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Abstract—This paper seeks to systematically explore the ef-
ficiency of uncoordinated parking space allocation in urban
environments with two types of parking facilities. Drivers decide
whether to go for inexpensive but limited on-street parking
spots or expensive yet over-dimensioned parking lots, incurring
an additional cruising cost when they decide for on-street
parking spots but fail to actually acquire one. Their decisions
are made under perfect knowledge of the total parking supply
and costs and different levels of information about the parking
demand, i.e., complete/probabilistic information and uncertainty.
We take a game-theoretic approach and analyze the parking
space allocation process in each case as resource selection game
instances. We derive their equilibria, compute the related Price
of Anarchy values and study the impact of pricing on them.

It is shown that, under typical pricing policies on the two types
of parking facilities, drivers tend to over-compete for the on-street
parking space, giving rise to redundant cruising cost. Yet this
inefficiency can be alleviated through the systematic manipulation
of the information that is announced to the drivers. In particular,
counterintuitive less-is-more effects emerge regarding the way
information availability modulates the resulting efficiency of the
process, which underpin general competitive service provision
settings.

I. INTRODUCTION

The tremendous increase of urbanization necessitates the ef-
ficient and environmentally sustainable management of various
urban processes and operations. Recent advances in wireless
networking and sensing technologies can address this need by
enabling efficient monitoring mechanisms for these processes
and higher flexibility to control them, thus paving the way
for the so-called smart cities. Intelligent networked sensor
nodes, placed on buildings’ surfaces or mounted on vehicles,
constitute pervasive monitoring platforms that can measure
environmental parameters such as pollution concentration,
radiation level, road traffic congestion or public transport
utilization. The data generated by this monitoring infrastruc-
ture can then be exploited by municipal authorities to more
efficiently manage both the environmental and man-made city
resources. In the case of parking space resources, in particular,
the challenge is to efficiently manage the available parking
space and reduce the vehicle volumes that cruise in search of
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it, in order to alleviate not only traffic congestion but also the
related environmental burden.

To this end, academic research but also public and/or private
initiatives in the past years have been primarily directed
towards the design and deployment of parking assistance
systems. Common to these systems is the exploitation of
wireless communications and sensing technologies to collect
and broadcast (in centralized systems, i.e., [1], [2]) or share (in
distributed systems, i.e., [3], [4]) information about the supply
of (and demand for) parking resources. This information
ideally saves drivers from redundant cruising trips in search
of a parking spot and assists in the management of parking
resources, with centralized systems even implementing parking
spot reservation. Parking assistance systems may also enable
smart demand-responsive pricing schemes on the parking
facilities, resulting in higher parking availability in overused
parking zones and preventing double-parking and excessive
cruising phenomena (i.e., in [5]).

This paper seeks to systematically explore the impact of
information that these systems make available, on the effi-
ciency of the parking search process and resource utilization,
when the parking resource allocation is not controlled by
a centralized entity, e.g., through a reservation mechanism.
The drivers choose independently to either compete for the
inexpensive but scarce on-street parking spots or head for the
more expensive parking lot(s). In the first case, they run the
risk of failing to get a spot and having to a posteriori take the
more expensive alternative, this time suffering the additional
cruising cost in terms of time, fuel consumption (and stress)
of the failured attempt. Drivers make their decisions drawing
on various levels of information about the parking demand
(number of drivers) and perfect knowledge of the parking
supply (capacity) and the applied fees on the parking facilities.
The questions that arise in this respect are: How do different
amounts of information on the parking demand modulate
drivers’ parking choices? Could this be controlled by the
parking service operator to minimize the cost that drivers incur
and the redundant cruising cost? How do prices charged for
the two types of parking facilities modulate the information
impact?

We take a game-theoretic approach and view the drivers
as rational strategic selfish agents that try to minimize the
cost they pay for the acquired parking space. More precisely,
we assume that the decisions are made by automatic software
agent implementations on-board the vehicles rather than hu-
mans and the drivers’ actions fully comply with the agents’
suggestions. We formulate the uncoordinated parking spot
selection problem as an instance of resource selection games in
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Section II. The accuracy of the information that drivers possess
about the parking demand is abstracted at three levels giving
rise to an equal number of game variants. In Section III, we
describe the game variant under complete information, which
establishes a first comparison reference for the efficiency of
the uncoordinated parking spot selection process. In Section
IV we analyze more realistic game variants, where decisions
are made under probabilistic information and full uncertainty,
respectively. We first derive the equilibria of the three game
variants. Then we quantify their efficiency through their Price
of Anarchy values with respect to an optimal centralized sys-
tem implementing parking space reservation and explore how
they, hence the efficiency of the parking allocation process,
depend on various factors.

