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ABSTRACT
Mitogen-activated protein (MAP) kinases comprise a family of ubiq-

uitous proline-directed, protein-serine/threonine kinases, which partic-
ipate in signal transduction pathways that control intracellular events
including acute responses to hormones and major developmental

changes in organisms. MAP kinases lie in protein kinase cascades. This
review discusses the regulation and functions of mammalian MAP ki-
nases. Nonenzymatic mechanisms that impact MAP kinase functions
and findings from gene disruption studies are highlighted. Particular
emphasis is on ERK1/2. (Endocrine Reviews 22: 153–183, 2001)
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I. Introduction

PROTEIN kinases and other messenger systems form
highly interactive networks to achieve the integrated

function of cells in an organism. To understand the signaling
mechanism for any agent, its repertoire of signal transducers
and their interactions within this network must be defined
within the cellular context. This includes the production of
second messengers, activation of protein kinases, and the
subcellular distribution of these transducers to bring them
into contact with appropriate targets. Within the repertoire
of signaling molecules in the network is a family of protein
kinase cascades known as mitogen-activated protein (MAP)
kinase modules. These cascades contain at least three protein
kinases in series that culminate in the activation of a multi-
functional MAP kinase (1–3). MAP kinases are major com-
ponents of pathways controlling embryogenesis, cell differ-
entiation, cell proliferation, and cell death. This review
contains a historical overview of the mammalian MAP ki-
nases that have been studied to date, their regulatory cas-
cades, and some of their functions. Current research on these
pathways is described in detail, and emphasis is on nonen-
zymatic mechanisms and findings from gene disruption
studies. Much of the review highlights work on extracellular
signal-regulated kinases 1 and 2 (ERK1 and ERK2). Some
mechanisms in yeast MAP kinase cascades that might offer
insight into the mammalian pathways are also included.

II. Overview of Regulation and Properties of
MAP Kinases

Between 1989 and 1991 the sequences of the first MAP
kinases, Kss1p and Fus3p in the pheromone response path-
way of the budding yeast and the mammalian MAP kinases
ERK1, ERK2 and ERK3, became available, revealing that
these enzymes were members of a newly identified protein
kinase family (4–8). The activities of ERK1 and ERK2
had been routinely measured with two substrates, myelin
basic protein (MBP) and microtubule-associated protein-2
(MAP2); as a result, they had been called MBP and MAP2
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kinases (9, 10). The MAP acronym was retained, but with a
different meaning: the name mitogen-activated protein ki-
nase was assigned to these enzymes to acknowledge the fact
that they had first been detected as mitogen-stimulated ty-
rosine phosphoproteins in the early 1980s, during an intense
search for tyrosine kinase substrates (11).

The concept that there were multiple MAP kinases with
distinct regulation and functions arose from the description
of additional pathways found initially in yeast, the high
osmolarity glycerol (HOG) pathway containing the MAP
kinase HOG1 and the cell wall pathway containing the kinase
MPK1, and then in metazoans with the discovery of c-Jun
N-terminal kinases/stress-activated protein kinases (JNK/
SAPKs), p38 enzymes, and others discussed below (12–18).
Extensive analyses of sequence relationships among these
kinases have been published recently (19–21).

MAP kinases have some features in common with the
cyclin-dependent kinases (cdks). These include an insert of
unknown function between subdomains X and XI of the
catalytic core and a preference for serine or threonine resi-
dues followed by proline in their substrates. Among the
distinguishing features of the MAP kinases are activation
directly by phosphorylation in the absence of a regulatory
subunit, and usually two activating phosphorylation sites in
the kinase activation loop, one a tyrosine and one a threonine,
separated by a single, variable residue (Fig. 1 and Table 1).
Kinases such as KKIALRE, for which cDNAs were first
cloned as homologs of the cdk cdc2, KKIAMRE, and the
nemo-like kinase NLK, identified by its similarity to Dro-
sophila nemo, appear intermediate between the MAP kinase
and cdk families and may function in a manner distinct from
the majority of MAP kinases discussed in this review (22–25).
Analysis of the sequence of the Caenorhabditis elegans genome
reveals 15 MAP kinase family members (26). Nearly 20 MAP
kinases are now known in mammals and more are antici-
pated (Table 1).

III. MAP Kinases Are Activated by
Phosphorylation Cascades

MAP kinases are regulated by phosphorylation cascades.
Two upstream protein kinases activated in series lead to
activation of a MAP kinase, and additional kinases may also
be required upstream of this three-kinase module (Fig. 2). In
all currently known MAP kinase cascades, the kinase im-
mediately upstream of the MAP kinase is a member of the
MAP/ERK kinase (MEK or MKK) family. These are dual
specificity enzymes that can phosphorylate hydroxyl side
chains of serine/threonine and tyrosine residues in their
MAP kinase substrates (27–31). In spite of their ability to
phosphorylate proteins on both aliphatic and aromatic side
chains in the appropriate context, the substrate specificity of
the known MEKs is very narrow: each MEK phosphorylates
only one or a few of the MAP kinases.

There are several characteristics of MAP kinases that result
from their activation by kinase cascades. Important among
these is that the intermediates provide distinct mechanisms
for detecting inputs from other signaling pathways to en-
hance or suppress the signal to the MAP kinase (32–34).

Another is signal amplification. Amplification can occur if
each successive protein in the cascade is more abundant than
its regulator. This may be true at one or both steps within
MAP kinase modules. Studies combining overexpression
and immunoblotting might be interpreted to indicate that
each step in the MAP kinase module of the pheromone re-
sponse pathway in yeast is represented by a successively
more abundant protein (2, 35), so that the signal may be
amplified at both steps within the module. In the case of the
ERK1/2 pathway, amplification occurs at the Raf-MEK step,
because MEK1 is much more abundant (perhaps as high as
1 mm) than Raf, but is not the major function of the MEK-ERK
step because the relevant MEKs (MEK1/2) and ERK1/2 are
present at approximately the same concentrations (36, 37).

Another feature of MAP kinase cascades derives in part
from the dual phosphorylation of the MAP kinase by the
MEK. In the case of ERK1/2, the kinases are phosphorylated
on tyrosine before threonine is phosphorylated both in vitro
and in cells (38, 39). The result of this nonprocessive phos-
phorylation is the establishment of a threshold (40, 41). The

FIG. 1. Unphosphorylated structure of ERK2. ATP binds in the in-
terior of the active site at the domain interface and protein substrates
are bound on the surface. MAP kinase activity is controlled by phos-
phorylation of two residues, a tyrosine (185) and a threonine (183),
that are in a surface loop known as the activation loop or phosphor-
ylation lip. Phosphorylation of ERK2 or other MAP kinases on a single
residue does not cause a substantial increase in activity, nor does
replacement of the phosphorylation sites with acidic amino acids
(77;445). This is probably because of the nature of the conformational
changes that must occur upon phosphorylation. The sulfate ion that
lies in the position occupied by phosphotyrosine in the active structure
is shown. The aspartic acid residues (D316 and D319) in the proposed
binding site for D domains are also indicated.
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tyrosine-phosphorylated proteins are not active but must
accumulate before phosphorylation of threonine. Once this
accumulation threshold has been reached, the kinases are
rapidly converted to the active state, as threonine is phos-
phorylated. It may be generally true that the MEK-MAP
kinase step exists to enhance the cooperativity of activation
of the MAP kinase and to allow modulation by other sig-
naling events, in addition to or rather than amplifying the
MEK signal.

MEKs are also activated by phosphorylation of two resi-
dues, either serine or threonine, in their activation loops (42,
43). At least in the case of MEK1, either phosphorylation

alone significantly increases activity, in contrast to the effects
of the phosphorylations on the MAP kinase. Nevertheless,
activation of MEK also displays cooperativity at least in the
Xenopus oocyte system as elucidated in detail by Ferrell and
Machleder (44).

The MEK kinases (MEKKs) that activate MEKs are many
and diverse. Enzymes with MEKK activity in metazoans
include several relatives of the yeast MEKK Ste11p; several
distant relatives of another yeast kinase Ste20p, which lies
upstream of Ste11p; and Raf isoforms and Mos, which have
no homologs in yeast (45–47). Few generalizations can yet be
made about regulation of these MEKKs themselves, except
that they may be subject to multiple regulatory inputs. Most,
if not all, of these MEKKs are not abundant, suggesting that
the MEKK-MEK step amplifies the signal emanating from a
given MEKK.

IV. Signal Integration and Specificity

Interactions among the cascades occur in numerous ways
to integrate responses and moderate outputs. Abundant ev-
idence demonstrates that MAP kinases have overlapping
substrate specificities (1, 48, 49). The resulting activities of the
substrates reflect the cumulative extent of phosphorylation
on all regulatory sites, which may be shared among multiple
protein kinases. MAP kinase cascades form complexes that
facilitate their activation and impact their localization, spec-
ificity, and targets (50–52). Potential scaffold proteins and
adaptor or linker molecules have been found for some of the
pathways. Regulation of complex formation provides yet
another site for cross-talk between signaling pathways. Sev-

FIG. 2. MAP kinase cascades. Enzyme cascades shown are described
in the text.

TABLE 1. Mammalian MAP Kinases

MAP Kinase Other names Comments P Site motif References

ERK1 p44 MAPK .80% identical to ERK2; abundant and ubiquitous TEY (5)
ERK2 p42 MAPK Abundant and ubiquitous TEY (7)
ERK3a p63, rat ERK3 Immunoblotting detects 63K and full-length 95–100K

species; a is present in many species including human
SEG (7)

ERK3b Human ERK3 ;75% identical to ERK3a SEG (59)
ERK1b (ERK4) 46K splice form of ERK1; comigrates with band originally

named ERK4
TEY (60)

JNK1 SAPKg Multiple spliced forms TPY (14, 15, 121)
JNK2 SAPKa Multiple spliced forms TPY (14, 15, 121)
JNK3 SAPKb Multiple spliced forms TPY (14, 15, 121)
p38a p38, CSBP, SAPK2 Sensitive to SB203580 TGY (16–18)
p38b p38-2 Partially sensitive to SB203580 TGY (138, 137)
p38b2 Sensitive to SB203580; lacks the 8-amino acid insertion

unique to p38b
TGY (142)

p38g ERK6, SAPK3 Insensitive to SB203580 TGY (140, 143)
p38d SAPK4 Insensitive to SB203580 TGY (139, 141, 142)
Mxi p38a splice form lacking 80 C-t residues and containing 17

novel ones
TGY (146)

ERK5 Involved in proliferation TEY (160, 161)
ERK7 May have a role in cell proliferation TEY (175)
NLK Nemo-like kinase Regulation of Wnt pathway; ortholog of C. elegans LIT-1;

relative of Drosophila nemo
TQEa (24)

MAK Male germ cell associated kinase Expressed in cells undergoing meiosis in the testis but not
ovary

TDY (179)

MRK MAK-related kinase Expressed in embryonic myocardium; ubiquitous in adult
tissues

TDY (180)

MOK Phorbol ester sensitive TEY (178)
KKIALRE Cdc2-related kinase TDY (22)
KKIAMRE T, Y mutants still activated in cells TDY (23)

a The CDK phosphorylation site motif is THE and the sequence of the nematode homolog of NLK is THE.
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eral MEK family members contain sites that are phosphor-
ylated by kinases in other pathways; these events may in-
fluence the ability of MEKs to interact in complexes, for
instance (32, 53, 54). Integration may also occur early in the
signaling pathway and at the top of the kinase module. Some
MEKKs may regulate more than one MAP kinase cascade,
and some cascades may be controlled by several, unrelated
MEKKs.

V. Mammalian MAP Kinase Cascades

A. The ERK1 and ERK2 cascades

ERK1 and ERK2 are proteins of 43 and 41 kDa that are
nearly 85% identical overall, with much greater identity in
the core regions involved in binding substrates (5, 7). The two
phosphoacceptor sites, tyrosine and threonine, which are
phosphorylated to activate the kinases, are separated by a
glutamate residue in both ERK1 and ERK2 to give the motif
TEY in the activation loop (55). Both are ubiquitously ex-
pressed, although their relative abundance in tissues is vari-
able. For example, in many immune cells ERK2 is the pre-
dominant species, while in several cells of neuroendocrine
origin they may be equally expressed. They are stimulated to
some extent by a vast number of ligands and cellular per-
turbations, with some cell type specificity (1). In fibroblasts
(the cell type in which the generalizations about their be-
havior and functions have been developed) they are acti-
vated by serum, growth factors, cytokines, certain stresses,
ligands for G protein-coupled receptors (GPCRs), and trans-
forming agents, to name a few. They are highly expressed in
postmitotic neurons and other highly differentiated cells (7).
In these cells they are often involved in adaptive responses
such as long-term potentiation (56–58).

Recently an ERK1 splice variant, ERK1b, was found as an
immunoreactive band that migrates more slowly than the
ubiquitously expressed form of ERK1 (60). It is possible that
ERK1b corresponds to the protein species originally named
ERK4 (62). An alternatively spliced form of ERK2, lacking
some residues from the N terminus, has also been reported;
overexpression suggested that it was selectively membrane
localized (59, 61). The three-dimensional structures of ERK2
in its unphosphorylated and phosphorylated states have
been determined and reviewed elsewhere (63–67).

1. MEK1 and 2. ERK1 and ERK2 are activated by a pair of
closely related MEKs, MEK1 and MEK2 (28–30, 68–71). Both
of these MEKs have been shown to fully activate ERK1/2 in
vitro (72, 73). Upon dual phosphorylation, ERK1/2 activities
increase by well over 1,000-fold to specific activities of 1–2
mmol/min/mg protein. The largest effect appears to be due
to an increase in Vmax; changes in Km for substrates are small
(74, 75). The stoichiometry of phosphorylation of ERK1/2 by
MEK2 more readily approaches 2 mol phosphate/mol ERK
than does phosphorylation by MEK1. Haystead and co-
workers (76) purified a factor that enhances phosphorylation
of ERKs by MEK1. The biological importance of this molecule
remains uncertain. Replacement of the two ERK2 phosphor-
ylation sites with acidic residues does not elevate the activity
of the protein (77).

Phosphorylation of MEK1 on both sites has been reported
to stimulate its activity by more than 7,000-fold; as noted
above, phosphorylation of either site alone produces a sig-
nificant increase in activity (42, 78). Both Vmax and Km values
change; Km decreases by nearly 100-fold. Substitution of the
two sites of phosphorylation with acidic residues increases
their activity; deletions in the N terminus increase activity
even more. The combination of these two changes yields
constitutive MEK1/2 mutants nearly as active as phosphor-
ylated wild-type proteins (78). These MEK mutants, most
often MEK1R4F, have been used in many systems to infer
events associated exclusively with the ERK cascade (79, 80).
It has been assumed, from lack of evidence to the contrary,
that MEK1/2 have no other substrates. Although this may
not be the case, at this time no other MEK1/2 substrates have
been identified.

