RANDOMIZED ALGORITHMS FOR OPTIMIZING LARGE JOIN QUERIES *

Yannis E. Joannidis
Younkyung Cha Kang
Computer Sciences Department
University of Wisconsin
Madison, WI 53706

Abstract

Query optimization for relatonal database systems 1s a combina-
torial optimization problem, which makes exhaustive search unac-
ceptable as the query size grows Randomized algorithms, such as
Simulated Annealing (SA) and Iteratuve Improvement (II), are
viable alternatives to exhaustive search We have adapted these
algonthms to the optimization of project-select-jon quenies We
have tested them on large quenes of various types with different
databases, concluding that in most cases SA 1dentifies a lower cost
access plan than I To explamn this result, we have studied the
shape of the cost function over the solution space associated with
such quenes and we have conjectured that 1t resembles a ‘cup’
with relatively small variations at the bottom This has mspired a
new Two Phase Optirmzation algonthm, which 1s a combination
of Simulated Annealing and Iterative Improvement Experimental
results show that Two Phase Optimization outperforms the ongi-
nal algorithms 1n terms of both output quality and running time

1. INTRODUCTION

Query optimization 1s an expensive process, primarily
because the number of alternative access plans for a query grows
at least exponentially with the number of relations participating in
the query The apphcation of several useful heuristics eliminates
some alternatives that are likely to be suboptimal {Seh79], but it
does not change the combinatorial nature of the problem Future
database systems will need to optumze queries of much higher
complexity than current ones This increase in complexity may be
caused by an increase m the number of relauons in a query
[Kns86], by an mncrease 1n the number of queries that are optim-
1zed collecuvely (global optimization) {Gran81, Sell88], or by the
emergence of recursive quenies The heunstically pruming, almost
exhaustive search algorithms used by cument optimizers are
madequate for queries of the expected complexity Thus, the need
to develop new query optimization algorithms becomes apparent

Randomized algonthms have been successfully applied to
various combimatorial optimization problems Two such algo-
nthms, Simulated Annealing [Kirk83] and lterative Improvement
{Naha86], are the best known such algorithms and have been pro-
posed for query optimization of large queries as well Joanmdis
and Wong applied Simulated Annealing to the optimization
of

' Partially supported by NSF under Grant IRI-8703592

Permussion to copy without fee all or part of this matenal 1s granted provided
that the copies are not made or distributed for direct commercial advantage, the
ACM copynight notice and the title of the publication and its date appear, and
notice 18 given that copying 1s by permission of the Assocation for Computing
Machinery To copy otherwise, or to republish, requires a fee and/or specific
permmslon

© 1990 ACM 089791 365 5/90/0005/0312. $150

312

some recursive quenes [[oan87] Swami and Gupta apphed both
Simulated Annealing and Iterauve Improvement on optumzation
of select-project-jom queries [Swam88)

In this paper, we address the problem of using randomzed
opumization algonthms for select-project-jom queries The mayor
contributions of the paper are the following Furst, we compare
the performance of Simulated Annealing and Iterative Improve-
ment by conducting several expenments with a variety of quenes
and databases We show that the former almost always produces
a better output, which 1s different from the results of the study of
Swam and Gupta [Swam88) Second, we map the shape of the
cost function over the space of alternative access plans by a senes
of expeniments on that space We conclude that the shape of the
cost function resembles a ‘cup’, which leads to an explanation of
the behavior of Simulated Annealing and Iterauve Improvement
and the difference with the results of Swami and Gupta Thurd,
mspired by the above analysis, we propose a new query optimiza-
tion algonithm that exhibits superior performance mn terms of both
output quahity and running time

This paper 1s orgamized as follows In Secuon 2, we
describe the specifics of our adaptation of Simulated Annealing
and Iteratve Improvement to query optimization and introduce
the Two Phase Optimization algonthm In section 3, we present
the results of an extensive experimental performance evaluation of
the three algonthms In section 4, we describe an analysis of the
shape of the cost function over the space of alternative access
plans for a query, based on which we explain the behavior of the
algonithms Section 5 descrbes the results of a hmited set of
experimnents with the three algorithms on an enhanced set of query
processing alternatives Finally, Section 6 contains some related
work and Section 7 concludes and discusses future work

2. RANDOMIZED ALGORITHMS FOR QUERY
OPTIMIZATION

Each solution to a combinatorial optimization problem can
be thought of as a state in a space, 1e, a node n the graph, that
includes all such solutions Each state has a cost associated with
it, which 1s given by some problem-specific cost function The
goal of an optimization algorithm 1s to find a state with the glo-
bally mimmum cost. Randomized algorithms usually perform
random walks 1n the state space via a senies of moves The states
that can be reached m one move from a state S are called the
neighbors of S A move 1s called uphdl (downhull) 1if the cost of
the source state 1s Jower (hugher) than the cost of the destination
state A state 15 a local mirumum if n all paths starting at that
state any downhill move comes after at least one uphill move A
state 1s a global mirumum if 1t has the lowest cost among all states
A state 15 on a plateau 1f 1t has no lower cost neighbor and yet 1t
can reach lower cost states without uphill moves Using the above
terminology we describe three randomized optimization algo-
nthms We also discuss how we adapted these algonthms to query
optimization

2 1. Generic Algorithms

In the descriptions below, we make use of a ficutious state
S.. whose cost 1s s Also, cost(S) 1s the cost of state S, and
neighbors(S) 1s the set of neighbors of state S

