Crash Recovery in Client-Server EXODUS

Michael J. Franklin, Michael J. Zwilling, C. K. Tan, Michael J. Carey, DavidJ. DeWitt

Computer Sciences Department
University of Wisconsin - Madison
Madison, WI 53706
{mjf,zwilling, tan,carey,dewitt}@cs.wisc.edu

ABSTRACT — In this paper, we address the correctness and
performance issues that arise when implementing logging and
crash recovery in a page-server environment. The issues result
from two characteristics of page-server systems: 1) the fact that
data is modified and cached in client database bufffers that are not
accessible by the server, and 2) the performance and cost trade-
offs that are inherent in a client-server environment. We describe
a recovery system that we have implemented for the client-server
version of the EXODUS storage manager. The implementation
supports efficient buffer management policies, allows flexibility in
the interaction between clients and the server, and reduces the
server load by generating log records at clients. We also present
a preliminary performance analysis of the implementation.

1. INTRODUCTION

Networks of powerful workstations and servers have become
the computing environment of choice in many application
domains. As a result, most recent commercial and experimental
DBMSs have been constructed to run in such environments.
These systems are referred to as client-server DBMSs. Recovery
has long been studied in centralized and distributed database sys-
tems [Gray78, Lind79, Gray81, Moha90, BHG87, GR92] and
more recently in architectures such as shared-disk systems
[Lome90, MN91, Rahm91] and distributed transaction facilities
[DST87, HMSC88]. However, little has been published about
recovery issues for client-server database systems. This paper
describes the implementation challenges and performance trade-
offs involved in implementing recovery in such a system, based
on our experience in building the client-server implementation of
the EXODUS storage manager [CDRS89, Exod91].

Client-server DBMS architectures can be categorized accord-
ing to whether they send requests to a server as queries or as
requests for specific data items. We refer to systems of the former
type as query-shipping systems and to those of the latter type as
data-shipping systems. Data-shipping systems can be further
categorized as page-servers, which interact using physical units of
data (e.g. individual pages or groups of pages such as segments)
and object-servers, which interact using logical units of data (e.g.
tuples or objects) [DFMV90]. There is still much debate about
the relative advantages of the different architectures with respect
to current technology trends [Ston90, Comm90, DFMV90]. Most

This work was partially supporied by the Defense Advanced
Research Projects Agency under contracts N00014-88-K-0303 and NAG-
2-618, by the National Science Foundation under grant IRI-8657323, and
by a grant from IBM Corporation.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

1992 ACM SIGMOD - 6/92/CA, USA

© 1992 ACM 0-89791-522-4/92/0005/0165...$1.50

165

commercial relational database systems have adopted query-
shipping architectures. Query-shipping architectures have the
advantage that they are similar in process structure to a single-site
database system, and hence, provide a relatively easy migration
path from an existing single-site system to the client-server
environment. They also have the advantage of minimizing com-
munication, since only data which satisfies the query is sent from
the server to the requesting clients.

In contrast to the relational DBMS systems, virtually all com-
mercial object-oriented database systems (OODBMS) and many
recent research prototypes have adopted some variant of the data-
shipping approach (e.g., 02 [Deux91], ObjectStore [LLOW91],
ORION [KGBW90]). Data-shipping architectures have the poten-
tial advantage of avoiding bottlenecks at the server by exploiting
the processing power and memory of the client machines. This is
important for performance, since the majority of the processing
power and memory in a client-server environment is likely to be
at the clients. Moreover, as network bandwidth improves, the cost
of the additional communication as compared to query-shipping
architectures will become less significant. Also, the data-shipping
approach is a good match for many OODBMSs in which database
objects can be accessed directly in the client’s memory.

Implementing recovery in query-shipping architectures raises
few new issues over ftraditional recovery approaches since the
architecture of the database engine remains largely unchanged. In
contrast, data-shipping architectures present a new set of problems
and issues for the design of the recovery and logging subsystems
of a DBMS. These arise from four main architectural features of
data-shipping architectures which differentiate them from tradi-
tional centralized and distributed systems and from other related
architectures such as shared-disk systems. These features are:

M

Database updates are made primarily at clients, while the
server keeps the stable copy of the database and the log.

(2) Each client manages its own local buffer pool.

(3) Communication between clients and the server is rcla-
tively expensive (e.g., compared to local IPC).

(4) Client machines tend to have different performance and

reliability characteristics than server machines.

The client-server EXODUS Storage Manager (ESM-CS) is a
data-shipping system which employs a page-server architecture,
The implementation of recovery in ESM-CS involves two main
components. The logging subsystem manages and provides
access to an append-only log on stable storage. The recovery sub-
system uses the information in the log to provide transaction roll-
back (e.g., abort) and system restart (i.e., crash recovery). The
recovery algorithm is based on ARIES [Moha90]. ARIES was
chosen because of its simplicity and flexibility, its ability to sup-
port the efficient STEAL/NO FORCE buffer management policy
[HR83], its support for savepoints, nested-top-level actions, and
logical Undo. However, the algorithm as specified in [Moha90j
cannot be directly implemented in a page-server system because
the architecture violates some of the explicit and implicit

assumptions upon which the original algorithm is based. In this
paper we describe our recovery manager, paying particular atten-
tion to the modifications to ARIES that were required due to the
correctness and efficiency concems of recovery in a page-server
system. We also discuss several engineering decisions that were
made in the design of the logging and recovery subsystems.

It should be noted that the ARIES algorithm has recently been
extended in ways that are similar to some of the extensions we
describe in this paper. [MP91] describes an extension of the algo-
rithm which can reduce the work performed during system restart.
The algorithm used in ESM-CS required a similar extension, not
for efficiency, but in order to operate correctly in the page-server
environment. [MNP90] and [MN91] describe extensions to
ARIES for the shared-disk environment. As would be expected,
some of the solutions in that environment are applicable to the
page-server environment, while others are not (for both correct-
ness and efficiency reasons). We discuss these extensions and
other related work in Section 6.

The remainder of the paper is structured as follows: Section 2
describes the ESM-CS architecture. Section 3 provides a brief
overview of ARIES. Section 4 motivates and describes the
modifications made to ARIES for the page-server environment.
Section 5 presents a study of the performance of the ESM-CS log-
ging and recovery implementation. Section 6 describes related
work. Section 7 presents our conclusions.

2. THE CLIENT-SERVER ENVIRONMENT

2.1. Architecture Overview

ESM-CS is a multi-user system with full support for indexing,
concurrency control, and recovery, which is designed for use in a
client-server environment. In addition to supporting these new
features, ESM-CS provides support for all of the features provided
previously by the EXODUS storage manager, such as large and
versioned objects [CDRS89]. ESM-CS can be accessed through a
C procedure call interface or through E [RC89], a persistent pro-
gramming language based on C++.

Figure 1 shows the architecture of ESM-CS. The system con-
sists of a client library, which is linked into the user’s application,
and the server, which runs as a separate process. Clients perform
all data and index manipulation during normal (i.e., non-recovery
or rollback) operation. Each client process (i.e., each application
that is linked with the client library) has its own buffer pool and
lock cache and runs a single transaction at a time. The server is
the main repository for the database and the log, and provides sup-
port for lock management, page allocation, and recovery/rollback.
The server is multi-threaded so that it can handle requests from
multiple clients, and it uses separate disk processes for asynchro-
nous [/O. Communication between clients and the server uses
reliable TCP connections and UNIX sockets. All communication
is initiated by the client and is responded to by the server. There is
no mechanism for the server to initiate contact with a client.

