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Abstract—Thanks to the convergence of pervasive mobile com-
munications and fast-growing online social networking, mobile so-
cial networking is penetrating into our everyday life. Aiming to de-
velop a systematic understanding of mobile social networks, in this
paper we exploit social ties in human social networks to enhance
cooperative device-to-device (D2D) communications. Specifically,
as handheld devices are carried by human beings, we leverage two
key social phenomena, namely social trust and social reciprocity,
to promote efficient cooperation among devices. With this insight,
we develop a coalitional game-theoretic framework to devise so-
cial-tie-based cooperation strategies for D2D communications. We
also develop a network-assisted relay selection mechanism to im-
plement the coalitional game solution, and show that the mecha-
nism is immune to group deviations, individually rational, truthful,
and computationally efficient. We evaluate the performance of the
mechanism by using real social data traces. Simulation results cor-
roborate that the proposed mechanism can achieve significant per-
formance gain over the case without D2D cooperation.

Index Terms—Cooperative networking, device-to-device (D2D),
game theory, mobile social networking, social reciprocity, social
trust.

I. INTRODUCTION

OBILE data traffic is predicted to grow further by
over 100 times in the next 10 years [2], which poses
a significant challenge for future cellular networks. One
promising approach to increase network capacity is to pro-
mote direct communications between handheld devices. Such
device-to-device (D2D) communications can offer a variety
of advantages over traditional cellular communications, such
as higher user throughput, improved spectral efficiency, and
extended network coverage [3]. For example, a device can
share the video content with neighboring devices who have the
similar watching interest, which can help to reduce the data
traffic from the network operator.
Cooperative communication is an efficient D2D communi-
cation paradigm where devices can serve as relays for each
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Fig. 1. Cooperative D2D communication for cooperative networking. (a) De-
vice R serves as the relay for the D2D communication between devices S and D.
(b) Device R serves as the relay for the cellular communication between device
S and the base station. In both cases, the D2D communication between devices
S and R is part of cooperative networking.

other.! As illustrated in Fig. 1, cooperative D2D communica-
tion can help to: 1) improve the quality of D2D communica-
tion for direct data offloading between devices; and 2) enhance
the performance of cellular communications between the base
station and the devices as well. Hence, cooperative D2D com-
munication can be a critical building block for efficient coop-
erative networking for future wireless networks, wherein indi-
vidual users cooperate to substantially boost the network ca-
pacity and cost-effectively provide rich multimedia services and
applications, such as video conferencing and interactive media,
anytime, anywhere. Nevertheless, a key challenge here is how to
stimulate effective cooperation among devices for cooperative
D2D communications. As different devices are usually owned
by different individuals and they may pursue different interests,
there is no good reason to assume that all devices would coop-
erate with each other.

A. Key Motivation

Since the handheld devices are carried by human beings, a
natural question to ask is, “Is it possible to leverage human so-
cial relationship to enhance D2D communications for cooper-
ative networking?” Indeed, with the explosive growth of on-
line social networks such as Facebook and Twitter, more and
more people are actively involved in online social interactions,
and social relationships among people are hence extensively
broadened and significantly enhanced [4]. This has opened up
a new avenue for cooperative D2D communication system de-
sign—we believe that it has potential to propel significant ad-
vances in mobile social networking.

IThere are many approaches for cooperative communications, and for ease
of exposition, this study assumes cooperative relaying.
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Fig. 2. Social trust model for cooperative D2D communications. In the phys-
ical domain, different devices have different feasible cooperation relationships
subject to physical constraints. In the social domain, different devices have dif-
ferent assistance relationships based on social trust among the devices.

One primary goal of this study is to establish a new D2D co-
operation paradigm by leveraging two key social phenomena:
social trust and social reciprocity. Social trust can be built up
among humans such as kinship, friendship, colleague relation-
ship, and altruistic behaviors are observed in many human ac-
tivities [5]. For example, when a device user is at home or work,
typically family members, neighbors, colleagues, or friends are
nearby. The device user can then exploit the social trust from
these neighboring users to improve the quality of D2D commu-
nication, e.g., by asking the best trustworthy device to serve as
the relay. Another key social phenomenon, social reciprocity, is
also widely observed in human society [6]. Social reciprocity
is a powerful social paradigm to promote cooperation so that
a group of individuals without social trust can exchange mutu-
ally beneficial actions, making all of them better off. For ex-
ample, when a device user does not have any trusted friends in
the vicinity, he (she) may cooperate with the nearby strangers by
providing relay assistance for each other to improve the quality
of D2D communications.

As illustrated in Fig. 2, cooperative D2D communications
based on social trust and social reciprocity can be projected
onto two domains: the physical domain and the social domain.
In the physical domain, different devices have different fea-
sible relay selection relationships subject to the physical con-
straints. In the social domain, different devices have different
assistance relationships based on social trust among the devices.
In this case, each device has two options for relay selection:
1) either seek relay assistance from another feasible device that
has social trust toward him (her); or 2) participate in a group
formed based on social reciprocity by exchanging mutually ben-
eficial relay assistance. The main thrust of this study is de-
voted to tackling two key challenges for the social-trust- and
social-reciprocity-based approach. The first is which option a
device should adopt for relay selection: social trust or social
reciprocity. The second is how to efficiently form groups among
the devices that adopt the social-reciprocity-based relay selec-
tion. We will develop a coalitional game-theoretic framework
to address these challenges.

B. Summary of Main Contributions

The main contributions of this paper are as follows.
* Social-trust- and social-reciprocity-based cooperative
D2D communications: We propose a novel social-trust-
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and social-reciprocity-based framework to promote ef-
ficient cooperation among devices for cooperative D2D
communications. By projecting D2D communications
in a mobile social network onto both physical and so-
cial domains, we introduce the physical-social graphs to
model the interplay therein while capturing the physical
constraints for feasible D2D cooperation and the social
relationships among devices for effective cooperation.

* Coalitional game solutions: We formulate the relay selec-
tion problem for social-trust- and social-reciprocity-based
cooperative D2D communications as a coalitional game.
We show that the coalitional game admits the top-coalition
property based on which we devise a core relay selection
algorithm for computing the core solution to the game.

* Network-assisted relay selection mechanism: We develop
a network-assisted mechanism to implement the coali-
tional game-based solution. We show that the mechanism
is immune to group deviations, individually rational,
truthful, and computationally efficient. We further eval-
uate the performance of the mechanism by the real social
data trace. Simulation results show that the proposed
mechanism can achieve up to 122% performance gain
over the case without D2D cooperation.

A primary goal of this paper is to build a theoretically sound
and practically relevant framework to understand social-trust-
and social-reciprocity-based cooperative D2D communications.
This framework highlights the interplay between potential phys-
ical network performance gain through efficient D2D coopera-
tion and the exploitation of social relationships among device
users to stimulate effective cooperation. Besides the coopera-
tive D2D communication scenario where devices serve as relays
for each other, the proposed social-trust- and social-reciprocity-
based framework can also be applied to many other D2D co-
operation scenarios, such as cooperative multiple-input-mul-
tiple-output (MIMO) communications and mobile cloud com-
puting. We believe that these initial steps presented here open a
new avenue for mobile social networking and have great poten-
tial to enhance network capacity in future wireless networks.

