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Abstract | Estrogens mediate profound effects throughout the body and regulate physiological and pathological 
processes in both women and men. The low prevalence of many diseases in premenopausal women is 
attributed to the presence of 17β‑estradiol, the predominant and most potent endogenous estrogen. In addition 
to endogenous estrogens, several man-made and plant-derived molecules, such as bisphenol A and genistein, 
also exhibit estrogenic activity. Traditionally, the actions of 17β‑estradiol are ascribed to two nuclear estrogen 
receptors (ERs), ERα and ERβ, which function as ligand-activated transcription factors. However, 17β-estradiol 
also mediates rapid signaling events via pathways that involve transmembrane ERs, such as G‑protein-coupled 
ER 1 (GPER; formerly known as GPR30). In the past 10 years, GPER has been implicated in both rapid signaling 
and transcriptional regulation. With the discovery of GPER-selective ligands that can selectively modulate GPER 
function in vitro and in preclinical studies and with the use of Gper knockout mice, many more potential roles for 
GPER are being elucidated. This Review highlights the physiological roles of GPER in the reproductive, nervous, 
endocrine, immune and cardiovascular systems, as well as its pathological roles in a diverse array of disorders 
including cancer, for which GPER is emerging as a novel therapeutic target and prognostic indicator.
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Introduction
17β‑Estradiol is commonly recognized as the predominant 
female sex hormone, with a critical role in the develop
ment of the female reproductive organs and secondary 
sex characteristics. However, this hormone is also essen‑
tial for reproductive development and function in males.1 
In addition to the reproductive system, 17β‑estradiol has 
important physiological roles in almost every other area 
of the body, including the nervous, immune, vascular, 
muscular, skeletal and endocrine systems. As expected, 
disruptions in 17β‑estradiol signaling, therefore, contrib‑
ute to multiple disorders, including cancer, cardiovascular 
diseases, hypertension, osteoporosis, cognitive and behav‑
ioral alterations, neurodegenerative diseases, metabolic 
disorders (such as obesity and diabetes mellitus) and 
immune disorders.2 Our understanding of the widespread 
physiological effects of 17β‑estradiol is complicated by the 
existence of several types of estrogen receptors (ERs) and 
multiple modes of cellular signaling mechanisms that span 
time frames from seconds to hours, or even days.3,4 The 
pathophysiological mechanisms involving ERs are further 
complicated by a diverse array of 17β‑estradiol-mimicking 
compounds, both synthetic and plant-derived, to which 
humans are increasingly exposed.5

In this Review, we provide a brief overview of estrogen 
signaling and describe the discovery and characterization 
of its receptors, with particular emphasis on G‑protein-
coupled estrogen receptor 1 (GPER). We will also discuss 

studies that have elucidated the functions and importance 
of GPER in health and disease and those that have revealed 
the therapeutic potential of small-molecule regulators of 
GPER activity.

Estrogen receptors
ERα and ERβ
The first and best described 17β‑estradiol receptor, now 
called ERα, was identified in the rat uterus in the 1960s.6,7 
The second, less well-characterized receptor, ERβ, was 
identified in the rat prostate in 1996.8 These highly homo
logous receptors function as ligand-activated nuclear tran‑
scription factors that bind cis-acting estrogen response 
elements in the promoter and enhancer regions of hor‑
monally regulated genes.9 Both ERα and ERβ, encoded 
by the genes ESR1 and ESR2, respectively, are soluble 
receptors that can shuttle between the cytoplasm and the 
nucleus, but are found predominantly in the nucleus (only 
~5% of these receptors are present in the cytoplasm).4 
Highly divergent and sometimes opposing functions for 
the two receptors have been reported in studies of Esr1 
knockout and Esr2 knockout mice, which lack the murine 
ERα and ERβ protein, respectively.10 In addition to their 
effects on gene expression (that is, their genomic effects), 
these ERs are also associated with rapid cellular signal‑
ing (termed non-genomic effects) that are thought to be 
mediated primarily by membrane-associated forms of 
these receptors.11

Although multiple modes of action were suggested for 
ERs as early as the 1960s,12–14 not all effects of 17β-estradiol, 
particularly the rapid and membrane-associated signaling 
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events, could be attributed to ERα and ERβ.15 In some 
cases, antagonists of these receptors could not block 
certain rapid signaling events, which led to the predic‑
tion that alternative membrane-bound ERs also existed.16 
Interestingly, most of the 17β‑estradiol-mediated rapid 
signaling events are associated with G protein signaling 
or growth factor-mediated pathways.

GPER
A study in 2000 reported that rapid 17β‑estradiol-mediated 
activation of extracellular signal-regulated kinases (ERKs) 
was dependent on the expression of an orphan G-protein-
coupled receptor with seven transmembrane domains.17 
This receptor, then known as GPR30, was cloned by several 
groups in the late 1990s.18–23 Following this initial report, 
other studies described 17β‑estradiol-mediated, GPR30-
dependent, generation of cAMP24 and expression of Bcl‑2,25 
nerve growth factor26 and cyclin D2.27 Furthermore, other 
researchers described GPR30-mediated expression of 
c‑Fos28 and an interaction between the effects of progestin 
and GPR30 expression.29–31 Two studies published in 2005 
described binding of 17β‑estradiol to GPR30 in GPR30-
transfected COS7 and HEK293 cells, as well as various 
breast cancer cell lines.32,33 Together, these results suggested 
that GPR30 was a 17β‑estradiol-binding receptor, which 
led to its designation as G-protein-coupled estrogen recep‑
tor 1 (GPER) in 2007. GPER is now known to be expressed 
in numerous tissues,34 and research into its functions has 
substantially increased.