2. Raf isoforms. Of all the known MEKKs, Raf isoforms and
Mos are perhaps the only ones that phosphorylate MEKs in
a single cascade. These proteins appear to phosphorylate
only two MEK family members, MEK1 and MEK2, placing
these MEKKs exclusively in the ERK1/2 MAP kinase cascade
(81–83).

The Raf family of protein kinases is composed of A-Raf,
B-Raf, and Raf-1 (or c-Raf) (84, 85). Each isoform contains
three conserved regions, termed CR1, CR2, and CR3. The first
two conserved regions are located in the amino terminus and
have been implicated in regulating the Raf catalytic domain,
because their deletion creates a mutant of Raf-1 that either
has constitutively high activity or can be activated in a Ras-
independent manner (see below) (86, 87). The kinase domain
is located in CR3. Raf-1 is ubiquitous; highest expression of
B-Raf occurs in neuronal tissue and testis; and A-Raf appears
to function primarily in urogenital tissue.

Most studies have focused on Raf-1. Raf-1 regulation is
complex, involving protein-protein interactions, phosphor-
ylation of tyrosine, threonine, and serine residues, and cel-
lular localization (84). These multiple modes of regulation
allow Raf-1 to fluctuate through a number of graded activity
states. Raf exists as part of a multiprotein complex composed
of Raf-1 or B-Raf, heat shock protein 90 (hsp90), p50, and an
indeterminate number of 14–3-3 proteins (88–95). 14–3-3
Appears to stabilize Raf-1 in both low and high activity
conformations depending upon Raf phosphorylation state
and interaction with other regulatory proteins such as GTP-
liganded Ras. 14–3-3 May also serve to regulate Raf-1 sig-
naling specificity by recruiting Raf-1 to higher order protein
complexes. Disruption of hsp90-p50 binding to Raf, through
the use of pharmacological agents such as geldanamycin and
dexamethasone and mutants of p50 that are deficient for
hsp90 binding, disrupt Raf-dependent signaling to down-
stream effectors (92, 93, 96). Multiple lines of evidence
indicate that geldanamycin’s effects are due to a depletion
of Raf in the cell. Geldanamycin does not affect the ability of
Raf to form complexes with an upstream activator Ras or
reduce its specific activity upon epidermal growth factor
(EGF) stimulation. Coexpression of p50 with Raf in Sf9 cells
increases Raf activity and potentiates v-src activation of Raf
(92). It is uncertain as yet whether p50 is an active regulator
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or whether it works passively in concert with hsp90 to
stabilize Raf.

There are significant differences in regulation of Raf iso-
forms. One notable difference between Raf-1 and B-Raf is
their differential regulation by the small G proteins Ras and
Rap1a (97–101). Raf-1 is activated by H-, K-, and N-Ras. It has
been suggested that proliferation in nontransformed cells
may be controlled primarily by N-Ras, but most studies have
employed H- or K-Ras (102). Although Raf-1 also interacts
with Rap1a, the function of this interaction is uncertain,
because no increase in activity is seen. On the other hand,
B-Raf is activated by both Ras and Rap. In neuronal model
systems such as PC12 cells, activation of B-Raf by Rap1 may
be the dominant mechanism (Refs. 97 and 100; G. Landreth,
personal communication). This functional difference has
been attributed to the cysteine-rich domains (CRDs) of these
proteins. Swapping the Raf-1 and B-Raf CRDs allows for
activation of Raf-1 by Rap1 and eliminates Rap activation of
B-Raf (103).

The phosphorylation state of Raf-1 is influenced by mul-
tiple protein kinases, including Src, protein kinase C (PKC)
family members, the p21 (Rac/Cdc42)-activated protein ki-
nase PAK, and Akt (also called protein kinase B). The PAK
and Src phosphorylation sites are located N-terminal to the
catalytic domain at serine 338 and tyrosines 340 and 341,
respectively (104–106). These sites have each been found to
increase activity when phosphorylated and may do so in an
interactive manner, depending on the signal context (105,
107, 108). The activation loop residues, serine 497 and 499,
were the originally reported PKC phosphorylation sites
(109); however, mutation of these sites has no discernible
impact on Raf stimulation by serum (83). Wolfman and col-
leagues have recently found that PKCe forms a stable com-
plex with Raf-1 and phosphorylates serine 338 (Hamilton,
M., M. K. Cathcart, and A. Wolfman, submitted), the same
site as PAK (105, 110). Other serine 338 kinases have been
proposed. Down-regulation of PKCe blocks the phorbol ester
activation of Raf-1 but has no effect on activation by EGF, one
of many lines of evidence indicating multiple, independent
mechanisms for activation of Raf-1.

Serine 259 is part of a putative 14–3-3 binding site (111–
113). Phosphorylation of this serine may stimulate binding of
14–3-3 which, when bound to this region of Raf, has an
inhibitory effect on Raf-1 activity. Mutation of this in vivo
phosphorylation site to alanine creates an active mutant of
Raf-1 (104, 114). Akt has been shown to phosphorylate serine
259 in MCF-7 breast cancer cells (115). Forced down-regu-
lation of ERK1/2 in C2C12 cells cultured in serum can stim-
ulate early stages of myotube differentiation (116). Akt may
reduce Raf-1 activity in a number of contexts such as during
C2C12 myoblast differentiation (117). The site of Raf-1 phos-
phorylation by Akt in C2C12 cells was not directly mapped.
Instead, the authors show that in insulin-like growth factor
I (IGF-I)-treated, postdifferentiated myotubes, there is re-
duced phosphorylation of serine 338 when a kinase active
mutant of Akt is expressed. These methods of regulation are
not mutually exclusive; however, Akt’s ability to inhibit
Raf-1 activity may vary depending on cell type. It is also
interesting to note that in C2C12 cells an Akt-Raf-1 associ-

ation only occurs during differentiation and is dependent on
Akt kinase activity whereas in MCF-7 breast cancer cells the
association of the two proteins appears to be constitutive.
Further study is required to reconcile these differences and
determine the generality of Akt-mediated down-regulation
of Raf-1 during physiological processes.

TC21, a Ras family member, was previously thought to use
a Raf-1-independent mechanism to activate ERKs 1 and 2;
however, both B-Raf and Raf-1 displayed increased kinase
activity in TC21-transformed NIH 3T3 cells (118). Also, over-
expressed TC21 coimmunoprecipitated with overexpressed
Raf-1 or B-Raf; it interacts with the two isoforms in a directed
two-hybrid assay; and disruption of the TC21-Raf-1 interac-
tion abolished the ability of TC21 to transform cells.

The three-kinase cascade, so well defined for the ERK1/2
module, is more difficult to identify as a discrete unit for
other MAP kinase cascades at the present time. This is in part
due to the capacity of many MEKKs to phosphorylate many
MEKs in vitro and to activate many MAP kinases when
overexpressed. Thus, the other MEKKs that are currently
known will be discussed as a group after the description of
the MAP kinases and their probable MEKs. The MAP kinases
and related enzymes are listed in Table 1. Those not men-
tioned below appear in the overview section.

B. c-Jun N-terminal kinases/stress-activated protein
kinases (JNK/SAPK)

A form of JNK/SAPK was first purified as a 54-kDa MBP
kinase from livers of cycloheximide-treated rats (119).
Shortly thereafter, JNK/SAPKs of 46 and 54 kDa were pu-
rified by affinity adsorption to a c-Jun fusion protein (120).
Isolation of cDNAs encoding these enzymes and subsequent
analysis of their expression revealed three genes encoding
proteins with 10 or more alternatively spliced forms (14, 15,
121). Within the core catalytic domains, JNK1/SAPKg,
JNK2/SAPKa, and JNK3/SAPKb are more than 85% iden-
tical. Based on mutagenesis studies, JNK/SAPKs are acti-
vated upon phosphorylation of two sites, a tyrosine and
threonine, like other MAP kinases (15). In all JNK/SAPKs
these residues are separated by a proline residue to give the
motif TPY in the activation loop. They are activated by cy-
tokines, certain ligands for GPCRs, agents that interfere with
DNA and protein synthesis, many other stresses, and to some
extent by serum, growth factors, and transforming agents.
The alternatively spliced forms and their properties have
been reviewed in detail elsewhere (121a).

1. MKK4 and MKK7. Two MEK family members, MKK4
(SEK1, MEK4, JNKK1, SKK1) and MKK7 (MEK7, JNKK2,
SKK4), have been implicated in JNK/SAPK pathways. Both
were identified initially by cDNA cloning strategies rather
than by purification (122–132). One approach identified
MKK7 as a two-hybrid binding partner of MEK1, although
the significance of their association is not known. Unlike
MKK4, MKK7 will rescue a lethal mutation in a Drosophila
MEK (hemipterous) that is required for dorsal closure (126).
Both MKK4 and MKK7 have the ability to phosphorylate p38
family members in vitro and when overexpressed, although
JNK/SAPKs are the preferred substrates (133). JNK/SAPK
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activation is impaired in cells from animals in which the
MKK4 gene was disrupted, but changes in p38 activation
have been found that are dependent on cell type (Ref. 134; see
below). The prevailing view that MKK4 acts exclusively in
JNK/SAPK cascades remains an open question. JNK/SAPKs
are still activated by certain stimuli in MKK4 2/2 cells,
consistent with the conclusion that MKK7 is also linked to
JNK/SAPK cascades. In vitro MKK4 preferentially phos-
phorylates the tyrosine residue in the TPY activation loop
motif of JNK/SAPKs, and MKK7 preferentially phosphor-
ylates the threonine residue. Based on these specificity dif-
ferences, it has been suggested that these kinases cooperate
to activate JNK/SAPKs, perhaps allowing for signal inte-
gration (135, 136). Results also indicate that phosphorylation
of threonine may be most important for activity changes of
JNK3 (136).

C. p38 Pathways

p38a was discovered independently in three contexts. It
was found as a tyrosine phosphoprotein present in extracts
of cells treated with inflammatory cytokines (17); as the tar-
get of a pyridinyl imidazole drug that blocked production of
tumor necrosis factor-a (TNFa) and as such was called cy-
tokine-suppressive antiinflammatory drug-binding protein
or CSBP (16); and as a reactivating kinase for MAP kinase-
activated protein (MAPKAP) kinase-2 (18). Cloning strate-
gies rather than biological approaches were used to identify
the other three genes that encode members of the p38 sub-
family: p38b (or p38–2), p38g (ERK6 or SAPK3), and p38d
(SAPK4) (137–143). All of these kinases contain the sequence
TGY in their activation loops. A splice variant of p38b lacks
the eight-amino acid insertion unique to b. p38a And b-
isoforms are sensitive to pyridinyl imidazole inhibitors, but
g- and d-isoforms are resistant to these drugs (141, 142). A
variety of agents including cytokines, hormones, GPCRs,
osmotic and heat shock, and other stresses activate p38 fam-
ily members. In some contexts p38 family members have
apparently opposite actions (144, 145).

A sixth protein, Mxi, is a splice variant of p38a in which
the last 80 residues have been replaced by a novel 17-
residue C terminus (146). Mxi was isolated from a two-
hybrid screen with the c-Myc binding partner Max. Both
Mxi and p38a bind Myc. The change in the C-terminal
residues confers unique properties on Mxi. Unlike p38a,
Mxi is activated not only by stresses but also by growth
factors (146a). In contrast to p38a, Mxi is relatively insen-
sitive to pyridinyl imidazole compounds; Mxi also dis-
plays a reduced affinity for p38a substrates. Crespo and
colleagues showed that deletion of the 80 C-terminal res-
idues from p38a yielded a mutant with properties similar
to Mxi. An explanation may be proposed for these findings
from the crystal structures of MAP kinases (64, 147–149).
In these enzymes the C-terminal residues, deleted in Mxi,
make intimate contacts with the N-terminal domain of the
kinase catalytic core. These contacts undoubtedly influ-
ence the interaction with ATP and other compounds that
bind in the ATP pocket, such as pyridinyl imidazoles.

Two MEK family members, MEK3 and MEK6, have high
activity toward p38 MAP kinases (123, 150–152). MEK3 ap-

pears to favor phosphorylation of p38a and p38b isoforms,
while MEK6 phosphorylates all p38 family members well
(150). Both will also phosphorylate JNK/SAPK isoforms.
MEK6 phosphorylates p38/ERK2 chimeras, and NLK (see
below) in vitro, suggesting that it has a broader specificity
than other MEKs (153, 154). The physiological implications
of this broader specificity are not clear at this time.

D. Other MAP kinases

1. ERK3 isoforms. cDNAs encoding rat ERK3 were isolated
from a library using a probe derived from ERK1 (7). A human
cDNA predicted a second ERK3-like kinase, also 63 kDa,
about 75% identical to ERK3 (59). These kinases are nearly
50% identical to ERK1 and ERK2 in the core catalytic domain,
and both contain C-terminal extensions of approximately 200
residues. For the purposes of discussing them here, the first
of these will be designated as ERK3a and the second as
ERK3b. Subsequently, Flier and colleagues isolated a human
cDNA that predicted a 97-kDa protein 100% identical to
ERK3a over their shared lengths but lacking a stop codon
and longer by nearly 300 residues (155). Immunoblotting
with antibodies specific for ERK3a revealed proteins of 63,
95, and 160 kDa in multiple rat tissues and several cell lines,
consistent with multiple species predicted by the cDNAs
(156). A clone encoding a 100-kDa form of ERK3a was re-
cently isolated by Meloche and colleagues (157) from mouse
and a single genomic locus was mapped. Database analysis
indicates that there may be several loci encoding ERK3-like
molecules. Genes encoding ERK3 homologs have not been
found in the genomes of yeast or nematodes, suggesting that
ERK3a and b may have arisen from a relatively late gene
duplication (26, 158).

Despite the similarity to ERK1/2, ERK3a and -b have some
features that are different from other family members. The
phosphorylation site motif in the activation loop of ERK3
isoforms has a single phosphoacceptor site, serine189 in
ERK3a in the sequence SEG. Glycine replaces the usual ty-
rosine phosphorylation site found in most other MAP ki-
nases. ERK3a autophosphorylates, but data for other ERK3
substrates are weak (156). Several MAP kinases are largely
cytoplasmic in unstimulated cells and translocate to the nu-
cleus when cells are stimulated. In contrast, ERK3a is highly
concentrated in the nucleus under all conditions examined
(156) but the mechanism is unknown; ERK3 lacks a consen-
sus nuclear localization sequence. A kinase that binds to and
phosphorylates ERK3a on serine189 has been described but
its molecular identity is unknown (159). This activity phos-
phorylates ERK3 but not other MAP kinases.

