.k.a. Binary, <u>Computerized Logic</u>)

2 Real Numbers: Binary Conversion

- Decimal to Binary
 - Decimal Fractions to Binary
 - Infinite Binary Fractions
- Binary to Decimal

2 Real Numbers: Binary Arithmetic

- Addition
- Subtraction
- Multiplication
- <u>Division</u>

2 Real Numbers: Binary Bits

- System Digits: 0 and 1
- Bit (short for binary digit): a single binary digit
- Bitstring: a string of bits
- LSB (least significant bit): the rightmost bit
- MSB (most significant bit): the leftmost bit

2 Real Numbers: Binary Equivalents

- 1 Nybble (or nibble) = 4 bits
- 1 Byte = 2 nybbles = 8 bits
- Upper Byte: right-hand byte of a pair
- Lower Byte: left-hand byte of a pair
- 1 Kilobyte (KB) = 1024 bytes
- 1 Megabyte (MB) = 1024 kilobytes
- 1 Gigabyte (GB) = 1024 megabytes
- 1 Terabyte (TB) = 1024 gigabytes
- 1 Petabyte (PB) = 1024 terabytes
- Word: 4 consecutive bytes of storage
- Double word: 8 consecutive bytes of storage

3 Comp. Rep. of Num.: Logic Gates

- Logic Gates
 - Basic Functions
 - Binary Addition

- History of Gate Size/Speed
 - Vacuum Tube
 - Transistor
 - Integrated Circuit
 - Microprocessor

3 Comp. Rep. of Num.: 2's Complement

- Most computers represent negative integers as 2's complements
- Algorithm
 - Express number in binary
 - Invert the digits
 - Add one to the result
- Allows subtraction to be replace by (negative addition)
- Worked example

3 Comp. Rep. of Num.: Over/Under Flow

- Underflow
- Overflow (ditto)

3 Comp. Rep. of Num.: Fixed Point

- Fixed Point Number A value with an integer and a fractional part
- Fixed Point Arithmetic

3 Comp. Rep. of Num.: Scientific Notation

 $x = \pm S \times 10^E$

 $1 \le S \le 9$

- Express a real number *x* in scientific notation
 - where *S* is the *mantissa* (a.k.a. *significand*)
 - and E is the integer exponent
- Decimal place 'floats' to position immediately after first non-zero digit in the decimal expansion of a number

3 Comp. Rep. of Num.: Floating Point

- On a computer, we use base 2: $x = \pm S \times 10^E$ $1 \le S \le 2$
- Binary expansion of significand is: (with $b_o = 1$) $S = (b_o \cdot b_1 b_2 b_3 \dots)$
- Also called normalized representation
- Since $b_0 = 1$ we represent significand as: $S = (1.b_1b_2b_3...)$
 - Leading bit is not explicitly stored (implied)

3 Comp. Rep. of Num.: Number Storage

- Computer words shared into three fields (sign, exponent, and significant)
- e.g., a 32-bit word shared as: 1 sign bit, 8 exponent bits, 23 significant
 - Sign bit (0 for positive; 1 for negative)
 - Exponent (represents -128 to 127)
 - Significant (stores first 23 bits after b_o , namely $b_1...b_{23}$)

- Real number x exactly representable is a floating point number
 - Otherwise, real number must be rounded to next floating point number

3 Comp. Rep. of Num.: Precision

- <u>precision versus accuracy</u> (scientific meanings)
- precision (denoted p) of the floating point system is the number of bits in the significand (including the hidden bit).
- Any normalized floating point number with $x = \pm (1.b_1b_2...b_{p-2}b_{p-1})_2 \times 2^E$ precision p can be expressed:

3 Comp. Rep. of Num.: Machine Epsilon

 The smallest x such that x is greater than 1:

$$x = \pm (1.00...01)_2 = 1 + 2^{-(p-1)}$$

 machine epsilon defined as the gap between the number above and 1 itself:

$$\varepsilon = \pm (0.00...01)_2 = 2^{-(p-1)}$$

3 Comp. Rep. of Num.: Ulp

Ulp is an acronym for 'unit in the last place'

