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The simplicity of protein sequence-function
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How complicated is the relationship between a protein’s sequence and its function? High-
order epistatic interactions among residues are thought to be pervasive, making a protein’s
function difficult to predict or understand from its sequence. Most prior studies, however,
used methods that misinterpret measurement errors, small local idiosyncracies around a
designated wild-type sequence, and global nonlinearity in the sequence-function relationship
as rampant high-order interactions. Here we present a simple new method to jointly estimate
global nonlinearity and specific epistatic interactions across a protein’s genotype-phenotype
map. Our reference-free approach calculates the effect of each amino acid state or combination
by averaging over all genotypes that contain it relative to the global average. We show that
this method is more accurate than any alternative approach and is robust to measurement
error and partial sampling. We reanalyze 20 combinatorial mutagenesis experiments and find
that main and pairwise effects, together with a simple form of global nonlinearity, account for
a median of 96% of total variance in the measured phenotype (and > 92% in every case), and
only a tiny fraction of genotypes are strongly affected by epistasis at third or higher orders.
The genetic architecture is also sparse: the number of model terms required to explain the
vast majority of phenotypic variance is smaller than the number of genotypes by many orders
of magnitude. The sequence-function relationship in most proteins is therefore far simpler
than previously thought, and new, more tractable experimental approaches, combined with
reference-free analysis, may be sufficient to explain it in most cases.

Sequence-function relationship | genetic architecture | epistasis | reference-free analysis

I f we had a comprehensive understanding of a protein’s sequence-function
relationship, we could predict the functional and evolutionary consequences

of any mutation or novel amino acid sequence. Whether such knowledge is possible
in practice depends on the extent of epistatic interactions. If all residues in a
protein act independently, then knowing the effects of point mutations on any
genetic background would suffice to predict the function of any possible sequence,
and any mutation’s evolutionary fate would be independent of the genetic context
in which it occurs. A simple genetic architecture like this could be easily inferred
using moderate-throughput experiments. At the opposite extreme, extensive high-
order epistasis would cause each mutation to have idiosyncratic effects that depend
absolutely on the particular sequence background into which it is introduced. In
that case, assessing the protein’s genetic architecture would require exhaustive
assessment of every possible genotype, and the evolutionary accessibility of all
mutations would change with every sequence substitution that occurs.

Deep mutational scanning (DMS) methods to characterize large libraries of
protein variants have recently made it possible to assess the complexity of the
sequence-function relationship, but studies to date disagree on the complexity of
the sequence-function relationship. Some report extensive high-order interactions
(1–7), while others find that they account for less than 10% of functional variance
among sequences (8–16). Even pairwise interactions are pervasive and strong in
some studies (7, 12, 17–21) but sparse and weak in others (9, 16, 22). In terms of
overall complexity, some report a sparse genetic architecture in which only a small
fraction of possible terms are important (13, 13, 16, 16) but others point to a much
more complex mapping in which many different states and combinations shape the
sequence-function relationship (7, 18, 20, 21).

These discrepancies may reflect the use of different methods to characterize
epistasis. Two aspects of widely used approaches can yield overestimates of
amino acid interactions. First, most studies to date have analyzed mutational
data using reference-based models, which designate a single sequence as the
reference against which all effects are measured: the main effects of mutations are
estimated by introducing each one into a single reference genotype, and epistatic
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interactions are calculated as the deviation of a protein variant
containing several mutations from the sum of the lower order
effects. A concern is that technical noise or small epistatic
idiosyncracies in measurement of the reference genotype or
low-order variants can propagate into estimates of higher-
order effect terms, causing spurious higher-order interactions
to be inferred (23). Second, many studies have not fully
accounted for nonspecific epistasis, which arises from a global
nonlinear relationship between sequence and phenotype that
affects all mutations identically, such as diminishing fitness
returns or the relationship between protein stability and
protein function (24–27). If this nonlinearity is not adequately
addressed, spurious specific interactions must be invoked to
explain why every mutation’s effects differ among genetic
backgrounds.

We therefore developed a method that does not suffer
from these sources of error and used it to systematically
reexamine existing datasets. Advances have been made
in both potential areas of concern, but currently available
methods still have critical limitations. Fourier analysis (28,
29)—also known as simplex encoding (30) or graph Fourier
transform (31)—is reference-free: it averages the effects of
sequence states across many genetic backgrounds and defines
them relative to the global average over all genotypes, and is
therefore likely to improve robustness to measurement error
and local idiosyncrasies. This approach can be implemented
as simple linear regression when sampling is limited to just
two amino acid states per site (32). For datasets with more
than two states, however, current implementations require
complex matrix algebra, such as building and manipulating
large Hadamard matrices or constructing graph Fourier bases,
and the resulting model terms are intelligible only with respect
to these matrices. Because of this complexity, only one multi-
amino acid dataset has been analyzed using this approach
(31). A third formalism-background-averaging (BA) (23),
also known as the Walsh-Hadamard transform (2, 33)—has
also been developed. This approach, which has been applied
only to two-amino acid datasets (but see ref. (34) for an
application to tRNA), occupies a middle ground between
reference-based and Fourier analyses: it averages mutational
effects over backgrounds, but it defines them relative to a
particular reference state at each site rather than to a single
reference genotype.

Existing methods to address nonspecific epistasis also
have limitations. Sometimes molecular phenotypes can be
measured or transformed onto a scale that is not strongly
affected by nonspecific epistasis, such as free energy of binding
within the dynamic range of assay measurement (16, 35, 36).
But many phenotypes scale nonadditively because of multiple
and complex causes, and the appropriate transformation
to account for nonspecific epistasis can therefore seldom
be known in advance (37). Several studies have addressed
this problem by estimating from the data a transformation
that minimizes nonadditivity in the relationship between
the measured phenotype and the estimated main effects of
mutations (9, 11, 13, 22, 38–40). Many of these studies
use rigid convex or concave transformations that cannot
incorporate the most important kinds of nonlinearity, such
as the bounding of phenotypic measurements within upper
and lower limits, a pattern that has been observed in many
DMS studies (9, 22, 38); bounding can occur if measurement

assays have limited dynamic range and/or the biochemical
processes that produce molecular phenotypes have an intrinsic
floor and/or ceiling, such as that produced by the relationship
between the free energy of folding/binding and the probability
that a protein occupies a functional state. Some studies have
used a flexible spline model or neural network (9, 22, 38) to
model nonspecific epistasis, but these methods have not been
widely adopted because they are cumbersome to implement
and difficult to interpret.

Here we develop and implement a straightforward formula-
tion of reference-free analysis that is applicable to any number
of states, and we couple it in a joint estimation procedure
with an effective model of nonspecific epistasis. We first
explain our approach and compare its desirable properties
to existing approaches. We then use it to reanalyze 20
previously published combinatorial mutagenesis experiments
on proteins with diverse functions, and we use the results to
assess the complexity of the sequence-function relationship.
Finally, we explore strategies to infer sequence-function
relationships when only a fraction of possible genotypes can
be experimentally sampled.

Results

Reference-free analysis of genetic architecture. Our method
of reference-free analysis defines the causal factors in a
protein’s genetic architecture as sequence states rather than
mutations. This structure allows it to describe the genetic
causes of phenotypic variation across the ensemble of all
genotypes. In reference-based and background-averaged
analyses, the determinants of genetic architecture are mu-
tations—changes from the reference state to a different
state—rather than the states themselves. Proteins containing
a reference state therefore have no genetic determinant for
that state at any site or for any combination across sites that
includes even one reference state. For example, the “wild-
type” sequence contains the reference state at all sites: it has
no mutations, so it manifests no main effects or epistatic
interactions at all. All the single-step neighbors of the
reference are each subject to one main effect, but they contain
no combinations of mutations, so they cannot be affected
by epistasis at any order. Two-step mutants are subject to
one pairwise epistatic effect each but cannot be affected by
higher-order epistasis, and so on. In fact, all these “low-order”
genotypes are proteins too, and their genetic architecture is
just as interesting and complex as protein sequences distant
from the wild-type.