As stated above, ESM-CS employs a page-server architecture
in which the client sends requests for specific data and index
pages to the server. ESM-CS uses strict two-phase locking for
data and non-two-phase locking for indexes. Data is locked at a
page or coarser granularity. Index page splits are logged as nested
top level actions [Moha90] so they are committed regardless of
whether or not their enclosing transaction commits. During a
transaction, clients cache data and index pages in their local buffer
pool. Before committing a transaction, the client sends all the
pages modified by the transaction to the server. In the current
implementation, a client’s cache is purged upon the completion
(commit or abort) of a transaction. Future enhancements will
allow inter-transaction caching of pages [CFLS91].

166

Clients initiate transactions by sending a start transaction mes-
sage to the server and can request the commit or abort of a tran-
saction by sending a message to the server. The server can decide
to abort a transaction due to a system error or deadlock. After
aborting a transaction the server informs the client of the abort in
response to the next message it receives from the client. During
the execution of a transaction, the client generates log records for
all updates to data and index pages. The server manages the log
as a circular buffer, and will abort executing transactions if it is in
danger of running out of log space.

Workstation 1 Workstation n

Client Process 1 Client Process n
_A plication _A plication
® e

Server I

Server Process

-
Volume

Figure 1: The Architecture of Client-Server EXODUS

Recovery
Maer.

Lock
Mer.

Buffer
Magr,

Database
YVolume(s)

2.2, Logging Subsystem

One of the main challenges in designing a recovery system is
to minimize the negative performance impact of logging during
normal operation. As stated in the previous section, the log in
ESM-CS is kept at the server. This decision was made for two
reasons: 1) we do not want to lose access to data as the result of a
client failure, and 2) it is not economical to require that clients
have log disks. Given that the log is kept at the server while the
operations on data and indexes on behalf of application programs
are performed at the clients, an efficient interface for shipping log
records from the clients to the server is required. The logging
subsystem is an extension of a centralized logging subsystem that
is intended to work efficiently in the client-server environment.

2.2.1. Log Records and Data Pages

Our ARIES-based recovery algorithm depends upon the use of
the Write-Ahead-Logging (WAL) protocol [Gray 78] at the
server. The WAL protocol ensures that: 1) all log records pertain-
ing to an updated page are written to stable storage before the
page itself is over-written on stable storage, and 2) a transaction
cannot commit until all of its log records have been written to
stable storage. The WAL protocol enables the use of a
STEAL/NO FORCE buffer management policy, which means that
pages on stable storage can be overwritten with uncommitted data
(STEAL), and that data pages do not need to be forced to disk in
order to commit a transaction (NO FORCE).

In order to implement the WAL protocol at the server, we
enforce a similar protocol between clients and the server. That is,
a client must send log records to the server prior to sending the
pages on which the updates were performed. This policy is
enforced for two reasons. First, it simplifies transaction rollback
by insuring that the server has all log records necessary to roll-
back updates to pages at the server that contain uncommitted
updates. If the policy were not enforced, transaction rollback
caused by a client crash could require performing restart recovery

on the affected pages at the server since necessary log records
could be lost due to the client crash. Second, it simplifies the
server’s buffer manager by freeing it from having to manage
dependencies between the arrival of log records from clients and
the flushing of dirty pages to stable storage.

2.2.2. Log Record Generation and Shipping

The client generates one or more log records for each opera-
tion that updates a data or index page. These log records contain
redo and/or undo information specific to the operation performed,
rather than entire before and/or after images of pages. This deci-
sion was motivated by the desire to reduce two overheads: 1) the
expense of sending data from clients to the server, especially
because some of the pages are quite large (e.g., 8K bytes or
longer), and 2) the expense of writing to the log. Another deci-
sion that was made in this regard was to not allow log records
generated at the client to span log page boundaries. That is, all
log records generated by clients are smaller than a log page and
are wholly contained in a single log page when sent to the server.
This restriction simplifies both the sending of log records at the
client and the handling of log record pages at the server. The res-
triction sometimes requires operations to be logged slightly dif-
ferently from the way they were actually performed. For exam-
ple, the creation of a data object that is larger than the size of a log
page is logged as the create of the first portion of the object fol-
lowed by the append of any remaining data.

As aresult of the client-server WAL protocol and/or the boun-
dary spanning restriction, a client may at times be forced to send
partially filled log pages to the server. This could result in wasted
log space and unnecessary writes to the log. The server, however,
is not subject to the restrictions imposed on clients and can there-
fore combine log records received from different clients onto the
same log page and can write log records received from a given
client across multiple pages in order to conserve log writes. How-
ever, the server must preserve the ordering of the log records
received from a particular client and must maintain the WAL pro-
tocol between the updated pages in its buffer and the correspond-
ing log pages. In addition to log records received from clients, the
server also generates certain log records of its own. Server log
records are not subject to the size constraint that is imposed on
client log records and can span multiple log pages.

3. OVERVIEW OF ARIES

In this section, we present a brief overview of the ARIES
recovery method, concentrating on the features of the algorithm
that are pertinent to the ESM-CS environment (see [Moha90] for a
more complete treatment). ARIES is a fairly recent refinement of
the WAL protocol. As with other WAL implementations, each
page in the database contains a Log Sequence Number (LSN)
which uniquely identifies the log record for the latest update
applied to the page. This LSN (referred to as the pageLSN) is
used during recovery to determine whether or not an update for a
page must be redone. LSN information is also used to determine
the point in the log from which the Redo pass must commence
during restart from a system crash. Log records belonging to the
same transaction are linked backwards in time using a prevLSN
field in each log record.

ARIES uses a three pass algorithm for restart recovery (see
Figure 2). Analysis first processes the log forward from the most
recent checkpoint, determining information about dirty pages and
active transactions for use in the later passes. The second pass,
Redo, processes the log forward from the earliest log record that
could require redo, ensuring that all logged operations have been
applied. The third pass, Undo, proceeds backwards from the end
of the log, removing the effects of all uncommitted transactions

167

from the database. ARIES employs a Redo paradigm called
repeating history, in which it redoes updates for all ransactions
— including those that will eventually be undone. Repeating his-
tory simplifies the implementation of fine grained locking and the
use of logical undo as described in [Moha90, MP91].

Start of oldest First update Most recent

in—progress otentially checkpoint End of Log
transaction ost during crash
|
) - ' Analysis '
Log (time) Redo

Undo
Figure 2: The Three Passes of ARIES Restart

3.1. Normal Operation

ARIES maintains two important data structures during normal
operation. The first is the Transaction Table, which contains an
entry for each transaction that is currently running. Each entry
includes a lastLSN field, which is the LSN of the transaction’s
most recent log record. The second data structure, called the Dirty
Page Table (DPT), contains an entry for each "dirty” page. A
page is dirty if it contains updates that are not reflected on stable
storage. Each entry in the DPT includes a recoveryLSN field,
which is the LSN of the log record that caused the associated page
to become dirty. The recoveryLSN is the LSN of the earliest log
record that might need to be redone for the page during restart.

During normal operation, checkpoints are taken periodically.
ARIES uses an inexpensive form of fuzzy checkpoints [BHG87]
which requires only the writing of a checkpoint record. Check-
point records include the contents of the Transaction Table and
the DPT. Checkpoints are efficient since no operations need be
quiesced and no database pages are flushed. However, the effec-
tiveness of checkpoints in allowing reclamation of log space is
limited in part by the earliest recoveryLSN of the dirty pages at
checkpoint time. Therefore, it is helpful to have a background
process that periodically writes dirty pages to stable storage.