2. ERK5. ERK5 was identified independently by two groups.
One used a two-hybrid screen with an upstream activator
MEK5 as the bait; the other used a degenerate PCR strategy
to clone novel MAP kinases (160, 161). Thus, the putative
upstream activator MEK5 was found ahead of this MAP
kinase. Among the most intriguing features of ERK5 is its
size, 816 amino acids, due to a stretch of approximately 400
amino acids C-terminal to the kinase domain. When com-
paring the primary sequence of the catalytic domain of ERK5
to other mammalian MAP kinases, it appears to be most like
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ERK2. The 400-residue C terminus, however, neither dis-
plays sequence similarity to any known proteins nor has a
known function, although it contains 10 consensus sites for
MAP kinase phosphorylation. These phosphorylation sites
may be autophosphorylated, consistent with the dramatic
increase in autophosphorylation ERK5 displays when it is in
a high activity state (162). Whether autophosphorylation
plays an integral role in ERK5 function within the cell re-
mains to be seen. The C terminus also contains a potential
cytoskeletal targeting motif; however, there is no evidence
supporting this putative function (160).

In mammals, ERK5 is ubiquitously expressed. Like the
other MAP kinases, ERK5 activity is regulated by a wide
variety of proliferative and cell-stressing agents. The prolif-
erative stimuli include serum, EGF, nerve growth factor
(NGF), lysophosphatidic acid (LPA), and phorbol ester (163–
165). The ability of these agonists to activate ERK5 is Ras-
dependent in some cell types; EGF activation of ERK5 re-
quires MEKK3 activity in HeLa cells (Refs. 163, 164, 166; see
below). The stress stimuli include sorbitol, H2O2, UV irra-
diation, vascular shear stress, and ischemia (164, 165, 167–
169). These stimuli may sometimes exert their activity
through Src (170). Cellular requirements for ERK5 activity
have been better defined in proliferation models. Dominant
negative forms of ERK5 can inhibit EGF-stimulated prolif-
eration and RafBXB-stimulated focus formation in 3T3 cells
(163, 171).

English and colleagues (162) examined the regulation of
the catalytic domain through truncation of its C terminus.
The ERK5 catalytic domain is activated by V12Ras and an
active mutant of MEK5, MEK5DD (the two sites of activating
phosphorylation are replaced with acidic residues), as de-
termined by an increase in activity toward substrates. In vitro,
the ERK5 catalytic domain expressed in bacteria is phos-
phorylated by immunoprecipitated MEK5DD on its TEY mo-
tif and displays an increased activity toward substrate, con-
sistent with the behavior of the majority of MAP kinase
family members, which are only slightly larger than a core
catalytic domain (Pearson, G., and M. H. Cobb, unpub-
lished). Coexpression of ERK5 with MEK5DD in cells in-
creases ERK5 activity. The kinase domain displays the ex-
pected specificity of activation in that other MEK family
members such as MEK1 fail to phosphorylate it in vitro or
increase its activity when coexpressed in 293 cells.

ERK5 can affect cellular activity through phosphorylation
of the MADS box transcription factors, myocyte enhancer
factor 2A and C (MEF2A and C), and the ETS-like transcrip-
tion factor SAP1a (164, 165, 172). The ability of ERK5 to
activate MEF2 isoforms appears to allow it to positively
regulate intracellular concentrations of c-Jun (172). Addi-
tional downstream effectors are likely to exist.

MEK5 is upstream of ERK5. MEK5 was identified by two
groups using cDNA cloning strategies (160, 173). There are
multiple splice variants including 50-kDa a- and 40-kDa
b-isoforms. MEK5 a is particulate and primarily expressed
in liver and brain; the ubiquitously expressed b-isoform is
cytosolic. The only known substrate of MEK5 is ERK5; thus,
effects of MEK5 have been attributed to its ability to activate
ERK5.

According to primary sequence alignment, MEK5 is most

closely related to MEKs 1 and 2. Perhaps as a consequence
of this relationship, it is also inhibited by PD98059 and U0126,
two compounds that have been considered highly selective
inhibitors of MEK1 and MEK2 (Ref. 164; see below). At low
concentrations, the effects of these inhibitors may be primar-
ily on MEK1/2, since the Ki for MEK5 is significantly higher.

In spite of the similarity to MEK1/2, MEK5 is not phos-
phorylated or activated by Raf-1 (162). Although Raf-1 is un-
able to increase MEK5 activity, MEK5 is intimately involved
in Raf-1 signaling. Kinase-defective MEK5, MEK5KM, can
inhibit RafBXB-stimulated focus formation in 3T3 cells,
whereas a constitutively active form of MEK5, MEK5DD, can
synergize with RafBXB to form foci (171). MEK5DD cannot
stimulate focus formation when expressed alone. MEK5KM
can also inhibit focus formation induced by the Cot protoon-
cogene product, also known as Tpl-2, and coexpression of
Tpl-2 with MEK5 increases the phosphoserine content of
MEK5 (174). Direct effects of Tpl-2 on MEK5 activity have not
been demonstrated. The only MEK5 kinase identified thus
far is MEKK3 (166).

3. ERK7. A cDNA encoding ERK7 was isolated by Rosner and
colleagues (175). ERK7 is a 61-kDa MAP kinase with a TEY
motif in the activation loop, like ERK1, ERK2, and ERK5.
ERK7 is not activated by stimuli that activate ERK2 or the
stress-responsive kinases, but appears to be constitutively
activity in serum-starved cells. A role in growth inhibition
has been proposed for ERK7. Its long C terminus has been
suggested to be required for the localization and high basal
activity of this protein. A cDNA encoding the protein CLIC3
was isolated using the tail of ERK7 as bait in a yeast two-
hybrid screen (176). CLIC3 is related to human intracellular
chloride channel proteins.

4. NLK. NLK was identified by Erikson’s group (24) as a
mammalian relative of Drosophila nemo. This kinase has
properties that place it between the MAP kinases and the
cdks. Although it is nearly 45% identical to ERK2, the dual
phosphorylation motif TXY in the activation loop is absent,
and instead a single phosphorylation site in the sequence
TQE, most similar to the cdks, is present. Nevertheless, NLK
appears to lie in a MAP kinase cascade that negatively reg-
ulates Wnt signaling (154, 177). Studies in C. elegans have
demonstrated that an NLK homolog lit-1 is activated by the
MEKK Mom-4. Mom-4 is a homolog of TAK1, described
below as an MEKK for the p38 MAP kinase module. In
transfected cells TAK1 can enhance the activity of cotrans-
fected NLK. Although a MEK specific for NLK has not been
reported, NLK is activated in vitro by MKK6, a TAK sub-
strate. Thus, it is possible that TAK1 and MKK6 may be
normal cellular regulators of both p38 and NLK.

5. MOK. MOK has approximately 30% identity to members
of the MAP kinase family and equivalent identity to the cdk
family (178). Strikingly, however, MOK contains the TEY
motif in its activation loop that is typical of MAP kinases. It
has been shown to be activated by okadaic acid and phorbol
ester, suggesting that it may be controlled by a kinase cas-
cade. Its relatives include male germ cell-associated kinase
(MAK) and the MAK-related kinase, MRK (25, 179, 180).
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E. MEKKs, the first tier in the kinase cascade

A specific MEKK enzyme may regulate either a single or
multiple MEKs depending upon the enzymatic specificity of
the MEKK, the cellular and subcellular distribution of the
signaling components, the formation of protein complexes,
and the activating stimuli. Consequently, significant differ-
ences in both the magnitude and kinetics of MAP kinase
activation may occur in response to a given agent under
different circumstances. Many kinases acting at the MEKK
level have been identified, adding to the complexity of un-
raveling signaling mechanisms. There is no apparent simi-
larity among these proteins outside of their kinase catalytic
domains. The relative contribution of each MEKK to the
activation of individual MAP kinases, with the possible ex-
ception of Raf in the ERK1/2 module, is unclear.

Aside from Raf isoforms, the first of these to be isolated
was the 195-kDa protein MEKK1. It is one of a family of
molecules most closely related to the yeast kinase Ste11p, all
of which contain C-terminal kinase domains and N-terminal
regions of variable length (45). In their catalytic domains,
MEKK2 and MEKK3, each approximately 70 kDa, and
MEKK4, about 150 kDa, are nearly 50% identical to MEKK1
(181–184).

The other enzymes with MEKK activity mentioned next
are less similar with identities to MEKK1 generally in the
30–40% range. The following MEKK level kinases activate
JNK/SAPKs when overexpressed or by in vitro reconstitu-
tion with MEKs: MEKKs(1–4) (181–184), MAP three kinase
(MTK1) (181, 183–186), Tpl-2/Cot (187), dual leucine zipper
kinase (DLK) (188), mixed lineage kinase MLK2/MST (189),
MLK3/PTK-1/SPRK (190, 191), transforming growth fac-
tor-b (TGFb)-activated kinase (TAK1) (192), apoptosis sig-
nal-regulating kinases (ASK1)/MAPKKK5 (193, 194) and
ASK2/MAPKKK6 (195), and thousand and one amino acid
kinases 1,2 (TAOs1, 2) (196, 197). Of these, MEKKs(1–3) and
Tpl-2 can also activate the ERK1/2 pathway (187); MEKK3
and Tpl-2 also activate the ERK5 pathway (172, 174); and
TAK1, ASK1, TAOs1/2, and MTK1 also activate the p38
pathway (194, 196, 197).

Unraveling the relationships of these MEKKs to the MAP
kinases they activate has been a daunting task. Identification
of the intrinsic enzymatic specificities, the distribution, and
the phenotypes of animals and cells with these MEKK genes
disrupted should begin to help decipher their cascade spec-
ificity and their functions. The function of MEKK1, the first
of these enzymes isolated, is still in question. It has been
implicated in activation of JNK/SAPK, ERK, and p38 MAP
kinase pathways, as noted above, and in the activation of
nuclear factor-kB (NF-kB) (198, 199). In vitro MEKK1 phos-
phorylates MEKs 1, 2, 3, 4, 6, and 7 (73, 200–203). However,
despite the fact that the recombinant protein phosphorylates
MEKs 1 and 2 on the same sites as Raf-1, it does so poorly
relative to the phosphorylation of MEK4 in the JNK/SAPK
pathway, consistent with the finding that signaling to JNK/
SAPKs is most affected in cells lacking MEKK1 (Refs. 204–
206; see below).

Although the classical MAPK module is a three-tiered
kinase cascade, a fourth kinase may act directly upstream as
an activator of the MEKKs. This was discussed earlier for Raf.

Kinases implicated in JNK/SAPK activation at the MEKK
kinase level include PAKs 1–4 (207–209), germinal center
kinase (GCK) (210, 211), GCK-related kinase (KHS/GCKR)
(212), GCK-like kinase (213, 214), hematopoietic progenitor
kinase 1 (HPK1) (215), and Nck-interacting kinase (NIK)
(216).

Both small G proteins and heterotrimeric G proteins can
activate MAP kinase cascades as discussed in more detail for
ERK1/2 below (217). Activation of JNK/SAPKs and p38 in
response to interleukin (IL)-1b, muscarine, bradykinin, and
heterotrimeric G protein bg subunit complexes may be me-
diated by Rho family members Rac and Cdc42 (209, 218–220).

VI. Activation of ERK1/2 and Other MAP Kinases
from the Cell Surface

Perhaps the most well defined signaling pathway from the
cell membrane to ERK1 and ERK2 is that used by receptor
tyrosine kinases (reviewed in Refs. 221 and 222). Stimulation
of these receptors by the appropriate ligand results in an
increase in receptor catalytic activity and subsequent auto-
phosphorylation on tyrosine residues. Phosphorylation of
these receptors results in the formation of multiprotein com-
plexes whose organization dictates further downstream sig-
naling events. Quite often one of these functions is the ac-
tivation of the monomeric G protein Ras. This is achieved by
the recruitment of adaptor proteins, such as Shc and Grb2, to
the receptor through interactions between their SH2 domains
and phosphotyrosine residues. The guanine nucleotide ex-
change factor (GEF) Son of Sevenless (Sos) then becomes
engaged with the complex and induces Ras to exchange GDP
for GTP. GTP-liganded Ras is capable of directly interacting
with a number of effectors, including Raf isoforms, of which
the best characterized is Raf-1. As discussed before, Ras
binding to Raf may result in conformational changes in Raf
that increase its kinase activity or simply provide the proper
environment for Raf-1 signaling (223–228). Localization of
Raf to the plasma membrane may also allow protein kinases
such as Src, PKC, and PAK to further modify Raf to increase
its activity (105, 106, 109, 110, 228). The increase in Raf activity
is subsequently transduced through the MEK-ERK module.

Signaling to ERKs by GPCRs also involves modulation of
Raf activity; however, the mechanisms employed by these
receptors are widely varied. The existence of multiple classes
of G proteins, the ability of some receptors to activate more
than one class of G protein, and cell type-specific mecha-
nisms contribute to the diversity. For clarity, only the general
trends observed for a few specific classes of G proteins will
be discussed. There are several more detailed recent reviews
(1, 67).

Signals transmitted from receptors through Gas are par-
ticularly diverse, consistent with the variety of effects on ERK
activity evoked by elevation of cAMP concentration. cAMP-
dependent protein kinase (PKA) has been reported to reduce
Raf-1 activity through direct phosphorylation of serine 43
and serine 621 in some situations (229–232). On the other
hand, PKA can also phosphorylate Rap1a, which may pos-
itively influence ERK through activation of B-Raf in cells of
neuronal origin (97, 233). Activation of Rap1a by a cAMP-
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binding Rap1 GEF, or by some other means, has been sug-
gested to inhibit ERK activity through Rap1a-dependent se-
questration of Raf-1 (99, 234). The particular effect of Rap1a
activation on ERK may be determined by the expression level
of B-Raf. Lefkowitz and colleagues (235) have reported that
isoproterenol treatment of 293 cells overexpressing b2-
adrenergic receptors stimulates a PKA-dependent switch of
receptor coupling form Gas to Gai, and that ERK activation
is through the Gi pathway.

In Gai-dependent ERK activation, free bg-subunits may be
the active signal transducers, reminiscent of their role in the
yeast mating response. This is evidenced by overexpression
studies showing bg-subunits are sufficient to activate ERKs
and a bg sequestering peptide reduces ERK stimulation by
Gai-coupled receptors (236, 237). In one proposed model, bg
stimulates a Src family kinase activity in a PI-3 kinase g-
dependent manner (238). The Src family kinase may then
phosphorylate a tyrosine kinase receptor, PYK2, or focal
adhesion kinase (FAK), to create SH2 domain binding motifs
(239–241). Then, analogous to the signaling mechanism used
by receptor tyrosine kinases described above, a Shc-, Grb2-,
and Sos-containing complex is formed at the membrane to
activate Ras and, in turn, Raf-1. ERK activation in cell types
where PI-3 kinase expression is low may be dependent on
alternative means to activate Src or PYK2 (239, 242).