Reference-free analysis (RFA) allows all genotypes to
provide equally important evidence about the global genetic
architecture. RFA takes an ANOVA-like approach in which
every sequence state at every site is a causal factor that
can potentially affect the functional phenotype, and all such
factors can interact with each other. A combinatorial DMS
study represents a full factorial experiment from which all
possible causal factors and all possible interactions can be
quantified (Fig. 1A). In the absence of nonspecific epistasis,
the model is structured so that each protein’s phenotype is
the simple sum of the functional effects of all its states and
combinations. The model’s zero-order term, which affects all
sequences, is the average phenotype across all genotypes. The
first-order terms are the main effects of each amino acid state
at every variable site in the sequence, which are defined as
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Fig. 1. Reference-free analysis (RFA) of genetic architecture. (A) Illustration of RFA on a two-site, two-state genotype space. The four possible genotypes (dots) are arranged
on a plane with the phenotype of each indicated by elevation. The zero-order term (e0) is the average phenotype of all genotypes, marked by the horizontal cyan plane. (Left
panel) The first-order effect of state A or B at site 1 [e1(A) or e1(B), green arrows] measures how the average phenotype of all genotypes containing that state (dashed line)
differs from the global average; these terms in the model are represented by the green plane, which predict the phenotype of any genotype based on its state at site 1. (Second
panel) First-order effects at site 2 [e2(A) and e2(B)] are defined similarly and represented with pink arrows and plane. (Third panel) The complete first-order model predicts
the phenotype of each genotype as the sum of the first-order effects of all its sequence states plus the global average, represented as the grey plane tilted in both dimensions.
(Right panel) The pairwise interaction between states A and B at sites 1 and 2 [e1,2(A, B), orange] measures how the average phenotype of all genotypes containing the two
states [here just one genotype (A, B)] differs from the first-order prediction. (B) We implement RFA with a sigmoid link function to incorporate nonspecific epistasis. Each
variant’s genetic score (s) is the sum of the effect of each state and state-combination it contains. A sigmoid link function transforms s of each variant into its phenotype, y.
Parameters L and U represent the lower and upper bound of measurable phenotype. (C) Mapping of genetic effects to phenotype with 20 possible states per site using RFA
and background-averaged analysis, shown for an example two-site variant containing states Y and P. e, RFA genetic effects as defined in panel (A); b, background-averaged
genetic effects for each possible amino acid state (α) and pair (α, β). (D) RFA is robust to measurement noise. For an eight-site, two-state genotype space, phenotype data
were simulated under a genetic architecture in which all true phenotypes and genetic effects equal zero but measurement is subject to Gaussian noise of variance 1. Effects
were then estimated using reference-free, background-averaged, and reference-based formalisms. Each dot is an estimated effect at the specified order. Error bars, standard
deviation. (E) RFA is more robust to missing genotypes than is background-averaged analysis. Phenotypes were simulated across four genotype spaces with different numbers
of states per site under a genetic architecture in which first- and second-order effects account for 40 and 60% of phenotypic variance, respectively. After removing an increasing
fraction of genotypes, a second-order RFA or background-averaged model was inferred and used to predict the phenotype for the removed genotypes. Boxplot, distribution
of out-of-sample R2 across 200 trials; negative R2 values are plotted as zero. (F ) RFA does not misinterpret high-order epistasis as clusters of lower-order interactions.
Phenotypes were simulated on a four-site, ten-state genotype space with only third-order determinants (distribution shown in the first panel) and a sigmoid relationship between
genetic score and phenotype (second panel). (Right panels) RFA models of first, second, and third-order were fit to these data. The distribution of inferred effects and the
fraction of variance explained are shown for when the models are fit to all genotypes or a random subset.
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the difference between the average phenotype of all variants
containing a state of interest and the global average. The
interaction terms at each increasing order are the epistatic
effects of every pair, triplet, or higher-order combination,
defined as the difference between the average phenotype of
all variants containing that set of states and the expected
deviation from the global average given the relevant lower-
order effects.

To incorporate nonspecific epistasis, we use a generalized
linear model in which each protein’s phenotype is a nonlinear
function of its genetic score—the sum of the specific effects
of the states and their combinations in the protein’s sequence
(Fig. 1B). To incorporate phenotypic bounding, we use a sig-
moid link function, which contains only two parameters—the
maximum and minimum observable phenotype—to transform
genetic score into phenotype.

RFA has several desirable features. Setting aside the
link function for simplicity of explanation, the RFA model
at each order explains the maximum amount of phenotypic
variance across all measured genotypes that could possibly be
explained by any linear model of the same order (SI Appendix).
Consider the zero-order RFA model, in which the only term
is the mean phenotype across all genotypes; this estimator
minimizes the mean squared error between measurement and
prediction across all variants and therefore is the best possible
single-parameter predictor (Fig. 1A). In the first-order RFA
model, the predicted phenotype of a variant is the sum of
all the main effects of its constituent amino acids plus the
global average; because each main effect is calculated as the
deviation of the average phenotype of all variants containing
some amino acid state from the global average, this set of
predictors again minimizes the mean squared error across all
variants and maximizes the phenotypic variance explained
compared with any other first-order model (SI Appendix).
This model structure and its desirable properties extend to
each increasing order.

Reference-free analysis contrasts with reference-based
analysis (RBA), which defines each effect in the model using
single measurements rather than averages. The RBA zero-
order term is the phenotype of the designated reference
sequence; this estimator is a good predictor in the local
neighborhood of the reference but is less accurate across
sequence space than the global average. The first-order RBA
term for each state is the difference between the one mutant
that contains that state and the reference sequence, and
each higher-order term is the difference between the one
mutant containing a combination of states and the sum of the
estimated lower-order effects. These are good predictors
of the effects of introducing each state or combination
into the reference background, but they are suboptimal
estimators across the set of all genotypes. RFA also differs
from background-averaged analysis (BA), which designates a
particular state as the reference at each site; the main effect
of each amino acid is defined as the average difference in
phenotype of the set of variants containing that state and the
set of variants containing the reference state at the same site.

The structure of RFA has several additional advantages.
First, the mapping from reference-free effects to phenotype is
intuitive. Each variant’s genetic score is a simple sum of the
effects of its sequence states and combinations. This contrasts
with BA and prior implementations of Fourier analysis,

where the genetic score of each variant is a complicated
weighted sum of every term in the entire model, including
the terms for states and combinations that the variant
does not contain (Fig. 1C). Second, RFA facilitates direct
quantification of the portion of all phenotypic variation
that is caused by any term or set of terms in the model
using a simple ANOVA-like framework. Because RFA terms
are defined as mean deviations from the global average,
they have a straightforward relationship to variance: The
variance attributable to any RFA term is the square of its
magnitude normalized by the fraction of all variants that
contain the state or combination. The contribution of any
set of terms—such as all terms at some particular order or
some set of sites—is the sum of the individual contributions
(SI Appendix).

Robustness to measurement noise and partial sampling. If
we had precise phenotypic measurement for every possible
variant, we could exactly compute the effects of genetic
states and combinations as they are encoded in any of the
formalisms. In reality, experimental data are always affected
by measurement noise, and in large libraries some variants
typically go unmeasured. RFA is designed to perform well in
the face of both these challenges.

To assess the performance of RFA versus RBA and BA
when measurements are noisy, we simulated phenotypic
measurements using a known genetic architecture and nor-
mally distributed measurement error. We then estimated
the genetic architecture from these data and compared the
estimated model terms to the true values under each approach
(Fig. 1D). We found that RFA yields estimated effect terms
that are precise and unbiased. By contrast, the average error
in RBA’s model terms is 50 times greater than in RFA, and
the error increases systematically with epistatic order. For
background averaging, the error in first-order terms is about
twice that of RFA, but errors grow quickly as the order of
epistasis increases, reaching a maximum at high orders that
is 100-fold worse than RFA.