The numerical results in Section V suggest that, for typical
prices of the two types of parking resources, drivers tend to
over-compete for the on-street parking spots giving rise to
redundant cruising cost. However, there are important degrees
of freedom in alleviating this inefficiency. One possibility is
through the choice of charging costs for the two facilities.
A second, much less intuitive, possibility is through the
systematic manipulation of information that becomes available
to the drivers. In this respect, counterintuitive less-is-more
effects emerge, implying that the possession of less accurate
information on the parking demand alleviates competition and
induces equilibrium behaviors that outperform those under
complete knowledge. We outline related research and position
our work against it in Section VI and conclude in Section VII.

II. MODELING THE PARKING SPOT SELECTION PROCESS

In our model, drivers are faced with a decision whether to
compete for the low-cost but scarce on-street parking space
or directly head for the over-dimensioned but more expensive
parking lots. Those who manage to park in curbside pay cosp,s
per-time cost units, whereas those heading directly for the safer
parking lot option pay cpl = β · cosp,s, β > 1, units. However,
drivers that decide first to search for low-cost parking spots
but fail to acquire one and finally resort to a parking lot, pay
cosp,f = γ · cosp,s, γ > β, units. The excess cost δ · cosp,s,
with δ = γ − β > 0, reflects the actual cost of cruising
and the “virtual” cost of wasted time till eventually reaching
the more expensive parking facility. Notice that the drivers’
decisions are essentially made on the two sets of parking
facilities, i.e., on-street parking space vs. parking lots, rather
than individual set items, i.e., parking spots.

Under an optimal centralized parking spot allocation
scheme, with R on-street parking spots and N > R drivers,
exactly R (N −R) drivers would be directed to the low-cost
(resp. more expensive) facilities and no one would pay the
excess cruising cost. In the absence of central coordination,
each driver acts selfishly aiming at minimizing her parking
cost. However, the intuitive tendency to head for the low-
cost on-street parking space, combined with its scarcity in
urban center areas, give rise to tragedy of commons effects and
highlight the game-theoretic dynamics behind the parking spot
selection task. Thus, the collective decision-making on parking
space selection can be formulated as an instance of resource

selection games, whereby N players (i.e., drivers/software
agents) compete against each other for a finite number R of
common resources (i.e., curbside parking) [6]. In this game-
theoretic view of the parking spot selection process, the agents
are assumed to be rational strategic players. They explicitly
consider the presence of identical counter-actors that also make
rational decisions, weight the costs related to every possible
action profile, and act as cost-minimizers. In doing so, they
may or may not hold precise information about the actual
competition for parking resources.

In the following sections, we analyze the parking spot se-
lection game under different levels of uncertainty (or amounts
of information) for the overall parking demand, ranging from
exact knowledge to simply an upper bound on the potential
competitors. In all cases, we derive the stable operational
conditions and the associated costs incurred by the players, and
compare them with those under optimal centralized parking
spot allocation.

III. PARKING SPOT SELECTION UNDER COMPLETE
KNOWLEDGE OF PARKING DEMAND

Besides the number of parking spots and the parking fees,
which are assumed to be known throughout the paper, drivers
are assumed to also possess perfect information about the level
of parking demand, i.e., the number of drivers searching for
parking space. Then the one-shot parking spot selection game
under complete information is defined as follows:

Definition III.1. A strategic Parking Spot Selection Game is
a tuple Γ(N) = (N ,R, (Ai)i∈N , (wj)j∈(osp,pl)), where:

• N = {1, ..., N}, N > 1 is the set of drivers who seek
for parking space,

• R = Rosp ∪Rpl is the set of parking spots; Rosp is the
set of on-street spots, with R = |Rosp| ≥ 1; Rpl is the
set of spots in parking lot, with |Rpl| ≥ N ,

• Ai = {osp, pl} is the action set for each driver i ∈ N ,
comprising of the actions “on-street” (osp) and “parking
lot” (pl),

• wosp(·) and wpl(·) are the cost functions of the two
actions, respectively1.

The parking spot selection game falls under the broader
family of congestion games. The players’ payoffs (here: costs)
are non-decreasing functions of the number of players com-
peting for the parking capacity, rather than their identities, and
common to all players. More specifically, drivers who decide
to compete for the curbside parking space undergo the risk of
not being among the R winner-drivers to get a spot. In this
case, they have to eventually resort to a parking lot, only after
wasting extra time and fuel (plus patience supply) on the failed
attempt. The expected cost for a driver that plays the action
osp, wosp : A1 × ...×AN → R, is therefore a function of the
number of drivers k taking it, and is given by

wosp(k) = min(1, R/k)cosp,s + (1−min(1, R/k))cosp,f (1)

1Note that the cost functions are defined over the action set of each user;
in the original definition of resource selection games in [6], cost functions are
defined over the resources but the resource set coincides with the action set.
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On the other hand, the cost for those that head directly to
the parking lot facilities is fixed

wpl(k) = cpl = β · cosp,s (2)

We denote an action profile by the vector a = (ai, a−i) ∈
×N

k=1Ak, where a−i denotes the actions of all other drivers but
player i in the profile a. Besides the two pure actions reflecting
the pursuit of parking spots in curbside and in parking lots, the
drivers may also randomize over them. In particular, if ∆(Ai)
is the set of probability distributions over the action set of
player i, a player’s mixed action corresponds to a vector p =
(posp, ppl) ∈ ∆(Ai), where posp and ppl are the probabilities
of the two pure actions, with posp+ppl = 1, while its cost is a
weighted sum of the cost functions wosp(·) and wpl(·) of the
pure actions. We draw on concepts from [7] and theoretical
results from [6], [8] to derive the equilibrium strategies for the
game Γ(N) and assess their (in)efficiency.