The rest of this paper is organized as follows. We first
discuss the related work and introduce the system model
in Sections II and III, respectively. We then study coopera-
tive D2D communications based on social trust and social
reciprocity and develop the network-assisted relay selection
mechanism in Sections IV and V, respectively. We evaluate
the performance of the proposed mechanism by simulations in
Section VI, and finally conclude in Section VII.

II. RELATED WORK

D2D communications have recently drawn great atten-
tion from the wireless research community. Most existing
literature has focused on the interference coordination issue
between D2D communications and cellular communications.
Authors in [7] and [8] studied the power control problem for
restricting co-channel interference from D2D communications
to cellular communications. Janis et al. in [9] utilized MIMO
transmission schemes to mitigate interference from cellular
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downlink to D2D receivers sharing the same spectrum re-
sources. Zulhasnine et al. in [10] proposed to lessen interference
to cellular communications by properly pairing the cellular
and D2D users. Currently, more and more research efforts are
devoted to cooperative D2D communications, which can sig-
nificantly enhance the performance of D2D communications.
Raghothaman et al. in [11] proposed a system architecture
that enables D2D communications with cooperative mobile
relays. Ma et al. in [12] developed a distributed relay selection
algorithm for cooperative D2D communications. Lee ef al. in
[13] studied the multihop decode-and-forward relaying assisted
cooperative D2D communications. The common assumption
of these previous studies for cooperative D2D communications
is that all the device users are cooperative and they are willing
to help any other users. However, since each handheld device
has limited battery and providing relaying assistance for coop-
erative D2D communications would incur significant energy
consumption, there is no good reason to assume that all device
users would cooperate with each other.

Much effort has been made in the literature to stimulate,
via incentive mechanisms, cooperation in wireless networks.
Payment-based mechanisms have been widely considered to
incentivize cooperation for wireless ad hoc networks [14]-[16].
Another widely adopted approach for cooperation stimulation
is reputation-based mechanisms, where a centralized au-
thority or the whole user population collectively keeps records
of the cooperative behaviors and punishes noncooperating
users [17]-[19]. However, it is yet clear whether these incentive
mechanisms are feasible in practice since they require central
authorities to monitor and regulate user behaviors and resolves
disputes, which require extensive signaling overhead between
users and central authorities, and can easily diminish the ca-
pacity gain of cooperative D2D communication. Moreover,
incentive mechanisms typically assume that all users are fully
rational and they act in the selfish manner. Such an assump-
tion is not appropriate for D2D communications as handheld
devices are carried by human beings and people typically act
with bounded rationality and involve social interactions [20].

The social aspect is now becoming a new and important di-
mension for communication system design [4]. With the de-
velopment of online and mobile social networks such as Face-
book and Twitter, more and more real-world data and traces of
human social interactions are being generated. This enables re-
searchers and engineers to observe, analyze, and incorporate the
social factors into engineering system design in a way never
previously possible [21]. Authors in [22] and [23] exploited so-
cial structures such as social community to design efficient data
forwarding and routing algorithms in delay-tolerant networks .
Hui et al. in [24] used the social betweenness and centrality as
the forwarding metric. Costa et al. in [25] proposed predictions
based on metrics of social interaction to identify the best infor-
mation carriers for content publish-subscribe. Authors in [26]
and [27] utilized the social influence phenomenon to devise effi-
cient data dissemination mechanisms for mobile networks. The
common assumption among these works, however, is that all
users are always willing to help others, e.g., for data forwarding
and relaying. In this paper, we propose a novel framework to
stimulate cooperation among device users while also taking the
social aspect into account.
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III. SYSTEM MODEL

In this section, we present the system model of coopera-
tive D2D communications based on social trust and social
reciprocity—a new mobile social networking paradigm. As
illustrated in Fig. 2, cooperative D2D communications can
be projected onto two domains: the physical domain and the
social domain. In the physical domain, different devices have
different feasible cooperation relationships for cooperative
D2D communications subject to the physical constraints. In the
social domain, different device users have different assistance
relationships based on social relationships among them. We
next discuss both physical and social domains in detail.

A. Physical (Communication) Graph Model

We consider a set of nodes N' = {1,2,..., N} where N is
the total number of nodes. Each node n € A is a wireless de-
vice that would like to conduct D2D communication to transmit
data packets to its corresponding destination d,,. Notice that a
destination d,, may also be a transmit node in the set A/ of an-
other D2D communication link, and hence a D2D traffic flow
may traverse one hop or multiple hops among the devices. Sim-
ilar to many previous studies in D2D communications [7]-[13],
to enable tractable analysis, we consider a scenario where the
locations of the nodes remain unchanged during a D2D com-
munication scheduling period (e.g., several hundred millisec-
onds), while they may change across different periods due to
users' mobility.2

The D2D communication is underlaid beneath a cellular
infrastructure wherein there exists a base station controlling the
uplink/downlink communications of the cellular devices. To
avoid generating severe interference to the incumbent cellular
devices, eachnode n € A will first send a D2D communication
establishment request message to the base station. The base
station then computes the allowable transmission power level
Py for the D2D communication of node n based on the system
parameters and the protection requirement of the neighboring
cellular devices. For example, the proper transmission power
pn of the D2D communication can be computed according to
the power control algorithms proposed in [7] and [8]. More-
over, with the assistance by the base station, each node can
detect a set of neighboring nodes, which can be potential relay
candidates for cooperative D2D communications [3].

We consider a time-division multiple access (TDMA) mech-
anism in which the transmission time is slotted and one node
n € N is scheduled to carry out its D2D communication in a
time-slot.3 At the allotted time-slot, node . can choose either to
transmit to the destination node d,, directly or to use coopera-
tive communication by asking another node m in its vicinity to
serve as a relay.

Due to the physical constraints such as signal attenuation,
only a subset of nodes that are close enough (e.g., with a de-

2This assumption is valid for our case since the proposed mechanism in
Section V has a very low computational complexity and, hence, the D2D
communication scheduling can be carried out in a smaller time scale than
that of users' mobility.

30ur methods are also applicable to other multiple access schemes.
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tectable signal strength) can be feasible relay candidates for the
node n. To take such physical constraints into account, we intro-
duce the physical graph* G© £ {N, ¥} where the set of nodes
N is the vertex set and EY £ {(n,m) : eF, =1,Yn,m € N}
is the edge set where ef,, = 1 if and only if node m is a fea-
sible relay for node 7. An illustration of the physical graph is
given in Fig. 2. We also denote the set of nodes that can serve
as a feasible relay of node 7 as NY = {m € N : ek, = 1}.
A recent work in [28] shows that it is sufficient for a source
node to choose the best relay node among multiple candidates to
achieve full diversity. For ease of exposition, we hence consider
the single relay selection scheme such that each node n selects
at most one neighboring node m € N'F as the relay. Moreover,
since multiple relay selection scheme typically requires the syn-
chronization among the relays, the single relay selection scheme
hence demands less signaling overhead and is easier to be im-
plemented in practice.