When data are incomplete, the model terms of RFA and
BA can still be estimated using regression because each
term is averaged over many particular genotypes, and the
phenotypes of unmeasured variants can then be predicted
from the estimated model. In both cases, terms estimated
by regression should converge to the true effects as sample
size increases, and the estimates are unbiased when variants
are sampled without bias (SI Appendix). (Regression cannot
be used with RBA, because any missing variant makes it
impossible to estimate the model term signified by that
variant and all terms above that order that depend on it.)

To characterize the relative power and accuracy of
regression-based RFA and BA with incomplete data, we
simulated data using a simple genetic architecture, removed
a variable fraction of variants from the dataset, fit the models
to the remaining data by regression, and used the best-fit
model to predict the phenotypes of the excluded variants (Fig.
1E). We found that when there are only two or four states per
site, both RFA and BA have high predictive accuracy, with a
decline only after the fraction of sampled genotypes drops to
0.1%, at which point RFA is slightly more accurate. When
there are 10 or 20 possible states, however, RFA predictions
were much more accurate and robust than BA, the accuracy
of which degraded rapidly as the sample size shrank. With 20
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states per site, BA became completely uninformative when
sample density dropped below 25%, whereas RFA maintained
some predictive value even at much lower sampling densities.

The structure of the formalisms explains RFA’s superior
performance in the face of measurement noise and partial
sampling. In RFA, every measurement in the dataset is
used to calculate each model term. Averaging over so many
measurements dramatically reduces the influence of individual
errors: the expected error in RFA terms is always smaller than
that of individual phenotypic measurements, is negligible for
low- and medium-order terms, and increases slowly with
epistatic order. By contrast, RBA calculates each term
as the difference between individual variants, without any
averaging; epistasis must be invoked whenever the phenotype
of a variant deviates from the sum of its lower order effects,
which themselves were calculated from the deviation of
single genotypes from the reference. Because each RBA
term is a chain of sums and differences of many individual
measurements, error variance propagates: the expected error
in any RBA term is always greater than that of individual
measurements and it snowballs with order, so in practice
high- and even medium-order terms cannot be estimated
with reasonable accuracy. For the same reason, if there are
small local idiosyncracies in the phenotype of the wild-type
or low-order mutants caused by higher-order epistasis, these
deviations will propagate into increasingly large estimates of
high-order interactions as distance from the reference grows.

By estimating each effect as an average across numerous
genetic backgrounds, BA reduces error propagation compared
to reference-based analysis. But differences are still defined
relative to a particular reference state rather than the global
average, so the number of genetic backgrounds for averaging is
smaller than in RFA and the sensitivity to measurement noise
in each term is therefore greater. The number of relevant
genetic backgrounds for estimating each BA term declines
exponentially with the epistatic order, so the expected error
in those terms also increases exponentially, becoming as large

as the error of RBA at the highest orders. Moreover, BA
predicts the phenotype of an unsampled variant as a weighted
sum of every single term in the model, whereas RFA uses only
the terms for the states and combinations in the variant’s
sequence (Fig. 1C ). Errors in estimated model terms caused
by noise therefore propagate in BA’s phenotype predictions,
and this effect is exacerbated as more states per site are
considered, because the total number of terms in the model
increases exponentially with the number of states. RFA is
insensitive to the number of states, because it predicts a
variant’s phenotype using only the terms for the states that
are contained in its sequence. Alternative implementations
of Fourier analysis are structured similarly to BA in mapping
the terms to phenotype (SI Appendix), so they are expected
to be more sensitive to noise and partial sampling than RFA.

Reference-free analysis does not oversimplify genetic ar-
chitecture. We explored the possibility that RFA might
oversimplify genetic architecture by misinterpreting high-
order interactions as clusters of lower-order effects. The
model is structured so that each order of reference-free effects
produces a distinct pattern of phenotypic variation, and
the pattern produced by effects at one order cannot be
explained by model terms at another (SI Appendix). High-
order variation appears as noise around the mean at lower
orders, so a truncated low-order RFA model cannot explain
any phenotypic variation caused by unmodeled higher-order
interactions. The complexity of genetic architecture can
therefore be accurately gauged by fitting truncated models
and determining how much phenotypic variance is explained
(SI Appendix).

To verify that RFA in practice does not oversimplify
genetic architecture—particularly when nonspecific epistasis
is present and sampling is incomplete—we used simulations
in which phenotypes are generated by a genetic architecture
that contains only third-order effects plus nonspecific epistasis.
We then fit RFA models truncated at various orders to these
data (Fig. 1F). First- and second-order truncated models

Table 1. Combinatorial mutagenesis datasets analyzed in this study.

Protein Genotype space Phenotype Ref.

Methyl-parathion hydrolase 25 (32) Catalytic activity (46)
β-lactamase 25 (32) Antibiotics resistance (MIC) (48)
Dihydrofolate reductase 3 × 24 (48) Antibiotics resistance (IC75) (3)
Influenza A H3N2 hemagglutinin 22 × 32 × 42 (576) Viral replication fitness (39)
Antibody CR6261 211 (2,048) Affinity for influenza hemagglutinin strain H1 (40)
Antibody CR6261 211 (2,048) Affinity for influenza hemagglutinin strain H9 (40)
Bacterial antitoxin ParD3 203 (8,000) Fitness conferred by binding to toxin ParE3 (41)
Bacterial antitoxin ParD3 203 (8,000) Fitness conferred by binding to toxin ParE2 (41)
Aequorea victoria GFP (avGFP) 213 (8,192) Fluorescence (13)
Bacterial antitoxin ParD3 13 × 12 × 10 × 6 (9,360) Fitness conferred by binding to toxin ParE3 (49)
Bacterial antitoxin ParD3 13 × 12 × 10 × 6 (9,360) Fitness conferred by binding to toxin ParE2 (49)
SARS-CoV-2 spike protein 215 (32,768) Affinity for human ACE2 (7)
Antibody CH65 216 (65,536) Affinity for influenza hemagglutinin strain MA90 (21)
Antibody CH65 216 (65,536) Affinity for influenza hemagglutinin strain MA90-G189E (21)
Antibody CH65 216 (65,536) Affinity for influenza hemagglutinin strain SI06 (21)
Antibody CR9114 216 (65,536) Affinity for influenza hemagglutinin strain B (40)
Antibody CR9114 216 (65,536) Affinity for influenza hemagglutinin strain H1 (40)
Antibody CR9114 216 (65,536) Affinity for influenza hemagglutinin strain H3 (40)
Transcription factor ParB 204 (160,000) Fitness conferred by transcription (47)
Protein G B1 domain (GB1) 204 (160,000) Binding enrichment for IgG-Fc (10)
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correctly explain zero phenotypic variance and detect no
first- or second-order effects. When the third-order model
is used, all variance is correctly attributed to third-order
interactions. Similar results obtain when variants are only
partially sampled.

Simplicity of protein sequence-function relationships. To
understand the genetic architecture of real proteins, we used
RFA to analyze 20 published experiments that characterized
mutant libraries in a variety of protein families with different
types of functions: antibodies, enzymes, fluorescent proteins,
transcription factors, viral surface proteins, and toxin-
antitoxin systems. We considered only datasets in which
combinatorial libraries were used and measurements had high
reproducibility (r2 > 0.9 among replicates; Table 1). We
focused primarily on deep mutational scans of large libraries,
but we included three small datasets in which high-order
epistasis has been reported. The datasets range in size from
32 to 160,000 possible genotypes, with the number of variable
sites ranging from 3 to 16 and the number of states per site
from 2 to 20.