3.2. Analysis

The job of the Analysis pass of restart recovery is threefold: 1)
it determines the point in the log at which to start the Redo pass,
2) it determines which pages could have been dirty at the time of
the crash in order to avoid unnecessary I/O during the Redo pass,
and 3) it determines which transactions had not committed at the
time of the crash and will therefore need to be undone. Analysis
begins at the most recent checkpoint and scans forward to the end
of the log. It reconstructs the Transaction Table and DPT to
determine the state of the system as of the time of the crash. It
begins with the copies of those structures that were logged in the
checkpoint record. Then, the contents of the tables are modified
according to the log records that are encountered during the for-
ward scan. At the end of the Analysis pass, the DPT is a conserva-
tive (since pages may have been flushed to stable storage) list of
all pages that could have been dirty at the time of the crash, and
the Transaction Table contains entries for those transactions that
will actually require undo processing during the Undo phase. The
earliest recoveryLSN in the DPT is called the firstLSN and is used
as the spot in the log from which to begin the Redo phase.

3.3. Redo

As stated earlier, ARIES employs a redo paradigm called
repeating history. That is, it redoes updates for all transactions,
committed or otherwise. Therefore, at the end of Redo, the data-
base is in the same state with respect to the logged updates that it
was in at the time that the crash occurred. The Redo pass begins

at the log record whose LSN is the firstLSN determined by
Analysis and scans forward. Te redo an update, the logged action
is re-applied and the pageLSN on the page is set to the LSN of the
redone log record. No logging is performed as the result of a
redo. A logged action must be redone if its LSN is greater than
the pageLSN of the affected page. To avoid unnecessary disk 1/O,
the pageLSN is not checked if the page is not in the DPT, or if the
recoveryLSN for the page is greater than the record LSN.

3.4. Undo

The Undo pass scans backwards from the end of the log,
removing the effects of all transactions that had not committed at
the time of the crash. In ARIES, undo is an unconditional opera-
tion — the pagel.SN of an affected page is not checked because it
is always the case that the undo must be performed. To undo an
update, the undo operation is applied to the page and is logged
using a Compensation Log Record (CLR). In addition to the undo
information, a CLR contains a UndoNxtLSN field, which is the
LSN of the next log record that must be undone for the transac-
tion. It is set to the value of the prevLSN field of the log record
being undone. CLRs enable ARIES to avoid ever having to undo
the effects of an undo (e.g., due to a crash during an abort) thereby
limiting the amount of undo work and bounding the amount of
logging done in the event of multiple crashes. When a CLR is
encountered during Undo, no operation is performed on the page,
and the value of the UndoNxtLSN field is used as the next log
record to be undone for the transaction, thereby skipping any pre-
viously undone updates of the transaction.

For example, in Figure 3, a transaction logged three updates
(LSNs 10, 20, and 30) before the system crashed for the first time.
During Redo, the database was brought up to date with respect to
the log, but since the transaction was in progress at the time of the
crash, it must be undone. During the Undo pass, update 30 was
undone, resulting in the writing of a CLR with LSN 40, which
contains an UndoNxtLSN value that points to 20. Then, 20 was
undone, resulting in CLR (LSN 50) with an UndoNxtLSN value of
10. However, the system then crashed for a second time before 10
was undone. Once again, history is repeated during Redo, which
brings the database back to the state it was in after the application
of LSN 50 (the CLR for 20). When Undo begins during this
second restart, it will first examine the log record 50. Since the
record is a CLR, no modification will be performed on the page,
and Undo will skip to the record whose LSN is stored in the
UndoNxtLSN field of the CLR. Therefore, it will continue by
undoing the update whose log record has LSN 10. This is where
Undo was interrupted at the time of the second crash. Note that
no extra logging was performed as a result of the second crash.

In order to undo multiple transactions, restart Undo keeps a list
containing the next LSN to be undone for each transaction being
undone. When a log record is undone, the prevLSN (or
UndoNxtLSN, in the case of a CLR) is entered as the next LSN to
be undone for that transaction and Undo moves on to the log
record whose LSN is the most recent in the list. Undo continues
until all of the transactions in the list have been completely
undone. Undo for transaction rollback (for transaction aborts or
savepoints) works similarly to restart Undo.

4. RECOVERY IN ESM-CS

4.1. ARIES and the Page-Server Environment

In this section, we describe the problems that arise when
adapting ARIES to a page-server environment and outline the
solutions that we implemented. These issues stem mainly from
two features of the page-server environment: 1) the modification
of data in client database buffers, while the log and recovery

168

manager are at the server, and 2) the expense of communicating
between the clients and the server. The first issue violates several
important assumptions of the ARIES algorithm, and thus had to
be addressed for correctness of the implementation. The second
issue results in performance tradeoffs that have a significant

impact on the algorithm design.
///y/ CLR FOR CLR FOR
page 1 page 1 paqe 1 / LSN fo LSN 20
I 1

L]
Restari
2 8 30 50

Figure 3: The Use of CLRs for Undo

Write Write Write CLR FOR

LSN 10

%

Restarl

(time ")

1

The presence of separate buffers on the clients is a fundamen-
tal departure from the environment for which ARIES was origi-
nally specified. This difference creates problems with both tran-
saction rollback and system restart. In ARIES, rollback undo is
an unconditional operation since it is known that at rollback, the
effects of all logged updates appear in the copies of pages either
on stable storage or in the server’s buffer pool. However, in the
page-server environment the server can have log records for
updates for which it does not have the affected database pages.
During rollback, unconditional undo could result in corruption of
the database and system crashes due to attempts to undo opera-
tions that are not reflected in the server’s copy of a page.

This difference in buffering also causes a related problem for
system restart. The correctness of the restart algorithm depends
on the ability to determine all pages that could have possibly been
dirty (i.e., different from their copy on stable storage) at the time
of a crash. As described in Section 3.2, this information is gath-
ered by starting with the DPT that was logged at the most recent
checkpoint, and augmenting it based on log records that are
encountered during the Analysis pass. In a page-server system,
this process is not sufficient, since there may be pages that are
dirty at a client but not at the server, and hence, do not appear in
any checkpoint’s DPT. This problem, if not addressed, would
result in incorrect recovery due to the violation of the repeating
history property of Redo.

A problem that arises due to the expense of communication
between clients and the server is the inability of clients to
efficiently assign LSNs. ARIES expects that LSNs are unique
within a log, and that log records are added to the log in monoton-
ically increasing LSN order. In a centralized or shared memory
system, this is easily achieved, since a single source for generating
LSNs can be cheaply accessed each time a log record is generated.
However, in a page-server environment, clients generate log
records in parallel, making it difficult for them to efficiently
assign unique LSNs that will arrive at the server in monotonically
increasing order. Furthermore, if the LSNs are to be physical
(e.g., based on log record addresses), then the server would be
required to be involved in the generation of LSNs.

To summarize, the issues that must be addressed in a page-
server environment are the following:
¢ The assignment of state identifiers (e.g., LSNs) for pages.
¢ The need to make undo a conditional operation.
s Changes to Analysis to ensure correctness.

We next describe these issues and their effects on the algo-
rithm, The algorithm is then summarized in Section 4.5.