For ease of exposition, we consider the full duplex decode-
and-forward (DF) relaying scheme [29] for the cooperative D2D
communication. Let r, € AN} denote the relay node chosen
by node n € N for cooperative communication. The data rate

achieved by node n is then given as [29]
w
Zay, =+ win{log(L + pinr,,), 108(1 + find,, + fira,)}

where W denotes the channel bandwidth and p;; denotes the
signal-to-noise ratio (SNR) at device 7 when device i transmits
asignal to device j. As an alternative, the node 2 can also choose
to transmit directly without any relay assistance and achieve a
data rate of

. W
2" = 7 log(1+ pina, ).

For simplicity, we define the data rate function of node n as
R, : N¥ U {n} — R, which is given by

zZbY o ifr, #£n
Rnra) = {ZD'irn i = 1. b

We will use the terminology that node n chooses itself as the
relay for the situation in which node 7 transmits directly to its
destination d,,.

B. Social Graph Model

We next introduce the social trust model for cooperative D2D
communications. The underlying rationale of using social trust
is that the handheld devices are carried by human beings and
the knowledge of human social ties can be utilized to achieve
effective and trustworthy relay assistance for cooperative D2D
communications.

More specifically, we introduce the social graph G5 =
{N, €3} to model the social trust among the nodes. Here, the
vertex set is the same as the node set A/, and the edge set is given
as E5 = {(n,m) : 3, = 1,¥n,m € N}, where €5, = 1if
and only if nodes n and m have social trust toward each other,
which can be kinship, friendship, or colleague relationship

4The graphs (e.g., physical graph and social graph) in this paper can be
directed.
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between two nodes. We denote the set of nodes that have social
trust toward node n as N> = {m : €3, = 1,¥m € N}, and
we assume that the nodes in V> are willing to serve as the relay
of node n for cooperative communication.

One critical task here is to identify the social relationships
among device users. To this end, we can adopt a network-as-
sisted approach such that two device users carry out the identi-
fication process through the cellular communications. Two de-
vice users can detect their social relationship by carrying out
the “matching” process to identify the common social features
among them. For example, two users can match their mobile
phones' contact books. If they have the phone numbers of each
other or many of their phone numbers are the same, then it is
very likely that they know each other. As another example, two
device users can match their home and working addresses and
identify whether they are neighbors or colleagues. Furthermore,
two device users can detect the social relationship among them
by accessing to the online social networks such as Facebook
and Twitter. For example, Facebook has exposed access to their
social graph including the objects of friends, events, groups,
profile information, and photographs. Any authenticated Face-
book user can have access to these information through the
OpenGraph API [30]. To preserve the privacy of the device
users, the private set intersection technique in [31]-[35] can be
adopted to design a privacy-preserving social relationship iden-
tification mechanism such that the intersection of private so-
cial information of two device users can be obtained without
leaking any additional private information. Interested readers
can refer to [31]-[35] for the detailed discussion of the privacy-
preserving social relationship identification mechanism design.
To further protect device user's personal information such as
identity and visited locations, we can adopt the privacy-pre-
serving scheme in [36].

Based on the physical graph G¥ and social graph G° above,
each node n € N can classify the set of feasible relay nodes in
NF into two types: nodes with social trust and nodes without
social trust. A node n then has two options for relay selection.
On the one hand, the node 2 can choose to seek relay assistance
from another feasible device that has social trust toward him
(her). On the other hand, the node n can choose to participate
in a group formed based on social reciprocity by exchanging
mutually beneficial relay assistance. In the following, we will
study: 1) how to choose between social-trust- and social-reci-
procity-based relay selections for each node; and 2) how to effi-
ciently form reciprocal groups among the nodes without social
trust.

IV. SOCIAL-TRUST- AND SOCIAL-RECIPROCITY-BASED
COOPERATIVE D2D COMMUNICATIONS

In this section, we study the cooperative D2D communica-
tions based on social trust and social reciprocity. As mentioned,
eachnode n € A has two options for relay selection: social trust
versus social reciprocity. We next address the issues of choosing
between social-trust- and social-reciprocity-based relay selec-
tions for each node and the reciprocal group forming among the
nodes without social trust.
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Fig. 3. Physical-social graph based on the physical graph and social graph in
Fig. 2. For example, there exists an edge between nodes 1 and 3 in the physical-
social graph since they can serve as the feasible relay for each other and also
have social trust toward each other.

7

A. Social-Trust-Based Relay Selection

We first consider social-trust-based relay selection for D2D
cooperation. The key motivation for using social trust is to uti-
lize the knowledge of human social ties to achieve effective and
trustworthy relay assistance among the devices for cooperative
D2D communications. For example, when a device user is at
home or a working place, he (she) typically has family mem-
bers, neighbors, colleagues, or friends in the vicinity. The device
user can then exploit the social trust from neighboring users to
improve the quality of D2D communication by asking the best
trustworthy device to serve as the relay.

To take both the physical and social constraints into account,
we define the physical-social graph G*S £ {N, EF5} where the
vertex set is the node set A and the edge set EF5 = {(n,m) :
eP8 2 P 8 = 1,¥n,m € N} where e = 1if
and only if node m is a feasible relay (i.e., ef,, = 1) and has
social trust toward node n (i.e., €,, = 1). An illustration of
the physical-social graph is given in Fig. 3. We also denote the
set of nodes that have social trust toward node n and are also
feasible relay candidates for node n as NF® = {m : ef5 =
1,¥Ym € N}

For cooperative D2D communications based on so-
cial trust, each node n € A can choose the best relay

5 = argmax, . ANPSULn} Bn(rn) to maximize its data rate

S =
subject to both physical and social constraints.

B. Social-Reciprocity-Based Relay Selection

Next, we study the social-reciprocity-based relay selection.
Different from D2D cooperation based on social trust that re-
quires strong social ties among device users, social reciprocity
is a powerful mechanism for promoting mutual beneficial co-
operation among the nodes in the absence of social trust. For
example, when a device user does not have any friends in the
vicinity, he (she) may cooperate with the nearby strangers by
providing relay assistance for each other to improve the quality
of D2D communications. In general, there are two types of so-
cial reciprocity: direct reciprocity and indirect reciprocity’ (see
Fig. 4 for an illustration). Direct reciprocity is captured in the
principle of “you help me, and I will help you.” That is, two
individuals exchange altruistic actions so that both obtain a net
benefit. Indirect reciprocity is essentially the concept of “I help
you, and someone else will help me.” That is, a group of in-
dividuals exchange altruistic actions so that all of them can be
better off.

SReciprocity in this study refers to social reciprocity.
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Direct Reciprocity: Indirect Reciprocity:

Node 1 helps Node 2 &W 460,

Node 2 helps Node 1
Node 3 helps Node 1

Fig. 4. Direct and indirect reciprocity.

Physical-Coalitional Graph

Fig. 5. Physical-coalitional graph based on the physical graph and social graph
in Fig. 6. For example, there exists an edge between nodes 1 and 2 in the phys-
ical-coalitional graph since they can serve as the feasible relay for each other
and have no social trust toward each other.