We first assessed the extent to which main effects alone
explain the genetic architecture by fitting a truncated first-
order reference-free model, with the sigmoid link function to
incorporate nonspecific epistasis. Using cross-validation to
estimate the fraction of phenotypic variance explained, we
found that the first-order model achieves a median out-of-
sample R2 of 0.91 across all 20 datasets, a maximum of 0.97,
and > 0.75 in all but four cases (Fig. 2A). There is no clear
relationship between the amount of variance explained by
main effects and the number of sites or states assayed (SI
Appendix, Fig. S1): the 11 datasets with R2 > 0.9 include two-
state, 16-site experiments in which up to 16th-order epistasis
is theoretically possible (CR9114-B and H3) and a four-site,
20-state experiment in which the 80 main effects account for
92% of phenotypic variance (ParB). The additive effects of
individual amino acids therefore account for the majority of
genetic variation in protein function in most cases.

When second-order terms are included, virtually all genetic
variance is explained, with a median cross-validation R2

of 0.96 and a minimum of 0.92 across all datasets (Fig.
2A). Adding third-order terms offers only marginal or no
improvement in fit (median change in out-of-sample R2 of
0.02, maximum 0.04). The small fraction of phenotypic
variance unexplained by the third-order model represents
some combination of fourth- and higher-order epistasis,
measurement noise, and limitations in the sigmoid link
function to accurately capture nonspecific epistasis.

Although high-order epistasis is negligible for the majority
of genotypes, there could still be a subset of genotypes shaped
by strong high-order epistasis. To address this possibility,
we analyzed the residuals of the second-order model, which
represent the sum of all higher-order epistatic interactions
and measurement noise. Genotypes with a residual greater
than 20% of the phenotype range were considered candidates
for strong higher-order epistasis (Fig. 2B), although erratic
measurement noise cannot be excluded. The proportion of
such genotypes is zero in six datasets and between 0.02% and
2% in the others. Strong high-order epistasis therefore affects
a tiny fraction of genotypes.

These data establish that protein sequence-function rela-
tionships are surprisingly simple: estimating just additive
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Fig. 2. Simplicity of protein sequence-function relationships. (A) RFA of 20
combinatorial mutagenesis datasets (Table 1). First-, second-, and third-order
models with the sigmoid link function were evaluated by cross-validation—by inferring
the model from a subset of data and predicting the rest of data. Each dot shows the
mean out-of-sample R2 for one dataset; boxplots show the median, interquartile
range, and total range across datasets. SI Appendix, Fig. S1, shows the R2 for
individual datasets. (B) Variants possibly affected by strong high-order epistasis were
identified as outliers in the second-order model (residual greater than 20% of the
phenotype range). (Left) Outliers in the ParD3-ParE3 (203) dataset. Each point is
a variant, plotted by its observed and predicted phenotype. (Right) Proportion
of outliers in each dataset. (C) Reference-based analysis of the 20 datasets.
Each model was evaluated by predicting the phenotypes of higher-order mutants.
Nonspecific epistasis was accounted for as in (A), and the wild-type genotype was
used as reference. Negative R2 values are plotted as zero.

effects and pairwise interactions, coupled with a simple
model of nonspecific epistasis, is sufficient for high-accuracy
phenotypic prediction across the entire ensemble of protein
variants. Third- and higher-order interactions are not
completely absent, but these effects are typically weak, and
each one affects a small number of genotypes.

Finally, we asked whether using RBA instead of RFA
would produce spurious inference of epistasis from these
datasets. We fit first-, second-, and third-order RBA models
(including the sigmoid link function) to a designated wild-type
and all single, double, and triple mutants; the phenotypes
of other genotypes were then predicted using the best-fit
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Fig. 3. The primary cause of nonspecific epistasis is phenotype bounding. (A) RFA of the 20 datasets without incorporating nonspecific epistasis, shown as in Fig. 2A. (B)
Incorporating nonspecific epistasis reduces the amount of phenotypic variance attributable to pairwise and higher-order interactions. Each dot shows the variance component
for one dataset computed with or without incorporating nonspecific epistasis. (C) Nonspecific epistasis causes the phenotypic effect of a mutation (∆y) to vary among genetic
backgrounds (magenta versus green) even when the effect on genetic score (∆s) is constant. Phenotype bounding is a particularly strong form of nonspecific epistasis that
causes mutations to appear neutral on backgrounds near the bounds but not on others. (D) The extent to which the sigmoid link function improves the model fit (comparing
out-of-sample R2 in Fig. 3A versus 2A) is proportional to the fraction of genotypes at or beyond the phenotype bounds. (E) In a dataset where only 0.1% of genotypes are
within the bounds, incorporating nonspecific epistasis raises the fraction of phenotypic variance attributable to main effects from 0.01 to 0.97.

model parameters, and the R2 was calculated. We found
that RBA’s accuracy is dramatically lower than RFA’s: The
median R2 across datasets is less than 0.2 at all orders,
leaving the vast majority of genetic variance to be explained
by higher-order epistasis (Fig. 2C ). The fraction of variance
attributable to each epistatic order fluctuates dramatically
with the protein chosen as the reference (SI Appendix, Fig.
S2). Using the published “wild-type” sequence does not
systematically attribute less or more variation to epistatic
orders compared with using random reference sequences.

The primary cause of nonspecific epistasis is phenotype
bounding. We next characterized the effect of incorporating
nonspecific epistasis in the 20 datasets by comparing the
results of RFA with and without the sigmoid link function.
We found that incorporating nonspecific epistasis dramati-
cally improves phenotype prediction, increases the variance
attributable to main and low-order epistatic effects, and
reduces that attributed to high-order specific epistasis (Fig.
3, A and B). For the first-order reference-free models, using
the link function improves the median out-of-sample R2 from
0.59 to 0.92. With second-order models, the sigmoid link

function improves the median R2 from 0.87 to 0.96. With
third-order models, median R2 improves from 0.95 to 0.98.

The dramatic improvement in fit conferred by the simple
sigmoid function suggests that phenotype bounds—biological
or technical limits on the dynamic range over which genetic
states have measurable effects on function—are the primary
cause of nonspecific epistasis in most proteins (Fig. 3C ).
Corroborating this conclusion, the degree of improvement in
R2 when the sigmoid link function is used is tightly correlated
with the fraction of genotypes at or beyond the phenotype
bounds (Fig. 3D). For example, in the CR9114-B dataset,
99.9% of genotypes are at the lower bound and the out-of-
sample R2 of the first-order model rises from 0.01 to 0.97 by
incorporating nonspecific epistasis (Fig. 3E). By contrast,
modeling nonspecific epistasis has a modest impact when
most genotypes lie within the dynamic range.

Taken together, these findings indicate that limited range
of measurable phenotypic variation is the primary cause of
nonspecific epistasis in deep mutational scanning datasets,
and that incorporating it using a simple link function can yield
a dramatic improvement in fit and reduce spurious inferences
of specific epistasis, including at high orders. Although the
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mechanisms underlying global nonlinearity in the genotype-
phenotype relationship are likely to be complex and to vary
among proteins, the simple sigmoid link function effectively
captures its most salient features.

Sparsity of protein sequence-function relationships. Next,
we asked whether protein function across the 20 datasets
tends to be dictated by a few large-effect amino acid
states/combinations or by many determinants of small effects.
To quantify the sparsity of each protein’s genetic architecture,
we estimated the minimal number of model terms required to
predict the function with 90% accuracy (T90). We calculated
each protein’s T90 by ranking all the effects in the protein’s
genetic architecture by their contribution to phenotypic
variance, constructing increasingly complex RFA models by
sequentially including each effect term, and estimating the
predictive accuracy of each model using cross-validation (Fig.
4A).