2.1.1. Iterative Improvement (II)

The genenic Iterative Improvement (II) algorithm 1s shown
m Figure 21 The mner loop of I 1s called a local optinuzation
A local optimization starts at a random state and improves the
solution by repeatedly accepting random downhill moves until 1t
reaches a local mmmmum II repeats these local optimizations
until a stopping_condition 1s met, at which point 1t returns the
local mmmum with the lowest cost found As time approaches
oo, the probability that I will visit the global mimimum approaches
1 [Naha86] However, given a fimte amount of tme, the
algonthm’s performance depends on the charactenstics of the cost
function over the state space and the connectivity of the latter as
determined by the neaghbors of each state

procedure II() {
mmS=38§,,
while not (stopping_condition) do {
S =random state,
while not (local_minimum(8)) do {
§’ = random state 1n neighbors(S),

if cost(S’) < cost(S) then S = §’,
if cost(S) < cost(minS) then minS = S,

return(minS),

}

Figure 2.1 Iterative Improvement

2.1.2. Simulated Annealing (SA)

A local optimization 1n II performs only downhill moves
In contrast, Simulated Annealing (SA) does accept uphill moves
with some probability, trying to avoid bemng caught in a high cost
local mmmum The genenc algonthm' 1s shown n Figure 22
SA was ongnally derived by analogy to the process of annealing
of crystals We use the same termimology for the algorithm
parameters as in the ongmnal proposal (The terminology was
adopted from the analogous physical process) The mnmner loop of
SA 1s called a stage Each stage 1s performed under a fixed value
of a parameter T, called temperature, which controls the probabil-
ity of accepting uphill moves This probability 1s equal to e™¢'7,
where AC 1s the difference between the cost of the new state and
that of the onigmnal one Thus, the probability of accepting an
uphill move 1s a monotonically increasing function of the tem-
perature and a monotonically decreasing function of the cost
difference Each stage ends when the algonithm 1s considered to
have reached an equilibrium Then, the temperature 15 reduced
according to some function and another stage begmns, 1 e , the tem-
perature 1s Jowered as ume passes The algorithm stops when 1t 15
considered to be frozen, 1e, when the temperature 1s equal to
zero It has been shown theoreucally that, under certain

 In Figure 2 2, we keep track of the mimmum cost state found
(mmnS) In the end, 1t 1s mmnS that 1s reported as the answer, whereas a
pure version of SA would report the state to which the algonthm has con-
verged The version 1in Figure 2 2 can only improve on the results of the
pure version and 1s the one that we use 1n this study

313

conditions satisfied by some parameters of the algorithm, as tem-
perature approaches zero, the algorithm converges to the global
mimmum [Rome85] Again, given a fimite amount of time to
reduce the temperature, the algonthm’s performance depends on
the characteristics of the cost function over the state space and the

connectivity of the latter

procedure SA() {

S= SO)

T= TO)

mmS = 8§,

while not (frozen) do {

while not (equiltbrium) do {

§’ = random state 1n neighbors(S),
AT = cost(8") — cost(S),
if(AC<0)thenS =9,
if (AC > 0) then S = S’ with probabihity e~4¢'T,
if cost(S) < cost(mmS) then minS = S,

Figure 2.2: Simulated Annealing

2.1.3. Two Phase Optimization (2PQ)

In this subsection, we mtroduce the Two Phase Optimiza-
tion (2PO) algonthm, which 1s a combmation of II and SA As
the name suggests, 2PO can be divided into two phases In phase
1, IT 1s run for a small period of ume, 1e, a few local optimiza-
tions are performed The output of that phase, which 1s the best
local mmmumum found, 1s the immtal state of the next phase In
phase 2, SA 1s run with a low imtial temperature Intuitively, the
algonthm chooses a local minimum and then searches the area
around 1t, still being able to move mn and out of local mmma, but
practically unable to chmb up very high hills Thus, 2PO 1s
appropniate when such an ability i1s not necessary for proper
optimization, which 1s the case for select-project-jon query
optimization as we demonstrate n the following sections

2.2, Problem Specific Parameters

When genenic randomized optimization algorithms are
apphed to a particular problem, there are several parameters that
need to be specified based on the specific charactenisuics of the
problem For II, SA, and 2PO, they are the state space, the neigh-
bors function, and the cost function

2.2.1. State Space

Each state in query optunization corresponds to an access
plan (strategy) of the query to be optimized Hence, mn the sequel,
we use the terms state and strategy indistingwishably Using the
heunstics of performing selections and projections as early as pos-
sible and excluding unnecessary cartesian products [Seli79], we
can ehminate certain suboptimal strategies to increase the
efficiency of the optimization Thus, we reduce the goal of the
query ophmizer to finding the best jom order, together with the
best join method for each join In this case, each strategy can be
represented as a join processing tree, 1 ¢, a tree whose leaves are
base relations, mnternal nodes are join operators, and edges indi-
cate the flow of data. If all internal nodes of such a tree have at
least one leaf as a child, then the tree 1s called linear Otherwise,
1t 1s called bushy Most join methods distingmsh the two jom

operands, one bemg the outer relation and the other bemg the
inner relation An outer linear join processing tree (left-deep
tree) 15 a linear jomn processmng tree whose mner relations of all
joms are base relations In our study, the strategy space ncludes
all possible join processing trees, 1 ¢ , both linear and bushy ones

2.2.2. Neighbors Function

The neighbors of a state, which 15 a join processing tree
(1e, a strategy), are determmed by a set of transformation rules
Each rule 1s applied to one or two internal nodes of the state,
replaces them by one or two new nodes, and usually leaves the
rest of the nodes of the state unchanged With A, B, and C bemng
arbitrary jomn processing formulas, the set of transformation rules
that we used mn our study 1s given below

(1) Join method choice Avdpeihod, B = A ooy B
(2) Join commutativity AsaB 5 BocA

() Join associativity (Ap<B)od Co Ao (B O)
(4) Left join exchange (Ac<B)o< C 5 (A< C)oa B
(5) Rightjoin exchange Av<a (BraC) - Bog(AsaC)