A. Pure equilibrium strategies

Existence: The parking spot selection game constitutes a
symmetric game, where the action set is common to all players
and consists of two possible actions, osp and pl. Cheng et
al. have shown in ([8], Theorem 1) that every symmetric
congestion game with two strategies has an equilibrium in
pure strategies.

Derivation: Due to the game’s symmetry, the full set of 2N

different action profiles maps into N+1 different action meta-
profiles. Each meta-profile a(m),m ∈ [0, N ] encompasses
all

(
N
m

)
different action profiles that correspond to the same

number of drivers competing for on-street parking space. The
expected costs for these m drivers and for the N − m ones
choosing directly the parking lot alternative are functions of
a(m) rather than the exact action profile. In general, the cost
for driver i under the action profile a = (ai, a−i) is

cNi (ai, a−i) =

{
wosp(Nosp(a)), for ai = osp
wpl(N −Nosp(a)), for ai = pl

(3)

where Nosp(a) is the number of competing drivers for
on-street parking under action profile a. Equilibrium action
profiles combine the players’ best-responses to their oppo-
nents’ actions. Formally, an action profile a = (ai, a−i) is
a pure Nash equilibrium if for all i ∈ N , it holds that ai ∈
argmina′

i∈Ai
(cNi (a′i, a−i)), so that no player has anything to

gain by changing her decision unilaterally. Therefore, to derive
the equilibrium states, we determine the conditions on Nosp

that break the equilibrium definition and reverse them. More
specifically, given an action profile a with Nosp(a) competing
drivers, a player gains by changing her decision to play action
ai in two circumstances:

when ai = pl and wosp(Nosp(a) + 1) < cpl (4)
when ai = osp and wosp(Nosp(a)) > cpl (5)

Lemma III.1. In Γ(N), a driver is motivated to change her
action ai in the following circumstances:

• ai = pl and (a) Nosp(a) < R ≤ N or

(b) R ≤ Nosp(a) < N0 − 1 ≤ N or

(c) Nosp(a) < N ≤ R (6)

• ai = osp and R < N0 < Nosp(a) ≤ N (7)

where N0 = R(γ−1)
δ

∈ R.

Proof. Conditions (6a) and (6c) are trivial. Since the current
number of competing vehicles is less than the on-street parking
capacity, every driver having originally chosen the parking lot
option has the incentive to change her decision due to the price
differential between cosp,s and cpl. When Nosp(a) exceeds the
curbside parking supply, a driver who has decided to avoid
competition, profits from switching her action when (4) holds,
which combined with (1) yields (6b). Similarly, a driver that
first decides to compete, profits by switching her action if (5)
holds, which combined with (1) yields (7).

Theorem III.1. The game Γ(N) has:
(a) for N ≤ N0, a unique Nash equilibrium profile a∗

with Nosp(a
∗) = NNE,1

osp = N

(b.1) for N > N0 and N0 ∈ (R,N)\N∗,
(

N
⌊N0⌋

)
Nash

equilibrium profiles a′ with Nosp(a
′) = NNE,2

osp =
⌊N0⌋

(b.2) for N > N0 and N0 ∈ [R+ 1, N ] ∩ N∗,
(
N
N0

)
Nash

equilibrium profiles a′ with Nosp(a
′) = NNE,2

osp =

N0 and
(

N
N0−1

)
Nash equilibrium profiles a⋆ with

Nosp(a
⋆) = NNE,3

osp = N0 − 1.

Proof. Theorem III.1 follows directly from Lemma III.1. The
equilibrium states satisfy both the conditions Nosp ≥ N0 − 1
and Nosp ≤ N0. Thus, the game has two equilibrium states
on Nosp for N > N0 with integer N0 (case b.2), or a unique
state, otherwise (cases a, b.1).

In [9], we describe an alternative way to derive the equilibria
of Γ(N) via potential functions.

Efficiency: The efficiency of the equilibria is assessed
through the broadly used metric of the Price of Anarchy (PoA)
[7]. It expresses the ratio of the social cost in the worst-case
equilibria over the optimal social cost under ideal coordination
of the drivers’ strategies.