We found that genetic architecture is very sparse (Fig.
4B). T90 ranges from just 6 to 44 terms across all datasets
except for the GB1 dataset (282 terms), in which the mutated
sites were specifically chosen to be enriched for epistatic
interactions (10). T90 increases very slowly with the size of
genotype space, so the fraction of all possible terms that must
be included to reach R2 of 0.90 (F90) declines approximately
linearly as the number of possible genotypes rises (Fig. 4C ).
This relationship holds irrespective of the number of states
per variable site. Taken together, our findings suggest that
even very large genetic architectures should be describable
with a compact set of important terms. For example, for a
genotype space of two states at 100 variable sites (∼ 1030

genotypes and the same number of possible model terms),
the expected T90 is less than 10,000 terms.

Estimating genetic architecture by random sampling. Even
though only a small fraction of terms is important in pro-
teins’ genetic architecture, finding them may be challenging.
Experimentally analyzing exhaustive libraries is intractable
for more than a small number of sites. A critical question
is therefore whether genetic architecture can be estimated
by a sparse learning approach that characterizes a relatively

small random sample of possible genotypes and uses penalized
regression to estimate from these data the most important
effects in the genetic model (13).

To characterize the fraction of genotypes that must be
sampled to reconstruct the genetic architecture of each
dataset, we simulated sparse learning by randomly sampling a
variable number of genotypes and using penalized regression
to estimate the RFA terms. We then predicted the phenotypes
of the unsampled genotypes, calculated the out-of sample R2,
and determined the minimum sample size required for R2 of
0.9 (N90; Fig. 5A).

We found that genetic architecture cannot be reliably
estimated by sparse random sampling. Excluding the three
small datasets, N90 ranges from 0.2 to 25% of the total
number of genotypes, with a median of 5% (Fig. 5B). Even
the lowest end of this range does not bode well for estimating
genetic architecture in large sequence spaces that contain
billions or more genotypes.

We explored several factors that might determine the
required sampling density: the total number of genotypes in
the sequence space, the sparseness of the architecture, and the
fraction of genotypes with phenotypes in the dynamic range of
measurement. First, the genetic model for a larger sequence
space entails more potential terms at every epistatic order,
so estimating it might require sampling a larger library. We
found that N90 does increase with the number of total possible
genotypes, but there is considerable scatter in this relationship
(Fig. 5B). Second, one might expect that estimating a simple
genetic architecture requires a smaller sample than a more
complex architecture. We found a weak relationship between
the number of model terms required to explain 90% of the
phenotypic variance (T90) and the number of genotypes that
must be sampled to achieve this level of explanation (N90)
(Fig. 5C ). An extreme case is the CR9114-B dataset (total 216

= 65,536 genotypes), in which just ten main effects explain
90% of the variance but 16,000 genotypes—about 25% of the
total—must be sampled to find them.

Finally, we considered whether the masking of phenotype
by the upper or lower bound might be a factor in the
effectiveness of sampling strategies. Genotypes with phe-
notypes at or near these limits contribute little quantitative
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Fig. 4. Sparsity of protein sequence-function relationships. (A) Measuring the sparsity of genetic architecture illustrated on the CR9114-H1 dataset. Reference-free effects were
estimated using a third-order model and then ranked by the fraction of variance they explain. Models of increasing complexity were then constructed by sequentially including
each effect term, and each model was evaluated by cross-validation. Each dot represents a model, colored by the order of the last term added. Vertical line marks T90, the
minimal number of terms required for an out-of-sample R2 of 0.9. (B) T90 as a function of the total number of genotypes. Dotted line, best-fit power function. Asterisk, GB1
dataset. Each T90 was estimated in two ways: as the number of terms required to reach R2 of 0.9 (upper error bar)—an overestimate because measurement noise prevents
any model from attaining out-of-sample R2 of 1—and as the number of terms required for an R2 equal to 90% of that of the complete third-order model (lower error bar).
Circles show the average of the two estimates. (C) Fraction of all possible reference-free terms that account for 90% of phenotypic variance plotted versus the total number of
genotypes. Asterisk, GB1 dataset.
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Fig. 5. Learning the genetic architecture by random sampling. (A) Learning by random sampling illustrated on the CR9114-H1 dataset. Up to third-order reference-free effects
were inferred from a varying number of randomly sampled genotypes and were evaluated by predicting the phenotypes of all unsampled genotypes. For each sample size,
mean and standard deviation of out-of-sample R2 across 10 trials are shown. Dashed line marks N90, the minimal sample size required for mean out-of-sample R2 of 0.9. (B)
(Left) N90 as a function of the total number of genotypes (N ). Error bars were computed as in Fig. 4B. The three datasets with 48 or fewer genotypes are not shown. (Right)
Distribution of the fraction of genotypes that must be sampled to account for 90% of phenotypic variance. (C) N90 as a function of T90, the minimal number of reference-free
effects required to explain 90% of phenotypic variance (Fig. 4). (D) N90 as a function of the fraction of genotypes within phenotype bounds. (E) Modeling N90 as a power
function of the total number of genotypes (N ) and the fraction of genotypes within phenotype bounds (a). The best-fit curve is shown along with standard errors.

information about the effects of the states they contain, so if
most variants in a library are at the bounds, then very large
samples might be required to obtain information about the
genetic architecture. We found a strong negative relationship
between N90 and the fraction of variants in the dynamic
range (Fig. 5D). In the CR9114-B dataset discussed above,
for example, 99.9% of all variants are at the lower bound,
so the 16,000 variants required to reach N90 only contain
about 16 genotypes in the dynamic range. Conversely, in
the CH65-MA90 dataset, there are > 65, 000 total genotypes,
but the architecture can be estimated from a sample of just
99 variants because virtually all of the data are within the
dynamic range.

The size of sequence space (N) and the fraction of
variants in dynamic range (a) are therefore the key factors
that determine how well a genetic architecture can be
reconstructed by random sampling. To quantify the effects
of these factors, we modeled N90 as a function of N and
a across the datasets (Fig. 5E). The inferred relationship
allows us to predict how large a sample should be required to
estimate a genetic architecture given the size of the sequence
space and the fraction of variants in dynamic range. If all
genotypes in the CR9114-B dataset were in the dynamic range,
a sample of only 300 variants would need to be measured,
rather than the 16,000 actually required. But some sequence
spaces are so large that estimating their genetic architecture
by random sampling would not be practical, even if dynamic
range were unlimited: for the two-state, 100-variable-site
protein described above, it would still be necessary to measure

20 billion variants, even though only ∼ 10, 000 terms are
expected to account for 90% of phenotypic variance.

We conclude that despite the simplicity of proteins’ genetic
architecture, its most important causal factors cannot be
efficiently estimated by random sampling using experimental
libraries, in which the majority of variants are typically
nonfunctional. It is therefore important to develop an efficient
non-random sampling strategy to identify the important
main and pairwise effects in a protein’s genetic architec-
ture. Characterizing libraries of low-order combinations
in diverse functional homologs, rather than attempting
complete combinatorial scans in a single protein, may be
effective. Improvements that expand the dynamic range of
deep mutational scan experiments will also help.