Note that, in this paper, we consider that the objective of each
device user is to increase the throughput of its D2D communi-
cation, and hence a user is willing to participate in a reciprocal
group if its communication performance can be improved. Our
result can be extended to the case when the cost (e.g., energy
consumption) of serving as a relay for other users is taken into
account. In this case, each user will make the decision of par-
ticipating a reciprocal group based on its net utility (i.e., the
achieved throughput of getting relaying assistance minus the
cost of serving as a relay for others). If the cost of a user is too
high, then the user would not join any reciprocal relay groups
and choose the direct communication without any relay.

To better describe the possible cooperation relationships
among the set of nodes without social trust, we intro-
duce the physical-coalitional graph G¥¢ = {N,EFC}.
Here, the vertex set is the node set A and the edge set
EPC = {(n,m) : eEC £ P (1 —¢5 ) =1,Vn,m € N}

nm nm

where e£C = 1 if and only if node m is a feasible relay
(ie., €}, = 1) and has no social trust toward node 7 (i.e.,
e2 = 0). An illustration of physical-coalitional graph is

given in Fig. 5. We also denote the set of nodes that have no
social trust toward user m but are feasible relay candidates
of node n as NP £ {m : ¢£C = 1,¥m € N}. For so-
cial-reciprocity-based relay selection, a key challenge is how
to efficiently divide the nodes into multiple groups such that
the nodes can significantly improve their data rates by the
reciprocal cooperation within the groups. We will propose a
coalitional game framework to address this challenge.

1) Introduction to Coalitional Game: For the sake of com-
pleteness, we first give a brief introduction to the coalitional
game [37]. Formally, a coalitional game consists of a tuple {2 =
(N, Xn, V, (>0 )nen ), where we have the following.

« N is a finite set of players.
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* X, is the space of feasible cooperation strategies of all
players.

* V is a characteristic function that maps from every
nonempty subset of players S € A (a coalition) to a
subset of feasible cooperation strategies V(S) C Xyr.
This represents the possible cooperation strategies among
the players in the coalition & given that other players out
of the coalition § do not participate in any cooperation.

* >, is a preference order (reflexive, complete, and transi-
tive binary relation) on X,/ for each player n € A/, This
captures the idea that different players may have different
preferences over different cooperation strategies.

In the same spirit as Nash equilibrium in a noncooperative game,
the “core” plays a critical role in the coalitional game.

Definition 1: The core is the set of 5 € V(A') for which there
does not exist a coalition S and y € V(S) such thaty >,, z for
alln € S.

Intuitively, the core is a set of cooperation strategies such
that no coalition can deviate and improve for all its members
by cooperation within the coalition [37].

2) Coalitional Game Formulation: We then cast the social-
reciprocity-based relay selection problem as a coalitional game
Q= (N, X\, V, (-n)nen) as follows.

+ The set of players A/ is the set of nodes.

« The set of cooperation strategies Xar = {(*n)nen : Tn €
NPCU{n},Vn € N'}, which describes the set of possible
relay selections for all nodes based on the physical-coali-
tional graph GF°.

 The characteristic function V(S) = {(rp)nen € Xn :
{rntnes = {n}nes and r,,, = m,Ym € N\S} for
each coalition & C N. Here, the condition “{r, }ncs =
{n}ncs” represents the possible relay assistance exchange
among the nodes in the coalition §. The condition “r,,, =
m,¥m € M\S” states that the nodes out of the coalition
S will not participate in any cooperation and choose to
transmit directly. For example, in Fig. 4, the coalition S
= {1, 2} in the direct reciprocity case adopts the coop-
eration strategy r; = 2 and r» = 1 and the coalition &
= {1,2, 3} in the indirect reciprocity case adopts the co-
operation strategy 71 = 3,72 = 1, and r3 = 2.

» The preference order >, is defined as (rm)men >n
(rl,)men if and only if r, >, ). That is, node n
prefers the relay selection (7, )men to another selection
(r! Ymen if and only if its assigned relay r,, in the former
selection (r.;)mens is better than the assigned relay r/,
in the latter selection (r],)mens. In the following, we
define that r,, =, r/, when R,(r,) > R,(r}), and if
R, (r,) = R,(r],), then ties are broken arbitrarily.

The core of this coalitional game is a set of () ),enr € V(N)
for which there does not exist a coalition S and (r,)nen €
V(S) such that (7, )nen >n (75 )nen foralln € S. In other
words, no coalition of nodes can deviate and improve their relay
selection by cooperation in the coalition. We will refer the solu-
tion (r})nens as the core relay selection in the sequel.

3) Core Relay Selection: We now study the existence of the
core relay selection. To proceed, we first introduce the following
key concepts of coalitional game.

Definition 2: Given a coalitional game 2 = (N, Xn, V,
(0 )nen), we call a coalitional game ® = (M, Xpy,V,
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(>>m)ment) a coalitional subgame of the game €2 if and only
it M C N and M # &.

In other words, a coalitional subgame @ is a coalitional game
defined on a subset of the players of the original coalitional
game (2.

Definition  3: Given a  coalitional  subgame
® = (M, X, V, (-m)mem), a nonempty subset S < M
is a top coalition of the game ® if and only if there exists a
cooperation strategy (7, )mem € V(S) such that for any
K C M and any cooperation strategy (7m)mem € V(K)
satisfying 7, # r,, for any m € 8, we have 7,,, >, 7y, for
any m € §.

That is, by adopting the cooperation strategy (7, )mes.,
the coalition & is a group that is mutually best for all its
members [38].

Definition 4: A coalitional game 2 = (N, Xy,V,
(>n)nenr) satisfies the top-coalition property if and only if
there exists a top-coalition for any its coalitional subgame &.

We then show the proposed coalitional game for social-reci-
procity-based relay selection satisfies the top-coalition property.
For simplicity, we denote N;¥¢ £ APCU{n}. For a coalitional
subgame ® = (M, Xrq, V, (=m)merm), we denote the map-
ping y(n, M) as the most preferable relay of node n € M inthe
set ofnodes MNNY €, ie., v(n, M) >, i forany i # v(n, M)
and i € MNNY . Based on the mapping vy, we can define the
concept of reciprocal relay selection cycle as follows.

Definition 5 Given a  coalitional  subgame
® = (M, X, V, (m)mem ), a node sequence (nq,...,ng)
is called a reciprocal relay selection cycle of length L if
and only if y{(n;, M) = nygq forl = 1,...,L — 1 and
y(np, M) = nq.

Notice that when L = 1 (i.e., ¥(n, M) = n), the most prefer-
able choice of node n is to choose to transmit directly. When
L = 2, this corresponds to the direct reciprocity case; when
L > 3, this corresponds to the indirect reciprocity case. Since
the number of nodes (i.e., | M|) is finite, there must exist at least
one reciprocal relay selection cycle for the coalitional subgame
®. This leads to the following result.

Lemma 1: Given a coalitional subgame @, there exists at least
one reciprocal relay selection cycle. Any reciprocal relay selec-
tion cycle is a top-coalition of the coalitional subgame &.