Proposition III.1. In Γ(N), the pure PoA equals:

PoA =


γN−(γ−1)min(N,R)

min(N,R)+βmax(0,N−R) , if N0 ≥ N

⌊N0⌋δ−R(γ−1)+βN
R+β(N−R) , if N0 < N

Proof. The social cost under action profile a equals:

C(Nosp(a)) =

N∑
i=1

cNi (a) = cosp,s(Nβ −Nosp(a)(β − 1)) (8)

if Nosp(a) ≤ R and

C(Nosp(a)) = cosp,s(Nosp(a)δ −R(γ − 1) + βN) (9)

if R < Nosp(a) ≤ N . The numerators of the two ratios are
obtained directly by replacing the first two NNE

osp values (a) and
(b1) (worst-cases) computed in Theorem III.1. On the other
hand, under the socially optimal action profile aopt, exactly R
drivers pursue on-street parking space, and, hence, no drivers
have to pay the additional cruising cost. The optimal social
cost, Copt is given by:

Copt =

N∑
i=1

cNi (aopt) = cosp,s[min(N,R) + β ·max(0, N −R)]
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Proposition III.2. In Γ(N), the pure PoA is upper-bounded
by 1

1−R/N with N > R.

Proof. The condition is obtained directly from Proposition
III.1, when N > R.

B. Mixed-action equilibrium strategies

We consider symmetric mixed-action equilibria since these
can be more helpful in dictating practical strategies in real
systems (asymmetric mixed-action equilibria are discussed at
the end of the section).

Existence: In ([6], Theorem 1) it is proved that a unique
symmetric mixed equilibrium exists for the broader family
of resource selection games with more than two players and
increasing cost functions. This is easily shown to hold for
the game Γ(N), with N > R and cost functions wosp(·)
and wpl(·) that are non-decreasing functions of the number
of players.

Derivation: The expected costs of choosing parking spots
in curbside and in parking lot, when all other drivers play the
mixed-action p = (posp, ppl), are given by cNi (pl, p) = cpl and

cNi (osp, p) =

N−1∑
Nosp=0

wosp(Nosp + 1)B(Nosp;N − 1, posp)

where B(Nosp;N − 1, posp) is the Binomial probability
distribution with parameters N − 1 and posp, for Nosp drivers
choosing curbside parking. The cost of the symmetric profile
where everyone plays the mixed-action p is given by

cNi (p, p) = posp · cNi (osp, p) + ppl · cNi (pl, p) (10)

We can now postulate the following Theorem, whose proof
is given in [9].

Theorem III.2. The game Γ(N) has a unique symmetric
mixed-action Nash equilibrium pNE = (pNE

osp , p
NE
pl ), where

pNE
osp = 1, if N ≤ N0 and pNE

osp = N0

N , if N > N0, with
pNE
osp + pNE

pl = 1 and N0 ∈ R.

Asymmetric mixed-action equilibria: In Section III-A, we
showed that there may exist multiple asymmetric pure equi-
libria, when the number of drivers exceeds N0. In general, the
derivation of results for asymmetric mixed-action equilibria
is much harder than for either their pure or their symmetric
counterparts since the search space is much larger. Moreover,
asymmetric mixed-action equilibria have two more undesirable
properties: a) they do not treat all players equally, i.e., different
players end up with a-priori worse chances to come up with
an inexpensive parking spot; b) their realization in practical
situations is much more difficult than that of their symmetric
counterparts. Therefore, we focus our analysis and discussion
on symmetric equilibria and their (in)efficiency.

IV. PARKING SPOT SELECTION UNDER INCOMPLETE
KNOWLEDGE OF PARKING DEMAND

The availability of complete information about the drivers’
(i.e., players’) population is a fairly strong and unrealistic
assumption. In this section we relax it and study two game
variants under incomplete demand information, where the
players either share common probabilistic information about

the overall demand or are totally uncertain about it. Note
that the parking service operator, depending on the network
and sensing infrastructure at her disposal, may provide the
competing drivers with different amounts of information about
the parking demand (e.g., based on historical statistical data).
However, again, drivers are assumed to have perfect knowl-
edge of the parking supply; this is fairly realistic and feasible
since the sensing of the parking space and the broadcasting of
the collected data can be viewed as less complex tasks.

A. Probabilistic knowledge of parking demand

In the Bayesian model of the game, the drivers determine
their actions on the basis of private information, their types.
The type in this game is a binary variable indicating whether
a driver is in search of parking space (active player) or not.
Every driver knows her own type along with the strategy
space and the cost functions, and draws on common prior
probabilistic information about the types of other drivers
to estimate the expected cost of her actions. Formally, the
Bayesian parking spot selection game is defined as follows:

Definition IV.1. A Bayesian Parking Spot Selection Game is
a tuple ΓB(N) = (N ,R, (Ai)i∈N , (wj)j∈(osp,pl), (Θi)i∈N ,
fΘ), where N and R are as defined for Γ(N), and

• Ai = {osp, pl,⊘}, the set of potential actions for each
driver i ∈ N ,

• Θi = {0, 1}, the set of types for each driver i ∈ N ,
where 1 (0) stands for active (inactive) drivers,

• Si : Θi → Ai, the set of possible strategies for each
driver i ∈ N ,

• cNB
i (s(ϑ), ϑ), the cost functions for each driver i ∈ N ,

for every type profile ϑ ∈ ×N
k=1Θk and strategy profile

s(ϑ) ∈ ×N
k=1Sk, that are functions of wosp(·) and wpl(·)

as defined for Γ(N), and also written as cNB
i (s(ϑ), ϑ) =

cNB
i (si(ϑi), s−i(ϑ−i), ϑi, ϑ−i),

• pact is the probability for a driver to be active.