Rule (1) changes the join method of a join operator, e g,
from nested-loops to merge-scan Together with the algebraic
rules (2) and (3), 1t 1s enough for the space of all mteresting stra-
tegies to be connected Each of the additional exchange rules 1s
equivalent to applymg rules (2), (3), and (2) in that order Therr
advantage 15 that they avoid the use of jom commutativity
Applying jomn commutativity does not change the state cost for
some join methods, e g, merge-scan, which tends to create pla-
teaux m the state space The algonithms do not usually use the
precise defimtion of a local mmmmum to recogmize one but use
approximations, and plateaux can be mistaken for local mmmma.
Having many such false local mimuma 1n the state space degrades
the output quality of randomized algorithms, especially I The
jomn exchange rules reduce the number of plateaux by adding
direct paths that bypass them

Most of the time, applying one of the above rules on some
Jjom nodes of a state does not affect the cost of the remaining
nodes of the state Thus, the cost of a neighbor can be evaluated
from the cost of the onginal state in constant time, taking into
account the local changes performed by the transformations An
unavoidable exception occurs when interesting sort order changes
[Seli79], and the change must be propagated to the ancestors of
the transformed nodes

2.2.3. Cost Function

The cost function that we used m our study only accounts
for the I/O required by each strategy The precise formulas are
not presented here due to lack of space They are based on the
following assumptions (a) no pipelming, 1 e, temporary relations
are created for the intermediate results, (b) mimimal buffering for
all operations, (c) on-the-fly execution of projections, and (d) no
duplicate elimination on projections

2.3. Implementation Specific Parameters

Several parameters of randomized optimization algonithms
are implementation specific These can be tuned to improve per-
formance and/or output quality The following tables summarize
our choices for the parameters of II, SA, and 2PO We arrived at

314

them after some expenmentation with various alternatives, and
also based on past experience with the algornithms 1n query optimi-
zation [Toan87] and other fields [John87]

parameter value
stopping_condition | equal time to SA or 2PO
local_minimum r-local mmmmum

next state random neighbor

Table 2.1: Implementation specific parameters for Il

parameter value

1ntial state Sq random

mtial temperature Ty | 2*cost(Sg)

frozen T <1 and min$S unchanged for 4 stages
equilibrium 16*(number of joins 1n query)

next state random neighbor

temperature reduction | T, =095*T

Table 2.2: Implementation specific parameters for SA

parameter value
stopping_condition (II phase) 10 local optimizations
mtial state Sy (SA phase) minS of II phase
mtial temperature Ty (SA phase) | 0 1*cost(Sp)

Table 2.3 Implementation specific parameters for 2PO

The only parameter that needs some explanation n the above
tables is the defimition of a local mimimum for I Because there 1s
a significant cost mvolved m exhaustively searching all neighbors
of a strategy (let alone in venfymng the truth of the precise
defimtion of a local mmimum), we use an approximation to 1den-
ufy a local mmmmum In particular, a state 1s considered to be a
local mmmimum after # randomly chosen neighbors of 1t are tested
(with repetition), where # 1s the actual number of 1ts neighbors,
none of which has lower cost Note that this does not guarantee
that all neighbors are tested, simnce some may be chosen multiple
times A state that sausfies the above operational defimtion 1s
called an r-local minimum, to distinguish 1t from an actual local
mimmum Clearly, every local mimmum 1s an r-local mimimum,
but the converse is not true Using the identsfication of an r-local
mimimum as the stopping cntenon for a local optimization implies
that some downhill moves may be occasionally missed, and a
state may be falsely considered as a local mmmum We clamm,
however, that the savings 1n execution ime by using this approxi-
mation far outweigh the potential musses of real local mimma
This claim was verified n a limited number of experiments that
we performed

3. PERFORMANCE EVALUATION

In this section, we report on an experimental evaluation of
the performance and behavior of SA, II, and 2PO on query optim-
1zation Farst, we describe the testbed that we used for our expen-
ments, and then we discuss the obtamed results

3.1, Testbed

We experimented only with tree quenies [UIlm82] contamn-
ing only equality joins Due to known dafficulties n ther optimui-
zation {Ono88], specific attention was given to star queries Tree
and star queries were generated randomly The query size ranged
from 5 to 100 joins Each query was tested mn conjunction with
three different types of relation catalogs, 1e, different relation
cardmahties and jon selectiviies We made the usual assump-
tions about uniform distnbution of values and independence of

values 1n the join attributes [Seli79, Whan85] Because of these
assumptions, we used the number of unique values i the join
atmbutes to control join selectivities The catalogs that we used
are summarized i Table 3 1

Catalog Relation Number of umique values
Name Cardmality 1n join column
(tuples) (% relation cardinality)
relcatl 1000 [90, 100}
relca2 | [1000, 100000] [90, 100]
relcat3 | [1000, 100000} [10, 100)

Table 3.1: Relation catalogs

As an example for the meaning of the entries i Table 3 1, mn the
‘relcat3’ catalog, relation cardnalities were randomly chosen
between 1000 and 100000 tuples, and the number of umque
values 1n the join columns was randomly chosen between 10%
and 100% of the cardmality of the corresponding relanon The
catalogs were selected so that we could test quenes with different
degrees of vanance 1n the relation cardinalities and jom selectivi-
ties, and thus, with different cost distnbutions n the state space
This degree of variance increases as we move from ‘relcatl’ to
‘relcat3’

Each relation page contamed 16 tuples All relations had
four attributes and were clustered on one of them There was a
B*-tree or hashing primary mndex on the clustered attribute, or the
relation was physically sorted on 1t These alternatives were
equiprobable The other attmbutes had a secondary index with
probability 1/2, and again there was a random choice between a
B*-tree and hashing secondary index

Finally, the join methods that we considered were ‘nested-
loops’ and ‘merge-scan’