Gaq activation of ERK2 is often a PKC-dependent process,
which may be Ras-dependent or independent (240, 243–247).
The Gaq effector is PLCb, which generates inositol triphos-
phate (IP3) and diacylglycerol (DAG) through the cleavage of
phosphatidylinositol 4,5-bisphosphate (PIP2). Some isoforms
of PKC are activated by DAG and the intracellular Ca re-
leased as a result of IP3 production. PKC may then regulate
Raf through direct phosphorylation, although this mecha-
nism has not been fully characterized (109). As noted above,
Wolfman and colleagues have found that PKCe phosphor-
ylates Raf-1 and increases its activity (Hamilton, M., M. K.
Cathcart, and A. Wolfman, submitted). In PC12 cells, stim-
ulation of Gaq by receptors results in PYK2 and Shc phos-
phorylation. In Rat-1 cells phosphorylation of the EGF re-
ceptor, Neu, and Shc increases after treatment with
endothelin. Thus, G proteins appear able to access multiple
tyrosine kinases to activate the ERK pathway.

Overexpression of Ga12 activates Ras in 293 cells, although
a strong link to the ERK pathway has not been made (245).
GTPase-deficient mutants of Ga12 and Ga13 can stimulate fo-
cus formation in 3T3 cells, perhaps suggesting that some subset
of the MAPK family is involved. Slight increases in JNK and
p38a and -b activity are seen when coexpressed with Ga13. JNK
activity is also increased by Ga12 (248). Based on blocking
experiments, Rac may be an intermediate (220).

VII. Scaffolding and Its Role in Organization,
Localization, and Specificity in MAP

Kinase Cascades

A. Complexes predicted from studies in yeast

1. The scaffold Ste5p. The first scaffolding protein identified
that binds the kinase components of a MAP kinase pathway
was the S. cerevisiae protein Ste5p. Mutants lacking Ste5p, as

suggested by its name, are sterile. They fail to progress
through the pheromone-induced mating pathway.

Two-hybrid studies from several laboratories revealed
that Ste5p interacts with the three protein kinases of the MAP
kinase module, either Fus3p or the similar MAP kinase,
Kss1p, the MEK, Ste7p, and the MEKK, Ste11p (50, 51, 249).
These results supported earlier biochemical studies with
overexpressed protein, which also showed that Ste5p is a
Fus3p substrate (250). Deletion analysis indicated that the
binding sites for these kinases on Ste5p are distinct, suggest-
ing that a multiprotein complex can form (50, 51, 249). Phos-
phorylation and activity states affect association of the ki-
nases with Ste5p (251).

Epistasis analysis is consistent with the idea that Ste5p has
an important function at more than one step of the cascade
(252). Four properties of Ste5p have been discovered that are
likely to be keys to its function. As discussed above, the first
is its capacity to bind the components of a MAP kinase
module. Second is its ability to interact with the upstream
signal transducers. These signaling intermediates include the
heterotrimeric G protein that is activated by pheromone
binding to its receptor. In this pathway the bg-subunits
(Ste4p and Ste18p) transduce the signal and do so in a man-
ner that requires Ste5p (253); this is consistent with the find-
ing that, when overexpressed, the a-subunit inhibits the
pheromone signal (254, 255). The interaction of Ste5p with
the Gb-subunit is essential for activation of the MEKK Ste11p
(255, 256). A close parallel exists in mammalian MAP kinase
modules, which can be regulated by the Gi family through
b-subunit interactions. Third, Ste5p forms oligomers; these
may promote complex activation (256, 257). Finally, Ste5p
may also be an essential feature of the mechanism of local-
ization of the kinases in the complex, because it must localize
to the plasma membrane for cascade activation, yet its entry
and exit from the nucleus are also required for pheromone-
induced signaling (258).

2. Pbs2p. The formation of protein complexes may determine
the regulation and functions of the associated MAP kinases.
This idea was strongly suggested by findings in a second
yeast MAP kinase module, which is part of a homeostatic
response to osmotic shock (12, 259, 260). The HOG pathway
contains the MAP kinase Hog1p, a relative of mammalian
p38 (12). The MEK upstream in the pathway is Pbs2p (12,
260). Two osmosensors can activate the pathway through one
of three different MEKKs—Ste11p, Ssk2p, or Ssk22p (261). A
transmembrane osmosensor, Sho1p, activates Ste11p, the
same MEKK that works in the pheromone response pathway
(260). Thus, the mating and osmotic stress pathways share a
common MEKK. When the osmotic pathway is activated,
Ste11p binds to Pbs2p, which apparently scaffolds the MAP
kinase module of the HOG pathway. Pbs2p binds Sho1p,
Ste11p, and Hog1p (260). Ste5p is either absent or present in
very low concentrations in diploid cells. Its presence may be
required for recognition of Ste7p by Ste11p. Its absence may
be an important factor in the specificity of Ste11p for Pbs2p,
both the MEK and the scaffold, rather than Ste7p. Thus, the
binding partners of Ste11p seem to determine the signals it
transmits. This sort of mechanism may well hold in mam-
malian MAP kinase cascades.
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B. Protein associations in mammalian MAP
kinase pathways

Although the roles of Ste5p may not yet have been fully
elucidated, the fact that Ste5p is required for the function of
the MAP kinase module of the pheromone response pathway
focused attention on the importance of assembly of cascade
complexes. Furthermore, the control of specificity of Ste11p
that appears to be exerted by its binding to either Ste5p or
Pbs2p indicates that signal reception and transmission can be
channeled by the formation of protein complexes. Another
apparently essential function of Ste5p is its ability to move
and become appropriately localized within cells.

Extrapolating from these findings in yeast, we expect that
scaffold proteins have one or more key functions: 1) they may
organize MAP kinase cascades for the efficient serial activa-
tion of the components; 2) they may restrict signal reception
by recognizing signals from only a subset of possible receptor
systems; 3) they may restrict the specificity of signal trans-
mission by interacting with a limited repertoire of potential
components of MAP kinase cascades; and 4) they may de-
termine the output signal not only as a consequence of se-
lectivity among MAP kinases, but also by localizing the cas-
cade to selected sites of action, e.g., the transcription
machinery, the microtubule cytoskeleton, etc.

While the inherent enzymatic specificity of Raf isoforms
and MEK1/2 may be sufficient to account for their selectivity
for ERK1/2 in cells, some of the mammalian MEKKs and
MEKs implicated in the stress pathways appear less specific
in vitro and when overexpressed in cells. For example, over-
expression of Tpl-2 has been linked to the activation of at
least five MAP kinase pathways, and MKK6 phosphorylates
at least seven different MAP kinases in vitro. This apparent
lack of enzymatic selectivity suggests that the assembly of
these enzymes in complexes may restrict their actions to the
MAP kinase or kinases in the complex and thereby determine
their output signal. As a result of these considerations, the
search for scaffolds for MAP kinase cascades has been in-
tense.

1. Protein-protein interactions in the ERK1/2 cascade. Evidence
from binding studies, cloning, and the behavior of mutant
MEKs suggests that several protein-protein interactions are
required for intracellular signal transmission through the
ERK1/2 pathway. These interactions have proposed func-
tions that lead to the localization of the kinases for signal
reception, movement of the kinases to sites of action, sub-
strate specificity and recognition, and temporal control of
kinase activation. Several of these are described next.

2. Raf-1 forms complexes with Ras and MEK1. Wolfman and
colleagues (223) showed that pull-down assays could be used
to isolate Ras-Raf-1 complexes. MEK1 was also present in
these complexes by virtue of a tight interaction with Raf-1,
which can be demonstrated by coimmunoprecipitation.
Raf-1 has been the subject of most studies in part because it
is ubiquitous. Other Raf isoforms may display distinct prop-
erties. Less is known about binding interactions of Raf iso-
forms with MEK2.

3. Binding domains on MEK1/MEK2. MEK1 and MEK2 display
one unique feature and one feature conserved in other MEK
family members: both are required for efficient activation of
their downstream MAP kinases in cells. The conserved fea-
ture is a stable binding site for MAP kinases, specifically
ERK1/2, which is located at the N terminus of MEK1 and 2
in a short basic region. This sequence has all the hallmarks
of a MAP kinase substrate-docking domain known as the D
domain. An extensive list and examination of the presence of
this domain in many proteins were presented by Nishida and
colleagues (262) and others (263, 264) (see below). This dock-
ing site on MEK1 is not only required for ERK2 activation in
vitro but is also necessary for its activation of ERK2 in cells.
Several types of experiments support this conclusion. A
MEK1 deletion mutant lacking N-terminal sequence includ-
ing the docking domain interferes with activation of ERK2 by
EGF (263). When introduced into cells, an N-terminal peptide
derived from MEK1, which contains the docking site, inhibits
progress through the cell cycle (265). Anthrax lethal factor
cleaves the D domain from MEK and inhibits ERK activation
(266). Using mutagenesis and deletion analysis, a binding site
on ERK1/2 for this D domain has been localized to a pair of
aspartate residues in the C-terminus of ERK2, just outside the
catalytic core (Refs. 262 and 267; Fig. 1 and Table 2). Addi-
tional sites of interaction on ERK2 have also been proposed
(153, 263, 268).

The unique feature is a proline-rich region inserted be-
tween protein kinase subdomains IX and X of MEK1 and
MEK2 (269, 270). This proline-rich insert is present in the
MEKs in the ERK pathway, but not in any other MEK family
members identified thus far. Deletion studies indicate that
this domain is also required for stimulation of ERK1/2 in-
tracellularly, although its absence has no effect on the en-
zymatic activities of these kinases in vitro (269, 270). Expres-
sion of a peptide that encompasses the insert inhibits
activation of ERK2 by EGF, suggesting that binding of the
insert to other proteins is important for signaling through the
cascade. This insert region contains multiple potential bind-

TABLE 2. Substrate and kinase interaction domains found on multiple proteins

Domain Sequence motif Proteins containing motif Proteins binding to motif

On substrates (R/K)X (R/K)X2–4(L/I)X(L/I) (D
domain)

Elk-1, c-Jun, MEF2, MEK1, many
others

ERK1/2, JNK/SAPKs, p38 (binds to
CD site)

LAQRR Rsks, Mnk2 ERK1/2
LA(K/R)RR Mnk1, MSK1 ERK1/2, p38
LX(K/R)(R/K)R/K PRAK, MAPKAP kinases 2 and 3,

MSK2
p38

FXFP LIN-1, SAP-1, Elk-1, Ksr-1, A-Raf,
MKP-1, DUS4, others

ERK1/2 (unknown binding site)

On MAP kinases DXXD (CD site) Most MAPKs Proteins containing D domains
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ing sites for SH3 domains and is phosphorylated by several
protein kinases (32, 53, 200, 271); this may be a mechanism
for feedback control and for modulation by other signaling
pathways.

4. MP-1. MP-1, a protein of approximately 13 kDa, was iden-
tified by Weber and colleagues (272) in a two-hybrid screen
with MEK1. Deletion of the MEK1 proline-rich insert elim-
inates binding, suggesting that the insert is the primary site
of interaction between MEK1 and MP-1. It has been sug-
gested that MP-1 is a scaffold that enhances formation of
protein complexes, because it also binds to ERK1. Interest-
ingly, it binds much less well to ERK2, indicating an unex-
pected selectivity between these two very similar MAP ki-
nases. Cellular studies demonstrated that MP-1 increases the
activation of ERK1, consistent with the interpretation that it
binds both MEK1 and ERK1 (272). Because of its small size,
MP-1 is unlikely to be a functional equivalent of Ste5p. How-
ever, MP-1 may be one unit of a modular scaffolding system
that may facilitate the formation of a smorgasbord of com-
plexes with minor differences in protein composition.

5. Grb10. Nantel and co-workers (273) have shown that the
proline-rich insert of MEK1 binds to Grb10. Grb10 is usually
viewed as an adapter molecule. It was originally isolated in
a screen for proteins that bound to the tyrosine-phosphory-
lated, C-terminal domain of the EGF receptor. Grb10-MEK1
complexes have been identified in association with mito-
chondria and may be involved in cell survival signals that
can be generated by this pathway (274). MEK1 also binds to
Grb2 (A. Dang and M. H. Cobb, unpublished data), a com-
mon adapter that links receptors to the Ras GEF Sos. The
significance of these associations is unknown.

6. Kinase suppressor of Ras (KSR). Eye development in Dro-
sophila and vulval induction in the nematode C. elegans have
proven to be valuable systems in which to discover Ras
signaling mechanisms and components of the ERK1/2 MAP
kinase signaling cascade using genetics. In each system the
MAP kinase cascade is regulated by a receptor tyrosine ki-
nase—Sevenless in flies and the EGF receptor in worms. Each
works through Ras to control cell fate. To identify molecules
that were required for the function of Ras, mutants with
impaired Ras signaling without effect on Raf or downstream
molecules were sought using these two systems (275–277).
Kinase suppressor of Ras or KSR resulted from these screens
and was found to act in numerous tyrosine kinase pathways.
KSR, like Raf, has an N-terminal cysteine-rich region and a
C-terminal kinase domain. Also in common with Raf, KSR
homologs have been found in numerous animal species but
not in yeast (158).

Substantial evidence indicates that KSR acts as a scaffold
to bind the kinases of the ERK1/2 MAP kinase module (278–
282). On the other hand, there is little evidence to indicate
that it is a protein kinase. It has strong primary sequence
similarity to the protein kinase family, but has arginine in
place of the lysine in kinase subdomain II that is required for
catalysis (283). There is also little to suggest that its functions
depend on protein kinase activity, although its kinase do-
main is required for binding to both Raf-1 and MEK1, and
mutation of the above mentioned arginine impairs its func-

tion (278, 280–282). The autophosphorylating activity of
KSR, the only reported evidence of its catalytic function, is
most likely due to the association with MEK and ERK (D. K.
Morrison, personal communication), raising further ques-
tions about its protein kinase activity.

The ability of the catalytic domain to bind to MEK1 is
essential for the function of KSR (282). The CRD of KSR binds
to ERK2 (278–280). One function of KSR, like Ste5p, may be
to localize the MAP kinase module at the membrane to be
activated by transmembrane cues. Also similar to Ste5p, KSR
binds to g-subunits of heterotrimeric G proteins, suggesting
that KSR may have roles in signaling by G protein-coupled
as well as tyrosine kinase receptors (284).