Proof: For the first part of the lemma, we can choose any
node n € M as the starting node n;. Then, we can find the
second node ny = y(ni, M) and continue in this manner. If
no cycle exists, the node sequence (11, 7n2,....) can grow in-
finitely long, and any two nodes in the sequence are different.
This obviously contradicts with the fact that the set of nodes M
is finite.

For the second part of the lemma, given a reciprocal relay
selection cycle (ny,...,n5), we denote the set of nodes in the
cycle as C. We can then adopt the cooperation strategy for the
nodes in the cycle as 7, = ny4q forl = 1,...,L = 1 and
7n, = n1. According to Definition 5, each node n & C is allo-
cated with its most preferable relay in the coalitional subgame
. Thus, for any other relays r,, # 7,, we have that 7,, >, r,
forany n € C. ]

According to Lemma 1, we have the following result.

Lemma 2: The coalitional game §} for cooperative D2D com-
munications satisfies the top-coalition property.
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Algorithm 1: Core Relay Selection Algorithm

1: initialization:

2 set initial set of nodes My = N
3: set iteration index ¢ = 1.

4: end initialization

5: loop until M, =

6: find all the rec1procal relay selection cycles
Ci,....Ch,
7:  remove the set of nodes in the cycles from the current

set of nodes My, i.e., M1 = M;\ UZ-Z;I Ct.
8: sett =1+ 1.

9: end loop

Similar to the top trading cycle scheme for the housing
market [39], based on the top-coalition property [38], we can
then construct the core relay selection in an iterative manner.
Let M; denote the set of nodes of the coalitional subgame
®, = (Mg, Xum,, V, (-m)menm,) in the tth iteration. Based
on the mapping v and the given set of nodes M, we can then
find all the reciprocal relay selection cycles as C7,...,C%,
where each cycle C; = (ni,...,nf., ) is a node sequence and
Z denotes the number of cycles at the tth iteration. Abusing
notation, we will also use ¢ to denote the set of nodes in the
cycle Ct. We can then construct the core relay selection as
follows. For the first iteration ¢ = 1, we set M; = A and find
the reciprocal relay selection cycles as Ci,. .. ,C%l based on
the set of nodes M. For the second iteration ¢ = 2, we can
then set that My = M;\ U2, C} (i.e., remove the nodes in
the cycles in the previous iteration) and find the new reciprocal
relay selection cycles as C%,. .., C%z based on the set of nodes
M. This procedure repeats until the set of nodes M; = &
(i.e., no operation can be further carried out). We summarize
the above procedure for constructing the core relay selection in
Algorithm 1.

Suppose that the algorithm takes 7" iterations to converge. We
can obtain the set of reciprocal relay selection cycles in all T’
iterations as {C! : Vi = 1,...,Z; and t = 1,...,T}. Since
the mapping 'y(n M ) is unique for each node n € M;, we
must have that U~ 1 """ Cf = N (i.e., all the nodes are in the

cycles) and C} ﬁC§ = @ foranyi # jand t,¥' = 1,...,7T
(i.e., there do not exist any intersecting cycles). For each cycle
Ct=(nt,... ,n‘m) we can then define the relay selection as
r,—anforanyl—lQ lCt|—1andrtt . We
let|
show that (r})ncns is a core relay selection of the coalitional
game §2 for the social-reciprocity-based relay selection.
Theorem 1: The relay selection (r}:),car is a core solution
to the coalitional game 2 for the social-reciprocity-based relay
selection.

Proof: We prove the result by contradiction. We assume
that there exists a nonempty coalition & € A with another
relay selection (ry,)men € V(S) satisfying (ry)mens =n
(r¥Ymen forany n € S. Let C* = UZt, C! be the set of nodes
in the reciprocal relay selection cycles obtained in the fth iter-
ation. According to Lemma 1, we know that each cycle C} is a
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top-coalition given the set of nodes M; = A. By the definition
of top-coalition, we must have that S N C' = . In this case,
we have that S CM, £ M;\C'. Similarly, each cycle C7 is
a top-coalition given the set of nodes M;. We thus also have
that S N C? = . Repeating this argument, we can find that S
NC' = D foranyt = 1,...,T. Since N' = UL ,C?, we must
have that SN N = &, wh1ch contradicts w1th the hypothesis
that S C N and § # &. This completes the proof. ]

C. Social-Trust- and Social-Reciprocity-Based Relay Selection

According to the principles of social trust and social reci-
procity above, each node n € M has two options for relay
selection. The first option is that node n can choose the best
relay r§ = argmax, caesi(n} Bn(ry) from the set of nodes
with social trust VTS, Alternatively, node n can choose a relay
r, € NFC from the set of nodes without social trust by partic-
ipating in a directly or indirectly reciprocal cooperation group.

We next address the issue of choosing between so-
cial-trust- and social-reciprocity-based relay selections for
each node by generalizing the core relay selection (7}%),ecpr in
Section IV-B.3. The key idea is to adopt the social-trust-based
relay selection r as the benchmark for participating in the so-
cial-reciprocity- based relay selection. That is, a node n prefers
social-reciprocity-based relay selection to social-trust-based
relay selection if the social-reciprocity-based relay selection
offers better performance. More specifically, we define that
Ty =n nifand only if r, >, r and the select1on ‘ry, = n”
represents that node n will select the relay r> based on social
trust. Based on this, we can then compute the core relay selec-
tion (7% ),en according to Algorithm 1. In this case, if we have
r¥. = m in the core relay selection (7% ),en7, then node m will
select the relay r> based on social trust. If we have 7%, # m in
the core relay select10n (r*)nenr, then node m will select the
relay based on social reciprocity.

In a nutshell, we have studied the cooperative D2D communi-
cations based on social trust and social reciprocity. We have de-
veloped a coalitional game approach for efficiently forming the
reciprocal groups among the nodes, and also addressed the issue
of choosing between social-trust- and social-reciprocity-based
relay selections for each node.

V. NETWORK-ASSISTED RELAY SELECTION MECHANISM

In this section, we turn our attention to the implementation of
the core relay selection for social-trust- and social-reciprocity-
based cooperative D2D communications. A key challenge here
is how to find the reciprocal relay selection cycles in the pro-
posed core relay selection algorithm (see Algorithm 1). In the
following, we will first propose a reciprocal relay selection cycle
finding algorithm to address this issue, and then develop a net-
work-assisted mechanism to implement the core relay selection
solution in practical D2D communication systems.

A. Reciprocal Relay Selection Cycle Finding

We first consider the issue of reciprocal relay selection cycle
finding in the core relay selection algorithm. We introduce a
graphical approach to address this issue. More specifically,
given the set of nodes M; and the mapping 7, we can construct
a graph GMt = {M,, EM+}. Here, the set of vertices is Mj,
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and the set of edges EMt = {(nm) : et = 1,¥n,m € M,}
where there is an edge directed from node n to m (i.e.,
eMt = 1) if and only if y(n, M;) = m. For the graph GM¢,
we have the following key observations.

Lemma 3: The out-degree of each node in the graph GM¢ is
one.

This is due to the fact that the node m generated by the map-
ping v(n, M) is unique.