3.2. Experiment Profile

We implemented all algorithms n C, and tested them on a
Sun-4 workstation when no-one else was using the machine We
allowed the query size to grow up to 100 joins Twenty different
queries were tested for each size up to 40 joins, and five were
tested for larger sizes For each query and relation catalog, SA
and 2PO were run five times, except for the cases where each run
of SA would require more than two hours, for which no exper-
ments were conducted with SA Thus, we have no results on SA
for both types of queries with more than 60 joins for catalogs ‘rel-
cat2’ and ‘relcat3’, and for star quenes with more than 40 jomns
for catalog ‘relcat3’ This decision was based on the expectation
that the behavior of SA compared to II and 2PO for the more
expensive queries will be similar to that for the less expensive
ones For each problem instance, Il was also run five times, each
run having as much time as the average ime taken by a SA or
2P0 run on the same query for the same catalog, depending on
whether there were SA runs or not respectively

3.3. Behavior as a Function of Time

As part of the expeniments, we recorded how the mmmmum
cost found changed over time durning the course of the algorithms’
execution The typical behavior 1s shown in Figure 31 The par-
ticular example 1s for a 40-join tree query with the ‘relcatl’ cata-
log The y-axis represents the ratio of the strategy cost over the
minimum strategy cost found for the query among all runs of all
algonthms Clearly, there are significant differences between SA
and I On the one hand, after a few local optimizations, II

reaches a state of cost that 1s close to the mmimum cost found by
a complete run of SA The improvement that this cost represents
over the imitial random state cost 1s several orders of magmitude, 1n
general After that, Il makes only small improvements On the
other hand, m the early stages, SA wanders around states of very
high cost During the later stages, however, it reaches states of
costs similar to those found by II after a few local optimizations,
and most often, 1t eventally finds a better state This observation
mdicates that SA 1s performing useful work only after it reaches
low cost states and the temperature 1s low, since at ugh tempera-
ture, 1t only visits high cost states Ths fact 1s what mouvated the
mtroduction of 2PO The first phase of 2PO produces a low cost
state from which the second phase can start with low temperature
Indeed, we observe that mtially 2PO improves as quickly as II,
but soon 1t surpasses 1t, and eventually converges to 1ts final solu-
tion much more rapidly than SA

2601

220

Scaled
Cost

180

1401

100

0 180 360 540
Time (Seconds)

Figure 3 1: Mimimum cost found over ume

720 900

3.4. Output Quality

In general, we observed no significant quahtative differ-
ence 1n the relative output of the algonthms between tree and star
quenes Because of this and the lack of space, we only present
the results for ‘relcat2’ for tree quenes, whereas we present the

7001
——* SA
580] " I .
— 2P0 s
460
Scaled
Cost
340
220
100

0 20 40 60 80 100
Number of Joins
Figure 3.2: Average scaled cost of the output strategy

for tree queries and the ‘relcat2’ catalog

2 007

T T SA
i801 7 a
—— 2P0)
Scaled! & e
Cost
140
1201
100
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Number of Joms Number of Jomns Number of Joins
(relcatl) (relcat2) (relcat3)
Figure 3.3¢ Average scaled cost of the output strategy of SA, II, and 2PO for star queries
200 7 007 700
— 7" SA
180 eeeee 580 580
— 2PO
160 4 60 460
Scaled . Scaled Scaled
Cost e Cost Cost
140 - 340 3 401
P o /' A’
120 P 220 2 201
/l —/ e K /,._‘_~_-'____.4
ko'/"/.\‘——-/. %22 P N -2
100 100 100 —
0 20 40 60 80 100 0 20 40 60 80 100 0 40 60 80 100
Number of Jomns Number of Joms Number of Jomns
(relcatl) (relcat2) (relcat3)
Figure 34 Best scaled cost of the output strategy of SA, II, and 2PO for star quenies
13200 132001 132001
. SA *
10800
10800 2P0 10800
Running 8400 Runming 84001 Runnmng 8400
Time Time Time
(sec) 6000 /‘ (sec) 6000 (sec) 6000
/
3600 _ 4 3600 3600
e
-
1200 % 1200 1200
— 0 0
00 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Number of Joins

(a) tree quenes and relcatl

Number of Joins

(b) tree quenes and relcat2

Figure 3 5° Average runmng time of SA and 2PO

316

Number of Joins

(c) star quenes and relcatl

complete set of results for star quenes, since they are the hardest
tree queries to optimize {Ono88] The cost of the output strategies
produced by the algonthms for the various relauon catalogs as a
function of query size 1s shown 1n Figures 3 2 for tree queries and
Figure 33 for star quenies Again, the y-axis represents scaled
cost, 1¢, the ratio of the output strategy cost over the mmimum
cost found for the query among all runs of all algonthms For
each size, the average over all queries of that size, of the average
scaled cost over all five runs of each query 1s shown

We discuss how the results change as we move along two
dimensions of mterest query size and vanance 1n catalog parame-
ters (1) Query size For small quenes, with 5 or 10 joins, there 1s
no difference among the three algorithms, regardless of the cata-
log type Almost all runs of the three algonthms find states with
the same cost In general, as query size grows, the output of 2PO
mmproves compared to that of SA, which improves compared to
that of Il At the same time, however, the average output strategy
cost of all algorithms becomes less stable, 1 e, the average scaled
cost moves farther from 1 This means that there are more cases
m which algorithms muss the optimum Of the three algorithms,
however, 2PO 1s the relatively most stable one (u) Variance in
catalog parameters The output difference between the algonthms
increases with higher vanance 1n the relation cardinahties and the
Jom selectivities, 1e, as we move from ‘relcatl’ to ‘relcat3’
Interestingly, there 1s not much difference between ‘relcat2’ and
‘relcat3’ In fact, occasionally, ‘relcat2’ gives rise to higher
differences between 2PO and II/SA than ‘relcat3’ This shows
that variance 1n relation size has a more significant impact on the
output of the two algorithms than variance in selectivity factors !