7. Raf kinase inhibitor protein (RKIP). A Raf-1-interacting pro-
tein, named RKIP, was isolated from a two-hybrid screen
using Raf-1 as bait (285). As suggested by its name, RKIP
inhibits the phosphorylation and activation of MEK by Raf-1.
RKIP appears to disrupt the formation of Raf-MEK com-
plexes. RKIP binds directly to Raf-1, MEK, and ERK as as-
sessed by in vitro binding and coimmunoprecipitation from
cell lysates, apparently preventing their productive interac-
tions. Based on overexpression studies and the use of anti-
sense RNA and inhibitory antibodies, it was concluded that
RKIP functions physiologically to shut off the activation of
the ERK1/2 module. It is possible that RKIP may have other
functions, e.g., as a scaffold that promotes activation of the
cascade under a select group of circumstances or to localize
the cascade to a specialized organelle. Although there are no
data supporting this idea currently, both JNK inhibitory pro-
teins (JIPs, discussed below) and the inhibitor protein for
PKA (PKI) were originally identified as inhibitors and are
now believed to have additional functions. JIP is apparently
a Ste5p-like scaffold and PKI terminates the nuclear activity
of PKA by forming a complex that promotes the export of the
catalytic subunit of PKA from the nucleus (286).

8. YopJ. Orth et al. (287) have identified a virulence factor from
the bacterial pathogen Yersinia pestis that binds to multiple
MEKs so that host signaling responses can be usurped or
interrupted. YopJ blocks phosphorylation and activation of
MEKs and thereby inhibits ERKs, JNK/SAPKs, p38 MAP
kinases, and other signaling pathways. Among the conse-
quences are prevention of cytokine biosynthesis and pro-
motion of apoptosis. YopJ-related proteins exist in some
other bacterial pathogens, but mammalian homologs of YopJ
have not been reported.

9. STYX. Dixon’s group (288, 289) also identified a tyrosine
phosphatase-related molecule, STYX, which lacks the cys-
teine required for phosphatase catalytic activity. When cys-
teine was introduced into the appropriate position in the
molecule, it displayed phosphatase activity toward ERK1/2.
STYX bound tightly to ERK1/2, suggesting that it may act as
an inhibitor either of ERK1/2 activity or their dephosphor-
ylation.

10. Sur-8. Sur-8 was identified as a loss-of-function mutation
that can suppress the multivulval phenotype in C. elegans in
the presence of an activated let-60 (ras) gene (290, 291). Loss
of Sur-8 function in a wild-type genetic background pro-
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duced no observable phenotype. When worms with mutated
Sur-8 were crossed with worms deficient in either mpk-1
(ERK1/2 ortholog) or ksr-1, vulval induction was severely
compromised. Ectopic expression of wild-type Sur-8 en-
hanced the multivulval phenotype caused by an activated
let-60 mutation and also increased Raf-1 activity. Epistatic
analysis in worms placed Sur-8 at the same level of the
pathway or downstream of Ras. This was consistent with
two-hybrid experiments that showed that Sur-8 interacts
with Ras mutants. Overexpressed Sur-8 coimmunoprecipi-
tated with complexes of Ras and Raf. Point mutations (cys-
teine 260 tyrosine, glutamate 457 lysine) in Sur-8 reduced its
association with Ras and Raf-1 and its ability to enhance Raf
kinase activity.

11. Connector enhancer of KSR (CNK). To identify molecules
that modified the function of KSR in the Sevenless/photo-
receptor system, Rubin and colleagues (292, 293) created a
line of flies expressing only the putative catalytic domain of
KSR, which they named KDN. Expression of KDN produced
a mild rough-eye phenotype. These flies were subsequently
mutagenized to identify enhancers or suppressors of the
rough-eye phenotype. CNK was identified as a gene that
enhanced the KDN phenotype and suppressed phenotypes
caused by expression of activated alleles of sevenless or ras.
Drosophila CNK is a protein of 1,557 residues, containing
individual sterile a motif (SAM), CRIC, PDZ, and PH do-
mains. There are also two potential SH3 binding sites. This
domain structure and the ability of Drosophila CNK to in-
teract with Raf-1 indicate that it may be an adaptor protein.
As is the case with KSR, overexpression of CNK can inhibit
Raf function; however, this may be due to an unproductive
interaction of the two proteins in the absence of an activating
signal. Further domain analysis has shown that the C-
terminal domain of CNK interacts with the kinase domain of
Raf. Consistent with this finding, a candidate human ho-
molog of CNK is much shorter, lacks the extended C termi-
nus, and is unable to interact with Raf. This suggests dis-
tinctions in function of CNK in flies and its putative homolog
in mammals. In flies, the SAM and CRIC domains in the CNK
N terminus are sufficient to cooperate with V12G37 Ras sig-
naling during Drosophila eye development. These domains
are conserved in the putative human homolog; thus, it is
possible that human protein may regulate Ras function in-
dependently of the MAPK cascade.

12. The c-Jun N-terminal kinase/stress-activated protein kinase
(JNK/SAPK) module and the JIP family of scaffolding proteins. No
Ste5p orthologs have thus far been identified in mammalian
DNA sequences. However, JIP1, a protein found in a two-
hybrid screen and originally identified as an inhibitor of the
cellular effects of JNK/SAPKs, binds kinases at each level of
this mammalian MAP kinase pathway (294, 295). When ex-
pressed in cells JIP1 immunoprecipitates complexes that con-
tain JNK1/2, the MEK, MKK7, and MEKK level enzymes of
the mixed-lineage kinase subgroup, MLK3 and DLK. In con-
trast, JIP1 does not bind MKK4 or MEKK1, MEKK3, or
MEKK4. JIP1 also associates with the Ste20p-related kinase,
hematopoietic progenitor kinase-1 (HPK1), which is believed
to be an upstream regulator of MEKKs. A D domain-like

sequence within an N-terminal collagen homology domain
of JIP1 appears to constitute the JNK-binding domain. MKK7
and MLK3 bind directly to JIP1, in a region C-terminal to the
JNK binding site. In addition to binding sites for the protein
kinases, JIP1 also contains an SH3 domain.

Additional proteins with related functions have been
found (52, 296–298). A JIP1 relative, JIP2, has properties
similar to JIP1. JIP2 oligomerizes with JIP1 to form higher
order complexes, and JIP2 complexes appear to be concen-
trated in the cytoplasm, perhaps near the cell surface. JIP3 is
expressed most highly in brain. Like JIP1 and JIP2, JIP3 binds
components of the JNK/SAPK module and is cytoplasmic.
JIP3 was found to accumulate in growth cones within neu-
rites. Another protein, termed JNK/SAPK-associated pro-
tein 1 (JSAP1) was also identified by a yeast two-hybrid
screen, using JNK3 as bait (297). In transfected cells JSAP1
preferentially associated with the JNK3 compared with JNK1
and JNK2. In contrast to JIPs, JSAP1 interacted with MKK4/
SEK1 and MEKK1. Although JNK and MEKK1 binding was
direct, only active MKK4/SEK1 bound to JSAP1 in cells.
Interestingly, JSAP1 also coprecipitated with MEK1 and
Raf-1, but not MKK6 or MKK7. Overexpression of JSAP1
enhanced activation of JNK3 and, to a lesser extent, JNK1 and
JNK2. The significance of binding to MEK1 and Raf-1 is
unknown.

13. MEKK1. MEKK1 is a large protein that has binding sites
for multiple components of MAP kinase modules. JNK/
SAPK binds to the N-terminal 220 amino acids of MEKK1
through a D domain-like sequence, and MKK4 associates
with its catalytic domain (205, 299). Both ERK2 and MEK1
bind to its N-terminal noncatalytic domain (M. Karandikar,
S. Xu, and M. H. Cobb, submitted). MEKK1, like Raf-1, is less
abundant than the downstream kinases (Ref. 44; and M.
Karandikar and M. H. Cobb, submitted), indicating that only
a small fraction of these enzymes will be associated with
MEKK1 at any given time. MEKK1 does not bind to p38,
ERK3, or TAO, suggesting that its associations with JNK and
ERK modules are specific. A role of MEKK1 in regulating
these two pathways has been supported by gene disruption
studies (204).

Endogenous MEKK1 colocalizes with a-actinin in stress
fibers, focal adhesions, with the focal adhesion protein pax-
illin, and on microtubules (300). Thus, the cytoskeleton may
send or receive signals from MEKK1. MEKK1 also binds to
the Nck-interacting kinase NIK, which may be a MEKK ki-
nase. Skolnik and co-workers (216) cloned NIK, through a
two-hybrid screen with the adapter molecule Nck. Nck binds
to tyrosine phosphoproteins, the Ras GEF Sos, and a number
of other proteins such as the Rac/Cdc42-activated kinase
PAK, indicating that it may transmit signals from tyrosine
kinase and other small G proteins to the Ras pathway (301).
Overexpression of NIK in fibroblasts increased JNK/SAPK
activity. NIK is distantly related to GCK, which has also been
shown to bind to MEKK1 and to activate JNK/SAPKs (211).
Interactions with these kinases may offer additional mech-
anisms of regulating MEKK1 by linking it to membrane
receptors.

14. TAOs. TAO1 and 2 were isolated as mammalian relatives
of the yeast kinase Ste20p (196, 197). TAO2 was also iden-
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tified as prostate-derived Ste20-like kinase or PSK, a human
kinase expressed in prostate carcinoma (302). TAO1 and 2
have MEKK activity and can activate MEKs 3, 4, and 6 in vitro.
TAO1/2 bind to MEK3 and MEK6, but not to MEK4, in spite
of the fact that MEK4 is an in vitro substrate. The N terminus
of the MEK is required for this binding, while the C terminus
is dispensable. The stable association of MEK3 or MEK6 with
TAO proteins may link their physiological functions to p38
but not JNK/SAPK pathways by restricting their intracellu-
lar targets. TAOs may be regulated by the Gi family of het-
erotrimeric G proteins (Chen, L., Z. Chen, M. H. Cobb, and
A. G. Gilman, submitted). A third TAO-like kinase, JNK
inhibitory kinase or JIK, is nearly 90% identical to TAO1 in
its catalytic domain; effects of JIK on the p38 pathway have
not been reported (303).

15. Generality of stable association of MEKs with their MAP kinase
targets. The stable association of a MEK with its MAP kinase
may be a general property of MAP kinase modules and has
been found in yeast and mammalian MAP kinase pathways
(150, 262, 263, 304–307). In addition to the interaction of
MEK1 and ERK2, MEKs in stress cascades also associate with
their downstream MAP kinases. Mayer has shown a stable
association between JNK/SAPK and one of its MEKs, SEK1/
MKK4 (307). The function of this association is unclear; how-
ever, the data suggest that an inhibitory complex forms that
must dissociate before JNK/SAPK activation. p38 Family
members interact differentially with MEK3 and MEK6 (150).
Nishida’s group has found D domains in several MEK family
members that may mediate the interaction with their MAP
kinase targets, suggesting that this is a general feature of
these cascades (262).

VIII. Regulation of MAP Kinase Localization

The spatial organization of kinases and substrates deter-
mines what signals may be transmitted and received at var-
ious possible sites of action. The complement of cellular
signaling proteins and cell state together determine the dis-
tribution of MAP kinases and other signaling molecules in a
manner that can be regulated acutely and long term by ex-
tracellular signals. Functionally distinct populations of a
MAP kinase may restrict potential targets. This may occur
through highly specialized complexes, concentration of a
MAP kinase at a site of action, such as the membrane, or
compartmentalization of a population of a MAP kinase to a
diffusion-limited site such as a membrane-bound vesicle or
the nucleus. For example, distinct populations of ERKs have
been shown to associate with the microtubule cytoskeleton
(308, 309), membrane specializations (310–311), and the nu-
cleus (312–314). Active JNK has been localized to punctate
structures along microtubules and to nuclear speckle pop-
ulations (315).

Much effort has been focused on understanding the
consequences of localization of ERK1 and 2 to the nucleus.
Stimulus-dependent nuclear localization appears to be es-
sential for morphological transformation of fibroblasts and
differentiation of PC12 cells (316, 317), for instance. Although
all phosphorylation-dependent transcriptional regulation
might be expected to require nuclear localization of the rel-

evant kinases, in a number of cases, key transcription factors
are cytoplasmic until activated, and, as a result, may be
covalently modified while in the cytoplasm (318).

Nuclear translocation may occur by distinct mechanisms
depending on the MAP kinase and the setting. The process
has been most extensively studied for ERK1 and ERK2. Sev-
eral events may cooperatively determine the amount of
ERK1 and 2 in the nucleus. Some evidence has been reported
for each of the following: 1) cytoplasmic anchoring; 2) nu-
clear entry by diffusion; 3) phosphorylation and subsequent
dimerization; 4) active transport of protein monomers,
dimers, or complexes across the nuclear membrane; 5) nu-
clear export of ERK1/2 alone or in complexes; and 6) binding
to retention sites in the nucleus (306, 313, 314, 319, 320). A
diverse group of experimental approaches suggest that in-
teractions with MEK1/2, in particular, play a prominent role
in the stimulus-dependent nuclear accumulation of ERK1/2
and their redistribution after stimulus termination (267, 306,
317, 320, 321).

The significance of ERK-MEK binding on ERK localization
has been addressed using MEK1 mutations, MEK1-derived
peptides, and ERK2-MEK1 fusion proteins. Localization
studies of MEK1 have demonstrated that it is largely a cy-
toplasmic protein (322–324). MEK1 contains a nuclear export
sequence (NES), which is functional based on the finding that
its deletion results in the dramatic accumulation of MEK1 in
the nucleus. Thus, MEK1 enters the nucleus but is exported
due to its NES (325). A MEK1 peptide that contains both the
D domain that mediates MEK-ERK docking and the NES
causes retention of ERK2 in the cytoplasm (306). Further-
more, an ERK2-MEK1 fusion protein is excluded from the
nucleus, if the MEK1 NES is intact, but accumulates in the
nucleus, if the leucine residues within the NES are mutated
to alanine (317). ERK2 also binds stably to a number of other
proteins that may restrict its access to the nucleus. One of
these is the phosphatase PTP-SL (326). Activation-induced
release of the ERK2-PTP-SL interaction has also been pro-
posed to enhance the nuclear accumulation of ERK2.

MAP kinases can also regulate subcellular distribution of
downstream effectors, thereby affecting the signaling prop-
erties of these proteins. The calcineurin-activated transcrip-
tion factor, NFAT4, is phosphorylated by JNK and thus re-
tained in the cytoplasm (327). Dephosphorylation of NFAT4
is required for its nuclear translocation and hence its activity.

