Lecture #1: Floating Point Numbers

~N o A D WD P

Introduction

Real Numbers

Computer Representation of Numbers

IEEE Floating Point Representation
Rounding

Correctly Rounding Floating Point Operations
Exceptions

Reference

Numerical Computing with IEEE Floating Point Arithmetic
written by Michael L. Overton
published by SIAM

Numerical
Compurting 7~
- with IEEE Floating

PRt Arithmeatic

_nmwmﬂg]

Available at NYU Bookstore

Introduction: History of Computing

Number Systems & Tetrapods

Rhind Papyrus

— Eqgyptian numerals (as
Hieroglyphs)

— Eqgyptian multiplication (as
binary arithmetic)

Abacus

— Backaground

RN
— Applet _ﬁi-*f;;stﬂﬂﬂﬁ
o TR Ay

ey ==Ly
.'!.l-!.l'lilj

First Stored Program
Computer (EDVAC)

First Computer Bug

2 Real Numbers:

 [Integers, Rational, Irrational Numbers

e Properties (Commutative, Associative,
Distributive, Identity, & Inverse)

e Jero

— As Positional Place Holder
— As a Number Itself

» Complex Numbers

2 Real Numbers: Positional Number System

 Baseless System (e.g., Roman Numerals)

o Positional system (a.k.a. Digital System)

— Base 60 (Babylonians ... clocks, latitudes)

— Base 10 (a.k.a. Decimal, Arabic/Indian)

— Base 2 (a.k.a. Binary, Computerized Loqgic)

2 Real Numbers: Binary Conversion

e Decimal to Binary
— Decimal Fractions to Binary
— Infinite Binary Fractions

e Binary to Decimal

2 Real Numbers: Binary Arithmetic

e Addition

e Subtraction

 Multiplication

e Division

2 Real Numbers: Binary Bits

 System Digits: Oand 1

« Bit (short for binary digit): a single binary digit
e Bitstring: a string of bits

« LSB (least significant bit): the rightmost bit

« MSB (most significant bit): the leftmost bit

2 Real Numbers: Binary Equivalents

e 1 Nybble (or nibble) = 4 bits

« 1 Byte = 2 nybbles = 8 bits

« Upper Byte : right-hand byte of a pair
 Lower Byte : left-hand byte of a pair
e 1 Kilobyte (KB) = 1024 bytes

e 1 Megabyte (MB) = 1024 kilobytes

« 1 Gigabyte (GB) = 1024 megabytes
1 Terabyte (TB) = 1024 gigabytes

1 Petabyte (PB) = 1024 terabytes

 Word: 4 consecutive bytes of storage
 Double word: 8 consecutive bytes of storage

3 Comp. Rep. of Num.: Logic Gates

Input 1li

* Logic Gates npuc 13
— Basic Functions B
— Binary Addition Tmput 28

Output 2¥

WCC
Input 4B
Input 4i

Output 47

Input 3B

Input 34

Ground Output 37

e History of Gate Size/Speed
— Vacuum Tube
— Transistor
— Integrated Circuit
— Microprocessor

Comp. Rep. of Num.: 2’s Complement

Most computers represent negative integers as 2's complements

Algorithm

— Express number in binary
— Invert the digits

— Add one to the result

Allows subtraction to be replace by (negative addition)

Worked example

3 Comp. Rep. of Num.: Over/Under Flow

 Underflow

o Overflow (ditto)

Comp. Rep. of Num.: Fixed Point

Fixed Point Number — A value
with an integer and a fractional
part

Fixed Point Arithmetic

5 M integer hits I fractional hits
i

As=um ed binary point

Fig 1: Fixed point representation

3 Comp. Rep. of Num.: Scientific Notation

_ E
 EXxpress a real number x in scientific notation X =£5x10
— where S is the mantissa (a.k.a. significand) 1<S<9
— and E is the integer exponent

« Decimal place ‘floats’ to position immediately
after first non-zero digit in the decimal expansion
of a number

3 Comp. Rep. of Num.: Floating Point

 Onacomputer, we use base 2: x = +S x10° 1<S<?2
+ Binary expansion of significand is: (with h =1) S = (bo.blbzb3 .)