It 15 also imteresting to compare the best output found
among the five runs of each algorithm for each problem instance
We show the average of that over all star queries of a given size in
Figure 34 Clearly, when the best of five runs for each algorithm
1s considered, 2PO not only outperforms the other algorithms 1n
all cases, but 1t also becomes very stable, 1 e, the best scaled cost
of five runs of 2PO 1s very close, if not equal, to 1 This suggests
that 2PO 1s the algonthm of choice for large queries, particularly
if 1t 15 run a small number of times for stability We should also
observe, however, that the performance of SA becomes very
stable as well To the contrary, II 1s sull not very stable, rarely
outperforming SA The effect of query size and vanance 1n cata-
log parameters on the relative output quality of SA, II, and 2PO 1n
this case 1s simular to that for the average of five runs, and we ela-
borate on it no more

3.5. Query Optimization Time

The average running time of 2PO and SA as a function of
query size for various imteresting cases is shown m Figure 3 5
(Recall that IT was given the same amount of time as SA or 2P0,
depending on whether SA was run or not.) Again due to lack of
space, we only show some of the relevant graphs Those that
correspond to the remaining cases are similar Below, we discuss
the effect of query size, vanance 1n catalog parameters, and query
type on query optumization ume (1) Query size Clearly, 2PO
needs less ime than SA 1n all cases As expected, the absolute
difference n runming time increases with query size To the con-
trary, the relative difference increases with query size for tree
queries (1t reaches a factor of 4 for 100-jon tree queries with

t Note that we used a different scale for the y-axis for ‘relcat!’ than
for the other catalogs

‘relcatl’), but decreases with query size for star quenies The
latter tend to be less regular than tree quenes, and therefore, tend
to need more time in phase 2 of 2PO (u) Variance in catalog
parameters The cost steadily increases from ‘relcat1’ to ‘relcat3’,
as expected Ths can be seen, for example, in Figures 3 5 (a) and
35 (b), which correspond to tree quenes for ‘relcatl’ and ‘rel-
cat2’ () Query type As expected [Ono88], star quenes took
significantly more optimization time than random tree queries In
addition, the improvement of 2PO over SA for star queries was
much smaller than for star queries This 1s shown m 1its more
dramatic instantiaton mm Figures 35 (a) and 35 (c), which
correspond to the two query types for ‘relcatl’

4. STATE SPACE ANALYSIS #

To understand the results of the performance evaluation
and the cause for the behavior of SA, II, and 2PO that was
presented m the previous section, we studied the shape of the cost
function over the state space that the three algorithms had to
search The outcome of this study 1s reported 1n this section

4.1. Shape of Cost Function over the Strategy Space

The size of the strategy space 1s prohibitive of any attempt
of an exhaustive search of 1t Hence, in order to study the cost
function shape, randomization was employed agam, and the fol-
lowng types of expennments were performed

(1) Random generation of 10000 strategies and calculation of
therr costs

(u) ‘‘Random’’ generation of 10000 local mmma and calcula-
tion of thewr costs This was achieved by performing a
local optimization from each strategy generated m expen-
ment (1)

(m) “Random’ walks 1n areas of low cost strategies Our pur-
pose was to get a feeling for the number of good local
minmima that exist and therr muwmal distance For each
query tested, we performed 5 random walks, each one of
which started from a low cost local mimumum Each walk
was a sequence of 2000 smaller parts Each part consisted
of a senies of uphill moves followed by a senes of downhill
moves Each senes of uphill moves ended when the stra-
tegy cost exceeded a prespecified hmt, which ensured that
the search remained 1n areas of low cost strategies (The
hmit was equal to 5 times the average local mmimum cost
found in experiment (1)) Each senies of downhill moves
ended m a local mmmum Thus, a total of 10000 local
minima were visited 1n expeniment (11) also

We tested ten 20-join and ten 40-jomn tree queres, and an
equal number of the same sizes of star queries Each query was
tested with all three relation catalogs For experiments (1) and
(1), we used a better approximation for a local mmmum than the
r-local minimum that we used in the mmplementation of II, to
improve the accuracy of the analysis In particular, we used the
approximation of the p-local minimum, which 1s defined as a

* The expenments reported n this section for the state space
analysis were conducted using Condor [L11z88] Condor 1s 2 fachity for
execuing UNIX jobs on a pool of cooperating workstations Jobs are
queued and executed remolely on workstations at umes when those works-
tations would otherwise be idle Our expenments are very ume-
consuming Without Condor 1t would be very difficult to collect all the
necessary data 1n a reasonable time

317

strategy none of whose neighbors has a lower cost Note that pla-
teaux can still be mistaken as local mimima with this defimtion
Unless otherwise noted, any reference to a local mmmum in thus
subsection refers to a p-local mmmum

The results of experiments (1) and (u) are summarized m
Figure 4 1 for star quenies We do not show the results of the ran-
dom tree queries tested, because they are very similar to those of
Figure 41 Queries 1 to 10 have 20 jomns and queries 11 to 20
have 40 joins There 1s no sigruficance in the order of placement
of the various queries on the x-axis, except that they are grouped
mto those with 20 joms and those with 40 jomns For each query,
we show the scaled cost of the average strategy (experiment (1))
and the scaled cost of the average local mumimum (experiment (it))
that corresponds to the query Agan, the scaled cost 1s the ratio
of a strategy cost over the lowest local mimimum cost found in
experiment (u) for the corresponding query The average local
minima costs are several orders of magnitude lower than the aver-
age state costs As the query size grows, the difference remams
relatively stable for queries with the same catalog, although the
absolute scaled costs imncrease On the other hand, the difference
seems to increase as the catalog changes from ‘relcatl’ to ‘rel-
cat3’ Finally, compared to the average cost of random strategies,
the average cost of local mmmma 1s relatively close to the best
local mmmum cost The specific ratio of average vs best local
mimimum cost 1s affected by the vanance n the catalog parame-
ters and by the particular query itself In some cases, 1t represents
cost differences as high as two orders of magnitude (e g, 40-join
queries with ‘relcat3’) Even m these cases, however, that cost
difference 1s msignificant compared to the difference between the
average strategy cost and the best local mmimum cost, which 1s
higher than five orders of magmitude Thus, we can conclude that
most local minima are not only far better than the average random
state, but there 1s also relatively small variance 1n their costs