IX. Inactivation of MAP Kinases

The duration and amplitude of MAP kinase activation
represents the balance between the activating signal and
inactivation mechanisms. Both are influenced by negative
feedback triggered by the activating signal upstream of the
MAP kinase. As has been discussed, ERK activity is tightly
regulated through phosphorylation of tyrosine and threo-
nine residues on the activation lip. The removal of one or
both of these phosphates by tyrosine, serine/threonine, or
dual-specificity phosphatases dramatically decreases MAP
kinase activity. The specificity of phosphatases is strongly
dictated by intracellular localization. Thus, clear-cut evi-
dence implicating them in MAP kinase regulation has been
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difficult to obtain. Nevertheless, analysis of activities in frac-
tionated cell lysates with specificity toward MAP kinases,
genetic analysis, and substrate trapping mutants, in which
the catalytic cysteine is mutated to serine, have implicated
phosphoprotein phosphatases from each of the three ma-
jor phosphatase categories in inactivating MAP kinases
(328–331).

A substantial number of dual-specificity phosphatases
known as MAP kinase phosphatases (MKPs) are largely ded-
icated to the inactivation of MAP kinases at the appropriate
times and locations (70, 332–338). For extensive reviews see
Refs. 339 and 340. The MKPs fall largely into two groups:
they are either encoded by growth factor or stress-inducible
genes and are located primarily in the nucleus, or they are not
acutely regulated by transcription and are located in the
cytosol. Both classes have a similar domain organization, an
N-terminal regulatory domain and C-terminal catalytic do-
main that displays sequence homology to the dual-specificity
phosphatase VH1 (341). The differences in localization and
induction imply differences in the temporal and spatial in-
activation that they may produce. Specificity of different
MKPs for different MAP kinase family members has been
suggested by in vitro and cellular studies that sometimes
have different conclusions (336, 342, 343).

Consistent with the concept of MKPs being involved in
negative feedback, two distinct mechanisms for positive reg-
ulation of MKP activity by ERK1/2 have been identified.
MKP1 is phosphorylated by ERK1/2, which may protect it
from proteosomal degradation (344). The activity of MKP3 is
increased as a consequence of the binding of ERK2 to its
regulatory domain (345). There is also evidence that MKPs
may regulate localization of MAPKs, which is noted above.

X. Substrate Recognition and Stable Binding of
Substrates to MAP Kinases

MAP kinases have overlapping specificities for substrates.
Some proteins are substrates for two or more MAP kinase
family members in vitro and in vivo, indicating that signal
integration takes place at the substrate level, as well as in
upstream signaling pathways. MAP kinases phosphorylate
serine and threonine residues followed by proline residues.
Proline at the P 1 1 position is the most reliable primary
sequence determinant that can be used to identify MAP
kinase substrates. This requirement arises from the nature of
the binding site for the P 1 1 residue. Many protein kinases
contain a pocket for a large hydrophobic residue immedi-
ately after the serine/threonine residue to be phosphorylated
(346). The three-dimensional structure of phosphorylated
ERK2 reveals a surface depression, not a large pocket, be-
cause the ERK2 phosphotyrosine occupies this pocket (64).
Proline is preferred because its favored backbone conforma-
tions place the side chain away from the kinase surface. In
some substrates, the acceptor site is followed by glycine, not
proline, at the P11 residue (1). Because glycine lacks a side
chain, it could be accommodated on the P 1 1 binding sur-
face.

MAP kinases distinguish among sequences with proline at
the P 1 1 site; only a few are substrates, suggesting that there

are extended regions of interaction that enhance substrate
recognition. In the case of ERK1/2 in particular, substrates
often also contain proline at the P-2 position, giving the motif
PX(T/S)P. Further specificity parameters have not been de-
lineated for JNK/SAPKs and p38 MAP kinases. Peptide li-
brary screening does not reveal any strong ERK1 preferences
for residues at the P 2 5, 4, or 3 positions or at the P 1 2, 3,
or 4 positions (347). However, conserved motifs have been
identified that mediate interactions of some MAP kinases
with their substrates. It is becoming increasingly clear that
these motifs have a major impact on signaling through MAP
kinases.

The first docking motif that was identified is the d domain,
residues 30–79, of the transcription factor c-Jun (348, 349).
JNK/SAPKs bind tightly to certain Jun family members, but
not to the oncogenic form v-Jun. v-Jun lacks the docking site
which is present in many Jun family members. This sequence
was found to confer tight binding of certain Jun species to
JNK/SAPKs.

The best characterized docking motif is a short sequence
related to the d domain called the docking or D domain (350).
The D domain may appear at some distance from and in
apparently any orientation with respect to the phosphoac-
ceptor site in the substrate. The typical D domain sequence
is a cluster of basic residues, usually two or more, followed
within a few residues by (L/I)X(L/I) (Table 2). D domains
interact with ERK1/2, JNK/SAPK, p38 family members, and
perhaps other MAP kinases; modest sequence differences
may result in recognition by only one or two of these types
of MAP kinases (262, 264, 350, 351). D domains are present
in numerous substrates including the transcription factors
Elk-1, c-Jun and the MEF2 family, upstream activators such
as MEK1/2, and phosphotyrosine phosphatases. Removing
or mutating these domains within substrates markedly re-
duces their phosphorylation by MAP kinases. As noted
above, the D domain on MEK1 is required for efficient signal
transmission.

Another targeting motif that may be related to the D do-
main is typified by the sequence LAQRR and its variants, and
is present in several protein kinases that are MAP kinase
substrates. LAQRR is thought to be recognized specifically
by ERK1/2 and is found in Rsk isoforms and Mnk2 (352, 353).
This domain on Rsk binds to ERK1/2 directly and is required
for Rsk activation by ERK. The related sequence LA(K/R)RR
has been suggested to bind to both ERK1/2 and p38 and is
found in the protein kinases MSK1 and Mnk1. A variation,
LX(K/R)(R/K)RK is targeted by p38 and is found in several
downstream protein kinases including MSK2, PRAK, MAP-
KAP kinase-2, and MAPKAP kinase-3.

A distinct motif is the FXFP sequence that is thought to
interact only with ERK1/2 (264, 350, 354). This motif is
present in transcription factors such as LIN-1, SAP-1 and
Elk-1, protein kinases such as KSR and A-Raf, and dual-
specificity protein phosphatases such as MKP-1 and DUS4.
This motif has been shown to work independently or in
combination with the D domain to mediate kinase-substrate
binding. Its importance has been tested by mutation in C.
elegans proteins as well as in mammalian systems.

Complementary domains on MAP kinases that may bind
the substrate targeting domains have been proposed. The
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first of these to be identified was mapped by Kallunki and
associates (348) in a splice form of the JNK/SAPKs. One
splice variant in these enzymes introduces an insert between
conserved kinase subdomains IX and X. This insert lies very
near the protein substrate binding region on the surface of the
C-terminal half of the kinase catalytic core and increases the
affinity for Jun.

Recently two laboratories identified a sequence, DXXD-E,
in ERKs that is important for ERK binding and activation by
MEK (262, 267). The name common docking (CD) domain
has been suggested for this sequence. The CD domain lies
just C-terminal to the protein kinase catalytic core within a
C-terminal extension shared by the MAP kinase family. This
sequence is believed to be a putative docking site to allow D
domains not only of MEK but also of other MAP kinase
substrates to associate with MAP kinases (262). The sequence
is conserved in the MAP kinase family. The acidic residues
in the CD motif are thought to interact with the basic cluster
in the D domain. It seems highly unlikely that the interaction
between MAP kinases and substrates can be limited to elec-
trostatic interactions provided by two acidic residues alone.
In this regard, the L/I 3 L/I sequence in the D domain is
critical for efficient MAP kinase-substrate binding. This sug-
gests that other regions on MAP kinases must also participate
in the association with D domains. The N-terminus of ERK2
has also been implicated in MEK binding by two groups,
although the mechanism is unknown (Ref. 263 and M. J.
Weber, personal communication).

XI. Substrates of MAP Kinases

Our understanding of the functions of MAP kinases is still
expanding as more cellular substrates are identified. ERK1/2
as well as other MAP kinases target membrane proteins, such
as phospholipase A2, cytoplasmic proteins, such as down-
stream kinases and cytoskeletal proteins, and nuclear pro-
teins, such as transcription factors. A brief overview of MAP
kinase substrates follows.

1. Protein kinases. Protein kinases form a substantial subset of
ERK1/2 targets. These include Rsk1, Rsk2, Rsk3, MAPKAP
kinase-2, MAP kinase-interacting kinase (Mnk) 1 and Mnk2
(48, 49, 353, 355–358). Rsk1 and Rsk2 were initially isolated
from Xenopus and identified as pp90 ribosomal S6 kinases
[also known as MAPKAP kinase 1a and b, respectively
(355)]. ERK2 phosphorylates the Rsk proteins on serine 363
in the linker between two distinct yet highly conserved cat-
alytic domains and on threonine 573 in the activation loop of
the C-terminal kinase domain (359, 360). Other events may
also be involved in Rsk activation. Once activated, Rsk1, 2,
and 3 phosphorylate downstream targets involved in tran-
scriptional activation, such as the cAMP-response element
binding protein (CREB) (361–363), the coactivator CBP (364),
c-Fos (365, 366), the serum response factor (363, 366, 367), and
the estrogen receptor (368). In a comparative study, ERK2
coimmunoprecipitated with Rsk2 and Rsk3 isozymes, but
not with Rsk1 (357). The carboxyl-terminal residues of Rsks
proved to be critical for the binding interaction and contain
the D domain-like motif described above (357).

Many ERK substrates have been identified by testing log-

ical candidates. More recently, novel ERK substrates have
been discovered from two-hybrid and protein phosphory-
lation screens using rat ERK2 as bait or enzyme (48, 49).
Among several substrates identified in this fashion were
Mnk1 and Mnk2. Mnk1 and 2 are serine/threonine kinases
that have putative MAP kinase phosphorylation sites within
the activation loops of their catalytic domains and conserved
C-terminal ERK-interacting domains. As is the case for Rsk,
ERK2 did not phosphorylate and activate a C-terminal trun-
cation (residues 334–424) mutant of Mnk2 due to the lack of
the interaction domain (48).

Mnk1 and Mnk2 serve as common substrates for growth
factor-stimulated ERK2 and stress-activated p38 (48) and
may thereby integrate signals from multiple cellular stimuli
as alluded to earlier. In vitro findings suggest that there may
be some selectivity in activation of the enzymes; Mnk2 is a
good substrate for both kinases in vitro, whereas Mnk1 is a
better substrate for p38 (48). JNK/SAPK does not interact
with either Mnk1 or Mnk2. Once activated, Mnk1 and Mnk2
phosphorylate the eukaryotic initiation factor 4E (eIF-4E) on
serine 209 in vitro (48). As a result, protein-synthesizing ri-
bosomes and additional protein synthesis initiation factors
are recruited to mRNA. Mnk1 is activated by both mitogenic
(phorbol esters) and stress factors (NaCl and anisomycin),
and these effects can be blocked by inhibitors of MEK1
(PD98059) and p38 (SB203580) (48), supporting the idea that
Mnk1 integrates signals from these two kinase pathways.

Both p38 and ERK share other common kinase substrates,
including MAPKAP kinase-2 and -3 (356). MAPKAP kinases
are serine/threonine kinases with proline-rich N termini,
highly conserved catalytic domains, and C-terminal autoin-
hibitory regions (356, 369). MAPKAP kinase-2 is phosphor-
ylated on residues within the catalytic domain and the C-
terminal autoinhibitory domain (370). Stress signals
mediated via p38 have the greatest effect on MAPKAP ki-
nase-2 phosphorylation (18, 369). In turn, MAPKAP kinase-2
phosphorylates heat shock protein 27 (hsp27) (18, 371, 372).
In human neutrophils, MAPKAP kinase-2 also phosphory-
lates lymphocyte-specific protein-1 (LSP1) (373). Both hsp27
and LSP1 are F-actin binding proteins involved in cytoskel-
etal structure (373). NGF and fibroblast growth factor stim-
ulate p38 and ERK2 phosphorylation of MAPKAP kinase-2,
which induces phosphorylation of both CREB and ATF-1 in
cells (361, 374). Msk is another protein kinase target of both
ERK1/2 and p38 MAP kinases (375). Inhibitor and gene
disruption studies suggest that Msk may also be a significant
CREB kinase.

2. Membrane and cytoplasmic substrates. In addition, other
physiological substrates of ERK1/2 have been identified.
Cytosolic phospholipase A2 is phosphorylated on serine 505
in vivo in response to EGF stimulation of ERK activity (376).
As with Mnks, PLA2 is also subject to regulation by p38 (377).
In the protein phosphorylation screen, several potential
clones activated by ERK2 were identified as heat shock factor
transcription factor 1 (hsp1), topoisomerase II-b (378), Ral-
GDS, and ZNF7, a zinc finger protein (49).

3. Nuclear substrates. MAP kinases are capable of modulating
gene expression by phosphorylating transcription factors di-
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rectly and by activating other protein kinases (Rsks, Mnks),
which then phosphorylate proteins involved in gene expres-
sion. For instance, Rsk2 can phosphorylate histone H3, a
protein involved in regulating the structure of chromatin
(379). Msk1, another ERK2 kinase substrate, has also been
shown to phosphorylate histone H3 and high mobility group
protein, HMG-14 (380). Since these proteins are involved in
packaging DNA into chromatin, activation of histone and
HMG via the ERK pathway could result in increased tran-
scription factor accessibility to DNA binding sites (381).

Recently, ERK2 has been shown to phosphorylate steroid
receptor coactivator-1 (SRC-1), which possesses an intrinsic
histone acetyltransferase activity and is a coactivator that
enhances the activation of steroid nuclear receptors (382).
SRC-1 also interacts with CREB to enhance estrogen and
progesterone receptor-mediated gene activation (383, 384)
and another HAT protein p300/CBP-associated factor (385).
Cumulatively, these downstream effects of ERK2 could in-
fluence chromatin remodeling and activation of gene expres-
sion.

Not only are MAP kinases capable of affecting gene ex-
pression via intermediary kinases and by phosphorylating
proteins in the cytoplasm, but MAP kinases translocate to the
nucleus where they are able to phosphorylate transcription
factors to regulate their activities (see above). ERK1/2 phos-
phorylates and alters the properties of several subclasses of
transcription factors. The AP-1 family (activating protein-1)
of transcription factors that are phosphorylated by ERK1/2
include c-Jun (15, 120), c-Fos (365, 366), and ATF-2 (activating
transcription factor), although the in vivo relevance of phos-
phorylation by ERK1/2 is not certain (386). These proteins
are leucine zipper proteins that form homodimers and het-
erodimers when activated to bind to DNA (387). c-Jun is
phosphorylated on serine 63 and 73 by JNK/SAPKs and on
C-terminal inhibitory sites by ERK1/2 (15, 120). Phosphor-
ylation at the N-terminal sites results in increased stability of
c-Jun and an increase in its transactivation potential and
DNA binding affinity (15, 120); phosphorylation of the C-
terminal sites inhibits DNA binding (388, 389).