Estrogen receptor ligands
GPER unselective ligands
Natural endogenous estrogens, predominantly 17β‑ 
estradiol, are the primary ligands of ERs. 17β‑estradiol is 
synthesized mainly in the ovaries, although it is also pro‑
duced at many sites throughout the body, including the 
breast, brain, adipose tissue and the arterial wall, where it 
might have specialized local effects.35 The 17β‑estradiol-
based steroids estriol (a GPER antagonist at high concen‑
trations36), estrone and estrone sulfate can also modulate 
biological functions, although their specific actions are less 
clear than those of 17β‑estradiol.37 Plasma concentrations 

Key points

■■ Estrogen has critical nonreproductive roles in health, including beneficial 
effects on the skeletal, nervous, endocrine, immune and cardiovascular 
systems, as well as on many diseases and cancers

■■ The estrogen receptors (ERs) include ERα, ERβ and G‑protein-coupled 
estrogen receptor 1 (GPER); their expression and signaling mechanisms are 
complex and potentially exhibit redundant, independent, synergistic and/or 
antagonistic actions

■■ Estrogenic compounds (selective ER modulators, ER antagonists, selective ER 
downregulators, phytoestrogens and xenoestrogens) have multifaceted effects 
on all types of ERs with receptor-specific pharmacological profiles

■■ GPER-selective agonists, such as G‑1, mediate many salutary effects of 
estrogen in various tissues and organs with only minor reproductive effects

■■ GPER represents an important diagnostic, prognostic and therapeutic target; 
development of GPER-selective agonists and antagonists could contribute to 
the diagnosis and treatment of many diseases

of 17β‑estradiol in premenopausal women are ~0.2–
1.0 nmol/l, although it increases by many 100-fold during 
pregnancy. Local concentrations in specific tissues can 
be much higher than the plasma values, for example in 
breast tissue (by 10–20-fold)38 or in the placenta at term 
(~12 μmol/l).39 The hydrophobic nature of these steroids 
allows them to diffuse passively through cell membranes 
and reach their intracellular targets, the ERs.40

A large variety of natural and man-made chemicals also 
have estrogenic activity (Figure 1).5 Estrogenic compounds 
synthesized by plants (phytoestrogens) include flavonoids, 
such as coumestans and isoflavones.41 Synthetic estrogenic 
compounds (known as xenoestrogens, environmental 
estrogens or endocrine disruptors) include many pesticides, 
herbicides and plastic monomers.5 Their widespread use 
results in chronic low-level exposure to these compounds 
in humans.42 Although the majority of phytoestrogens and 
xenoestrogens are believed to exert their physiological 
effects through modulation of ERα and ERβ,43 many of 
these compounds also activate GPER, including the soy 
isoflavone genistein, for which serum concentrations up 
to 500 nmol/l have been measured;44 nonylphenol; the 
pesticides dichlorodiphenyltrichloroethane (DDT) and 
dichlorodiphenyldichloroethylene (DDE); bisphenols,45 
such as bisphenol A (Figure 1), which promotes testicu‑
lar seminoma cell proliferation;46 the herbicide atrazine;47 
and possibly equol, a nonsteroidal equine estrogen found 
in premarin48 that is formed by human gut bacteria as a 
metabolite of the isoflavone, daidzein.49

Synthetic 17β‑estradiol mimetics are also used exten‑
sively in clinical and therapeutic applications. For example, 
17α-ethynylestradiol is the predominant estrogen used 
in female contraceptives. Drugs, such as tamoxifen 
(Figure 1) and raloxifene, which are used in treatments 
for breast cancer and osteoporosis,2 act as ER agonists in 
some tissues and ER antagonists in others, which led to 
their designation as selective estrogen receptor modula‑
tors (SERMs).50 By contrast, fulvestrant (Figure 1) is a 
‘pure’ ER antagonist that causes ER degradation and/or 
downregulation, which led to its designation as a selec‑
tive estrogen receptor downregulator (SERD).51 However, 
some members of SERMs and SERDs can also act as GPER 
agonists,17,33 which complicates the interpretation of the 
mechanisms of their action and the receptors involved in 
both physiological and disease conditions.52