We next introduce the concept of path in graph theory. A path
of length I on a graph is a sequence of nodes (1,02, ...,1n7)
where there is an edge directed from node n; to n;y; on the
graph forany ¢+ = 1,...,I — 1. A cycle of the graph is a path
in which the first and last nodes are identical. A reciprocal relay
selection cycle of the coalitional game then corresponds to a
cycle of the graph GM¢. When y(n, M;) = n, the cycle degen-
erates to a self-loop of node n. In the following, we say a path
(n1,n2,...,nr) induces a cycle if there exists a path beginning
from node n; that is a cycle. If two cycles are a cyclic permuta-
tion of each other, we will regard them as one cycle.

Lemma 4: Any sufficiently long path beginning from any
node on the graph Gt induces one and only one cycle.

Proof: We first show that a path beginning from a node
n4 induces a cycle. Since each node has an out-degree of one,
this implies we can construct a path (n1, n2, . ..) of an infinitely
large length if the path does not induce a cycle. This contradicts
with the fact that the number of nodes on the graph is finite.

On the other hand, if the path induces multiple distinct cycles,
there must exist a node with more than one outward directed
edge. This contradicts Lemma 3. |

Based on Lemmas 3 and 4, we propose an algorithm to find
the reciprocal relay selection cycles in Algorithm 2. The key
idea of the algorithm is to explore the paths beginning from
each node. More specifically, if a path beginning from a node
induces an unfound cycle, then we find a new cycle. We will set
the nodes in both the path and cycle as visited nodes since any
path beginning from these nodes would induce the same cycle.
If a path beginning from a node leads to a visited node, the path
would induce a cycle that has already been found if we continue
to construct the path on the visited nodes. We will also set the
nodes in the path as visited nodes. Since each node will be vis-
ited once in the algorithm, the computational complexity of the
reciprocal relay selection cycles finding algorithm is O(|M|).

B. NARS Mechanism

We now propose a network-assisted relay selection (NARS)
mechanism to implement the core relay selection, which works
as follows.

+ Eachnoden € N first determines its preference list £ for
the set of feasible relay selections J\~/;1? =2 NPU {n} based
on the physical graph G¥. Here, £,, = (r}, ..., TLN’I:‘) isa

permutation of all the feasible relays in J\Tf satisfying that

i >y it forany i = 1,...,|NT| — 1. This step can be

done through the channel probing procedure to measure the

achieved data rate resulting from choosing with different
relays.
» Each node n € A then computes the best social-trust-

based relay selection r; = arg max,. carsu(n} Bn(rn)
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Algorithm 2: Reciprocal Relay Selection Cycle Finding
Algorithm

1: initialization:

2:  construct the graph GM¢ based on the set of nodes
M, and the mappings {v(n, M;) }ner, -

3:  set the set of visited nodes V = < and the set of
unvisited nodes & = M \V.

4:  set the set of identified cycles A = .

: end initialization

W

[*))

: loop until Y = &:

. select one node n, € U randomly.

8:  set the set of visited nodes in the current path
H = {n.}.

9:  setthe flag F' = 0.

10:  loop until F = 1:

~

11: generate the next node ny = y(ng, M;).

12: if np € V then

13: set V=VUHandld = M;\V.

14: set ' = 1.

15: else if n, € H then

16: set the identified cycle as C = (n1 =
Mgy ooy = y(ni 1, M), ... ,np =ny).

17: set the set of identified cycles A = A U{C}.

18: set V=VUHandld = M;\V.

19: set F' = 1.

20: else

21: set H = H U {ny}.

22: set n, = ny.

23: end if

24: end loop

25: end loop

based on the physical-social graph G and the preference
list £F.

+ Each node n € A next determines its preference list L£€
for the set of relay selections A/FC U {n} based on the
physical-coalitional graph GF€. Notice that we have that
rn >n 1 inthe preference list L’EC ifand only if r,, >, r,SL
in the preference list £F.

+ Each node n € AN then reports its preference list LEC to
the base station.

+ Based on the preference lists LEC of all nodes, the base sta-
tion computes the core relay selection (7} )}, 7 according
to Algorithm 1 and 2 and broadcasts the relay selection
{(r* )nen to all nodes.

As mentioned in Section IV-C, if r);, = m in the core relay
selection (7 ),e, then node m will select the relay 5 based
on social trust. If 7%, # m in the core relay selection (), ca,
then node m will select the relay based on social reciprocity.

We now use an example to illustrate how the NARS mecha-

nism works. We consider the network of N = 7 nodes based
on the physical graph G and the social graph G in Fig. 2.
According to NARS mechanism, each node n first determines
its preference list £,, for the set of feasible relay selections
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TABLE I
PREFERENCE LISTS OF N = 7 NODES BASED ON THE PHYSICAL GRAPH G¥
AND SOCIAL GRAPH G® IN FIG. 2
| Node n | Preference List £ | Relay 73 | Preference List LFC |

1 (12,3,4) 1 (1,2)

2 (1,3,2,4,5) 2 (1,3,2,4)
3 (2,3,4,1) 3 (2,3,4)

4 (2,1,4,3,5,6) 1 (2,4,3,5,6)
5 (4,6,7,5,2) 5 (4,6,7,5)
6 (7,5,4,6) 6 (7,5,4,6)
7 (5,6,7) 7 (5,6,7)

NP U {n}. We will use the preference lists £ in Table I. For
example, in the table, the feasible relays for node 7 on the phys-
ical graph GF are {5,6,7}. The preference list (5,6, 7) repre-
sents that 5 >7 6 »> 7, i.e., node 7 prefers choosing node 5
as the relay to choosing node 6 and transmitting directly of-
fers the worst performance. Then, based on the physical-social
graph GF5 in Fig. 3 and the preference list £F, each node n
computes the best social-trust-based relay selection r>. For ex-
ample, node 4's best social-trust-based relay selection rS = 1
(i.e., node 1). Each node n next determines the preference list
LPC based on the physical-social graph G in Fig. 5.

All the nodes then report the preference lists £EC to the
base station. Based on the preference lists, the base station will
compute the core relay selection (r}),ca according to the
core relay selection algorithm in Algorithm 1. We illustrate
the iterative procedure of the core relay selection algorithm in
Fig. 6 by adopting the graphical representation G*** introduced
in Section V-A. Recall that there is an edge directed from
node n to node m on graph G+ if node m is the most prefer-
able relay of node n given the set of nodes AM;. At iteration
t = 1, given that M; = A/, the base station identifies one
cycle, i.e., a self-loop formed by node 1. At iteration ¢ = 2,
given that My = M;\{1}, the base station then identifies
one cycle formed by nodes 2 and 3. Notice that graph G2
can be derived from graph G** by removing node 1 and any
edges directed to node 1. For each node (e.g., node 2) from
which there is a removed edge directed to node 1, we add a new
edge directed from the node to its most preferable node among
the set of nodes My (e.g., the edge 2 — 3). We continue in
this manner until all the nodes have been removed from the
graph. Fig. 7 shows all the reciprocal relay selection cycles
identified by the core relay selection algorithm in Fig. 6. In
this case, the core relay selection is: 1) since 7“? = 1, node
1 transmits directly; 2) nodes 2 and 3 serve as the relay of
each other (i.e., direct reciprocity-based relay selection); 3)
since TE = 1, node 4 seeks relay assistance from node 1 (i.e.,
social-trust-based relay selection); 4) node 5 serves as the relay
of node 7, which in turn serves as the relay of node 6, and node
6 in turn is the relay of node 5 (i.e., indirect reciprocity-based
relay selection).