Another class of transcription factors, the ternary complex
factors (TCFs), are MAP kinase substrates. These Ets-domain
proteins, such as Elk-1, mediate transcription from serum
response elements (SREs) contained in the promoters of
genes for c-Fos and other serum-induced genes. Elk-1 ap-
pears to be phosphorylated in vivo by ERK1/2, JNK/SAPK,
and p38, although results with p38 are contradictory (390,
391). Elk-1 is phosphorylated on several residues within the
C-terminal transactivating domain, notably serine 389. Phos-
phorylation of these sites results in increased formation of
ternary complexes with serum response factor and DNA
(391). Two other TCF family members, SAP-1 and SAP-2, are
also activated by MAP kinases. SAP-1a and SAP-2 are each
phosphorylated by both ERK and p38, but not JNK/SAPK
(392–395). In addition, Spi-B and Spi-1/PU.1 transcription
factors are phosphorylated by JNK1 in vitro, but ERK phos-
phorylates only Spi-B (396). The physiological relevance of
these phosphorylations has not yet been established.

Many other transcription factors have also been identified
as MAP kinase substrates. For example, multiple MAP ki-
nase pathways are used to phosphorylate STAT3 (signal

transducers and activators of transcription) on serine 727
(397). This is an example of the cooperation of MAP kinase
pathways with cytokine signaling systems to bring about the
activation of an important transcriptional regulator. ERK1/2
also phosphorylate Beta2/NeuroD1 and enhance glucose-
dependent insulin gene transcription in islets (S. Khoo, S. C.
Griffin, M. S. German, and M. H. Cobb, submitted).

XII. Biology of MAP Kinase Pathways

A. Development of inhibitors

The functions of MAP kinase pathways have most often
been probed by correlating their activities with particular
biochemical and cellular responses. Inhibitors have been
used where available. Many such studies have been re-
viewed recently (1). Nonfunctional mutants of components
in signal transduction pathways, which often act as domi-
nant inhibitors, have been used extensively to probe the
relationships among components and the functions of signal
transduction pathways. Early among these were dominant
negative mutants of Ras. Some processes blocked by these
mutants have been directly linked to ERKs, initially includ-
ing proliferation of fibroblasts and more recently long-term
potentiation in neurons (56, 57). Mutants of protein kinases
that have defective catalytic activity have been widely used
to infer roles of kinase cascades. Residues required for phos-
phoryl transfer, including the lysine in protein kinase sub-
domain II and the aspartic acids that bind magnesium or
serve as the catalytic base in protein kinase subdomains VI
and VII, are commonly mutated to create kinase-defective
mutants. All MAP kinase pathways have been probed using
these sorts of mutants.

Pharmacological inhibitors are invaluable to the study of
signal transduction pathways. Most known protein kinase
inhibitors bind in the ATP site. Of course, in addition to
protein kinases, many other enzymes use ATP as a substrate.
One difference between the small-molecule kinases, such as
hexokinase, and the protein kinases is the orientation of
substrate binding. The small-molecule kinases bind the sub-
strate other than ATP in the active site interior, while protein
kinases bind ATP in the interior of the active site. Never-
theless, protein kinase inhibitors that bind in the ATP site are
likely to have unrecognized actions on other enzymes, in-
cluding those that control metabolism, transport, etc.

The determination of the crystal structures of several pro-
tein kinases has revealed structural differences in protein
substrate and nucleotide binding pockets that are consistent
with the previously unanticipated selectivity of some of these
inhibitory agents (64, 65, 147–149, 398–406). The most se-
lective inhibitors for components of MAP kinase pathways
target either MEK1/2 or p38 a and b isoforms. Inhibitors of
each type have been used extensively to implicate the ERK
or p38 pathways in a wide array of biological events.

Two companies developed inhibitors of MEK1/2 that are
commercially available. One class typified by PD98059 was
found using the ERK pathway as an in vitro target (407, 408).
A second type, of which U0126 is the prototype, was iden-
tified in a cell-based screen seeking inhibitors of phorbol
ester-stimulated AP-1 transactivation (409); MEK1/2 were
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later identified as the targets of this drug. These drugs have
been used to demonstrate the requirement for ERK1/2 in
numerous processes ranging from neurite extension in PC12
cells and proliferation in fibroblasts and some cancer cells to
cell motility, and circadian rhythm (1, 410–412). Although
these compounds have little inhibitory activity toward many
other protein kinases, including several other MEK family
members, they have significant effects on MEK5 (164), as
discussed above. These inhibitors are not competitive with
respect to ATP, suggesting that they do not bind in the ATP
site (407, 409). The elucidation of the basis for the interaction
of these inhibitors with MEK1/2 has been retarded by the
lack of a crystal structure of any MEK family member. A
second generation MEK inhibitor (PD184352) has been syn-
thesized with enhanced bioavailability (413).

As noted above, p38 was identified as the target of compound
discovered in a cell-based screen for inhibitors of lipopolysac-
charide (LPS)-induced TNFa and IL-1b production in mono-
cytes (16). SB203580 is representative of these pyridinyl imida-
zole compounds and inhibits the a- and b-isoforms of p38 with
selectivity. Cells treated with SB203580 had reduced intracel-
lular amounts of both cytokines, due primarily to blockade of
their translation, with no appreciable effect on total DNA, RNA,
or protein synthesis. This and related drugs have been used to
show that p38 is necessary for numerous translational and
transcriptional responses (414).

The three-dimensional structure of p38 has aided in the
design of better pyridinyl imidazole inhibitors (147, 148, 401).
Inhibitors with subnanomolar Ki values have been synthe-
sized (415). Threonine 106, located in the ATP binding site,
is a major determinant of inhibitor sensitivity, as has been
confirmed by mutagenesis studies on p38 and other kinases
(402–404, 416). Larger side chains interfere with drug bind-
ing. A few other protein kinases, notably Raf-1, also contain
threonine or residues with smaller side chains at the equiv-
alent position (417). Raf-1 may be inhibited or paradoxically
activated by these compounds (417). SB203580 blocks a num-
ber of processes in cells without inhibiting the activity of
ERK1/2, suggesting that the effects of this inhibitor are
largely attributable to inhibition of p38, in spite of its ability
to interact with Raf.

Binding studies using tritiated pyridinyl imidazoles
showed that the inhibitor bound unphosphorylated p38 as
well as it bound phosphorylated p38 (418). The unphosphor-
ylated kinase bound ATP poorly, because it competed poorly
with drug binding to inactive enzyme. Thus, the inhibitor
will bind unphosphorylated p38, even in the presence of a
huge excess of ATP. These observations suggest a rationale
for the activity of this inhibitor in cellular assays even though
the intracellular concentration of ATP is in the millimolar
range.

XIII. Gene Disruption Experiments

In the last 4 yr, the functions of MAP kinase pathways have
also been studied in mice by gene knock-out. In the final
section of this review these studies will be discussed. As with
many gene knock-out studies, it is most difficult to deduce
the ultimate functions of genes that are also required for

development, and animals lacking genes whose products
may have largely redundant functions often display little or
no phenotypic change. When specific phenotypes are ob-
served, there is sometimes insufficient information to con-
nect the observed phenotype to specific biochemical and
molecular events. In the future, tissue-specific and/or in-
ducible gene knock-outs may allow investigators to over-
come embryonic lethality and assess the physiological roles
of specific MAP kinase pathway components in specific tis-
sues. One caveat in interpreting knock-out studies is that the
gene targeting strategy may result in the production of some
protein fragment, whose function may itself produce a phe-
notype distinct from that which would be caused by total loss
of the gene product. Finally, some of the studies on MAP
kinase pathways that are summarized below must be viewed
as controversial or preliminary because conclusions from
different laboratories are, in several cases, contradictory.

A. The ERK1/2 pathway

The genes encoding all three Raf proteins have been dis-
rupted in mice. Although subject to reevaluation, all three
genes are required for survival. Unique and redundant func-
tions of Raf isoforms are suggested. Knock-outs of genes
encoding MEK1 and ERK1 but not MEK2 or ERK2 have been
reported. Disruption of the MEK1 gene caused embryonic
lethality, while disruption of the ERK1 gene was associated
with minimal phenotypic manifestations. In several of the
ERK pathway knock-outs, although not in the ERK1 knock-
out animals, significant changes were observed in angiogen-
esis and the development of the placenta.

1. Raf-1. The gene encoding Raf-1 (c-Raf) was disrupted by
replacing the first coding exon (exon 2) with a neomycin-
resistance gene (419). While this strategy eliminated the full-
length (74 kDa) Raf-1 protein, alternative splicing resulted in
the production of a transcript in which the mutated exon 2
had been removed. Upon translation, this transcript yielded
a 62-kDa Raf-1 protein with the N terminus truncated. This
mutant Raf-1 protein was produced at low levels (;15% of
full-length Raf-1), and retained about 10% of wild-type ki-
nase activity after serum or phorbol ester treatment of cells
(419). Raf-1 mut/mut mice showed retarded growth begin-
ning at embryonic day (E) 10.5 and died between E 10.5–E
12.5. Histological examination of E 10.5 Raf-1 mut/mut mice
revealed placental defects characterized by a reduction in the
size of both the spongiotrophoblast and labyrinthine layers.
The labyrinthine layer contained fewer than normal blood
vessels and large numbers of undifferentiated mesenchymal
cells. The authors concluded that the midgestational lethality
observed in Raf-1 mut/mut mice likely resulted from com-
promised placental function. The severity of the Raf-1 mu-
tant phenotype was dramatically influenced by the genetic
background on which the mutation was carried. On a 129/
C57B6 background, nearly all Raf-1 mut/mut embryos died
between E 10.5 and E 12.5; on the outbred CD1 background,
about two-thirds of Raf-1 mut/mut mice survived to term,
dying just after birth. Raf-1 mut/mut mice surviving beyond
midgestation displayed specific developmental defects.
While most organs appeared normal, the eyelids failed to
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fuse properly, and the dermis and epidermis were abnor-
mally thin and poorly differentiated. Defects in lung matu-
ration were also observed; lungs were smaller and failed to
inflate at birth. This was believed to be the cause of neonatal
death. Fibroblasts isolated from Raf-1 mut/mut embryos
displayed reduced proliferation in response to serum.

2. B-Raf. The B-Raf gene was disrupted using a gene targeting
strategy that replaced exon 3, which codes for the N-terminal
portion of the Ras-binding domain. This strategy eliminated
the B-Raf mRNA (420). B-Raf 2/2 mice died at E 10.5–12.5
from vascular defects. At the time of death, B-Raf 2/2 em-
bryos displayed vascular abnormalities characterized by en-
larged vessels, an overabundance of endothelial cells in ves-
sels, and incomplete lining of vessels with endothelial cells.
This structurally compromised endothelial cell layer resulted
in vessel ruptures that allowed blood to spill into surround-
ing tissues. Altered patterns of apoptosis were observed
throughout B-Raf-deficient embryos, though net increases in
the number of apoptotic cells were only observed in the
vascular endothelium. The authors concluded that B-Raf
plays a critical role in the development of the vascular
system.

3. Raf-1 and B-Raf. The individual Raf-1 and B-Raf knock-outs
suggested that these genes have essential, nonoverlapping
developmental functions beginning at midgestation (419,
420). Animals heterozygous for the disruptions described
above were crossed to determine the impact of disrupting
both genes (421). The resulting homozygous embryos failed
to develop properly beyond the blastocyst stage, supporting
the authors’ conclusion that Raf-1 and B-Raf have an essen-
tial, redundant function in very early embryonic develop-
ment. Additionally, the developmental defects observed in
either Raf-1 mut/mut or B-Raf 2/2 mice were each exac-
erbated by the loss of one copy of the other Raf isoform (i.e.,
Raf-1 mut/mut, B-Raf 1/2 embryos were more severely
affected than Raf-1 mut/mut, B-Raf 1/1 embryos).

4. A-Raf. The gene targeting strategy eliminated A-Raf pro-
tein expression as deduced by Western blot (422). The sur-
vival of A-Raf 2/2 mice varied according to mouse strain.
On a C57B6 background, A-Raf 2/2 animals were of normal
size at birth, but displayed retarded growth by 2–3 days and
died 1–3 weeks after birth. Neurological deficiencies were
manifested as abnormal movement and proprioception, al-
though no neuronal defects were apparent histologically.
These mice displayed megacolon, although enteric innerva-
tion appeared normal. When the A-Raf mutation was main-
tained on a largely 129/OLA genetic background, about 50%
of A-Raf-deficient animals survived to adulthood. These
mice, although runted, were fertile and showed no intestinal
abnormalities and few of the neurological defects displayed
by the more severely affected young mice.

5. MEK1. The mouse MEK1 gene was disrupted by inser-
tional mutagenesis. MEK1 2/ 2 mice died at about E 10.5
(423). At the time of death, these mice were undersized, had
distended blood vessels lacking erythrocytes in the yolk sac,
and showed signs of necrosis in some tissues. Placental de-
fects were identified, including a poorly defined spongio-

trophoblast layer, and a vessel-poor, compacted labyrinthine
layer, consistent with failed angiogenesis into the labyrin-
thine layer. MEK1-deficient fibroblasts migrated more
slowly than wild-type cells on a fibronectin substrate, but
behaved normally on a collagen substrate. These findings are
consistent with a requirement for the ERK pathway for stim-
ulation of migration and angiogenesis by extracellular ma-
trix. Transient transfection of MEK1 into MEK1-deficient
cells rescued the migration defect. Surprisingly, ERK2 acti-
vation in response to plating on fibronectin appeared normal
in cells from 2/2 animals.

6. ERK1. The mouse ERK1 gene was disrupted via deletion
of the sequences coding for protein kinase subdomains V and
VI; Western blotting showed that ERK1 protein was not
detectable (424). Consistent with this finding, total serum-
stimulated ERK activity in lysates from 2/2 embryonic
fibroblasts was 50% of that from wild-type cells, also sug-
gesting that ERK2 protein does not increase to compensate.
A similar result was observed by Landreth and co-workers
(424a). ERK2 activation in ERK1 2/2 cells was more sus-
tained in response to serum than in cells from normal ani-
mals. The knock-out mice were normal by numerous mea-
sures and were fertile. Fibroblasts from these animals
proliferated normally in response to serum, a-thrombin, or
PDGF-B. Isolated thymocytes from ERK1 2/2 mice showed
reduced proliferation in response to ligation of the T cell
receptor. Thymocytes from ERK1 2/2 mice showed de-
creased rates of maturation into singlepositive (CD81 or
CD41) thymocytes. Expression of a- and b-chains of T cell
receptors was reduced by about 50% in thymocytes from
knock-out mice. Activation-induced apoptosis in thymocytes
from ERK1 2/2 mice was unaffected, suggesting that the
defect in thymocyte maturation occurred at the level of pos-
itive thymic selection.