In ΓB(N), for all inactive drivers i, si(ϑi = 0) = ⊘. For
active players i, si(ϑi = 1) ∈ {osp, pl}, under pure-action
strategy, or si(ϑi = 1) ∈ ∆({osp, pl}), when they randomize
over this subset of Ai under mixed-action strategy. The game
is symmetric when, besides the action set, drivers share the
same activity probability, pact and hence, the same prior joint
probability distribution of the drivers’ activity (types), fΘ. The
number of active players upon each time depends on their
types and is given by nact =

∑
k ϑk. The action profile is

the effect of players’ strategies on their types and is noted as
a = (s(ϑ), ϑ) ∈ ×N

k=1Ak.
Equilibria: For the game ΓB(N), the strategy profile s′ ∈

×N
k=1Sk(ϑk = 1) is a Bayesian Nash equilibrium if for all

i ∈ N with ϑi = 1:

si(ϑi) ∈ arg min
s′i∈Si

cNB
i (si(ϑi), s−i(ϑ−i), ϑi, ϑ−i) or,

si(ϑi) ∈ arg min
s′i∈Si

∑
ϑ−i

fΘ(ϑ−i/ϑi)c
∑

k ϑk
i (s′i, s−i(ϑ−i), ϑi, ϑ−i)

where c
∑

k ϑk

i (s′i, s−i(ϑ−i), ϑi, ϑ−i), with sl(ϑl = 0) = pl,
∀l ̸= i, is the cost cmi (s′i, s−i) of driver i under profile s
in the game Γ(m) with m =

∑
k ϑk drivers, and fΘ(ϑ−i/ϑi)
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the posterior conditional probability of the active drivers given
that user i is active, as derived from the application of the
Bayesian rule. Therefore, s′ minimizes the expected cost over
all possible combinations of the other drivers’ types and
strategies so that no active player can further lower its expected
cost by unilaterally changing her strategy.

Theorem IV.1. The game ΓB(N) has unique symmetric
equilibrium profiles pNEB = (pNEB

osp , pNEB

pl ), with pNEB
osp +

pNEB

pl = 1. More specifically, with N0 ∈ R:

• a unique pure (Bayesian Nash) equilibrium with pNEB
osp =

1, if pact < N0

N ,
• a unique symmetric mixed-action Bayesian Nash equilib-

rium with pNEB
osp = N0

Npact
, if pact ≥ min(N0

N , 1).

Proof. We present the proof in [9].

B. Strictly incomplete information about parking demand

The worst-case scenario with respect to the information
drivers possess is represented by the pre-Bayesian game
variant, under which the drivers are aware of only the upper
limit of the vehicles that are potential competitors for parking
resources.

Pre-Bayesian games do not necessarily have ex-post Nash
equilibria, even in mixed actions. The ex-post Nash equilib-
rium consists of strategies that, for every joint type profile,
result in actions which are in Nash equilibrium in the corre-
sponding strategic game. On the other hand, all quasi-concave
pre-Bayesian games do have at least one mixed-strategy safety-
level equilibrium [6]. In the safety-level equilibrium, every
player minimizes over her strategy set Si the worst-case
(maximum) cost she may suffer over all possible types and
actions of her competitors (S−i,Θ−i). The result of interest
for our pre-Bayesian variant of the parking spot selection
model ΓpB(N) is the following Proposition, due to [6], whose
implications for the efficiency of the equilibrium behaviors of
the drivers are discussed in Section V.

Proposition IV.1. An action profile a is the unique symmet-
ric mixed-action safety-level equilibrium of the pre-Bayesian
parking spot selection game, ΓpB(N), with non-decreasing
resource cost functions, iff a is the unique symmetric mixed-
action equilibrium of the respective strategic game with deter-
ministic knowledge of the number of players, Γ(N).

V. NUMERICAL RESULTS

In this section, we first systematically study the efficiency
of the parking search process when the parking assistance
systems provide information of perfect accuracy about the
demand. Then, we comparatively discuss how this efficiency
is affected when the process is executed under probabilistic
information and uncertainty. For the numerical results we
adopt per-time unit normalized cost values used in typical
municipal parking systems in big European cities [10]. The
parking fee for on-street space is set to cosp,s = 1 unit whereas
the cost of parking lots β ranges in (1, 16] units and the excess
cruising cost parameter δ is let vary within [1, 5] units.