During expeniment (u), we also measured the number of
downhill moves taken by the local optimizations Figure 42
shows the average number of downhill moves for each star query
This number of downhill moves 1s higher for star quenes than for
tree queries Moreover, 1t mcreases as the query size grows and as
the catalog changes from ‘relcatl’ to ‘relcat3’, with a maximum

for ‘relcat2’ The general conclusion from the results in Figure
4 2 1s that starting at a random state many downhill moves are
needed to reach a local mmimum

4001
20 jomns<—[—>40 jons
3601
320 relcat2
Number of 2801
Do 2401 relcat3
Moves
2001
1601
1201
refea
801 '..04--9-"'*"*"1'31Cat1
401 .--o++*---‘re1catl

Query Number
Figure 4.2: Number of downhill moves for star queries

In experiment (u1), for the same set of tree and star quenes
as before, we counted the number of local minima visited that had
distinct costs This only provides a lower bound on the number of
distinct local mmmma In addition, for each query, we measured
the average distance between two consecutively visited local
mimima Agamn, since there could be shorter paths between them,
this only provides an upper bound on their distance These results
are summarnzed mn Table 4 1 where we show the range of values
for both measured quantities for all quenies of both query types
and all three catalogs

*oomennn < average strategy 20 joms <—|—S 20 joms ¢— —%4010“5%\
100004 +~— — —+ average local mm 100004 ~° 40 joms 100004 A ."IN .
best local mmn e g
10000 10000 F 100000 A
v at
1000 1000 J 10001 ¢
Scaled Scaled cers " Sealed
Cost 100 20 joins —1—>40 Joms ~oo 100 Cost 100 /./ //
10 10 et 10 —~

0246 8101214161820
Query Number

(relcatl)

0246 8101214161820
Query Number

(relcat2)

0246 8101214161820
Query Number

(relcat3)

Figure 4 1: Cost distribution of random states and local munsma for star queries

318

#distinct local mimima distance
(lower bound) (upper bound)
min 470 6
average 4681 32
max 9903 221

Table 4 1: Local mimima in the low cost area

The general conclusion from the results in Table 4 1 1s that, for all
quertes, any connected area of relatively low cost strategies (due
to the prespecified limit) contains many local muimma Moreover,
these local mmima are relatively close to each other (the size of
the state space 1s several orders of magnitude higher than any dis-
tance reported in Table 4 1)

All the above observations can be summarized as follows

(1) The average local mmmum has relatively low cost com-
pared to the average state (from (1) and (11))

(2) The average distance from a random state to a local
mummum 1s long (from (1))

(3) The number of local mimima 1s large (from (111))

4) Many local mmmma are connected through low cost states
within short distance (from (1))

In addition to the above, the overall behavior of the three algo-
nthms described in Section 3 1s summanzed below

(5) Searching among low cost states that are connected to each
other produces better results than searching mn multple,
(potentially) unconnected, areas of states

The above pomts (1)-(5) lead to the following conjecture
regarding the shape of the cost function over the strategy space

The shape of the cost function resembles a ‘cup’,
with some relatively small variations at the bottom

In other words, there 1s a small area of strategies with low costs,
the cup bottom, surrounded by the remamning strategies with
mcreasingly higher costs There 1s relauvely small variation
among the costs mn the cup bottom, but enough to make explora-
tion of that area worth while The space with which we deal 1s
multidimensional, so 1t 1s hard to visualize For a 1-dumensional
cost function, the corresponding situation 1s shown in Figure 4 3

Cost

State

Figure 4.3 Shape of cost function

Actually, the reported experimental results do not exclude
the case where the shape of the cost function is several cups
whose bottoms are at similar cost levels Additional experiments,
however, indicate that the existence of multiple cups 1s unhkely
In particular, whenever the output strategies of two runs of 2PO
on the same query differed significantly mn cost, we ran SA with
low temperature starting from one of the strategies The low tem-
perature guaranteed that the algonithm did not move mto high cost
states, 1¢, that it remamed m the same cup In all cases tested,
SA did visit the other strategy, which indicates that the inability of
2PO to visit the best of the two strategies 1 both runs was most
likely due to the randomness of the algonithm and not due to 2PO
searching 1n two different cups 1n the two runs

4.2. Explanation of Behavior as a Function of Time

Using the conjecture of the cup shaped cost function, we
are now in a position to explain the typical behavior of SA, II, and
2P0 over ume as shown in Figure 31 SA starts from a random
state, which tends to be at the high cost area While the tempera-
ture remains high, due to the large number of uphill moves from
states 1n the hugh and middle cost area, and the lugh probability of
accepting uphill moves, SA tends to spend much time without
improvement. After the temperature 1s reduced sigmficantly, SA
reaches the cup bottom, which 1t explores extensively, by taking
advantage of 1ts ability to vasit many local mimma by accepting
uphill moves On the other hand, II can reach the cup bottom
quickly by accepting only downhill moves Since most local
mimma are there, II can find a relatively good one within a few
local opimizations This explains why II performs so well m the
beginning stages, while SA performs so poorly As for 2PO, as
expected, 1t reaches the cup bottom very quickly (II phase) and
then improves further by searching 1n that area (SA phase), finish-
g mn less ime than either of the other algonthms

4.3. Explanation of Output Quality

We can also explan why 2PO (and usually SA also) out-
performs II in terms of output quality II visits relatively few
local miuma, because finding one 1s expensive for the following
reasons (a) for each local opumization, I has to generate a