4.2, Log Record Counters (LRCs)

As described in Section 3, ARIES requires that each log record
be identified by an LSN and that each page contain a pageLSN
field which indicates the LSN of the most recent log record

applied to that page. These LSNs must be unique and monotoni-
cally increasing. It is useful for LSNs be the physical addresses of
records in the log. However, as discussed above, it is not possible
to efficiently generate such LSNs in a page-server system. In gen-
eral, the problem with LSNs in a page-server system is that their
use is overloaded: 1) they identify the state of a page with respect
to a particular log record, 2) they identify the state of a page with
respect to a position in the log (e.g., an LSN is used to determine
the point from which to begin Redo for a page), and 3) they iden-
tify where in the log to find a relevant record. |

Since clients do not have inexpensive access to the log, they
can only be responsible for point 1 above. Therefore, our solution
was to separate the functionality of point 1 from the others by
introducing the notion of a Log Record Counter (LRC). An LRC
is a counter that is associated with each page. The LRC for a par-
ticular page is monotonically increasing and uniquely identifies
an operation that has been applied to the page. Instead of storing
an LSN on the page, we store the LRC (called the pageLRC). In
order to map between LRCs and entries in the log, the log record
structure is augmented to include an LRC field which indicates the
LRC that was placed on the page as a result of the logged opera-
tion. Note that for reasons to be explained in the following sec-
tions, LRCs have the same size and structure as LSNs (currently,
an eight-byte integer).

LRC:s are used in the following way: When a page is modified,
the LRC on the page (pageLRC) is updated and then copied into
the corresponding log record. When the server examines a page
to see if a particular update has been applied to the page, the
current pageLRC is compared to the LRC contained in the log
record comresponding to the modification. If the pageLRC is
greater than or equal to the LRC in the log record, then the
update is known to be reflected in the page. LRCs have the
advantage that, since they are private to a particular page, they can
be manipulated at the client without intervention by the server.
There are two main disadvantages of using LRCs however. First,
since they are not physical log pointers, they cannot be directly
used to serve as an access point into the log. Second, care must be
taken to insure that each combination of page id and LRC refers to
a unique log record. Qur approaches to handling these two prob-
lems are addressed in the following sections.

4.3. Conditional Undo

In ESM-CS, log records for operations performed on clients
arrive at the server before the dirty pages containing the effects of
those operations, and thus, when aborting a transaction it is possi-
ble to encounter log records for operations whose effects are not
reflected in the pages at the server. Attempting to undo such an
operation could result in corrupted data. Therefore, we implement
undo as a conditional operation. When scanning the log back-
wards during rollback (or restart Undo) the page associated with
each log record is examined and undo is performed only for
logged operations that had actually been applied.

As described in Section 3.4, undo in ARIES is an uncondi-
tional operation. This is possible in ARIES for two reasons.
First, in ARIES all dirty pages are located in the system’s buffer
pool, so at the rollback-time, all logged operations are reflected in
the pages at the server. Second, history is always repeated during
restart Redo. Therefore, it is assured that all of the operations up
to the time of the crash are reflected in either the pages on stable
storage or in the buffer pool when restart Undo begins.

With conditional undo, CLRs must still be written for all undo
operations, including those that are not actually performed. How-
ever, the pageLRCs of the affected pages must not be updated
unless the undo operation is actually performed. The reasons for
these requirements can be seen in the example shown in Figure 4.

169

In the figure, a transaction logged three updates (LRCs 10,11 and
12) for a page, and the page was sent to the server after the first
update had been applied but before the others had been applied.
When the transaction rolls back, conditional undo results in only
LRC 10 being undone. If only the CLR pertaining to that update
is written, a problem can arise if the server crashes after logging
the CLR but before the page reflecting the undo is written to
stable storage (as shown in the figure). Restart Redo repeats his-
tory, thereby redoing LRCs 10, 11, 12 and the CLR. The Undo
pass encounters the CLR, and since the UndoNxtLSN is NIL, con-
siders the transaction completely undone. This incorrectly leaves
the effects of LRCs 11 and 12 on the page. Therefore, rollback
must log CLRs for the second and third updates as well, even
though the updates were never applied to the page. However, if
the pageLRC is updated when the fake undo is performed for LRC
12, then rollback would not work properly since when it
encounters the log record for LRC 11, it would erroneously infer
that the update had been applied to the page and would attempt to
undo the update, resulting in a corrupted page.

VA

C:Checkpoinl

CLR FOR
LRC 10

Write Write Write
page 1 page 1 page 1

|}+0 e Log tme —)

LR 10 1 12 Roliback 155, Restart o,
400 = ~,

LSN: 200 300 -~ 500 .,/Effactl of %

Page 1 _State Redo TRC 10 [{LRCs 11 & 12 §
Redo LRC 11 [} are left ;
Redo LRC 12 o0 page 1 /

Client | 1RC=5 ! 1Rc=10 !1RC=11} LRC=12 BRAR. TRG.EQQ.F e

Buffer | IRC™S jIRC=10 {IRC=11jIRC=12| iRade IRG.AQQ.E ...

Server | rces LRC=10 1RC=500 | ®® ® | 1re=s00

Buffer

Stable

Storage LRC=S LRC=500

Figure 4: Error Due to Missing CLRs in Conditional Undo

Up to this point, the solution described is to log undo opera-
tions, even if they are not performed, but not to update the LRC
on the page unless an undo is actually performed on the page.
Unfortunately, there is one additional complication that is due to
the use of LRCs rather than LSNs. The problem is that in the case
where no logged updates to a page are truly undone, the value of
the pageLRC will still be less than some of the LRCs in the log
records of the rolled-back transaction. If this pageLRC is simply
incremented by updates in subsequent transactions, there will then
be values of the pagelL.RC that map to multiple log records. This
is a violation of an important invariant and can result in problems
in both Redo and Undo.

The above problem could not occur if LSNs were being used,
since they are guaranteed to be unique and monotonically increas-
ing, making it impossible to generate a duplicate LSN. This prob-
lem is solved by taking advantage of the fact that, while LRCs
must be unique and monotonically increasing for a page, they
need not be consecutive. The solution requires that the server
send the LSN of the current end-of-log (i.e., the LSN of the next
log record to be written) every time it sends a page to a client. It
does this by piggybacking the end-of-log LSN in the message
header. When the client receives a data or index page from the
server, it initializes the pageLRC field of the received page to be
the end-of-log LSN that is sent along with the page. When a
client updates a page, it increments the pagelRC on the page.
When the server updates a page (e.g., for page formatting, com-
pensation for undo, etc.) it places the LSN of the corresponding
log record in the page's pageLRC field. The resulting pageLRCs
are guaranteed to be unique and monotonically increasing (but not
necessarily consecutive) with respect to each page.

4.4. Performing Correct Analysis during Restart

The remaining issue to be addressed is to ensure that the
Analysis pass of system restart produces the correct information
about the state of pages at the time of a crash. There are three
related problems to be solved in this regard:

(1) Maintaining recoveryLSNs for dirty pages.
(2) Determining which pages may require redo.
(3) Determining the point in the log at which to start Redo.

4.4.1. Maintaining the RecoveryLSN for a Page

During the Analysis pass of the restart algorithm, ARIES com-
putes the LSN of the earliest log record that could require redo.
As explained in Section 3.2, this LSN, called the firstLSN, is com-
puted by taking the minimum of the recoveryLSNs of all of the
pages considered dirty at the end of Analysis. In a centralized
system, the recoveryLSN for each page can be kept by storing the
LSN of the update that causes a page to become dirty in the buffer
pool control information for that page. Unfortunately, in the
page-server environment, clients do not have access to the LSN of
an update’s corresponding log record when the update is per-
formed (for the reasons described previously).