A. Parking search under complete information

1) Impact of parking demand and on-street parking supply:
An optimal (centralized) mechanism would assign exactly
min(N,R) on-street parking spots to min(N,R) drivers. If
N ≤ R, in the absence of (central) coordination, all drivers
go for the on-street parking space and, trivially, PoA = 1.
Hereafter, we focus on the more interesting case N > R,
where a number of drivers end up paying the extra cruising
cost δcosp,s (see Lemma III.1, Theorem III.1). Under a fixed
pricing scheme, this inefficiency depends on N and R. In
Figure 1, we plot the PoA against N and R ranging in [55, 195]
and [10, 50], respectively. The following remarks suggest joint
conditions on N and R that result in more efficient parking
search, namely:

Varying N or R: For N ≤ N0 or, equivalently, for
R ≥ Nδ

γ−1 , it holds that ϑPoA
ϑN > 0 and ϑPoA

ϑR < 0. Therefore,
the PoA is strictly increasing in N and decreasing in R. On
the contrary, for N > N0 or R < Nδ

γ−1 , the PoA is strictly
decreasing in N and increasing in R, since ϑPoA

ϑN < 0 and
ϑPoA
ϑR > 0.
When all drivers choose to compete, that is, if N ≤ N0

or R ≥ Nδ
γ−1 , exactly R drivers pay cosp,s while the rest

of them, i.e., N − R drivers, pay γcosp,s. Thus, under a
fixed pricing scheme, the social cost is optimized when the
maximum charging cost (γcosp,s) is incurred by the minimum
possible set of drivers, namely when the parking demand is
the lowest possible one (N = R+1) or, equivalently, as R is
increased so that only one driver fails the competition for the
low-cost parking spots. On the other hand, when N > N0 or
R < Nδ

γ−1 , R drivers pay cosp,s, N−N0 drivers pay βcosp,s and
N0−R drivers pay γcosp,s. Under the optimal operation of the
service, the latter two sets of drivers head directly for space in
parking lot. Thus, the efficiency of the uncoordinated parking
search is improved as the parking demand increases, making
the total cost paid by the N−N0 drivers the most critical factor
for the overall social cost and hence, minimizing the impact
of the total cost paid by the N0−R drivers due to the lack of
coordination. Equivalently, the set of N0−R = R(β−1)

δ drivers
that fail the competition, is minimized when the on-street
parking capacity becomes the lowest possible one, i.e., R = 1.

On the other hand, the extra cruising cost δ may change
as the result of e.g., an addition of a parking lot closer to
the search area or a change in driving conditions. Figure 2
displays the PoA against δ and suggests the following trends:

Varying δ: For N ≤ N0 or, equivalently, for δ ≤ R(β−1)
N−R , it

holds that ϑPoA
ϑδ > 0. Therefore, the PoA is strictly increasing

in δ. For δ > R(β−1)
N−R , we get ϑPoA

ϑδ = 0. Hence, if δ exceeds
R(β−1)
N−R , PoA is insensitive to changes of the excess cost δ.
For given charging costs and on-street parking capacity, the

construction of expensive parking lots in the proximity of the
on-street parking area does not work effectively, when the
competition is high (see Fig. 2a, 2b for high N values and
Fig. 2c, 2d for low R values). Otherwise, under medium or
low competition, there is a monotonic trend that suggests, if
possible, to decrease the distance between the two options in
order to increase the efficiency of the parking search process.
Overall, changes in this distance and hence, the cruising cost,
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Fig. 1. Price of Anarchy as a function of the parking demand and supply, under fixed pricing scheme β = 5, δ = 1.
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Fig. 2. Price of Anarchy as a function of the parking demand and supply, under variable cruising cost δ and fixed parking fee β = 5.

are meaningless for high δ values, over R(β−1)
N−R . In this case,

when N > N0, N0 − R = R(β−1)
δ drivers pay the extra

cruising cost and end up in a parking lot together with the
N−N0 drivers that head directly for this kind of parking space.
Thus, the increase of cruising cost has a double-edge effect.
On the one hand, drivers are discouraged from competing so
that fewer end up paying the cruising overhead. On the other
hand, failing the competition for on-street parking costs more.
In addition, the total number of drivers that incur the more
(less) expensive parking fee is N − R (R), irrespective of
the exact δ value. As a result, changes in δ do not affect
either the total cost spent for space in the on-street or parking
lot facilities, or the aggregate cruising overhead. Thus, the
social cost can be decreased by locating a parking lot in the
proximity of the on-street parking area so that the additional
travel distance is reduced to the point of bringing the excess
cost δ below R(β−1)

N−R .
Although low PoA values denote high efficiency in the

parking search process, they are not always coupled with low
absolute social costs. For instance, this may happen under
very intense competition, namely, under high parking demand
for very low curbside capacity (i.e., see Fig. 1 at N = 195,
R = 10). In the following section, we study the sensitivity of
the social cost to the parking demand and supply as well as
the prices charged for the two types of parking facilities.