« Also called normalized representation

S =(Lbjyb,...)

e Since bO —1 we represent significand as:
— Leading bit is not explicitly stored (implied)

3 Comp. Rep. of Num.: Number Storage

e Computer words shared into three fields (sign, exponent, and significant)

 e.g., a 32-bit word shared as: 1 sign bit, 8 exponent bits, 23 significant
— Sign bit (O for positive; 1 for negative)
— Exponent (represents -128 to 127)
— Significant (stores first 23 bits after b, , namely b;...b,;)

oA g9 31 (big-endian)
1| & bits 23 bits
3130 2322 1 (little-enddian)

SINGLE-PRECISION

{big-endian)

oo 11 12 63
1 11 bits b2 bits
63 62 52 & 0

{little-endizan)
DOUEBLE-PRECISION

EaFarcty

 Real number x exactly representable is a floating point number
— Otherwise, real number must be rounded to next floating point number

3 Comp. Rep. of Num.: Precision

e precision versus accuracy (scientific meanings)

e precision (denoted p) of the floating point system
IS the number of bits in the significand (including
the hidden bit).

* Any normalized floating point number with y _ J_r(l.blbz b

E
. . : p—2bp—1)2 X 2
precision p can be expressed:

3 Comp. Rep. of Num.: Machine Epsilon

« The smallest x such that x is greater
than 1: x =+(1.00...01) =1+2"""

 machine epsilon defined as the gap
between the number above and 1 ¢ =+(0.00...01), = o~(p-1)
itself:

3 Comp. Rep. of Num.. Ulp

e Ulp is an acronym for ‘unit in the last place’
« Defined as: Ulp(x)=£(0.00...01), x 25 =27 x2F = ¢ x 2°

 For x> o0, then ulp(x) is the gap between x
and the next larger floating point number

3 Comp. Rep. of Num.: Zero

e Zero cannot be normalized
— the hidden bit is always implied to be 1

« Two solution strategies

— 1) give up on concept of hidden bit and
represent b, explicitly

— 2) use special string in exponent field to
signal the number is zero (IEEE approach)

IEEE Floating Point: Institute(s)

|EEE — Institute for Electronics and Electrical Engineers

ANS| — American National Standards Institute

— on-line store (document 754-1985)

The need for a standard
— Portable code was elusive in the 1960s (prior to standard)

— What every computer scientist should know about floating
point arithmetic

Non-standard implementation
— How Java’s floating point hurts everyone everywhere

4 |EEE Floating Point: Standard Requirements

e Consistent representation of floating point numbers by all
machines adopting the standard

« Correctly rounded floating point operations, using various
rounding modes

« Consistent treatment of exceptional situations, such as
division by zero

IEEE Floating Point: Special Numbers

Zero, and negative zero

Plus and minus infinity

Not a number (NaN)

How to represent these numbers in floating point
— Special pattern of exponent field ?

IEEE Floating Point. Basic Formats

Single precision — 32 bit word
Double precision — 64 bit double word
Extend precision — (up to) 128 bit quad word

Minimum Range of numbers
— Single : 2126~ 1.2 x 1038
— Double : 21022~ 2 2 x 10-308

Maximum Range of numbers
— Single : 2+128~ 3.4 x 10*38
— Double : 2+1024~ 1 8 x 10+308

Greater precision needed in some scientific calculations
Lesser precision needed in some routine operations

IEEE Floating Point: Single Precision

21 =3 1= F LE)
. |) |)) N I |
EEE::‘I Exponent Bits 1] Menticsa Bits

The 24 mantkssa kit is
implizd o i Amwarsens

32 bits available:
— 1 bit sign; 8 bit exponent; 23 bit significand

Special numbers: (zero and subnormal)
— If exponent (00000000), = (0),,
— Then number (0.b;b,...b,;) x 212

Special numbers: (+/- infinity and Nan)

— Ifexponent (11111111),=(255),,

— Then number +/-infinity if b,=b,...=b,;=0
— Else Nan otherwise

Normal Numbers
— Exponent is biased (need to subtract 127)

— Examples of single precision standard (Pittsburgh
Supercomputing Center)

4 |EEE Floating Point. Subnormals

« Avrises in situation of zero exponent (hence zero hidden bit)
— If all fraction bits are zero, b,=Db,...=b,;=0
— Then the number is zero

— Else a subnormal number is obtained
« Can represent 2-127 through to 2149

e Subnormals cannot be normalized
— (if they did, the exponent would not fit in the exponent field)

IEEE Floating Point. Double Precision

64 bits available:
— 1 bitsign; 11 bit exponent; 52 bit significand

Conceptually identical to single precision

Examples of double precision standard (Pittsburgh
Supercomputing Center)

Under what circumstances does user want single versus
double precision ?