• Defined as:
$$Ulp(x) = \pm (0.00...01)_2 \times 2^E = 2^{-(p-1)} \times 2^E = \varepsilon \times 2^E$$

• For x > 0, then ulp(x) is the gap between x and the next larger floating point number

3 Comp. Rep. of Num.: Zero

- Zero cannot be normalized
 - the hidden bit is always implied to be 1
- Two solution strategies
 - 1) give up on concept of hidden bit and represent b_o explicitly
 - 2) use special string in exponent field to signal the number is zero (IEEE approach)

4 IEEE Floating Point: Institute(s)

- <u>IEEE</u> Institute for Electronics and Electrical Engineers
- ANSI American National Standards Institute
 - on-line store (document 754-1985)
- The need for a standard
 - Portable code was elusive in the 1960s (prior to standard)
 - What every computer scientist should know about floating point arithmetic
- Non-standard implementation
 - How Java's floating point hurts everyone everywhere

4 IEEE Floating Point: Standard Requirements

- Consistent representation of floating point numbers by all machines adopting the standard
- Correctly rounded floating point operations, using various rounding modes
- Consistent treatment of exceptional situations, such as division by zero

4 IEEE Floating Point: Special Numbers

- Zero, and negative zero
- Plus and minus infinity
- Not a number (NaN)

- How to represent these numbers in floating point
 - Special pattern of exponent field?

4 IEEE Floating Point: Basic Formats

- Single precision 32 bit word
- Double precision 64 bit double word
- Extend precision (up to) 128 bit quad word
- Minimum Range of numbers
 - Single: $2^{-126} \sim 1.2 \times 10^{-38}$
 - Double: $2^{-1022} \sim 2.2 \times 10^{-308}$
- Maximum Range of numbers
 - Single: $2^{+128} \sim 3.4 \times 10^{+38}$
 - Double: $2^{+1024} \sim 1.8 \times 10^{+308}$
- Greater precision needed in some scientific calculations
- Lesser precision needed in some routine operations

4 IEEE Floating Point: Single Precision

- 32 bits available:
 - 1 bit sign; 8 bit exponent; 23 bit significand
- Special numbers: (zero and subnormal)
 - If exponent $(00000000)_2 = (0)_{10}$
 - Then number $(0.b_1b_2...b_{23}) \times 2^{-126}$
- Special numbers: (+/- infinity and Nan)
 - If exponent $(111111111)_2 = (255)_{10}$
 - Then number +/- infinity if $b_1=b_2...=b_{23}=0$
 - Else Nan otherwise
- Normal Numbers
 - Exponent is biased (need to subtract 127)
 - Examples of single precision standard (Pittsburgh Supercomputing Center)

4 IEEE Floating Point: Subnormals

- Arises in situation of zero exponent (hence zero hidden bit)
 - If all fraction bits are zero, b₁=b₂...=b₂₃=0
 - Then the number is zero
 - Else a subnormal number is obtained
 - Can represent 2⁻¹²⁷ through to 2⁻¹⁴⁹
- Subnormals cannot be normalized
 - (if they did, the exponent would not fit in the exponent field)

4 IEEE Floating Point: Double Precision

- 64 bits available:
 - 1 bit sign; 11 bit exponent; 52 bit significand
- Conceptually identical to single precision
- <u>Examples of double precision standard (Pittsburgh</u>
 <u>Supercomputing Center)</u>
- Under what circumstances does user want single versus double precision?
 - Scientific measurement ?
 - Scientific calculation ?