B. The JNK/SAPK pathways

The three genes encoding JNK/SAPK isoforms, one of the
two MEKs, and several MEKKs have been disrupted. Apo-
ptosis is commonly affected, although both positive and neg-
ative effects are observed in the knock-outs. Distinct immu-
nological deficiencies are found to arise from the deletion of
specific JNK/SAPK isoforms and MKK4/SEK1.

1. MEKK1. Two groups have disrupted the gene encoding
MEKK1. Although the wild-type protein was not detected in
either study, MEKK1 fragments, which have a variety of
activities on their own, may have been produced. The tar-
geting strategy used by Johnson and co-workers (204) elim-
inated sequence encoding residues 1–132; Western analysis
using antibodies to multiple MEKK1 epitopes did not detect
any common bands, suggesting that smaller MEKK1 pro-
teins were not synthesized. This gene disruption led to em-
bryonic lethality. MEKK1-deficient cells underwent apopto-
sis more readily than control cells in response to 0.2 m sorbitol
or 25–50 ng/ml nocodazole, consistent with the interpreta-
tion that MEKK1 transduces an antiapoptotic signal. This is
opposite to what was concluded from the behavior of over-
expressed MEKK1, which has been reported to be cleaved by
caspases and to induce apoptosis (425, 426).
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MEKK1 2/2 embryonic stem (ES) cells displayed normal
activation of JNK/SAPKs in response to UV, heat shock, and
anisomycin, but dramatic decreases in JNK activity in re-
sponse to nocodazole, serum, cold stress, and LPA, and a
slight defect in JNK activity in response to 0.2 m sorbitol.
Interestingly, these MEKK1 2/2 ES cells also showed mod-
est decreases in activation of ERK in response to 0.2 m sor-
bitol, serum, and LPA, but did not differ from control cells
in the activation of ERK by phorbol ester. Serum-starved
MEKK1 2/2 ES cells possessed slightly lower basal ERK
activity than control cells. Activation of p38 was unaffected
by deletion of MEKK1. These results suggest a connection of
MEKK1 to both the JNK/SAPK and ERK pathways.

In contrast, Karin and colleagues, who used a targeting
strategy that disrupted the catalytic domain at the C terminus
of MEKK1, found that MEKK1 was not necessary for acti-
vation of ERKs by growth factors or serum, but was neces-
sary for maximal JNK/SAPK activation by growth factors,
TNFa, IL-1, double-stranded RNA, and LPS (206). The rea-
son for the apparent discrepancy with respect to the role of
MEKK1 in ERK activation is not clear at this time. Addi-
tionally, these investigators found that MEKK1 was essential
for induction of ES cell migration by serum factors.

2. MKK4/SEK1. The gene encoding MKK4/SEK1 has been
disrupted by three groups of investigators (134, 427, 428). In
each case, the resulting mice were not viable past E 12.5. Two
groups reported that MKK4/SEK1 2/2 embryos were ane-
mic (134, 427) and that hematopoiesis in the yolk sac and
vascular development appeared normal. Developing livers
of MKK4/SEK1-deficient embryos contained fewer hepato-
cytes than those of the controls. Livers and isolated hepato-
cytes from knock-out animals displayed enhanced apoptosis
relative to wild-type controls. The authors concluded that
MKK4/SEK1 likely transduces signals critical for hepatocyte
proliferation and/or survival.

ES cells and MEF cells from MKK4/SEK1 2/2 animals
were used to study the importance of this kinase to JNK/
SAPK and p38 activation (134). In ES cells, loss of MKK4/
SEK1 eliminated JNK/SAPK phosphorylation and activity in
response to anisomycin and heat shock and dramatically
reduced its phosphorylation in response to UV radiation. No
changes were observed in the activation of p38 in response
to these same stimuli. In contrast, in MEF cells, the loss of
MKK4/SEK1 dramatically reduced activation of both JNK/
SAPK and p38 in response to TNFa or IL-1 treatment (134).
Both p38 and JNK/SAPK phosphorylation were eliminated
in response to anisomycin treatment of MKK4/SEK1 2/2
MEF cells. JNK/SAPK activation was lost in MEF cells
treated with sorbitol, but p38 activation was unaffected.

A third group also examined defects in JNK/SAPK sig-
naling in ES cells lacking MKK4/SEK1 (428). Activation of
JNK/SAPK by MEKK1, anisomycin, and heat shock were
completely blocked; and activation by osmotic shock and
UV-C radiation were partially blocked in MKK4/SEK1 2/2
ES cells. Consistent with these results, activation of an AP-1
transcriptional reporter was also blocked but could be re-
stored by transfection of a cDNA encoding MKK4/SEK1. p38
Activation was not examined in this study.

Taken together, these studies strongly link MKK4/SEK1 to

the regulation of JNK/SAPK in response to some but not all
activators of this pathway. The results are consistent with the
likelihood that another MEK family member, probably
MKK7, based on biochemical and genetic studies in flies,
regulates JNK/SAPK under certain circumstances; the pos-
sibility that MKK4/SEK1 and MKK7 cooperate to regulate
JNK/SAPKs, as suggested by biochemical data, is not tested
by these studies. The results of these experiments also sug-
gest a link between MKK4/SEK1 and p38, at least in MEF
cells. The findings challenge the exclusive connection, sug-
gested by kinetic data, between MKK4/SEK1 and JNK/
SAPKs. This is discussed further below.

Two groups have pursued a functional analysis of MKK4/
SEK1 in B and T lymphocytes by generating MKK4/SEK1
2/2, Rag2 2/2 somatic chimera mice (429–432). These
studies have examined the role of MKK4/SEK1 in B and T
cell development, activation, and proliferation and in T cell
apoptosis after activation. Some conflicting conclusions have
been drawn from these studies and a thorough discussion of
this work will not be provided here.

3. JNK1. The gene for JNK1 was disrupted by deleting four
exons that encode the C-terminal half of the catalytic core of
the protein (433). The JNK1 2/2 mice developed normally
and were fertile. JNK1 2/2 mice exhibited alterations in
CD41 T cell activation, affecting differentiation to the TH1 or
TH2 subset of effector cells. Specifically, antigen-stimulated
CD41 T cells from JNK1-deficient mice preferentially dif-
ferentiated into the TH2, not the TH1, subset of effector cells;
TH2 cells mediate humoral immune responses. The authors
conclude that T cell receptor-initiated signaling inhibits
CD41 T cell differentiation to TH2 cells by a mechanism that
involves JNK1.

4. JNK2. Two groups have generated mice lacking an intact
JNK2 gene (434, 435). Both found JNK2 2/2 mice to be
viable and fertile. Both groups also concluded that B and T
cell development was normal in JNK2 2/2 mice. However,
other findings were not in agreement or have been inter-
preted differently by the authors. Yang et al. (434) reported
a specific deficiency in the ability of mature (peripheral)
CD41 T cells from JNK2 2/2 mice to differentiate into the
TH1 class of effector cells after antigen stimulation. These
cells exhibited impaired secretion of the TH1-specific cyto-
kine interferon (IFN)g in response to treatment with the
TH1-polarizing cytokine IL-12. Sabapathy et al. (435) found
that JNK2 2/2 mice had a more general defect in T cell
activation, as well as altered apoptotic responses to antigen
stimulation. In this study, peripheral T cells from JNK2 2/2
mice secreted drastically less IL-2, IL-4 (TH2-specific), and
IFNg (TH1-specific) in response to in vitro stimulation with
anti-CD3 antibodies. Sabapathy et al. also performed an in
vivo experiment in which anti-CD3 antibody was injected
into wild-type and JNK2 2/2 mice. They found that im-
mature CD41, CD81 thymocytes were resistant to apoptosis
triggered by anti-CD3 antibody. Thymocytes isolated from
JNK2 2/2 mice were resistant to apoptosis stimulated by
anti-CD3 but not to cell death resulting from treatment with
UV radiation, dexamethasone, or anti-Fas antibody. Mature,
peripheral T cells from JNK2 2/2 mice were not resistant to
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apoptosis stimulated by anti-CD3 antibodies. Peripheral T
cells from JNK2 2/2 mice proliferated more slowly in re-
sponse to stimulation with anti-CD3 antibodies; this effect
was overcome by addition of exogenous IL-2.

5. JNK3. The JNK3 gene was disrupted by eliminating the
sequences coding for amino acids 211–267 of JNK3, which
includes the core catalytic residues and TPY phosphorylation
motif (436). Phenotypic characterization of JNK3 2/2 mice
focused on the brain, as this JNK isoform is selectively ex-
pressed in the nervous system. JNK3-specific kinase activity
was absent from the hippocampus in JNK3 2/2 mice, as
deduced by an activity assay. JNK3 2/2 mice were of nor-
mal size and fertile, and all tissues, including brain, were
histologically normal.

The investigators examined the role of JNK3 in excitotox-
icity-induced hippocampal apoptosis. Kainate-induced sei-
zures cause excitotoxic neuronal damage; the hippocampus
is particularly sensitive to this type of damage. Kainic acid
stimulates JNK activity in cultured neurons. This and other
evidence has suggested that JNK, Jun proteins, and AP-1 may
be involved in kainate-induced nerve damage. Thus, the loss
of JNK3 was anticipated to have an impact on the kainate
response. JNK3 2/2 mice displayed less severe seizures
after systemic injection of moderate doses of kainate (30
mg/kg). At higher doses (45 mg/kg), JNK3 2/2 and wild-
type mice had seizures of similar severity, but JNK3 2/2
mice had a higher survival rate after seizures than wild -type
mice. JNK3 2/2 mice showed dramatically reduced c-Jun
phosphorylation and AP-1 transcriptional activity in the hip-
pocampus after kainate injection and, in contrast to wild-type
mice, little or no kainate-stimulated apoptosis in the hip-
pocampus. This study provides strong evidence that JNK3
transduces a proapoptotic signal in certain neurons in re-
sponse to excitotoxic stress.

6. JNK double knock-outs. As described above, mice in which
genes encoding JNK1, JNK2, or JNK3 were disrupted devel-
oped and survived normally. Two groups have examined the
impact of disrupting combinations of these genes (437, 438).
JNK1/JNK3 and JNK2/JNK3 double mutant mice developed
normally (437). However, JNK1/JNK2 double mutants had
severe defects in the regulation of apoptosis during brain
development and died at E 10.5–11.5. Neural tube closure
was defective leading to hindbrain exencephaly in both stud-
ies. The apparent cause of this defect proposed in one study
of JNK1/JNK2-deficient embryos was a reduction in apo-
ptosis required for development within the hindbrain, lead-
ing to the conclusion that either JNK1 or JNK2 provided a
critical proapoptotic signal in the hindbrain (437). The other
study reported augmented apoptosis in the hindbrains of
JNK1/JNK2-deficient mice at E 10.5 (438). The explanation
for this apparent discrepancy is unknown. JNK1/JNK2-
deficient mice also showed excessive apoptosis in the fore-
brain at E 10.5 to 11.5, indicating that JNK1/2 can also pro-
vide an antiapoptotic signal (433, 438).

C. The p38 pathways

1. MKK3. Mice lacking the gene encoding MKK3 were viable
and fertile (439). Macrophages and dendritic cells from

MKK3 2/2 mice displayed reduced (50%) p38 activation
compared with cells from wild-type animals in response to
LPS. The ability of sorbitol to activate p38 in macrophages
was not significantly affected by the loss of MKK3, nor was
JNK activation by LPS. Both accumulation of IL-12 mRNA
(enhanced transcription and perhaps stabilization) and se-
cretion of IL-12 in response to LPS were inhibited in mac-
rophages from MKK3 2/2 mice. Dendritic cells were also
defective in IL-12 production in response to CD40 stimula-
tion. Secretion of TNFa and IL-6 after LPS treatment was
similar in MKK32/2 and wild-type macrophages, whereas
secretion of IL-1a and IL-1b was decreased. In cultured TH1
type CD41 T cells mixed with antigen-presenting cells, the
loss of MKK3 resulted in defective IFNg production.

In a second study, p38 and JNK were found to be activated
normally in response to UV, sorbitol, and IL-1 in MEF cells
from MKK3 2/2 mice (440). The activation of p38 but not
JNK by TNFa was reduced in MKK3 2/2 MEFs, and the
secretion of both IL-1 and IL-6 in response to TNFa was
severely impaired. Accumulation of the mRNAs encoding
IL-1, IL-6, and TNFa was lost in MKK3 2/2 MEF cells. Both
reports link MKK3 and p38 in proinflammatory cytokine
production, consistent with other studies of p38 function
(439, 440).

2. p38a. The p38a gene-targeting strategy replaced an 8- to
10-kb piece of DNA including the exon encoding the TGY
motif required for p38 activation (441). Western blots showed
no p38a protein in the 2/2 ES cells. p38a-Deficient mice
died during embryogenesis; further details were not re-
ported. Signaling was examined in p38a 2/2 ES cells. So-
dium arsenite was no longer able to stimulate activation of
MAPKAP kinase 2 (95% reduction in activity). This is con-
sistent with considerable earlier data demonstrating that p38
is an upstream activator of MAPKAP kinase 2 (18). The
residual MAPKAP kinase 2 activating activity in p38a-defi-
cient ES cells was insensitive to the p38 inhibitor SB203580.
Wild-type and p38a 2/2 ES cells were differentiated into
embryoid bodies and then cultured for 12 days in the pres-
ence of IL-3, IL-12, and granulocyte macrophage-colony
stimulating factor (GM-CSF). Cells were sorted by fluores-
cence-activated cell sorting (FACS) to isolate those express-
ing the IL-1 receptor. Loss of p38 had no effect on this process.
Both types of cells expressing the IL-1 receptor secreted IL-6
when challenged with IL-1, but the response in the p38a
2/2 cells was greatly reduced. IL-1-stimulated secretion of
IL-6 was sensitive to SB203580 in wild-type cells, but not in
p38a 2/2 cells. Consistent with earlier findings, these stud-
ies suggest that p38a mediates the major pathway leading to
production of IL-6 (442, 443).

D. Other components of MAP kinase pathways

1. MEKK3. The gene targeting strategy eliminated a portion
of the MEKK3 catalytic domain. MEKK3 2/2 mice died
around day 11 of gestation, and showed defects in early,
developmentally essential angiogenesis (444). Most smaller
vessels were affected, particularly in the labyrinthine layer of
the placenta, where fetal blood vessels failed to intermingle
with maternal. The authors concluded that there was an
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intrinsic defect in endothelial cells from MEKK3-deficient
animals that impaired angiogenesis in response to certain
signals. mRNAs for major angiogenic markers were unaf-
fected, suggesting that MEKK3 may function either further
downstream or on as yet undefined events.
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