This problem is solved by having clients attach an approxi-
mate recoveryLSN to a page when they initially dirty the page. To
implement this, we extend the mechanism described in Section
4.3 so that the server piggybacks the LSN of the current end-of-
log on every reply that it sends to a client. When a client initially
dirties a page, it attaches the most recent end-of-log LSN that it
received from the server, as the recoveryLSN for the page. This
LSN is guaranteed to be less than or equal to the LSN of the log
record that will eventually be generated for the operation that
actually dirties the page. Since the client must communicate with
the server in order to initiate a transaction; and since clients must
send dirty pages to the server on commit; the approximate
recoveryL.SN will be no earlier than the end-of-log LSN at the
time when the transaction which dirties the page was initiated.
Typically, it will be more recent than this. When the client returns
a dirty page to the server, it sends the approximate recoveryLSN
for the page in the message along with the page. If the page is not
already considered dirty at the server, then it is marked dirty and
the approximate recoveryLSN is entered in the buffer pool control
information for the page at the server.

4.4.2. Determining Which Pages May Require Redo

As described above, a fundamental problem with implement-
ing the ARIES algorithm in the page-server environment is the
presence of buffer pools on the clients. One manifestation of this
difference is the problem of determining which pages were dirty
at the time of a crash, and hence may require redo. A page is not
considered dirty by the basic ARIES Analysis algorithm if it
satisfies both the following criteria:

(1) It does not appear in the DPT logged in the most recent
complete checkpoint prior to the crash.
(2) No log records for updates to the page appear in the log

after that checkpoint.

There are two reasons that a page updated at a client might not
appear in the checkpoint’s DPT. The first is simply that the page
was sent back to the server and written to stable storage before the
checkpoint was taken. This causes no problems since the page is
no longer dirty at this point. The second reason is that the page
may have been updated at the client but not sent back to the server
prior to the taking of the checkpoint. (Note that even if the page is
sent to the server after the checkpoint has been taken, it will be
lost during the crash.) In this case, there may have been log

170

records for updates to the page that appeared before the check-
point. These updates will be skipped by the Redo pass because it
will not consider the page to be dirty.

Figure 5 shows an example of this problem. In the figure, a
transaction updated a page (page 1) and sent the corresponding
log record (LRC 10) to the server without sending the page to the
server. After a checkpoint had occurred the client sent the dirtied
page (with LRC = 10) to the server followed by a commit request.
The server wrote a commit record and forced it to disk, thereby
committing the transaction. The server then crashed before page
1 was flushed to disk. In this case, Restart will not redo LRC 10
because according to the ARIES Analysis algorithm, page 1 is not
considered dirty (since it neither appears in the most recent
checkpoint’s DPT, nor is referenced by any log records that
appear after the checkpoint), and therefore, does not require redo.
This would violate the durability of committed updates since the
update of LRC 10 would be lost.

7%
Write Commzt % W
page 1 Transaction ’9/////‘//}//4//
Log (time =} | !
t T
LRC: 10 Checkpoint - Restart
LSN: 200 300
Page 1_State ERROR
Client LRC=5 LRC=10 \ Upi:telgcr i
Buffer [NOT Dirty Dirty S ds Closr_ e
Server LRC=5 LRC=10
Buffer NOT Dirty Dirty
Stable
Storage LRC=5

Figure 5: Lost Update Due to Missed Dirty Pages

Fortunately, the problem of missed dirty pages only has
correctness implications for updates of transactions that commit
before the system crashes. The reason for this is that the updates
of any transactions which had not committed prior to the crash
will be undone during the Undo pass of restart. The conditional
undo of our algorithm (Section 4.3) can tolerate the absence of the
effects of logged updates on a page, providing that all of the miss-
ing updates occur later in the log than any updates that were
applied to the page. That condition holds in this case, since the
problem arises only when the most recent image of the dirty page
was lost during the crash.

Given that the problem of missing dirty pages arises only for
committed transactions, we solve the problem by logging dirty
page information at transaction commit time. When a client sends
a dirty page to the server, this page and its recoveryLSN are added
to a list of dirty pages for the transaction. When a page is flushed
to stable storage, it is removed from the list. We refer to this list as
a Commit Dirty Page List. Before logging a commit record for a
transaction, the server first logs the contents of the list for the
committing transaction. During restart Analysis, when a Commit
Dirty Page List is encountered, each page that appears in the list is
added (along with its recoveryLSN) to the DPT if it does not
already have an entry in the table.

An alternative solution we considered was to log the receipt of
dirty pages at the server (similar to the logging of buffer opera-
tions in [Lind79}), and then during restart Analysis, to add pages
encountered in such log records to the dirty page table. While this
solution is also a correct one, we felt that the additional log over-
head during normal operation could prove to be unacceptable.
We also investigated solutions that involved the clients in the
checkpointing process. These solutions were rejected because
they violate a system design constraint which prohibits the server
from depending on clients for any crucial functions.

4.4.3. Determining Where to Begin the Redo Pass

The final problem to be addressed in this section is that of
determining the proper point in the log at which to begin Redo.
Recall that in ARIES, the LSN at which to begin Redo (called the
firstLSN) is determined to be the minimum of the recoveryLSNs of
all of the pages in the DPT at the end of the Analysis phase. If a
page is not dirty at the time of a checkpoint, then it is known that
all updates logged prior to the checkpoint are reflected in the copy
of the page that is on stable storage, and thus, it is safe 1o begin
Redo for the page at the first log record for the page that is
encountered during Analysis, or anywhere earlier. In the page-
server environment, however, this is not the case. For example, in
Figure 6, a transaction logged two updates to page 1. One log
record arrived at the server before a checkpoint, and one arrived
after the checkpoint, and the dirty page containing the effects of
the updates was not shipped to the server until after the check-
point. Therefore, page 1 does not appear in the DPT recorded in
the checkpoint. If the server crashes at the point shown in the
figure, then during Analysis, when the log record for LRC 11 is
encountered, page 1 will be added to the DPT with the LSN of
that record as its recoveryLSN (LSN = 300). Starting Redo for
page 1 at this point would result in LRC 11 being redone without
LRC 10 having been applied, thus corrupting page 1.

Write Write

page 1 age 1
e =) P\ f P
I v 1

i
4

LRC: 10 Checkpoint 11 t
LSN: 200 P Restar
Page 1 Stata Attempt to
Redo LRC 11
Client [LRC=5 LRC=10 LRC=11 I;:g:;ll
Buffer {NOT Dirty Dirty Dirty ! Dpirty
Server LRC=5 LRC=11 L::g; s
Buffer NOT Dirty Dirty Dirty ERROR
Stable
Storage LRC=5

Figure 6: Inconsistent Redo Due to Missed Log Record

For pages that are dirtied by a transaction that eventually com-
mits, the Commit Dirty Page List (as described in Section 4.4.2)
contains conservative recoveryLSNs, which insure that redo will
begin at a proper point in the log for such pages. Also, for pages
dirtied by a transaction which does not commit, but that appear in
the DPT recorded in the most recent checkpoint, the recoveryLSN
in the DPT entry is valid. Therefore, the problem that must be
addressed is that of pages dirtied by a transaction which does not
commit and that are added to the DPT during Analysis (as shown
in Figure 6). To solve this problem, we augment the Transaction
Table structure (described in Section 3.2) to include a field for the
first LSN generated by each transaction (called the startLSN).
Then, during Analysis, when a page is added to the DPT, it is
marked as a newly added page and tagged with the transaction Id
of the transaction which dirtied it. At the end of Analysis, entries
for pages that were added to the dirty page table due to an update
by an uncommitted transaction have their recoveryLSN replaced
by that transaction’s startLSN. This conservative approximation
results in correct behavior, but it may cause extra I/O during Redo
because pages may have to be read from stable storage to deter-
mine whether or not a logged update must be redone. However,
the number of pages for which this conservative approximation is
required can be kept small by taking (inexpensive) checkpoints.