4 IEEE Floating Point: Extended Precision

- 80 bits available:
 - 1 bit sign; 15 bit exponent; 64 bit significand
- Differ from single/double precision in that no 'hidden bit'
- Intel implements extended precision in hardware (fast);
- Sparc implements in 128 bit software (slow)

4 IEEE Floating Point: Significant Digits

- Single precision p=24 bits gives
 ~7 significant digits
- Double precision p=53 bits gives
 ~15 significant digits
- Single precision p=64 bits gives
 ~19 significant digits

Measurement and Significant Digits

4 IEEE Floating Point: Big/Little Endian

 $\sigma a_1 a_2 ... a_7 a_8 b_1 b_2 ... b_{22} b_{23}$

- Given a single precision number is stored as a word (i.e., 4 contiguous bytes)
 - where to store sign bit and first seven exponent bits? (to the left or to the right of a 4 byte sequence)
 - To the left is BIG ENDIAN
 - (e.g., SUN, IBM)
 - To the right is LITTLE ENDIAN
 - (e.g., Intel)
- Important when passing data between different Endian computers (<u>some example software</u>)
- Word Endian originates in reference to Gulliver's Travels in discussion of which end of a boiled egg to open ... the little or big end?

5 Rounding: Real Numbers

- Finite IEEE floating point numbers: $\pm (1.b_1b_2...b_{p-2}b_{p-1})_2 \times 2^E$
- Real number x is in the normalized range of the $N_{\min} \le |x| \le N_{\max}$ floating point system if:
- If a real number x is not a floating point number, one (or both) of the following is true:
 - -x is outside the normalized range (N_{max}, N_{min})
 - binary expansion of x requires more than p bits to exactly specify the number

5 Rounding: Neighbor Numbers

Consider a real number:

$$x = \pm (1.b_1b_2...b_{p-2}b_{p-1}b_pb_{p+1}...)_2 \times 2^E$$

 The closest floating point number less than or equal is (obtained by truncating the significand)

$$x_{-} = \pm (1.b_{1}b_{2}...b_{p-2}b_{p-1})_{2} \times 2^{E}$$

 The closest floating point number greater than or equal is (obtained by increment the least significant bit)

$$x_{+} = (1.b_{1}b_{2}...b_{p-2}b_{p-1})_{2} \times 2^{E} + (0.00...01)_{2} \times 2^{E}$$

The gap between x₋ and x₊ is ulp(x):

$$Ulp(x) = 2^{-(p-1)} \times 2^{E}$$

5 Rounding: Correctly Rounded Values

- IEEE defines correctly rounded as being round(x)
- Four rounding modes in effect:
 - Round down:
 - round(x)=x
 - Round up:
 - $round(x)=x_{\perp}$
 - Round towards zero:
 - If x > 0 then round(x) = x
 - If x < 0 then $round(x) = x_+$
 - Round to nearest:
 - round(x) is either x₋ or x₊, whichever is nearer to x
 - In case of tie, the one with its least significant bit equal to zero is chosen

5 Rounding: Absolute Rounding Error

- Define absolute rounding error: abserr(x) = |round(x) x|
- Consider a real number: $x = \pm (1.b_1b_2...b_{p-2}b_{p-1}b_pb_{p+1}...)_2 \times 2^E$
- The absolute rounding error is less than the gap between x_{-} and x_{+} $abserr(x) = |round(x) x| < 2^{-(p-1)} \times 2^{E}$
- Absolute rounding error is less than one Ulp
- When round to nearest in effect, then absolute rounding error is less than or equal to ½ of an Ulp

$$abserr(x) = |round(x) - x| < 2^{-p} \times 2^{E}$$

5 Rounding: Relative Rounding Error

 Relative rounding error (for nonzero x) is defined:

$$relerr(x) = |\delta|$$

$$\delta = \frac{|round(x) - x|}{x}$$

- Relative error satisfies the bound: $\delta = \frac{|round(x) x|}{x} < \frac{2^{-(p-1)} \times 2^E}{2^E} = 2^{-(p-1)} = \varepsilon$ where $|x| > 2^E$
- For round to nearest we get: $\delta < \frac{\varepsilon}{2}$

$$round(x) = x(1+\delta)$$

- Theorem: $for some |\delta| < \varepsilon$
- Thus, no matter how x is stored, we can think of its values as exact tihin a factor of *1*+*epsilon*