GPER-selective ligands
Research into the specific activities of GPER has been aided 
by the discovery of GPER-selective agents. Since the iden‑
tification of the first GPER-selective agonist G‑1 in 2006, 
a number of reports have examined the disease-related or 
health-promoting effects associated with GPER activation. 
Importantly, studies using G‑1 (Figure 1) at concentrations 
as high as 1–10 μmol/l showed no notable activity of this 
agent towards ERα in terms of activating or inhibiting rapid 
signaling events,33 estrogen response element-mediated 
transcription53,54 or ERα downregulation.53 Furthermore, 
G‑1 had no binding activity on 25 other G‑protein-coupled 
receptors55 or in Gper knockout mice,56–58 which provided 
evidence that G‑1 is a ligand highly selective for GPER.
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In 2009, the GPER-selective antagonist G15 (Figure 1) 
was identified,59 followed by G36, a more selective GPER 
antagonist than G15, identified in 2011.54 G15 has a simi
lar structure to G‑1,59 and is effective in inhibiting all 
G‑1-mediated effects tested to date,59–61 as well as many 
17β-estradiol-mediated effects.59–63 The core structures 
of G‑1, G15 and G36 have been used to generate several 
radioactively labeled agents that can be used for imaging 
and potential treatment of GPER-expressing tumors 
in vivo.64,65

GPER signaling
Although ERα and ERβ are accepted as the predomi‑
nant nuclear receptors involved in the genomic effects of 
estrogen, evidence also indicates that rapid modulation 
of cell-signaling pathways occurs via a subpopulation 
of ERs located at the plasma membrane (Figure 2),4 
which has fueled the speculation about a role of GPER.66 
The localization of GPER, however, seems to be pre‑
dominantly intracellular,33,67 consistent with reports 
that describe the constitutive internalization of plasma 
membrane GPER.68,69

Signaling through GPER occurs via transactivation 
of the epidermal growth factor receptor (EGFR) and 
involves nonreceptor tyrosine kinases of the Src family.17 
In this mechanism, which is now also accepted for other 
G‑protein-coupled receptors,70 stimulation of GPER 

activates metalloproteinases and induces the release of 
heparin-binding EGF, which binds and activates EGFR,71 
leading to activation of downstream signaling molecules, 
such as ERK1/2.72 Moreover, 17β‑estradiol-mediated 
activation of GPER stimulates production of cAMP,24,32 
intracellular calcium mobilization33,73,74 and PI3K activa‑
tion (Figure 2).33 Further research in human breast cancer 
cells suggests that sphingosine kinase75 and integrin α5β1

76 
are intermediates in 17β‑estradiol-mediated EGFR trans‑
activation; the latter study suggesting a role for GPER in 
fibronectin assembly.76

In addition to the above-mentioned rapid signaling 
events, GPER also regulates transcriptional activity, albeit 
indirectly, by activating signaling mechanisms that involve 
cAMP, ERK and PI3K (Figure 2).77 The genes regulated by 
GPER include FOS, which encodes c‑Fos,28 a protein that 
forms a heterodimer with various other proteins to form 
the transcription factor AP‑1. In turn, these signaling 
pathways also activate other transcription factors, such 
as steroidogenic factor 1,78 which induce expression of 
additional genes.79,80

GPER in physiology and disease
Reproductive system
The role of 17β‑estradiol is best defined in the reproduc‑
tive system, where this hormone regulates uterine and 
mammary development and function. Although roles 
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Figure 1 | Structures of selective and nonselective estrogen receptor ligands. Compounds shown include the three major 
physiological forms of estrogen (17β‑estradiol, estrone and estriol); the anticancer agent tamoxifen and its active 
metabolite 4‑hydroxytamoxifen (which is both a selective estrogen receptor modulator and an agonist for GPER); 
fulvestrant, a selective estrogen receptor downregulator and agonist for GPER; diethylstilbestrol, a nonselective GPER 
agonist; the phytoestrogens genistein and coumestrol; and the xenoestrogen bisphenol A. Also shown are G‑1 (a selective 
GPER agonist) and G15 (a selective GPER antagonist). 
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for GPER are implicated in almost every system of the 
body (Figure 3), conflicting observations have been pub‑
lished particularly in the reproductive system.34 No clear 
developmental or functional defects occur in the repro‑
ductive organs of Gper knockout mice,81–84 whereas Esr1 
knockout mice display multiple reproductive defects.85 
Furthermore, in wild-type mice treated with G‑1, no 
change was detected in ductal growth or end bud forma‑
tion in mammary glands, and no uterine imbibition of 
water, or proliferative response in the mammary gland 
or endometrium was observed.83 However, in another 
study, G‑1 treatment in mice stimulated uterine epithe‑
lial proliferation by approximately threefold, compared 
with a ~15-fold increase in proliferation observed with 
17β‑estradiol.59 Importantly, blocking GPER with G15 
reduced the 17β‑estradiol-mediated proliferative response 
by ~50%,59 which suggests that GPER, in part, contrib‑
utes to this response. Surprisingly, high concentrations 
of G‑1 (1,000-fold greater than those needed to observe 
a proliferative effect) reduce both 17β‑estradiol-mediated 

uterine imbibition of water, and proliferation, through 
inhibition of ERK1/2 in the stroma and via phosphoryla‑
tion of serine 118 in ERα.86 These data suggest that GPER 
regulates uterine proliferation, independently of ERα, but 
via a mechanism that might involve crosstalk with the 
17β‑estradiol–ERα pathway.