2001
— = SA -
- -—-- H E :
N\lzlmbt:50}60 2P0 : ’
States 1
(1000) 1201 |
||
S

1

|
40121420 101001000 fota

Scaled Cost

Figure 4.4: Number of visits in each cost area

319

random state and evaluate its cost, both of which are expensive
operations, (b) starting at a random state, 1t takes time to find a
local mmmmum, because the distance between the two 1s long
(point (2) and Figure 4 2), and (¢) during a local optimization,
especially when 1n a low cost state, II tries many neighbors before
it finds a downhill move On the other hand, 2PO and SA spend a
reasonable amount of ume at the cup bottom (with low tempera-
ture), and are able to explore it much more thoroughly than II,
thus increasing the probability that they find the global mimimum
The above was also verified by measuring the number of states
visited by each algonithm as a function of the cost of the state
We observed that, although overall II visits more states than SA,
which visits more states than 2PO, the last two visit more states of
low costs than the first A typical situation 1s shown n Figure 4 4
The example 1s for a 40-join tree query with the ‘relcatl’ catalog
Similar behavior was observed for other queries

5. INCLUDING HASH-JOIN, PIPELINING, AND
BUFFERING

As an extension to the study described mn the previous sec-
tions, we have conducted a limited set of experiments with a stra-
tegy space that mncluded ‘hash-join’ as an alternative jom method
(in addition to ‘nested-loops’ and ‘merge-scan’) and with a cost
function that partially removed assumptions (a) and (b) of Section
223, 1e, 1t allowed pipeliming for nested-loops and in several
cases took advantage of arbitrary amounts of available buffer
space We experimented with twenty 20-join and twenty 40-join
tree quenies with all three catalogs The set-up of these experi-
ments was exactly the one described in the previous sections We
studied both the behavior of all three algorithms 1n the new setting
and the characteristics of the shape of the cost function The
results are very simlar to those of Section 3 and 4 2PO always
outperforms II and SA mn terms of both output quality and running
time In addition, the conjecture of the ‘cup’-shaped cost function
remams valid This imphes that our conclusions 1n Section 3 and
4 were not a result of our choice of jomn methods or the specific
restrictions (a) and (b) on the cost function As a point of refer-
ence, m Tables 5 1 and 5 2, we show the average and best scaled
cost of the output strategies of five runs for all three algonthms for
all combinations of query size and catalog As before, the costs
are scaled based on the lowest strategy cost found for each
specific query and catalog, and averaged over all queries with the
same characteristics

relcatl relcat2 relcat3
20 40 20 40 20 40
i 101] 101 | 125 (357 (109 | 142
SA 100 | 100 | 112|136 | 102 ¢ 111
2PO | 100 | 100 | 107 | 129 | 101 | 106
Table 5.1. Average scaled cost of the output strategy
relcatl relcat2 relcat3
20 40 20 40 20 40
jii 100 1100 113 13111105 132
SA 100 100 | 105 | 115|100 | 106
2PO | 100 | 100 { 100 [102 {100 | 100

Table 5.2. Best scaled cost of the output strategy

6. RELATED WORK

Query optimization has been a very active area of research
for relational database systems The reader 1s referred to the

320

survey paper by Jarke and Koch [Jark84] and the book by Kim,
Remer, and Batory [Kim86] Regarding large join queries, their
optimization was specifically addressed by Krishnamurthy et al
[Kris86], who proposed a quadratic algorithm that took advantage
of the form of the jomn cost formula. In thus section, we want to
primanly compare our work with that of Swamu and Gupta
[Swam88], who conducted a performance evaluation of SA and II
that was sumular to our study reported n Section 3 There are
several distinct differences between the two studies First, Swami
and Gupta'’s strategy space consists of left-deep trees only,
whereas we include all strategies Second, they examine only one
jomn algorithm, namely hash-join, whereas we have experimented
with two of them, namely nested-loops and merge-scan Third,
they assumed a mam memory database and therefore used cpu-
tume as the cost of a strategy, whereas we used I/O tume for that
Fourth, they used an approximation for a local mmmum in the
implementation of II that 1s different from the r-local minimum
that we used Fifth, the neighbors of a strategy are determined by
two transformation rules, namely cyclic exchange of the position
of two or three relations m the jomn tree that corresponds to the
strategy, whereas most of our transformation rules are based on
algebraic properties of joins There are also several other imple-
mentation difference between the two studies that seem unneces-
sary to point out here

The results of our study presented in Section 3 contradict
those of Swami and Gupta [Swam88], whose conclusion was that
SA was never supenor to II, independent of the amount of time
that was given to 1t In principle, any combination of the differ-
ences mentioned above could be the source for the difference in
the results Intmtively, however, we believe that the pnimary rea-
son 1s the difference n the choice of neighbors for the strategies in
the strategy space, 1 e, the difference 1n the transformation rules
that were used 1n the two studies Swam and Gupta’s transforma-
tion rules generate neighbors that have large differences m their
cost, which makes the shape of the cost function much less
smooth (not a cup) Therefore, SA does not have the opportunity
to spend much time 1n a low cost area and performs poorly On
the other hand, II can move down to a local mmmum i a few
moves and therefore visits many of them n the same amount of
time Thus, the two algorithms are ordered differently in terms of
output quality in the two studies Although we believe that most
likely the above 1s the main reason for the difference m conclu-
sions, further investigation 1s required to understand the 1issues
precisely

As a closing comment, we should mention that our work
on mapping the shape of the cost function over the strategy space
of a query 1s umque, Swami and Gupta included no such study
their work. Moreover, the cup formation gave the ability to use
2PO as an optimization algorithm, which extubits supenor perfor-
mance On the other hand, Swamu proposed and experimented
with a set of heunistics, which mn general improved the perfor-
mance of both I and SA [Swam89]