— Scientific measurement ?

— Scientific calculation ?

) b 3 7 a
ﬁ'gtn Expanent Bitw EI ilontiess Bt

IEEE Floating Point. Extended Precision

v =¥ | = o
. . Hponenk ik P
80 bits available: it

— 1 bit sign; 15 bit exponent; 64 bit significand
Differ from single/double precision in that no ‘hidden bit’

Intel implements extended precision in hardware (fast);
Sparc implements in 128 bit software (slow)

IEEE Floating Point: Significant Digits

_ . _) Measurement and Significant Digits
Single precision p=24 bits gives

~7 significant digits

|IIII|IIII|IIII|IIII|IIIII I|IIII|III|IIII|IIIIII
Double precision p=53 bits gives : 1 / 3 /4 /Z
/

~15 significant digits

Single precision p=64 bits gives 472 0r4.73 cm

~19 significant digits

‘llll“li/ll'}la‘ll

4 5

4 |EEE Floating Point: Big/Little Endian

e Given a single precision number is stored as a
word (i.e., 4 contiguous bytes)
— where to store sign bit and first seven exponent

bits? (to the left or to the right of a 4 byte
sequence)

— To the left is BIG ENDIAN 0a,a,...8,3;,0,b,...n,,0b,,
* (e.g., SUN, IBM)

— Totherightis LITTLE ENDIAN
* (e.g., Intel)

* Important when passing data between different
Endian computers (some example software)

e Word Endian originates in reference to
Gulliver’'s Travels in discussion of which end of
a boiled egg to open ... the little or big end?

Rounding: Real Numbers

Finite IEEE floating point numbers: J_r(l.blbz...bp_sz_l)2 x 2"

Real number x is in the normalized range of the N_ < X‘ <N__
floating point system If:

If a real number x is not a floating point
number, one (or both) of the following is true:

— x is outside the normalized range (N, Ni)

— binary expansion of x requires more than p bits
to exactly specify the number

5 Rounding: Neighbor Numbers

X=#(Lbb,...b, bbb, ..) x2F

« Consider a real number: pp+L

 The closest floating point number c
less than or equal is (obtained X_ = i(l.b1b2 . “bp—pr—1)2 X 2
by truncating the significand)

 The closest floating point number _ E
greater than or equal is (obtained X, = (1'b1b2 '”bp—ZbP—l)z x2" 4
by increment the least significant (O 00 01) w DE

UU...U1),

bit)

 The gap between x_and x, is

ulp(x): Ulp(x) = 27" x 2F

5 Rounding: Correctly Rounded Values

 |EEE defines correctly rounded as being
round(x)

* Four rounding modes in effect:
— Round down:
o round(x)=x_
— Round up:
o round(x)=x,
— Round towards zero:
e If x>0 then round(x)=x.
 If x<0 then round(x)=x,
— Round to nearest:
* round(x) is either x_or x,, whichever is nearer to x

* In case of tie, the one with its least significant bit
equal to zero is chosen

5 Rounding: Absolute Rounding Error

Define absolute rounding error: abserr(x) =|round (x) — x|

I+

. Consider areal number: ~ X=%(Lbb,...b, bbb ...} x2F

 The absolute rounding error is less than the
ap between x_and x
dap ‘ " abserr(x) =|round (x) — x| < 27" x 2°

e Absolute rounding error is less than one Ulp

 When round to nearest in effect, then absolute
rounding error is less than or equal to %2 of an
Ulp
abserr(x) = |round (x) — x| < 27" x 2°

5 Rounding: Relative Rounding Error

| | relerr(x) = ||
« Relative rounding error (for nonzero x) is

defined: 5 = lround (9 -

X

round (x) — x| 27 x 2F
= <
X 2F
where |x| > 2F

=2 D) _ ¢

 Relative error satisfies the bound: s

e For round to nearest we get: 5<%

round (x) = x(1+)
e Theorem: for some |d]< ¢

 Thus, no matter how x is stored, we can think
of its values as exact tihin a factor of 1+epsilon