In addition to effects on the mammalian uterus, GPER 
is also involved in the regulation of meiotic arrest in 
oocytes of the Atlantic croaker and zebra fish. In vitro, 
17β‑estradiol and G‑1 reduced both spontaneous and 
progestin-induced oocyte maturation in both Atlantic 
croaker and zebra fish, whereas knockdown of GPER 
or blockade of GPER with G15 prevented the inhibi‑
tory effects of 17β‑estradiol, which occur via an EGFR-
dependent pathway.62,87 Furthermore, GPER (mRNA 
and protein) expression in granulosa and theca cells  
of the hamster ovary is regulated by gonadotropins and  
the estrous cycle,88 and in this tissue, GPER regulates the 
17β‑estradiol-mediated stimulation of primordial follicle 
formation.89 In ex vivo studies of human myometrium, 
GPER enhances contractile responses to oxytocin, which 
suggests a role for GPER in uterine contractility during 
labor.90 Moreover, ERα, ERβ and GPER regulate the pro‑
liferative and apoptotic pathways involved in spermato
genesis91–93 during male reproductive development. 
Overall, the roles of GPER in the reproductive system are 
complex and require further investigation, particularly 
in humans.

Nervous system and neuroendocrinology
The effects of 17β‑estradiol in the central and peripheral 
nervous system include maintenance of homeostasis, 
regulation of synaptic plasticity and cognition, neuro‑
protection and modulation of pain sensation. Although 
many of these effects might involve ERα and ERβ, increas‑
ing evidence indicates that GPER has multiple roles in 
17β‑estradiol-mediated neurological functions. GPER 
(mRNA and protein) expression have been detected 
throughout the central (Figure 3) and peripheral nervous 
system of male and female rodents, including in the hippo
campus, hypothalamus and midbrain, as well as the spinal 
cord and dorsal root ganglia.74,94,95 However, conflicting 
results showing Gper expression in small arterial surface 
vessels and pericytes in the brain also exist.81 Both ERα 
and GPER activate the ERK1/2 pathway in trigeminal 
ganglion neurons and increase allodynia, indicating a role 
for these two ERs in temporomandibular disorder and 
migraine.96 Furthermore, in rats, G‑1 depolarizes spinal 
cord neurons,84 stimulates mechanical hyperalgesia via 
protein kinase Cξ97 and mediates visceral hypersensitivity 
in the absence of inflammation.98

17β‑Estradiol has many beneficial effects on the brain, 
including reduction of neuronal loss following stroke, 
increase in neuronal connectivity and improvement of cog
nitive performance.99 GPER has been implicated in 17β‑ 
estradiol-mediated effects on cholinergic neurons in the 
basal forebrain, which suggests that this ER might be an 
important regulator of cognitive function, particularly in 
women after menopause.100 In studies that used immor
talized hippocampal cell lines, GPER (along with ERα) 
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Figure 2 | Nongenomic and genomic estrogen signaling pathways. Endogenous 
estrogens including 17β‑estradiol are nonselective activators of the three known 
ERs, ERα, ERβ and GPER. 17β‑Estradiol activates nuclear ERs, inducing receptor 
dimerization and binding of receptor dimers to the promoters of target genes. 
Alternatively, activated ERs modulate the function of other classes of TFs through 
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intracellularly. GPER activation stimulates cAMP production, calcium mobilization 
and c‑Src, which activates MMPs. These MMPs cleave pro‑HB‑EGF, releasing free 
HB‑EGF that transactivates EGFR, which in turn activates MAPK and PI3K–Akt 
pathways that can induce additional rapid (nongenomic) effects (X), or genomic 
effects regulating gene transcription. E2-mediated transcriptional regulation may 
involve phosphorylation (P) of ER or other TFs that may directly interact with ER,  
or bind independently of ER within the promoters of target genes. Abbreviations: 
E2, 17β‑estradiol; EGFR, epidermal growth factor receptor; ER, estrogen receptor; 
GPER, G-protein-coupled ER; MMP, matrix metalloproteinase; pro‑HB‑EGF,  
pro-heparin-binding-epidermal growth factor; TF, transcription factor.
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was implicated in the protective effects of 17β‑estradiol 
against glutamate-induced injury,63 although in corti‑
cal neurons G‑1 did not have any effect.101 However, 
in vivo studies showed that G‑1 treatment replicates the 
effects of 17β‑estradiol in promoting neuronal survival 
following global ischemia in the brain.102,103 Altogether, 
these results suggest that GPER agonists might repre‑
sent a new therapeutic approach for stroke and chronic 
neurodegenerative diseases.104

In the brain, G‑1 (like 17β‑estradiol) attenuates sero‑
tonin receptor signaling in the paraventricular nucleus of 
the hypothalamus and reduces responses to oxytocin and 
adrenocorticotropic hormone, which suggests that GPER 
might have a role in mood disorders.105 Furthermore, 
G‑1 exhibited antidepressant properties in a mouse 
model of depression, where it reproduced the effects 
of 17β‑estradiol, which were inhibited by the GPER-
selective antagonist G15.59 In primates, GPER contributes 

to 17β‑estradiol-mediated regulation of luteinizing-
hormone-releasing hormone neurons, which maintain 
gonadal function and fertility.106 This effect probably also 
involves additional mechanisms.107 However, whereas 
GPER activation promoted short-latency prolactin secre‑
tion, G‑1 did not affect the 17β‑estradiol-mediated nega‑
tive feedback inhibition of either luteinizing hormone 
secretion or lordosis behavior in rats.108 Studies with 
Esr1 knockout mice showed that ERα is required for 
17β‑estradiol-regulated positive feedback control of 
hypothalamic gonadotropin release,109 which suggests 
that the actions of GPER are complex and possibly also 
require the presence of ERα.