7. CONCLUSIONS AND FUTURE WORK

We have adapted the well-known randomized optimization
algonithms of Simulated Annealing and Iterative Improvement to
optimization of large join queries and studied their performance
We observed that II performs better than SA minally, but i1f
enough time 1s given to SA, 1t outperforms I We studied the
shape of the cost function over the state space of a query, and
experimentally verified that 1t resembles a cup with a non-smooth
bottom Based on this observation, we explained the behavior of
the two algonthms Fmally, making use of the cup shape of the

cost function, we proposed the Two Phase Optimization algo-
nthm, whose performance 1s supenor to that of the other algo-
nithms with respect to both output quality and running time

The work reported mn thus paper 1s only the beginning in
understanding how randomuzed optimization algonithms perform
on complex quernes, and also what the shape of the cost function
1s over the space of equivalent strategies for queries There are
several 1ssues that are mteresting and on which we plan to work 1n
the future Furst, we want to mnvestigate the sensivity of this
study’s conclusions to the specific choices that we made for var-
ous parameters In particular, we would hke to complete our
experiments with hash-jom, pipelining, and various degrees of
buffer availability, which all affect the cost formulas for indivi-
dual jomns and the cost relationships between neighbors We
would also like to experiment with non-uniformly distributed
data Second, we want to 1dentify the key properties that cause
the cup formation of the cost function This will be helpful not
only mn understanding the behavior of the algorithms, but also 1n
providing us with cnitenia for the apphcability of Two Phase
Optuimization Such results will be very helpful in extensible
query optumzers [Care86] Third, we want to compare Two
Phase Optimization and the other randormized optimization algo-
nthms with the traditional ones, e g, those of System-R [Sel179]
or Starburst [Lohm88] This should lead into an understanding of
the relative advantages between generation-based and
transformation-based query optimization Finally, we want to
expeniment with other types of relational quenes, 1e, cyclic
queries and queries that mvolve union

8. REFERENCES

[Care86]
M Carey and et al, The Architecture of the EXODUS
Extensible DBMS, m Proc of the 1986 International
Workshop on Object-Oriented Database Systems, edited by
K Dattrich and U Dayal, Pacific Grove, CA, September
1986, pp 52-65

[Gran81]
J Grant and J Minker, Optimization in Deducuve and
Conventional Relational Database Systems, i Advances in
Data Base Theory, Vol I, edited by H Gallaire,] Minker,
and J M Nicolas, Plenum Press, New York, NY, 1981, pp
195-234

[Toan87]
Y E loanmidis and E Wong, Query Opumization by
Simulated Annealing, in Proceedings of the 1987 ACM-
SIGMOD Conference, San Francisco, CA, June 1987, pp
9-22

[Jark84]}
M Jarke and J Koch, Query Optimizaton i Database

Systems, ACM Computing Surveys 16 (June 1984), pp
111-152

[John87]
D S Johnson,C R Aragon, L A McGeoch, and C Sche-
von, Optimization by Simulated Annealing An Experimen-
tal Evaluation (Part I), unpublished manuscript, June 1987

[Kim86}
W Kim, D Remer, and D Batory, Query Processing in

321

Database Systems, Springer Verlag, New York, NY, 1986

{Kirk83]
S Kirkpatnick, C D Gelatt, Jr,and M P Vecchi, Optimi-
zation by Simulated Annealing, Science 220, 4598 (May
1983), pp 671-680

[Kr1s86]
R Krishnamurthy, H Boral, and C Zamolo, Optimization
of Nonrecursive Quernes, m Proceedings of the 12th Inter-
national VLDB Conference, Kyoto, Japan, August 1986,
pp 128-137

[L1tz88]
M J Litzkow, M Livny, and M W Mutka, Condor - A
Hunter of Idle Workstations, in The 8th International
Conference on Distributed Computing Systems, 1988, pp
104-111

[Lohm88]
G M Lohman, Grammar-like Functional Rules for
Representing Query Optimization Alternatives, m Proceed-
ings of the 1988 ACM-SIGMOD Conference, Chicago, IL,
June 1988, pp 18-27

[Naha86]
S Nahar, S Sahmi, and E Shragowitz, Simulated Anneal-
mg and Combinatorial Optimization, in Proceedings of the
23rd Design Automation Conference, 1986, pp 293-299

[Ono88]
K Ono and G M Lohman, Extensible Enumeration of
Feasible Joins for Relational Query Optunization, IBM
Research Report RJ6625, December 1988

[Rome85]
F Romeo and A Sangiovanm-Vincentelll, Probabihstuc
Hill Chimbing Algonithms Properties and Apphcations,
Proceedings of IEEE Conference on VLSI, 1985, pp 393-
417

[Seli79]
P Selinger, M M Astrahan, D D Chamberhn, R A
Lorie, and T G Price, Access Path Selection m a Rela-
tional Database Management System, i Proceedings of the
1979 ACM-SIGMOD Conference, Boston, MA, June 1979,
pp 23-34

{Seli88]
T K Sellis, Muluple Query Optimization, ACM Transac-
tions on Database Systems 13, 1 (March 1988), pp 23-52

[Swam88]
A Swami and A Gupta, Optimization of Large Jomn
Queries, m Proceedings of the 1988 ACM-SIGMOD
Conference, Chicago, IL, June 1988, pp 8-17

[Swam89]
A Swami, Optimization of Large Join Queries Combining
Heuristics and Combimatorial Techmques, in Proceedings
of the 1989 ACM-SIGMOD Conference, Portland, OR,
June 1989, pp 367-376

[Ullm8&2]
J D Ullman, Principles of Database Systems, Computer
Science Press, Rockville, MD, 1982

[Whan85]
K Y Whang, Query Optinuzation in Office-by-Example,
IBM Research report, RC11571, 1985