C. Properties of NARS Mechanism

We next study the properties of the proposed NARS mecha-
nism. First of all, according to the definition of the core solution
of coalitional game, we know the following.

Lemma 5: The core relay selection (r}:),,c - by NARS mech-
anism is immune to group deviations, i.e., no group of nodes can
deviate and improve by cooperation within the group.
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Fig. 6. Resulting graphs G*** at each iteration ¢ of the core relay selection
algorithm. (a)t = 1. (b)t =2.(c)t = 3. (d) ¢t = 4.

2 5

3 6
Fig. 7. Reciprocal relay selection cycles identified by the core relay selection
algorithm in Fig. 6.

We can then show that the mechanism guarantees individual
rationality, which means that each participating node will not
achieve a lower data rate than that when the node does not par-
ticipate (i.e., in this case the node will transmit directly).

Lemma 6: The core relay selection (% ),,c4- by NARS mech-
anism is individually rational, i.e., each node n € A will be
assigned a relay r;, that satisfies either r;, >, norr; = n.

Proof: 1f the assigned relay r;, <,, n for some node n €

N, then the node n can deviate from the current coalition and
improve its data rate by transmitting directly (i.e., 7;, = n). This
contradicts with the fact that (), is a core relay selection.
]

We next explore the truthfulness of NARS mechanism. A
mechanism is truthful if no node can improve by reporting a
preference list different from its true preference list, given that
other nodes report truthfully.

Lemma 7: NARS mechanism is individually truthful.

Proof: Let C* be the set of nodes in the reciprocal relay
selection cycles obtained in the fth iteration of core relay selec-
tion algorithm. Suppose that the node m reports another pref-
erence list that is different from its true preference list. Let 7
be the index such that m € C7. Given that the nodes in the set
U{;IIC * truthfully report, they will be assigned the relays in the
core relay selection regardless of what the nodes out of the set
UZ;IICt report. In this case, given the set of remaining nodes
M, = N\ UJ_! €', the most preferable relay of node m is
the relay r;,, in the core relay selection. This is exactly what the
node m achieves by reporting truthfully. Thus, the node m can
not improve by reporting another preference list. ]

We further show a stronger result of collectively truthful-
ness. A mechanism is collectively truthful if no group of nodes
can improve by joint reporting their preference lists different
from their true preference lists, given that other nodes report
truthfully.
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Lemma 8: NARS mechanism is collectively truthful.

Proof: Suppose that a group of nodes S report other pref-
erence lists that are different from their true preference lists. Let
T be the smallest index such that S N C™ #£ . Given that the
nodes in the set u:;fci truthfully report, they will be assigned
the relays in the core relay selection regardless of what the nodes
out of the set U7 C? report. Furthermore, given that nodes in
the set M\S report truthfully, for any node m € § N7, the
most preferable relay of node m among the remaining nodes
M, = N\ UJZ] Ct is the relay 77, in the core relay selection.
This is exactly what the node m achieves by reporting truth-
fully. Thus, a node m € & N C” cannot improve by reporting
another preference list. Similarly, we can show that for anode m
in the set S NC™ !, the most preferable relay of node m among
the remaining nodes M1 = N\ UJ_; C* is the relay 75, in
the core relay selection. We can repeat the same augment for &
times until that S N C™+* = &, which completes the proof. W

We finally consider the computational complexity of NARS
mechanism. We say the mechanism is computationally efficient
if the solution can be computed in polynomial time.

Lemma 9: NARS mechanism is computationally efficient.

Proof: Recall that the reciprocal relay selection cycle
finding algorithm in Algorithm 2 has a complexity of O(| M;]).
Since the reciprocal relay selection cycle finding algorithm
is the dominating step in each iteration, the core relay selec-
tion algorithm hence has a complexity of O(Zthl |M.)).
As Ty M| = N+ SN - $L[C7) and
Zf:l |ICT| = N, by setting |C"| =1 forT =1,...,T, we have
the worst case that 31, [M;| = 32N i = w Thus,
the mechanism has a complexity of at most O(N?). |

Lemmas 5-9 together prove the following theorem.

Theorem 2: NARS mechanism is immune to group de-
viations, individually rational, individually and collectively
truthful, and computationally efficient.

To summarize, in this section we have developed a graph-
ical-based algorithm for finding the reciprocal relay selection
cycles and have further devised an efficient NARS mechanism
with nice property guarantee for implementing the social-trust-
and social-reciprocity-based relay selection solution in practical
D2D communication systems.

VI. SIMULATIONS

In this section we evaluate the performance of the proposed
social-trust- and social-reciprocity-based relay selection for co-
operative D2D communications through simulations.

We consider that multiple nodes are randomly scattered
across a square area with a side length of 1000 m. Two nodes
within a distance of 250 m are randomly matched into a
source-destination D2D communication link. The motivation
of randomly matching of source—destination pairs is as follows:
1) due to the mobility, a user may have opportunities to conduct
D2D communications with different users at different time
periods and different locations; 2) a user may have diverse in-
terest to carry out D2D communications with different users for
sharing different content. We compute the SNR value p;; ac-
cording to the physical interference model, i.e., pt;; = M#HQ
with the transmission power p; = 1 W, the background noise
wy = 10719 W, and the path-loss factor o = 4 [40]. Based
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Fig. 8. System throughput with the number of nodes N = 100 and different
social network density.

on the SNR p;;, we set the bandwidth W = 10 Mhz and
then compute the data rate achieved by using different relays
according to (1). We construct the physical graph G¥ by setting
eP . = 1 (i.e., node m can be a relay candidate of node n)
if and only if the distance between nodes n and m is not
greater than a threshold 6 = 500 m (i.e., ||n,m| < §). We
set a relatively large distance threshold due to the fact that, in
the D2D communication, the detection of neighboring relay
nodes can be significantly enhanced with the assistance by the
base station [3]. For the social trust model, we will consider
two types of social graphs: Erdos—Renyi social graph and real
data-trace-based social graph.

A. Erdos—Renyi Social Graph

We first consider N = 100 nodes with the social graph G5
represented by the Erdos—Renyi (ER) graph model [41] where
a social link exists between any two nodes with a probability of
Pr. To evaluate the impact of social link density of the social
graph, we implement the simulations with different social link
probabilities Py, = 0,0.05,0.1, ..., 1.0, respectively. For each
given Py, we average over 1000 runs. As the benchmark, we
also implement the solution that each node transmits directly,
the solution that each node selects the relay based on social trust
only (i.e.,, rp, = r,sl), and the solution that each node selects the
relay based on social reciprocity only by assuming that there
is no social trust among the nodes. Furthermore, we also com-
pute the throughput upper bound by letting each node select the
best relay 7, = arg max,. carPun} Ron(rn) among all its fea-
sible relays. Notice that the throughput upper bound can only be
achieved when all the nodes are willing to help each other (i.e.,
all the nodes are cooperative).