Immune system
17β‑estradiol displays multiple effects in the regula‑
tion of immune responses, including the development 
of T cells,110 autoimmune disease111,112 and inhibition 

Cardiovascular system
Heart: Cardiomyocyte growth, inhibition of apoptosis,

cardiomyocyte contractility
Vasculature: Vasodilatation, nitric oxide release, inhibition 

of proliferation in vascular smooth muscle cells and 
endothelial cells, inhibition of endothelial cell apoptosis
Ischemia–reperfusion injury after myocardial infarction, 
dilated cardiomyopathy, hypertensive cardiomyopathy, 

arterial hypertension, vascular disease

Immune system
Thymus: T-cell differentiation and/or 

regulation, T-cell development
Macrophages: Inhibition of in�ammation

In�ammation, autoimmunity, thymic atrophy 
(17β-estradiol-dependent)

Reproductive system
Mammary gland: Development

Ovaries: Oocyte maturation
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myometrial contraction
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uterine carcinosarcoma
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Figure 3 | Involvement of G-protein-coupled estrogen receptor (GPER) action in regulation of physiological responses and 
disease. GPER is implicated in neuroendocrine and cerebral functions, immune cell function, endocrine regulation and 
metabolism, cardiovascular and kidney function, and reproductive functions. In addition, studies using experimental 
models of disease and/or human tissue suggest roles for GPER in diseases (shown in red), such as diabetes mellitus, 
arterial hypertension, proteinuric renal disease, osteoporosis, arthritis, immune diseases, such as multiple sclerosis, and 
cancer. Collectively, these studies suggest the therapeutic potential of regulating GPER activity as a novel approach for the 
treatment of these conditions.
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of inflammation.111 Studies in Esr1 knockout and Gper 
knockout mice have shown that GPER, along with ERα, 
contributes to 17β‑estradiol-induced thymic atrophy;84 
ERα mediated the early blockage of thymocyte develop
ment, whereas GPER mediated thymocyte apoptosis. 
Furthermore, in Gper knockout mice engineered to 
express the prokaryotic lacZ gene under control of the 
murine Gper promoter, numbers of L‑selectin-expressing 
T cells decreased, consistent with an altered produc‑
tion of these T cells in the thymus.81 By contrast, other 
studies using Gper knockout mice did not find any dif‑
ference in 17β‑estradiol-induced thymic atrophy,113 
nor in 17β‑estradiol-dependent protective effects on 
arthritis or bone loss in a model of postmenopausal 
rheumatoid arthritis.114 These findings suggest com
plex roles for 17β-estradiol and GPER in the immune 
system (Figure 3).

Estrogens are increasingly receiving attention as poten‑
tial anti-inflammatory agents for the treatment of auto‑
immune diseases, particularly multiple sclerosis.112 In a 
mouse model of multiple sclerosis—experimental auto‑
immune encephalomyelitis (EAE)—knockout of Gper 
interfered with the protective role of 17β‑estradiol.56 In 
two studies, treatment with G‑1 reproduced the ability 
of 17β‑estradiol to protect against the functional and 
histological manifestations of EAE through enhanc‑
ing the immunosuppressive activity of CD4+Foxp3+ 
T cells, resulting in upregulation of programmed cell 
death56 and inhibition of inflammatory cytokine pro‑
duction by macrophages.55 These findings suggest that 
GPER mediates the protective role of 17β‑estradiol in 
multiple sclerosis.

Although the protective effects of G‑1 against EAE were 
absent in Gper knockout mice, 17β‑estradiol-mediated 
effects were partially retained, suggesting that ERα and 
GPER can activate independent, yet overlapping, mecha‑
nisms. Further research showed that the therapeutic effect 
of ethynylestradiol in established EAE was mediated via 
GPER, but not via ERα, and possibly involved production 
of the anti-inflammatory cytokine Il‑10.115 Another study 
showed that G‑1 treatment elicits de novo production of 
Il‑10 in T helper type 17 polarized cells, in vitro as well as 
in vivo, via an ERK1/2-dependent pathway.116 Thus, the 
immunomodulatory effects of G‑1, mediated by activation 
of GPER, indicate that GPER agonists might have novel 
clinical applications in chronic inflammatory diseases.

Cardiovascular system
Endogenous 17β‑estradiol is implicated in sex-specific 
differences observed in arterial hypertension and cardio
vascular disease,117,119 as the cessation of 17β‑estradiol 
production following menopause accelerates these condi‑
tions.117 However, the cellular mechanisms and signaling 
pathways conferring the protective effect of 17β‑estradiol 
are only partially understood.120 Although ERα and ERβ 
are implicated in cardiovascular protection mediated by 
17β‑estradiol, a protective effect of this hormone is also 
seen in the absence of both receptors.121–123 These obser‑
vations provided the initial evidence for the existence 
of alternative receptors, such as GPER, and signaling 

pathways involved in 17β‑estradiol-mediated regulation 
of cardiovascular function.