2) Impact of pricing scheme: Figure 3 plots the social costs
C(Nosp) under pure (Eq. 8, 9) and C(posp) under mixed-
action strategies as a function of the number of competing
drivers Nosp and competition probability posp, respectively,
where

C(p) = cosp,s

N∑
n=0

(
N

n

)
pn(1− p)N−n ·

[min(n,R) +max(0, n−R)γ + (N − n)β] (11)

Figure 3 motivates two remarks. First, the social cost curves
for pure and mixed-action profiles have the same shape. This
comes as no surprise since for given N , any value for the
expected number of competing players 0 ≤ Nosp ≤ N can
be realized through an appropriate choice of the symmetric
mixed-action profile p. Second, the cost is minimized when

the number of competing drivers is equal to the number
of on-street parking spots. The cost rises when either the
competition exceeds the available on-street parking capacity
or the drivers are overconservative in (and refrain more than
they should from) competing for on-street parking. In both
cases, the drivers pay the penalty for the lack of coordination
in their decisions. The deviation from optimal grows faster
with increasing price differential between the on-street spots
and the space in parking lot (i.e., β) or the distance between
the on-street and parking lot facilities (i.e., δ).

If N > R, in the worst-case equilibrium (i.e., the equi-
librium state with the maximum number of competing drivers
and hence, the maximum social cost, among all equilibria) the
number of drivers that actually compete for on-street parking
spots exceeds the real curbside parking capacity by a factor
which is a function of β and γ (equivalently, δ) (see Lemma
III.1, Theorem III.1). This inefficiency is captured in the PoA
plots in Figures 4a, 4b for β and δ ranging in [1.1, 16] and
[1, 5], respectively. The plots illustrate the following trends:

Varying β: For N ≤ N0 or, equivalently, for β ≥
δ(N−R)+R

R , it holds that ϑPoA
ϑβ < 0 and therefore, the PoA is

strictly decreasing in β. On the contrary, for β < δ(N−R)+R
R ,

the PoA is strictly increasing in β, since ϑPoA
ϑβ > 0.

Practically, the equilibrium strategy emerging from this
kind of assisted parking search behavior can approximate the
optimal coordinated mechanism, provided that the operation
of parking lots properly accounts for the drivers’ preferences
as well as estimates of the typical parking demand and supply.
More specifically, if, as part of the pricing policy, the fee of
parking lot is less than δ(N−R)+R

R times the cost of on-street
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when all drivers decide to compete with probability posp (b), for R = 50.
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parking, then the social cost in the equilibrium profile approx-
imates the optimal social cost as the price differential between
on-street and parking lot decreases. This result is inline with
the statement in [11], arguing that “price differentials between
on-street and off-street parking should be reduced in order to
reduce traffic congestion”.

Note that the PoA metric also decreases monotonically
for high values of the parking lot fee, specifically when the
parking operator desires to gain more than δ(N−R)+R

R times
the cost of on-street parking, towards a bound that depends
on the excess cost δ. Nevertheless, these operating points
correspond to high absolute social cost, i.e., the minimum
achievable social cost is already unfavorable due to the high
fee paid by the N − R drivers that use space in parking lots
(see Fig. 3, large β). However, there are instances, as in the
case of R = 50 (see Fig. 4c), where the value δ(N−R)+R

R
corresponds to a non-realistic (too large) option for the cost
of the space in parking lots, already for δ > 1. Thus, contrary
to the previous case, the PoA only improves as the cost for
parking lot decreases.

B. Parking search under incomplete information

Looking at the mixed-action equilibria, Theorem III.2 indi-
cates that drivers’ intention to compete for on-street parking
resources is shaped by the pricing schemes, the number of
players and the curbside parking capacity. Indeed, players start
to withdraw from competition as competition intensity rises
over the threshold N0 = R(γ−1)

δ . For the Bayesian imple-
mentation, the rationale behind the active players’ behavior is
almost the same. The only difference is that the players adjust
their strategies, based on estimations for the demand level as
expressed in the commonly known probabilistic information of
competition. Therefore, the probability to compete decreases
with the expected number of competitors Npact, if this number
exceeds the threshold N0 of the strategic games (see Theorem
IV.1). Furthermore, for both game formulations, players start
to renege from competition as the distance between on-street
and parking lot facilities (i.e., δ) is increased or the number
of opportunities for curbside parking (i.e., R) decreases or
the price for space reservation in parking lot (i.e., β) drops.
Figure 5 depicts the effect of these parameters on the equi-
librium mixed-action, for strategic (pact = 1) and Bayesian
(pact ∈ {0.5, 0.7}) games.

Less-is-more phenomena under uncertainty: Less intu-
itive are the game dynamics in its pre-Bayesian variant, when
users only possess an estimate of the maximum number of
drivers that are potentially interested in parking space. From
Proposition IV.1, the mixed-action safety-level equilibrium
corresponds to the mixed-action equilibrium of the strategic

game Γ(N). However, we have seen that, when the players
outnumber the on-street parking capacity: a) the mixed-action
equilibrium in the strategic game generates higher expected
number of competitors than the optimal value R (see Theorem
III.2); b) the social cost conditionally increases with the
probability of competing (see Fig. 3b, for posp > R

N ); c) the
probability of competition decreases with N (see Fig. 5, for
N > N0). Therefore, at the safety-level equilibrium of the
game, the drivers end up randomizing the pure action “on-
street” with a lower probability than that corresponding to
the game they actually play, with k ≤ N players. Hence,
the resulting number of competing vehicles is smaller and,
cumulatively, they may end up paying less than they would if
they knew deterministically the competition they face.