Understanding genetic architecture. A benefit of combining
the sigmoid link function with RFA is that specific genetic
effects can then be expressed in simple terms that are
comparable across datasets (Fig. 6A). The sigmoid model
describes the observed phenotype of a protein variant as an
equilibrium between “functional” and “nonfunctional” states
that depends on s, the variant’s genetic score; the upper
and lower bounds represent ensembles in which the fraction
of proteins occupying each state approaches the measurable
limits. The relative occupancy of the functional state (the
ratio of its occupancy to that of the nonfunctional state) is es,
and its fractional occupancy is (1 + e–s)–1. This relationship
is analogous to the Boltzmann equation, with s taking on
the role of –∆G, the Gibbs free energy difference between
the states, expressed in units of kT . When s equals 0, the

Park et al. PNAS — September 3, 2023 — vol. XXX — no. XX — 9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.09.02.556057doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.02.556057
http://creativecommons.org/licenses/by/4.0/


DRAFT

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

A

C

B

−15 −10 −5 0
6

9
U

L

Genetic score predicted
by first-order model

Ph
en

ot
yp

e

CR9114-H3 (216)

Ef
fe

ct
 o

n 
ge

ne
tic

 s
co

re

0

Site
1 16

2.3

–2.3

Ph
en

ot
yp

e

U

L

−8 −4 0

0

1

4

ParD3-ParE3 (203)

Genetic score (first-order)

ParD3-ParE2 (203)

U

L

−8 −4 0

0

1

4

Ph
en

ot
yp

e

Genetic score (first-order)

D
2.3

–2.3

2.3

–2.3

2.3

–2.3

Ef
fe

ct
 o

n 
ge

ne
tic

 s
co

re

A C D E F G H I K L M N P Q R S T V W Y

Site 1

Site 2

Site 3

*

*

*

Wild type*

10%
0

25%
0

20%
0

Ef
fe

ct
 o

n 
ge

ne
tic

 s
co

re Site 1

Site 2

Site 3

A C D E F G H I K L M N P Q R S T V W Y

*

*

*

Wild type*2.3

–2.3
2.3

–2.3
2.3

–2.3

–4.6 0 4.6

–4.6

0

4.6

Effect on ParE2 score

Ef
fe

ct
 o

n 
Pa

rE
3 

sc
or

e

2.3

2.3

0

ParE3 – ParE2

2K1D
3E

E

0
0

1

∆G (in the unit of –kT )

O
cc

up
an

cy
 o

f B

1

10

1
10

1

1

–2.3 2.3

[B]
[A]

e ∆G–= kT

A B

U

L

Phenotype

Nonfunctional (N)
(Phenotype = L)

Functional (F)
(Phenotype = U )

e= s[F]
[N]

0
0

1

Genetic score (s )

O
cc

up
an

cy
 o

f F

1

10

1
10

1

1

–2.3 2.3

3

9
10

5

Si
te

6

3 5 6 910

–2.3 2.30
Effect on

genetic score

35

9

10
C

C = Chromophore

6

Derived stateAncestral state

e0

e0

e0

Fig. 6. Understanding genetic architecture. (A) Interpreting genetic score (s) as Gibbs free energy difference (∆G). (Left) Relative occupancy of two thermodynamic states as
a function of their ∆G. k, Boltzmann constant; T , absolute temperature. (Right) Our sigmoid model of nonspecific epistasis corresponds to an equilibrium between two
states—the “functional” state, of phenotype of U , and the “nonfunctional” state, of phenotype of L. Their relative occupancy (pink and blue lines) equals es, allowing s to be
interpreted as −∆G in the unit of kT . (B) Analysis of the CR9114-H3 dataset, which measures the affinity of all possible combinations of ancestral and derived amino acids at
16 sites in an antibody towards an influenza hemagglutinin. (Left) First-order RFA. Each dot is a genotype, plotted by its measured phenotype and estimated genetic score.
Histogram, distribution of genetic score; yellow curve, inferred nonspecific epistasis; horizontal lines, phenotype bounds; vertical line, global average; green and purple dots,
ancestral and derived genotypes. (Right) First-order effects of amino acids at each site. (C) ParD3-ParE3 and ParD3-ParE2 (203) datasets, which measure how all possible
variants of the protein ParD3 at three sites bind to ParE3, the cognate substrate, or ParE2, a noncognate substrate. (Left) First-order RFA shown as in (B). (Right) First-order
effects of amino acids at each site. Asterisk, wild type. (D) Comparing the effect of each amino acid on ParE3 versus ParE2 binding. Wild type amino acids are marked. (E)
avGFP dataset, which measures the fluorescence of all possible combinations of pairs of amino acids at 13 sites. (Left) Main effects and pairwise interactions, which account
for 57 and 38% of phenotypic variance, respectively. Values are shown only for one of the two of amino acids in each site. The ten pairwise interactions possible among sites 3,
5, 6, 9, and 10 are outlined. (Right) Crystal structure of avGFP (PDB ID: 3e5w). Spheres, the 13 mutated residues; red, the chromophore and the five residues with the
strongest phenotypic contribution.

functional and nonfunctional states are equally populated,
and the phenotype is midway between the upper and lower
bounds. An amino acid that increases the score by 2.3 always
causes a ten-fold increase in the relative occupancy of the
measurable functional state, corresponding to an apparent
∆∆G of –1.4 kcal/mol at 37°C. This relationship holds across
proteins, functions, and assay systems, which all display the
same scaling relationship between a variant’s genetic score
and its phenotype, mediated via the probability of occupying
the functional state.

We used this framework to interpret the genetic archi-
tecture of several example proteins. First, the CR9114-
H3 dataset (Fig. 6B) consists of affinity measurements
for binding of hemagglutinin to each of 216 antibodies (all

possible combinations of ancestral and derived amino acids
at 16 sites that evolved during affinity maturation). The vast
majority of variants in this library are at or near the lower
bound of detectable binding; as a result, the average genetic
score is –7.8, corresponding to just 0.04% occupancy of the
measurable functional state (∆G of 4.7 kcal/mol). Even the
highest genetic score in the entire library is only 2.6 — 93%
occupancy of the functional state. Main effects at three key
sites explain the most phenotypic variance: Substituting any
of these from the ancestral to derived state increases the
genetic score by between 4.2 and 5.2, corresponding to an
increase in relative occupancy of the functional state by 70-
to 180-fold and a ∆∆G of ∼ 2 to 3 kcal/mol each. Other
sites make modest contributions: The five next-largest effects
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each change the genetic score by about 1 (0.7 kcal/mol) when
mutated back to the ancestral state, shifting the relative
occupancy by 36% each, but reducing the absolute occupancy
to just 8% when all five change together. There is virtually no
specific epistasis in this genetic architecture (Fig. S1). This
means that there are many different combinations of the five
moderate-effect sites that provide a sufficient genetic score
to confer measurable affinity, but only if the derived state at
all three large-effect sites are present. The remaining eight
sites have negligible effects on binding and are completely
degenerate among functional antibodies.

Second, the genetic architecture of specificity in a protein
can be understood by analysis of genetic scores with different
substrates (Fig. 6C ). A deep mutational scan was performed
on the ParD3 protein (20 states at 3 sites in the binding
interface) for binding to its cognate ligand ParE3 and a
noncognate ligand ParE2 (41). In both cases, first-order
determinants account for the vast majority of genetic variance,
with main effects on genetic score ranging from strongly
positive (3.6) to strongly negative (–4.8); this corresponds
to changes in ∆G on the order of –2 to 3 kcal/mol and
changes in relative occupancy ranging from a 36-fold increase
to 120-fold decrease. Effects on specificity can be quantified
as the difference in a state’s effect on genetic score for the two
substrates. Eight different states distributed across the three
variable sites change the genetic score in favor of one ligand
or the other by more than 1.6, meaning that they change the
relative occupancy of the two substrates by at least 5-fold
each (Fig. 6D). For example, the states in the wild-type
ParD3 (Asp [D], Lys [K], and Glu [E] in the three variable
sites) increase specificity for the cognate ligand by scores
of 2.8, 2.7, and 2.2, respectively, corresponding to a 10-fold
change in relative occupancy by each; two of these states
(1D and 2K) achieve this by increasing the affinity for both
ligands with a stronger effect on cognate versus noncognate
binding, whereas 3E increases cognate binding but reduces
noncognate binding.

Finally, RFA can be used to characterize the scale of
epistatic effects on function. In the avGFP dataset (13),
pairwise interactions account for 38% of phenotypic variance.
Out of 13 sites analyzed, however, main and pairwise effects
involving just five sites account for the vast majority of the
variance explained (Fig. 6E). These sites, which tightly
surround the chromophore in the avGFP crystal structure,
engage in a dense network of epistatic interactions in which
nine of the ten possible pairwise interactions are non-zero.
Although only three of these effects are strong (changing the
genetic score by > 1), the total impact is substantial: A total
change in genetic score of 2.8 caused by main effects and 7.5
by pairwise interactions, corresponding to 16- and 1,700-fold
increases in the relative occupancy of functional state (1.7
and –4.5 kcal/mol), respectively.