GPER (mRNA and protein) is expressed in murine82 
and human myocardium,124 as well as in cultured cardio
myocytes.125 17β‑Estradiol-mediated inhibition of 
calcium influx and contraction in murine cardiomyocytes 
is independent of ERα and ERβ,121 and deletion of Gper 
leads to left ventricular dilatation and elevation of end-
diastolic pressure in male, but not female, mice.126 In 
patients with myocardial infarction, ischemia–reperfusion 
injury after reopening of the occluded coronary artery is a 
critical determinant of outcome and complications, such 
as arrythmia and heart failure.127,128 Myocardial hypoxia 
resulting from infarction129 is an important stimulus that 
upregulates GPER (mRNA and protein) expression in 
cardiomyocytes.125 Several groups have independently 
demonstrated that G‑1 treatment after myocardial 
infarction led to reduced reperfusion-related injury and 
infarct size and improved contractile function in structur‑
ally normal hearts from rodents of both sexes.124,127,130–132 
Similar benefits were also obtained for G‑1 treatment in 
cerebrovascular occlusion-related reperfusion injury in 
animal models of stroke.102,133 Under these conditions, 
activation of GPER by G‑1 resulted in reduced myocardial 
expression of proinflammatory cytokines (IL‑1β, IL‑6 and 
tumor necrosis factor),132 increased activation of Akt,134 
Erk1/2,130,134 increased phosphorylation of endothelial 
nitric oxide synthase (eNOS)134 and decreased mito
chondrial permeability.131 Some of these cardioprotective 
effects were blocked by an inhibitor of PI3K.134

GPER protein is expressed in human endothelial23,135 
and smooth muscle cells,58,136 as well as in intact arteries 
(Figure 3).136 Expression of GPER in macrophages,137 
which contribute to atherogenesis, also suggests a func‑
tional role for GPER in atherosclerosis and the associated 
inflammation. In human endothelial cells, activation of 
GPER (but not of ERα)138 inhibits cell proliferation,135 
indicating an antiangiogenic role for this ER. In human 
and rat vascular smooth muscle cells, activation of GPER 
by either G‑158,139 or raloxifene140 stimulates the ERK1/2 
pathway and inhibits proliferation, similarly to the effect 
of ERα activation in these cells.140 These findings are in 
keeping with the antiproliferative effects of 17β‑estradiol 
on vascular smooth muscle cells from Esr1 and Esr2 
double-knockout mice.122 Moreover, the GPER agonists 
G‑1,58,61,142,143 genistein144 and fulvestrant142 (Figure 1) 
cause vasodilatation in human, porcine and rodent arter‑
ies, whereas this effect is blocked by the GPER antagonist 
G1561 and is absent in Gper-deficient mice.58

Elevated vascular resistance is a key feature of arterial 
hypertension.119 Gper-deficient mice exhibit a normal mean 
arterial blood pressure that does not change with age.82 
Infusion of the GPER agonist G‑1 markedly lowers blood 
pressure in normotensive58 and hypertensive rats.61,145,146 
In rats with hypertensive cardiomyopathy, G‑1 treatment 
ameliorates diastolic dysfunction, reduces cardiac hyper‑
trophy and decreases the size of cardiomyocytes.145 This 
effect is probably mediated through direct vasodilatory 
actions of G‑158,143,147 or 17β‑estradiol, as this hormone 
also has vasodilatory effects (which are derived at least in 
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part from GPER, as they are blocked by the GPER antago
nist G15).61 Vasodilatory actions of G‑1 involve both 
nitric oxide-dependent and nitric oxide-independent 
pathways and have been observed in human, pig and rat 
arteries.58,61,143,146 Phosphorylation of eNOS as a result of 
GPER activation might contribute to this response.49,134 
At least some of the vasoprotective effects mediated by 
GPER are probably the result of interference with endo
thelial cell dysfunction—a vascular abnormality common 
to hypertension and coronary artery disease.118,148

Altogether, these data indicate a central regulatory role 
for GPER in cardiovascular function and suggest that GPER 
agonists have potential roles in the treatment of vascular 
and myocardial disease in both men and women.

Renal system
Endogenous 17β‑estradiol is also implicated in the sex-
specific differences in renal disease.117 GPER is expressed 
at high levels in renal tubules,95 as well as in renal epi‑
thelial cells (Figure 3).68 In humans, the GPER locus 
is associated with low-renin hypertension,149 which 
leads to kidney injury and vascular dysfunction (the 
latter abnormality is ameliorated by G‑1 treatment).146 
Endothelial cell dysfunction is also present in animals 
with glomerulosclerosis, which leads to proteinuria due 
to loss of glomerular filter function. In hypertensive rats, 
GPER activation reduces proteinuria and improves crea‑
tinine clearance despite continued hypertension.150 These 
findings suggest a renoprotective role for GPER agonists 
in hypertensive nephropathy.