We show the average system throughput in Fig. 8. We see that
the performance of the social-trust-and-social-reciprocity-based
relay selection dominates that of social-trust-only-based
relay selection and social-reciprocity-only-based relay selec-
tion. When the social link probability P, is small, the so-
cial-trust-and-social-reciprocity-based relay selection achieves
up to 64.5% performance gain over the social-trust-only-based
relay selection. When the social link probability Py, is large,
the social-trust-and-social-reciprocity-based relay selection
achieves up to 24% performance gain over the social-reci-
procity-only-based relay selection. We also observe that
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Average Size of Reciprocal Cycles
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Fig. 9. Average size of the reciprocal relay selection cycles in the social-trust-
and-social-reciprocity-based relay selection with N = 100 and different social
network density.

the social-trust-and-social-reciprocity-based relay selection
achieves up to 100.4% performance gain over the case that
all the nodes transmit directly. Compared to the throughput
upper bound, the performance loss of the social-trust-and-so-
cial-reciprocity-based relay selection is at most 24%. As the
social link probability Py, increases, the social-trust-and-so-
cial-reciprocity-based relay selection improves and approaches
the throughput upper bound. This is due to the fact that when
the social link probability Py, is large, each node will have a
high probability of having social trust from any other node,
and hence each node is likely to have social trust from its best
relay node. This can be illustrated by Fig. 9, which shows
the average size of the reciprocal relay selection cycles in the
social-trust-and-social-reciprocity-based relay selection. We
observe that as the social link probability Pr, increases, the
average size of the reciprocal relay selection cycles decreases.
This is because as the social link probability P;, increases, more
nodes are able to select their best relay nodes based on social
trust. As a result, less nodes would select relay nodes based on
social reciprocity and hence the average size of the reciprocal
relay selection cycles decreases.

To investigate the impact of the distance threshold § for
relay detection, we implement the simulations with the number
of nodes N = 100, the social link probability P;, = 0.2, and
the distance threshold § = 50, 100,...,600 m, respectively.
We see from Fig. 10 that initially the system performance of
social-trust-and-social-reciprocity-based relay selection im-
proves as the distance threshold & increases. When the distance
threshold ¢ is large, however, the performance of social-trust-
and social-reciprocity-based relay selection levels off. This is
because that initially as the distance threshold § increases, more
and more good relay nodes are available. Once the distance
threshold § is large enough, only those nodes that are within
a relatively short distance can be good relays for cooperative
D2D communications. For those nodes that have a long dis-
tance, they will not be chosen as relays since they would offer
worse performance than that of the direct communication case.

B. Real Trace-Based Social Graph

We then evaluate the proposed social-trust-and-social-reci-
procity-based relay selection using the real data trace
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Fig. 10. System throughput of nodes N = 100 and different distance

threshold & for relay detection.

2.5

=
— n [S)

Number of Social Links

4
n

250 500 750 1000 1250 1500
Number of Nodes

Fig. 11. Number of social links of the social graphs based on real trace
Brightkite.

Brightkite [42]. Brightkite is a data trace collected from a
location-based social networking service platform where
users share their location check-ins. Brightkite contains an
explicit friendship network among the users. Different from
the ER social graph, the friendship network of Brightkite is
scale-free such that the node degree distribution follows a
power law [43]. We implement simulations the number of
nodes N = 250,500, ...,1500, respectively. We randomly
select NV nodes from Brightkite and construct the social graph
based on the friendship relationship among these N nodes in
the friendship network of Brightkite. For each given N, we
average over 1000 runs. Fig. 11 shows the average number of
social links among these nodes of the social graphs when using
the real data trace Brightkite.

We show the average system throughput in Fig. 12. We
see that the system throughput of the social-trust-and-so-
cial-reciprocity-based relay selection increases as the number
of users N increases. This is because more cooperation op-
portunities among the nodes are present when the number of
users NV increases. Moreover, the social-trust-and-social-reci-
procity-based relay selection achieves up to 122% performance
gain over the solution that all users transmit directly. Compared
to the throughput upper bound, the performance loss by the
social-trust-and-social-reciprocity-based relay selection is at
most 21%.
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We then evaluate the energy efficiency of the proposed
NARS mechanism. We adopt the common practice in lit-
erature [44] and compute the energy efficiency as the ratio
between the system-wide throughput and the system-wide
energy consumption. Fig. 13 shows the normalized energy
efficiency of different relay selection schemes with respect to
that of direct communication. It demonstrates that the proposed
the social-trust-and-social-reciprocity-based relay selection
scheme is energy efficient and achieves the highest energy
efficiency among all the schemes.

We next show the computational complexity of the NARS
mechanism for computing the social-trust-and-social-reci-
procity-based relay selection solution in Fig. 14. We see that the
average number of iterations of the mechanism grows linearly
as the number of nodes NV increases. We also measure the
running time of the NARS mechanism on a 64-bit Windows PC
with 2.5-GHz Quad-core CPU and 16 GB memory in Fig. 15.
We observe that the running time of the mechanism increases
linearly as the number of nodes N increases, and the running
time is less than 1 s in all cases. Notice that when the NARS
mechanism is implemented in practical D2D systems, the base
station typically has a much stronger computational capability
than a PC and the running time of the NARS mechanism can
be further significantly reduced. This demonstrates that the
proposed NARS mechanism is computationally efficient.

VII. CONCLUSION

In this paper, we studied cooperative D2D communications
based on social trust and social reciprocity. We introduced the
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physical-social graphs to capture the physical constraints for
feasible D2D cooperation and the social relationships among
devices for effective cooperation. We proposed a coalitional
game-theoretic approach to find the efficient D2D cooperation
strategy and developed a network-assisted relay selection
mechanism for implementing the coalitional game solution.
We showed that the devised mechanism is immune to group
deviations, individually rational, truthful, and computation-
ally efficient. We further evaluated the performance of the
mechanism based on Erdos—Renyi social graphs and real
data-trace-based social graphs. Simulation results show that
the proposed mechanism can achieve up to 122% performance
gain over the case without D2D cooperation.

We are currently generalizing the notion of social trust from
the current one-hop setting (e.g., friends) to the multihop set-
ting (e.g., friend's friends). Intuitively, as the number of so-
cial hops between two nodes increases, the strength of social
trust decreases. Mathematically, we can introduce a weighted
social graph to model such features by defining the weight as
the strength of social trust. It is of great interest to design ef-
ficient stimulation mechanisms for D2D cooperation by taking
both generalized social trust and social reciprocity into account.

In this paper, we consider that the cooperative D2D com-
munications between the relay node and the destination node
use in-band communication (i.e., using cellular spectrum). To
achieve better network connectivity and enhance the communi-
cation performance, both the in-band and out-band (i.e., using
WiFi spectrum) D2D communications can be utilized. For in-
stance, two users can adopt the WiFi-direct to conduct out-band
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D2D communication; alternatively, the users can conduct the
in-band D2D communication by using the cellular spectrum. We
are currently building a prototype system on cooperative D2D
communications using in-band (out-band) communications.
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