4.5. Summary of the Algorithm

While the preceding discussion was fairly detailed, the result-
ing algorithm requires only the following changes to ARIES:

171

During Normal Operation:

oThe LSN of the first log record generated by a_transaction is
entered in the Transaction Table as the transaction’s startLSN.

o Each client keeps an estimate of the current end-of-log LSN;
updated upon receipt of every message from the server.

e When a data or index page arrives at the client, the pageLRC of
the page is initialized to be the estimated end-of-log LSN. The
page is not marked dirty as a result of this initialization.

¢ When a client updates a page, it increments the pageLRC on the
page and places the new pageLRC value in the log record. If
this update causes the page to be marked "dirty”, the current
estimated end-of-log LSN is entered as the recoveryLSN in the
page’s buffer control information at the client.

e When the server updates a page, it places the LSN of the log
record it generates as the pageLRC on the page and in the log
record. If this update causes the page to be marked "dirty”,
then the LSN is also entered as the recoveryLSN in the page’s
buffer control information at the server.

e When a client sends a dirty page to the server it includes the
page’s recoveryLSN in the message.

e When the server receives a dirty page from a client, the page is
added to a list of dirty pages for the transaction which dirtied it.
If the transaction commits, this list is logged as the Commit
Dirty Page List for the transaction.

During Restart Analysis:

¢ When a transaction is added to the Transaction Table as the
result of encountering a log record, the LSN of the log record is
entered as the transaction’s startLSN.

e When a Commit Dirty Page List is encountered, the pages that
appear in it are added to the DPT. The recoveryLSN in the
DPT entry for each page is set to the minimum of the
recoveryLSN for the page in the DPT (if the page already has
an entry) and that in the Commit Dirty Page List.

o At the end of Analysis, all pages that were added to the DPT by
Analysis due to log records generated by non-committing tran-
sactions are given a conservative recoveryLSN: namely, the
startLSN of the transaction that dirtied the page.

During Restart Redo:
¢ Redo is unchanged except for the use of LRCs for comparisons
between log records and pages rather than LSNs.

During Undo (for restart or rollback):

¢ To undo a log record, the LRC stored in the record is compared
to the pageLRC of the affected page. If the log record LRC is
greater than or equal to the pagelLRC then an actual undo is
performed, otherwise a "fake" undo is performed.

e Actual undo is performed by logging a CLR for the undonc
operation, performing the undo on the page, and placing the
LSN of the CLR in the pageLRC of the affected page.

» Fake undo is performed simply by logging a CLR for the undone
operation. The page itself is not modified, is not marked as
dirty, and its pagelL.RC is not changed.

5. PERFORMANCE

In this section we describe an initial study of the performance
of logging and recovery in ESM-CS. The performance experi-
ments described in this section were run on two SPARCstation
ELCs, each with 24MB of memory, running version 4.1.1 of
SunOS. The client and server processes were run on separale
machines that were connected by an Ethemet. The log and data-
base were stored on separate disks, and raw disk partitions were
used to avoid operating system buffering. The log page size was
8KB and database page size was 4KB. All times were obtained
using gettimeofday() and getrusage() and are reported in seconds.

5.1. Logging Experiments

In the first set of experiments we investigated the overhead
imposed on transactions by the logging subsystem during normal
operation. Three different databases were used for the experi-
ments and are described in Table 1. All three databases initially
contain 2MB of data on pages that are approximately 50% full,
and thus, each database consists of 4MB of physical space. We
describe the results for two types of transactions applied to the
three databases: Write, which sequentially scans the database and
writes (updates) half of the bytes in each object, updating a total
of 1IMB of data, and Insert, which sequentially scans the database
and inserts new data at the beginning of each object to increase its
size by 50%, resulting in the insertion of 1MB of new data. Insert
does not increase the number of pages in the database since each

page has enough free space to accommodate the inserted data. !

of smaller operations were performed per transaction. For exam-
ple, the 1,000 operations of the Write_Fewlg experiment gen-
erated 2.7MB of log records in 337 log pages, while the 100,000
operations of the Write_ManySm experiment generated 8.9MB of
log records in 1,090 log pages. Comparing the two transaction
types, the logging time overhead of the [nsert tests was less than
that of the Write tests. This difference is because Insert logs only
the inserted data, while Write logs both the before and after
images, resulting in a larger volume of logged data for Write.

Experi- | Gen. Ship Write Total
ment log logpages logpages overhead
name 1ecs act/obsv act/obsv act/obsv

Write

FewLg 048 2.57/245 6.18/0.78 9.2313.71
SomeMd | 092 2.57/2.03 6.18/0.87 9.67/3.82
ManySm | 5.19 8.37/4.24 2036/1.35 | 33.92/10.78
Insert

FewLg 031 110/1.05 3.03/0.26 4.44/1.62
SomeMd | 089 1.57/1.23 3.75/0.44 6.21/2.56

DB Objects Obj. Size Objs Pages in
Name in DB (bytes) per page DB
FewLyg 1,000 2,000 1 1,000
SomeMd 10,000 200 10 1,000
ManySm | 100,000 20 100 1,000

Table 1: Description of Experimental Databases

Experiment Execution Time (sec) Logging
name Logging Logging overhead
on off

Write_Fewl g 1737 1355 3.82 (28%)
Write_SomeMd 18.43 14.46 3.97 (27%)
Write_ManySm 3232 21.36 10.96 (51%)
_ | Insert_FewlLg 14.29 12.49 1.80 (14%)
Insert_SomeMd 15.74 13.05 2.69 (21%)

Table 2: Logging Experiment Results (seconds)

Table 2 shows the results from running the five experiments
with and without logging. These numbers were obtained by run-
ning each transaction five times and taking the average of the last
four runs. They include the time to initiate, execute, and commit
a transaction, including the time to send dirty pages to the server.
In these experiments the server buffer pool was 5 Mbytes, so the
entire database was cached in the server’s buffer pool for the
measured runs. The client buffer pool is also 5 Mbytes so that the
entire database fits in the client buffer pool during a transaction,
however, it is empty at the beginning of each transaction. The
large buffer pools were used to in order to help us isolate the
effects of logging by removing sources of variability (e.g., other
disk I/O) and by making logging a more significant part of the
total work performed in the tests. The write-intensiveness of the
transactions also accentuates the impact of logging. For these rea-
sons, the overhead of logging reflected in Table 2 is much higher
than would be expected in an actual application.

As shown in Table 2, the overhead of logging increased with
the number of operations for which log records were generated
even though the amount of actual data that was updated remained
constant. This increase was due to the size overhead added for
each log record. In ESM-CS, this overhead is 64 bytes — 56
bytes for the record header and 8 bytes for the operation informa-
tion. As a result of this overhead, the number of log pages gen-
erated and written increased considerably when a larger number

! This does not hold for the ManySm database due to the overhead
of object headers, thus we do not show the results from running /nsert on
the ManySm database.