Pancreatic function and glucose metabolism
The increased prevalence of obesity, insulin resistance 
and diabetes mellitus after menopause indicates a pro‑
tective role for endogenous 17β‑estradiol in premeno‑
pausal women.151,152 These protective effects are largely 
attributed to signaling via nuclear ERα,153,154 as its deletion 
results in obesity and insulin resistance.151,155 However, 
other forms of ERα signaling are also involved in meta‑
bolic diseases;154,156 for example, insulin secretion medi‑
ated by 17β‑estradiol occurs through rapid signaling via 
membrane-bound ERs.157–159 Although ERα and ERβ 
individually affect insulin action,151,155 mice deficient in 
GPER develop insulin resistance and obesity in a sex-
dependent manner.58,82,160 GPER activation also has anti-
inflammatory properties in pancreatic islets through 
attenuating the effects of proinflammatory cytokines161 
that are important for maintenance of metabolic func‑
tion (Figure 3).162 The protective, antidiabetic effects of 
17β‑estradiol in islet cells seem to involve activation of 
both membrane-bound ERα and GPER57,163,164 and might 
also be induced by GPER agonists, such as genistein.165

GPER is expressed in whole adipose tissue in humans 
and rodents,58,166 as well as in the human liver,18–20,22,23 
key target organs of insulin resistance.162 However, the 
role of GPER in 17β‑estradiol-mediated metabolic pro‑
tection is not clearly defined. GPER is expressed in the 
pancreatic islets of mice57,82,161,163,164 and humans,163 and 
in female mice it maintains normal metabolic function.82 
GPER deficiency results in a reduction in insulin secretion 

(stimulated by 17β‑estradiol, G‑1 and glucose) from the 
pancreas without affecting the morphology of pancreatic 
β‑cells, which suggests that GPER has a key role in main‑
taining the metabolic functions of insulin in mice82,167 
and humans.168 Furthermore, the protective effect of 
17β‑estradiol on survival of pancreatic β‑cells in a mouse 
model of type 1 diabetes mellitus is absent in GPER-
deficient animals.57 Whether GPER contributes to periph‑
eral insulin resistance is currently not known. However, 
expression of GPER has been reported in human skeletal 
muscle,56,81,161,163 and is unaffected by menopause.169

Bone growth and chondrocyte metabolism
Bone and articular cartilage are hormone-sensitive 
tissues,170 and serum 17β‑estradiol levels inversely corre
late with the risk of hip fracture in both women and 
men.171 Perhaps the best evidence of a role for endogenous 
17β‑estradiol in overall bone health and formation of tra‑
becular bone in particular is the postmenopausal onset 
of osteoporosis. The bone-preserving effects of estrogen 
therapy, especially with SERMs,172 which act as GPER ago‑
nists, indirectly suggest a role for GPER in bone metabo‑
lism (Figure 3). Endogenous 17β‑estradiol also plays an 
important role in bone metabolism in men, since lack of 
17β‑estradiol owing to aromatase deficiency173 or muta‑
tions in ESR1174 in men lead to osteopenia, enhanced 
bone remodeling through increased bone resorption 
and osteoclast activity and suppression of bone growth-
plate closure.175 Although part of this effect is mediated 
through ERα and ERβ,172 several avenues of research now 
suggest a role for GPER in bone and cartilage metabo‑
lism. In bone, GPER is expressed in osteocytes, osteoclasts 
and osteoblasts,176,177 and is also detected in chondro‑
cytes,176,178 the differentiation of which is regulated by 
GPER.178 In addition, GPER also controls bone growth, 
as illustrated by several models of GPER deficiency, albeit 
in a sex-dependent manner (Figure 3). Gper deficiency 
inhibits bone growth in female mice;82 similar results were 
reported in ovariectomized, estrogen-treated animals,113 
suggesting a role for GPER in estrogen-induced bone 
growth and development. By contrast, GPER-deficient 
male mice show increased femur size, BMD, trabecular
ization and cortical bone thickness.160 Tamoxifen, a GPER 
agonist, decreases tibia length independently from ERα 
or ERβ.52 Although in vitro studies and clinical trials 
with SERMs show beneficial effects on bone structure in 
postmenopausal women,172 the role of GPER in bone and  
chondrocyte metabolism in humans is still not clear  
and warrants further study.

GPER in cancer growth and metastasis
17β‑Estradiol is a critical mediator of breast carcino
genesis and is involved in a number of other hormone-
sensitive cancers. Normal breast tissue is highly sensitive 
to 17β‑estradiol, which stimulates proliferation of this 
tissue during puberty, the menstrual cycle and pregnancy; 
thus, the majority of breast cancers are highly responsive 
to 17β‑estradiol and utilize 17β‑estradiol signaling path‑
ways in cancer initiation, progression and metastasis.179 
This understanding has led to the development of various 
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cancer therapies that target 17β‑estradiol signaling, the 
most widely used of which is tamoxifen.180 Antiestrogen 
therapy has been extended to include SERDs (such as 
fulvestrant), aromatase inhibitors (for postmenopausal 
women) and other SERMs (such as raloxifene).50 Many 
of these agents, particularly tamoxifen and fulvestrant, are 
also GPER agonists and have complex physiological and 
therapeutic actions. For example, long-term 17β‑estradiol 
deprivation in the weakly metastatic human breast cancer 
cell line MCF‑7 increased expression of GPER,181 whereas 
tamoxifen treatment of these cells stimulated proliferation 
via GPER-mediated transactivation of EGFR.182