Discussion

Our finding that main and pairwise interactions account
for virtually all genetic variation within proteins contrasts
with many earlier reports (1–7). This difference is likely
attributable to overestimation of epistasis in prior studies,
the vast majority of which used reference-based analysis
and/or have not fully decoupled specific epistasis from global
nonlinearity in the genotype-phenotype relationship. It is

possible that higher-order epistasis is more important in
some other proteins not examined here, but this seems
unlikely, given the consistency of the pattern we observed
across 20 different deep mutational scans in a wide variety
of proteins with different architectures and functions. Most
of the studies we examined focused on a small or moderate
number of sites selected a priori because they vary between
two functional proteins of interest or they are in important
structural positions (e.g., at binding interfaces or active sites).
In some cases the sites are clustered, and in others they are
dispersed across the protein structure. We therefore have no
reason to expect that the sites examined in the studies we
analyzed are depleted for higher-order epistasis.

Our analyses assessed the genetic architecture of a sin-
gle function per protein, rather than the determinants of
functional specificity when multiple functions are measured.
It is possible that higher-order interactions could be more
important in determining functional specificity. Reference-
free analysis could easily be expanded to identify the genetic
architecture of specificity using DMS studies of multiple
functions; a recent study used a similar approach and found
that higher-order interactions within a transcription factor are
unimportant for determining its specific preferences among
DNA binding sites (42). Higher-order epistasis might be
more important among loci than it is within proteins, but
this is an open question. It is not obvious, for example,
that contacts across interfaces between molecules should
produce more higher-order genetic interactions than the
physically similar contacts that occur within proteins, or
that dependencies among molecules in signal transduction
or metabolic pathways should involve more higher-order
interactions than within the complex environment of a single
protein, once the global nonlinearities imposed by these
pathways are accounted for.

The lack of higher-order epistasis within proteins may seem
surprising, given the complexity of proteins’ three-dimensional
structure, in which clusters of three or more residues often
contact each other directly. Our findings suggest that the
effects of most such clusters can be largely explained by the
sum of the pairwise interactions they comprise. But these
couplings themselves depend on conformation, which itself is
determined by the state at other sites; if a mutation alters
the conformation, it will change some pairwise couplings
and produce higher-order epistasis. In the datasets we
examined, this kind of conformational epistasis appears to be
relatively unimportant. A possible explanation is that in these
experiments the majority of sites–and therefore presumably
the protein’s overall fold–were held constant. Ultimately,
the folding of a protein into its native conformation and
the couplings that result would seem to require higher-order
interactions, and these might be revealed if a large scan of a
protein that can adopt multiple conformations were possible.
The importance of these interactions in the overall sequence-
function relationship relative to lower-order effects, however,
is an open question.

The effectiveness of the Boltzmann-like sigmoid function
to model nonspecific epistasis seems surprising, because
nonlinearity in the genotype-phenotype relationship almost
certainly arises from complex biological and technical causes
that vary among proteins, functions, and measurement
techniques. Our analyses indicate that upper and lower
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bounds on the dynamic range over which a phenotype
can be produced and measured are the primary cause of
nonspecific epistasis within proteins. Whether or not the
sigmoid transformation is “true,” our findings indicate that
accounting for this form of nonlinearity–irrespective of the
factors that produce it–is sufficient to allow a low-order model
of specific epistasis to provide a parsimonious explanation
of genetic architecture that captures virtually all phenotypic
variation across all the proteins we examined.

Our finding that RFA outperforms RBA in providing a
compact and accurate characterization of the global genotype-
phenotype map does not mean that RBA is never useful.
There are some settings in which the object of interest is not
a protein’s genetic architecture but particular interactions
among mutations in the sequence neighborhood immediately
around a designated wild-type or ancestral protein. In these
cases RBA is appropriate, but it should be used with caution
because of its propensity to infer spurious interactions as
distance from the reference sequence increases.

Epistasis can make evolutionary trajectories contingent on
the chance occurrence of permissive and restrictive epistatic
modifiers (27, 43, 44). It was recently shown that the effects
of most mutations drift gradually as proteins accumulate
substitutions over long-term evolutionary time (45). Our
results imply that this drift is likely attributable to the
cumulative effect of many small pairwise interactions rather
than higher-order modulations. The relative unimportance
of high-order epistasis implies that the pairwise dependencies
that make evolution contingent on prior mutations are likely
to remain largely stable over evolutionary time, rather than
being idiosyncratically rewired with every substitution that
occurs at other sites.

For scientists who would like to understand how proteins
work, our findings are reassuring, but they clarify a major
challenge ahead. Proteins’ genetic architecture is intelligible;
a small fraction of main and pairwise effects provides a
compact and efficient explanation of 90 to 95% of functional
genetic variation across the vast space of possible sequences.
Complete combinatorial experiments are intractable for many
states at more than a few sites or even two states at a
moderate number of sites, but the unimportance of high-
order epistasis means that it is unnecessary to assay the vast
array of triplets, quartets, and so on. The challenge is that
the small set of key first- and second-order determinants
cannot be efficiently identified from a random sample of
variants, because sequence space is huge and most random
polypeptides are virtually nonfunctional-particularly when
the dynamic range of measurement is limited-so they do not
provide useful quantitative information about the sequence
states and pairs that they contain. Assessing low-order
effects in a single sequence neighborhood is not sufficient,
because the resulting estimates would be subject to the
same kind of errors and idiosyncracies that plague reference-
based estimates. An effective strategy may therefore be to
perform comprehensive single- and double-mutant scans using
a diverse set of functional proteins as starting points, and then
analyze the results using RFA. A critical issue is to determine
just how diverse the proteins used as starting points must
be, while continuing to improve the efficiency and dynamic
range of experimental methods. The potential power of a
relatively practical strategy like this has been overlooked to

date, presumably because protein architecture is not nearly
as complex as it was previously thought to be.

Methods

Reference-free analysis (RFA). Here we define RFA and state
its key properties. A detailed exposition with proofs is pro-
vided in SI Appendix, and scripts and tutorials for performing
RFA are available on GitHub (github.com/whatdoidohaha/
RFA).

We consider a simple genotype space defined by q states at
each of n sites, but RFA can also be applied when the number
of states varies among sites. Let g denote a genotype, y(g)
its phenotype, and G the set of all genotypes. The global
average phenotype is denoted

e0 =
〈
y
∣∣G〉

,

where the brackets indicate averaging of y across G. RFA
decomposes the phenotype into the contribution of individual
states and their interactions. The first-order effect of state s
at site i is the difference between the average phenotype of
the subset of genotypes sharing that state (denoted Gs

i ) and
the global average:

ei(s) =
〈
y
∣∣Gs

i

〉
− e0.

The pairwise interaction between states s1 and s2 at sites i1
and i2 is the difference between the average phenotype of the
subset of genotypes sharing that state-pair (Gs1,s2

i1,i2
) and the

global average after accounting for the main effects:

ei1,i2 (s1, s2) =
〈
y
∣∣Gs1,s2

i1,i2

〉
− [e0 + ei1 (s1) + ei2 (s2)].

Similarly, higher-order effects are the difference between
the average phenotype of the subset of genotypes sharing a
particular set of states and the global average after accounting
for the lower-order effects.

RFA predicts the phenotype of a genotype of interest by
summing the effects of the states present in that genotype.
For a genotype with state gi in each site i, the predicted
phenotype under RFA of order k is

yk(g) = e0 +
∑

i

ei(gi) +
∑

i1<i2

ei1,i2 (s1, s2) + ...+

∑
i1<...<ik

ei1,...,ik (gi1 , ..., gik .