172

Table 3: Logging Cost Breakdown (seconds)

60+ Time Logging Cost
Measurement o Components
30 act =actual -
log writing
obsv=observed W e
404 @ log shipping
§30 £ log generation
g [tansaction
= 204 acl. acL.
k obsv. 0obsv.
104
0

W-Fewlg W-SomeMed W-ManySm I-Fewlg I-SomcMed
Figure 7: Actual and Observed Logging Costs

In order to better understand these results, we analyzed the
costs of the three main components of logging: 1) generating log
records at the client, 2) shipping log pages from the client to the
server, and 3) writing log pages from the server’s buffer to the log
disk. To obtain this breakdown we altered ESM-CS to allow
these three logging components to be selectively turned on and
off. Because the shipping and writing of log pages can occur in
parallel with other client and server activity, these costs were
measured in two ways. The first was to separately measure the
actual time it took to ship or write a certain number of pages. The
second was to selectively turn off the shipping and writing of log
pages and compute the differences in time observed by the client.
These results are shown in Table 3 (and graphically in Figure 7)
as actual and observed respectively. As would be expected, the
highest actual cost was the writing of log records to disk. Ship-
ping the log pages to the server took about 41% of the time it took
to write the pages to disk. The cost of generating the log records
was small in the FewLg cases but became more significant in the
transactions that generated more log records, as the number of log
records generated grew faster than the number of log pages.

From the client’s point of view, the observed cost of shipping
was more significant than the writing cost since most of the wril-
ing was performed in parallel with other client and server activity.

In principle, the shipping of log pages can also be performed in
parallel with other activity, but with the small compute time of
these tests, the network was kept busy by client data page and
lock requests. One exception to this was the Write_ManySm case
which had more significant compute time due to the generation of
log records, and thus obtained some parallelism between log page
shipping and log record generation.

Although comparable published performance results for log-
ging systems are difficult to find, the results from these write-
intensive experiments lead us to conclude that the performance of
our initial logging implementation is reasonable. The results also
indicate two areas for improvement. First, reducing the amount of
logged information can result in significant performance improve-
ments, especially for small updates. The current log record over-
head size of 64 bytes is slightly larger than the typical log record
header size of approximately 50 bytes [GR92]. With sufficient
coding effort, the ESM-CS log record overhead could be reduced
to 56 bytes (but not much smaller). A different approach would
be to reduce the number of log records generated in special cases
like Write_ManySm (where most or all of the objects on a page
are updated) by logging entire pages. Secondly, by performing
shipping and writing of log pages in parallel with other activity,
the observed cost for logging can be reduced considerably. We
plan to investigate ways of further exploiting such parallelism.

5.2. Transaction Rollback and Recovery Performance

We also ran some simple experiments to gain insight into the
performance of rollback and recovery. These experiments used
the databases and Write transactions described in the previous sec-
tion. Table 4 shows the results of these experiments and also
shows the execution times of the transactions with logging tumed
on (from Table 2) for comparison. To measure the cost of tran-
saction rollback, we aborted each transaction after all the dirty
pages and log records had been shipped back to the server. In this
experiment, rollback did not perform any I/O for data pages since
the database was cached in the server buffer, and thus, the transac-
tion rollback results were primarily determined by the time to read
the log, to generate compensation log records, and to write those
log records to disk. The cost of actually performing the undo
operations was only several seconds in the longest case. Compen-
sation log records for write operations only require the logging of
redo information, so CLRs for writes contain only half as much
operation information as normal write log records. However, the
fine granularity of the updates in the Write_ManySm case results
in much of the log space being used for log record headers.
Therefore, while undoing the Write_FewLg case generated about
half as many log pages as the original transaction, undoing the
Write_ManySm case required almost as much log space as the
original transaction. The generation of CLRs also results in
significant log disk arm movement, as these new records must be
appended to the log while rollback is trying to scan the log back-
wards. Disk arm movement is especially expensive in the
Write_ManySm case, due to the amount of compensation log
space generated. A way to reduce disk arm movement is to batch
newly written log pages and write them out in groups.

For restart, Table 4 shows the Analysis and Redo times when
the server was crashed immediately after the transaction commit-
ted. Since the server buffer could hold the entire database, no data
pages had been written to stable storage prior to the crash, and
thus, all data pages had to be reread from disk during recovery.
The restart tests showed a significant increase in the cost of
Analysis and Redo as the volume of log data increased. Note that
no checkpoints were taken during these tests, so Analysis scanned
the entire log. The Analysis times can be improved by taking
more frequent checkpoints. Redo also scanned the log and read
all the data pages from stable storage. The cost of actually

173

performing the redo operations was small. One way to speed up
system restart would be to use Most Recently Used (MRU)
buffering (instead of LRU) for the log pages during Analysis, as
Redo scans the log in the same direction as Analysis. Also, restart
performance could be improved by prefetching log pages and the
pages in the DPT. Still, while improvements can be made, the
transaction rollback and system restart performance of the current
implementation seem to be acceptable.

Experi- Exec. | Rollback | Analysis Redo
ment time time time time
Write_FewlLg 17.37 13.24 2.06 5.65
Write_SomeMd | 18.43 15.86 2.07 6.26
Write_ManySm | 32.32 62.86 8.17 15.32

Table 4: Rollback and Recovery Times (seconds)

6. RELATED WORK

In this section we briefly cover related work, including ARIES
extensions and recovery algorithms for shared-disk and client-
server systems (see [Fran92] for a more detailed discussion).

The recent ARIES/RRH (Restricted Repeating of History)
algorithm [MP91] relaxes the repeating of history during restart
Redo. ARIES/RRH requires the notion of conditional undo during
restart and writes fake CLRs to simplify media recovery. The
differences between ARIES/RRH and ESM-CS conditional undo
result from the fact that ARIES/RRH was designed to enhance the
performance of ARIES during restart, while ESM-CS conditional
undo was developed in order to correctly implement transaction
rollback in a page-server system. Thus, while conditional undo is
an option in ARIES, it is a requirement in ESM-CS.

Extensions to ARIES for the shared disk environment are also
related to our algorithm extensions. [MNP90] addresses the prob-
lems of migrating a single-site database system to the shared disk
environment. The problem relevant to our work is the lack of
monotonically increasing LSNs due to the use of a separate log
for each node in the system. The given solution is to store Update
Sequence Numbers (USNs) on pages, rather than LSNs. USNs
are initialized based on a clock value at the time the page is for-
matted, requiring that the clocks be synchronized to within an
acceptable limit. We used LRCs to solve a similar problem in
ESM-CS, but due to the lack of synchronized clocks and local
logs, used the estimated end-of-log LSN and approximate
recoveryLSNs as described in Section 4. In [MP91] protocols for
transferring a page between nodes without writing the page to disk
are discussed; these protocols are subject to recovery issucs simi-
lar to those that arise in ESM-CS, as a node can have log records
for a page that is not dirty at that node. The solutions use a Global
Lock Manager (GLM) whose entries are extended with LSN
information, such as the recoveryLSNs. There are two disadvan-
tages to implementing a similar solution in a page-server system:
it would negate many of the performance benefits of using
coarse-grained locking (e.g., as in [Josh91]), and it would pre-
clude the use of some non-centralized locking algorithms in the
page-server environment. As was shown in [CFLS91, WR91], the
overhead of centralized locking in the page-server environment
can have a major performance impact.

Several other proposals for recovery in shared-disk systems
have been published. [Lome90] describes an algorithm that
allows multiple logs to be easily merged during redo. The algo-
rithm does not require synchronized clocks, and thus, may prove
useful in a client-server environment in which clients perform
their own logging. As described in Section 2.2, we chose not 1o
implement client logging because of the unreliability of clients

compared to the server and the expense of extra client disks. In
[Rahm91] an algorithm is defined for use with a NO STEAL
buffer management policy. The algorithm differs from the ones
described previously in that it assigns responsibility for recovery
of certain partitions of the database to particular systems. It may
require substantial communication to perform Redo for a failed
node, which can be costly in a client-server system. All of these
algorithms depend on the individual logs of crashed systems being
available to other nodes, which is not possible with local logs in a
client-server system. [Lome90] suggests approaches towards
addressing this problem.