GPER protein is expressed in ~50% of all breast cancers 
(Figure 3), regardless of their ER status,183 although 
conflicting results have been reported regarding co-
expression of GPER and human epidermal growth factor 
receptor 2 (HER2).183–185 Nevertheless, in general, GPER 
protein expression in breast cancers correlates with clini‑
cal and pathological biomarkers of poor outcome. High 
levels of GPER protein expression in samples of human 
breast cancers also correlate with increased tumor size 
and metastasis.183 Importantly, in patients treated only 
with tamoxifen, GPER protein expression was increased 
and survival was markedly reduced in patients with initial 
GPER-positive tumors, suggesting that patients with 
breast cancer who have high GPER protein expression 
should not be treated with tamoxifen alone.186 In addi‑
tion, GPER is widely expressed in cancer cell lines and 
primary tumors of the breast,17,18,33,187 endometrium,188–190 
ovaries,47,53,191 thyroid,190 lung,192 prostate,193 testicular germ 
cells194 and the brain (E. R. Prossnitz, unpublished work). 
In cell lines of thyroid, ovarian, endometrial and breast 
cancers, stimulation of GPER with 17β‑estradiol53,190,195 
or other estrogenic compounds, such as atrazine,47 
genistein,190 bisphenol A46,196 or tamoxifen195 activates a 
signaling mechanism that typically promotes prolifera‑
tion, although inhibition of proliferation has also been 
reported.73 In particular, genistein can stimulate MCF‑7 
cell growth via induction of acid ceramidase, which 
occurs through a GPER-dependent mechanism.197 In 
endometrial cancer198 and ovarian cancer,199 high levels 
of GPER expression also predict poor survival, whereas 
among postpubertal testicular germ cell tumors, GPER 
was highly expressed in intratubular germ cell tumors, 
seminomas and embryonal carcinomas, with little 
expression in teratomas.194

Importantly, treatment of the ERα-negative human 
breast cancer cell line SKBr3 with 17β‑estradiol or tamoxi
fen increased the expression of several transcription 
regulators (including c‑Fos) and cytokines (particularly 
connective tissue growth factor, which promotes cancer 
cell proliferation and migration).200 These data indicate 
that tamoxifen treatment might have a cancer-promoting 
effect through GPER. In support of this view, endometrial 
GPER protein expression also correlated with tamoxifen-
induced uterine pathology, including bleeding and abnor‑
mal endometrial thickening,201 which correlates with an 
increased incidence of endometrial cancer.202

The overall role of GPER in breast cancer progression 
is complex. In addition to the effects on epithelial cells, 

GPER is implicated in 17β‑estradiol-mediated activation 
of cancer-associated fibroblasts, which promote tumor 
cell proliferation and metastasis through direct associa‑
tion of GPER with chromatin.203 GPER expression was 
induced in breast cancer cells under hypoxic conditions, 
which also suggests a cancer-promoting role for this ER, 
including a role in hypoxia-induced angiogenesis.125 How
ever, G‑1 inhibits endothelial cell proliferation, which 
indirectly suggests that GPER activity also interferes 
with angiogenesis.135 Despite these conflicting data on the 
role of GPER in cancer, targeting its activity represents an 
important new approach for cancer therapy.

Conclusions
The salutary effects of estrogens are well-established in 
many diseases, and selective activation of GPER by G‑1, 
phytoestrogens, SERDS or SERMS can reproduce the 
beneficial effects of 17β‑estradiol. The pace of research into 
the physiological and pathological functions of GPER has 
been accelerating over the past 5 years, and potential roles 
for GPER have now been identified in almost every system 
of the body. Thus, GPER-selective agents that mimic the 
beneficial effects of 17β‑estradiol without its associated 
feminizing or other adverse effects could represent an 
important new family of drugs.

In addition, GPER-specific antagonists could be devel‑
oped as important additions to the armamentarium of 
drugs used to treat estrogen-sensitive cancers and other 
diseases in which estrogen signaling is important. In this 
regard, the potential contribution of GPER-mediated 
signaling to the effects of existing clinically approved 
drugs, such as tamoxifen and fulvestrant, must be con‑
sidered. GPER-mediated effects should also be taken into 
account in the future development of SERMs and SERDs. 
In addition, further research is required to determine to 
what extent the physiological effects of 17β‑estradiol 
involve GPER signaling and the precise roles of non
selective estrogen receptor ligands in health and disease. 
The co-dependent, redundant and independent aspects 
of 17β‑estradiol signaling through ERα, ERβ and GPER 
are likely to be very complex and specific to particular 
cell types, tissues, ligands and diseases. The data avail‑
able to date nevertheless pose interesting questions about 
the therapeutic potential of specifically targeting GPER 
in disease.

Review criteria

A search for original articles was performed in PubMed. 
The search terms used included “GPER”, “GPR30”, 
“estrogen”, “rapid signaling”, “SERM”, “reproduction”, 
“immune”, “vascular”, “nervous”, “metabolism”, “bone” 
and “cancer” with no restriction on the publication year, 
language or article type. Additional abstracts were also 
identified by searching Google Scholar using similar 
keywords. Reference lists within identified papers were 
also searched. The authors would like to apologize to 
their colleagues whose work they could not include due  
to space restrictions.
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