The overall accuracy of this prediction can be quantified by
the sum of squared errors:

ϵG =
∑
g∈G

[
y(g) − yk(g)

]2
.

Among all possible ways of predicting the phenotype using
effects of order up to k—including reference-based analysis
under any choice of reference genotype and background-
averaged analysis under any choice of reference states—RFA
minimizes ϵG for any k for any genetic architecture. For
example, when k equals zero—that is, when all phenotypes
are predicted by a single number—ϵG is minimized by the
global average phenotype, which is the RFA zero-order term.
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By explaining as much phenotypic variance as possible at
any order of approximation, RFA provides the simplest
description of genetic architecture.

A key task in the analysis of genetic architecture is to
quantify the contribution of individual states and interactions
to the phenotype. RFA facilitates this task by decomposing
the total phenotypic variance into the contribution of each
factor:

V ar(y
∣∣G)

(
= 1

qn

∑
g∈G

[
y(g) − ⟨y

∣∣G⟩
]2

)
=

∑
e̸=e9

e2

qO(e) ,

where e denotes an effect, O(e) its order, and the summation
involves all nonzero-order effects. An effect of order k affects
the phenotype of one in every qk genotypes. The expression
above therefore states that the amount of phenotypic variance
attributable to an effect is the square of its magnitude,
normalized by the fraction of genotypes it affects.

A corollary of the definition of reference free effects is that
the first-order effects of all states at a site sum to zero:∑

1≤s≤q

ei(s) = 0.

We call this the zero-mean property. The second-order effects
of all state-pairs in one site-pair also sum to zero, as do all
higher-order effects at a combination of sites.

Inferring reference-free effects from noisy and incomplete
data. When individual phenotypes are subject to measurement
error of variance ω, reference-free effects of order k computed
from these measurements have an error of variance

(q − 1)k

qn
ω.

By definition k ≤ n, so the variance of computed effects is
always less than ω and is miniscule when k is small relative to
n. Therefore, reference-free effects can be robustly determined
from noisy phenotypic measurements, thanks to the averaging
of effects over large numbers of genotypes. By contrast, the
error associated with reference-based effects of order k is
2kω, which is always greater than ω and typically too large
to distinguish effects from errors when k > 2. The error
associated with background-averaged effects of order k is
(2q)k/qn × ω, which is greater than the error for reference-
free effects of the same order and exceeds ω as k increases.

When measurement is incomplete, reference-free effects
can be inferred by regression. To infer the effects in a
truncated model that contains terms of order up to k, we
model

y(g) = yk(g) + ϵ(g),
where the error ϵ(g) is the sum of all higher-order effects
and measurement noise. Regression estimates are obtained
by minimizing the sum of squared errors across the set of
sampled genotypes (G∗):

ϵG∗ =
∑

g∈G∗

[
y(g) − yk(g)

]2
.

Because RFA minimizes the sum of squared errors across all
genotypes, the regression estimates converge to the true values

as more genotypes are sampled. Furthermore, the regression
estimates are unbiased provided that genotypes are randomly
missing. This is because ϵ(g) is unbiased—equals zero when
averaged across all genotypes. This in turn derives from the
zero-mean property, which implies that the net phenotypic
contribution of any order of effects is zero when averaged
across all genotypes; unmodeled higher-order interactions
do not bias the regression because they appear as noise to
lower-order models.

Nonspecific epistasis. We account for nonspecific epistasis by
assuming that the effects of sequence states are transformed
by a global link function into the observed phenotype (25).
The net effect of the sequence states in a genotype is referred
to as its genetic score (s). We model the link function by a
sigmoid that is defined by two parameters, L and U , which
represent the lower and upper bound of phenotype:

y(g) = L + U − L

1 + e−s(g) .

Implementation. Reference-free effects and nonspecific epis-
tasis were jointly inferred by L1-regularized regression. The
optimal L1 penalty was determined by maximizing the out-of-
sample R2 in cross-validation. Except for four datasets, cross-
validation was performed by randomly partitioning genotypes
into training and test sets. For the three datasets with 48
or fewer genotypes and the CR9114-B dataset where only
81 genotypes are above the lower phenotype bound, cross-
validation was performed by leaving out each measurement
replicate in turn. The R package lbfgs was used for numerical
optimization. All scripts for inference and analysis are
available on GitHub (github.com/whatdoidohaha/RFA).

To jointly infer reference-based effects and nonspecific
epistasis, we devised a two-step approach. This was neces-
sary because reference-based analysis is incompatible with
regression. For example, regression infers a first-order model
by assigning values to the effects of point mutations that
best predict the phenotype for both point and higher-order
mutants. However, the effect of a point mutation is defined
solely by the phenotype of the one variant that contains
only that mutation; the regression estimate can be far from
true depending on the exact phenotypes of higher-order
mutants. For each candidate set of nonspecific epistasis
parameters, we computed the reference-based effects on
genetic score that exactly recapitulate the phenotypes of
mutants up to model order. The effects were then used to
predict the phenotype for higher-order mutants. We only
predicted higher-order mutants for which all relevant lower-
order effects are measured; for example, when a point mutant
is missing, any double or higher-order mutant involving that
mutation was excluded from prediction. This procedure
was repeated for different values of nonspecific epistasis
parameters, resulting in values that maximize the R2.

Background-averaged analysis was originally developed
only for binary state spaces. To implement it for spaces with
more than two states per site, we extended the recursive
matrix formalism of ref. (23) and implemented it in a
custom R script. The same multi-state formalism has been
independently derived and published recently (34).

Combinatorial mutagenesis datasets. We systematically
mined the literature for mutagenesis experiments with a
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combinatorially complete design. Among the many datasets
comprising fewer than 100 genotypes, we chose three datasets
where high-order epistasis has been reported. Any larger
dataset in which precise measurement (r2 > 0.9 between
replicates) is available for at least 40% of possible genotypes
was included for analysis. Several datasets were edited as
follows.

The methyl-parathion hydrolase activity (46) was mea-
sured in the presence of seven different metal cofactors. In
every case, second-order reference-free analysis coupled with
the sigmoid model of nonspecific epistasis explained more
than 90% of phenotypic variance. Only the Ni2+ dataset, in
which epistasis accounts for the greatest fraction of phenotypic
variance, is presented here.

The original dihydrofolate reductase dataset (3) includes
a noncoding mutation for a total of 96 variants. We only
analyzed the 48 coding site variants fixed for the mutant state
in the noncoding site. IC75—the antibiotics concentration
that reduces the growth rate by 75%—was reported in
logarithmic scale, set arbitrarily as –2 when the variant is
unviable at any concentration. We reverted the logarithm,
making IC75 equal to 0 when the variant is unviable.

The hemagglutinin study (39) characterized an identical
set of genetic variants in six different genetic backgrounds.
We only analyzed the genetic background for which the
measurement is most precise (Bei89).

In the avGFP dataset (13), fluorescence is systematically
higher in the second measurement replicate by a factor of
1.31. This difference was normalized when combining the two
replicates.

The ParB study (47) measures how the transcription factor
ParB binds to two DNA motifs, parS and NBS. Because
measurement r2 is less than 0.9 for the NBS dataset, only
the parS dataset was analyzed. The absolute fitness of each
variant was inferred by comparing the read count before
and after the bulk competition assay. Variants with the pre-
competition read count fewer than 15 were excluded, resulting
in 42.2% coverage of the 160,000 possible genotypes—down
from 97.0% in the original study.

The extent of measurement noise in the GB1 dataset (10)
could not be directly determined because measurement was
not replicated, but comparison to an independent dataset for
a subset of variants showed that measurement r2 is greater
than 0.9. Variants with a pre-competition read count fewer
than 100 were excluded, resulting in 68.6% coverage of the
160,000 possible genotypes—down from 93.4% in the original
study.
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