As stated earlier, few details about recovery in page-server and
object-server architectures have been published. This is due in
part to the fact that many of the systems have proprietary imple-
mentations. The 02 system [Deux91] employs an ARIES-based
approach that uses shadowing in order to avoid undo. The
ORION-1SX system [KGBW90] uses a FORCE policy and there-
fore keeps only an undo log. We are unaware of any systems
which have implemented the STEAL/NO FORCE policy for a
page-server (or object-server) system.

7. CONCLUSIONS

In this paper, we have described the problems that arise when
implementing recovery in a page-server environment, and have
presented a recovery method that addresses these problems. The
recovery method was designed with the goal of minimizing the
impact of recovery-related overhead during normal processing,
while still providing reasonable rollback and system restart times.
In particular, the method supports efficient buffer management
policies, allows flexibility in the interaction between clients and
the server, and allows clients to off-load the server by performing
much of the work involved in generating log records. We
described the implementation of the method in ESM-CS, and
presented measurements of the implementation. The measure-
ments obtained so far appear promising. Overhead for many
cases was reasonable and the study raised issues to be addressed
in order to improve the performance of the system, including:
reducing log record size, batching writes to the log disk, prefetch-
ing from the log during recovery, and exploiting additional paral-
lelism between logging operations on the server and other opera-
tions on the client during normal processing. Additional studies of
realistic workloads will be required in order to better understand
the performance impact of the logging and recovery subsystems.
In addition, we plan to extend the system to include media
recovery, restricted repeating of history, and inter-transaction
caching. Finally, this work has raised a number of interesting
possibilities for alternative recovery system designs, and we plan
to investigate the performance tradeoffs among these alternatives.

ACKNOWLEDGEMENTS

We thank C. Mohan for a number of informative discussions
regarding ARIES and our algorithm, and for suggesting improve-
ments that made our implementation much simpler. Dave Haight
did much of the initial work of converting the original EXODUS
storage manager to a client-server system. Nancy Hall and Zack
Xu helped build the new version of the system. Praveen Seshadri
provided helpful comments on an earlier draft of this paper.

REFERENCES

[BHG87] Bernstein, P., Hadzilacos, V., and Goodman, N., Con-
currency Control and Recovery in Database Systems, Addison-
Wesley, 1987.

[CDRS89] Carey, M., DeWitt, D., Richardson, J., Shekita, E.,
Storage Managément for Objects in EXODUS," in Object-
Oriented Concepts, Databases, and Applications, W. Kim and F.
Lochovsky, eds., Addison-Wesley, 1956).

174

[CFLS91% Careg/, M., Franklin, M., Livrﬁ', M, Shekita, E., "Data
radeoifs in Client S

Cachin -Server DB Architectures”, Proc.
ACM S%GMOD Conf., Denver, June 1991.
[Comm90] The Committee for Advanced DBMS Function,

"Third Generation Data Base System Manifesto”, SIGMOD
Record, Vol. 19, No. 3, Sept. 1990.

[DFMV90] DeWit, D., Futtersack, P., Maier, D., Velez, F., "A
Study of Three Alternative Workstation-Server Architectures for
Object-Oriented Database Systems,” Proc. 16th VLDB Conf.,
Brisbane, Aug. 1990.

DST87] Daniels, D., Spector, A., Thompson, D., "Distributed
g%:ing for Transaction Processing”, Proc. ACM SIGMOD Conf.,
San Francisco, May, 1987.

Deux91] Deux, O., et al., "The O2 System", CACM, Vol. 34,
0. 10, Oct. 1991.

[Exod91] EXODUS Project Group, "EXODUS Storage Manager
Architectural Overview", EXODUS Project Document, Univ. of
Wisconsin - Madison, Nov. 1991.

B?ra 92] Franklin, M., Zwilling, M., Tan, C. Cargy,M. DeWitt,
. "Crash Recovery in Client-Server EXODUS", TR #1081,
Comp Sci Dept., Univ. of Wisconsin - Madison, Mar. 1992,

[Gray78] Gray, J., "Notes on Data Base Operating Si/s’tems",
Operating Systems - An advanced Course, R. Bayer, RM. Gra-
ham, G. Seegmuller, eds. Springer-Verlag, N.Y., 1978.

[Gray81] Gray, I, et al., "The Recovery Mana%er of the System
R Database Manager”, ACM Comp. Srv., (13),2, June, 1981.
[GR92] Gray, J., Reuter, A., Transaction Processing: Concepts
and Techniques, Morgan Kaufmann, San Mateo, to appear, 1992,

[HMSCS88] Haskin, R., Malachi, Y., Sawdon, W., Chan, G.,
"Recovery Manafemem in QuickSilver", ACM Trans. on Comp.
Sys., Vol. 6, No. I, Feb., 1988.

[HR83] Haerder, T., Reuter, A., "Principles of Transaction
Oriented Database Recovery - A Taxonomy", Computing Surveys,
Vol. 15, No. 4, Dec., 1983.

[Josh91] Joshi, A, "Adapiive Locking Strategies in a Multi-
Node Data Sharing Environment”, Proc.” [7th VLDB Conf., Bar-
celona, Sept., 1991.

[KGBW90] Kim, W., Garza, J., Ballou, N., Woelk, D., "Archi-
tecture of the ORION Next-Generation Database System", IELE
Trans. on Knowledge and Data Eng., Vol. 2, No. 1, March, 1990.

[Lind79] Lindsay, B. et al, "Notes on Distributed Databases,
IBM Research Report RJ2571, San Jose, July 1979.

[LLOW91] Lamb, C., Landis, G., Orenstein, J. Weinreb, D.,
"The ObjectStore Database System", CACM, (34),10, Oct. 1991.

Bron_le% Lomet, D., "Recovery for Shared Disk Systems Using
ultiple Redo Logs", TR CRL 90/4, DEC CRL, Oct. 1990.

[Moha90] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H.,
Schwarz, P., "ARIES: A Transaction Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging", IBM Research Report RJ6649, IBM ARC, Nov., 1990.

[MN91] Mohan, C., Narang, I, "Recove% and Coherency-
Control Protocols for Fast Intersystem Page Transfer and Fine-
Granularity Locking in a Shared Disks Transaction Environment”,
Proc. 17th VLDB Conf., Barcelona, Sept., 1991.

MNP90] Mohan, C., Narang, I, Palmer, J., "A Case Swudy of
roblems in Migrating to Distributed Computing: Page Recovery

Using Multiple Logs in the Shared Disks Environment”, /BM

Research Report RJ7343, Almaden Research Ctr., March, 1990.

MP91] Mohan, C., Pirahesh, H., "ARIES-RRH: Restricted

epeating of History in the ARIES Recovery Method", Proc. 7th
Int'] Con%erence on Data Engineering, Kobe, April 1991.

[Rahm91] Rahm, E., "Recovery Concepts for Data Sharing Sys-
tems", Proc. 2ist Int'l Symp.” on Fault-Tolerant Computing,
Montreal, June, 1991.

RC89] Richardson, J.,, Carey, M., "Persistence in the E
anguage: Issues and Implementation”, Software Praciice and
Experience, Vol. 19, Dec. 1989,

gSt0n90] Stonebraker, M., "Architecture of Future Data Basc
ystems ', Data Eng., Yol. 13, No. 4., Dec. 1990.

[WR91] Wang, Y., Rowe, L., "Cache Consistency and Con-
currency Congol in a Clieny/Server DBMS Architecture”, Proc.
ACM SIGMOD Conf., Denver, June 1991.