One question that becomes relevant is for which (real)
number K of competing players do the drivers end up paying
the optimal cost. Practically, if pNE

N = (pNE
osp,N , pNE

pl,N ) denotes
the symmetric mixed-action equilibrium for Γ(N), we are
looking for the value of K satisfying:

Kposp,N = R ⇒ K =
RN

N0
=

δ

γ − 1
N

namely, when δ
γ−1N (rounded to the nearest integer) drivers

are seeking for parking space under uncertainty conditions,
in the induced equilibrium they end up paying the minimum
possible cost, which is better than what they would pay under
complete information about the parking demand.

VI. RELATED WORK

Most work on parking assistance systems initially focused
on centralized parking (reservation) mechanisms [12] [1] [13]
[14] [5] [2]. For a comparative description of these systems
and a broader summary on work on the parking problem the
interested reader is referred to [15]. Work on opportunistic
parking search assistance, on the other hand, where infor-
mation about the location and vacancy of parking spots is
opportunistically disseminated among vehicles, is rarer and
more recent. In [3], vehicles are allowed to exchange aggregate
availability information of variable accuracy about clusters of
parking places covering large regions, in an effort to limit
the volume of the disseminated information for the sake of

100 200 300 400 500
0.2

0.4

0.6

0.8

1

Number of drivers, N

P
ro

ba
bi

lit
y 

of
 c

om
pe

tin
g,

 p
os

p
N

E

 

 

p
act

=0.5

p
act

=0.7

p
act

=1

100 200 300 400 500
0.2

0.4

0.6

0.8

1

Number of drivers, N

P
ro

ba
bi

lit
y 

of
 c

om
pe

tin
g,

 p
os

p
N

E

 

 

β=3,γ=4
β=3,γ=5
β=6,γ=7
β=6,γ=8

Fig. 5. Probability of competing in equilibrium, for R = 50. Left: Strategic
and Bayesian games under fixed pricing scheme β = 5, γ = 7. Right:
Strategic games under various pricing schemes β ∈ {3, 6}, γ ∈ {4, 5, 7, 8}.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVT.2013.2269015

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8

scalability. The way the opportunistic exchange of information
among vehicles may sharpen competition for parking space is
treated in [16] and [4]. In [16], Kokolaki et al. simulate a fully
cooperative opportunistic parking space assistance scheme
and show that the full exchange of information may give
rise to synchronization effects (vehicles are steered towards
similar locations), sharpen competition, and eventually render
the search process inefficient. Motivated by similar findings,
Delot et al. propose in [4] a distributed virtual parking space
reservation mechanism, whereby vehicles vacating a parking
spot selectively distribute this information to their proximity.
Hence, they mitigate the competition for the scarce parking
spots by opportunistically controlling the diffusion of the
parking information. Interestingly, the systems in [17] and
[18] realize almost the same idea for parking management
in the cities of Athens (Greece) and New York, respectively.
Both applications leverage the social network element: users
can offer their parking spot to the rest of the users or find a
parking spot for themselves by claiming a spot another user is
offering. A rating mechanism on drivers’ sharing and reserving
habits, shapes parking spot seekers’ likelihood to be chosen
by a parking spot sharer (defender) in [17] or get informed
about a vacancy prior to other seekers in [18].

Pricing and the more general economic dimensions of the
parking allocation problem are analyzed from a microeco-
nomical point of view in [19]. Anderson and de Palma view
the parking spots as common property resource and question
whether free access or some pricing structure result in more
efficient use of the parking capacity. Working on a simple
model of city and parking spot distribution, they show that
this use is more efficient (in fact, optimal) when the spots are
charged with the fee chosen in the monopolistically competi-
tive equilibrium under private ownership; whereas drivers are
better off when access to the parking spots is free of charge.
Subsequent research contributions have explicitly catered for
strategic behavior and the related game-theoretic dimensions
of general parking applications. In [20], the games are played
among parking facility providers and concern the location and
capacity of their parking facility as well as which pricing
structure to adopt. Whereas, in the two other works, the
strategic players are the drivers. In [21], which seeks to provide
cues for optimal parking lot size dimensioning, the drivers
decide on the arriving time at the lot, accounting for their
preferred time as well as their desire to secure a space. In
a work more relevant to ours, Ayala et al. in [22] define
a game setting where drivers exploit (or not) information on
the location of others to occupy an available parking spot at
the minimum possible travelled distance, irrespective of the
distance between the spot and driver’s actual travel destination.
The authors present distributed parking spot assignment algo-
rithms to realize or approximate the Nash equilibrium states.

Our work also draws on game theoretic analysis. Similarly
to [21] and [22], the decision-maker (player) is the driver; and
as in [16] and [4], we are particularly concerned with a broader
phenomenon, evidenced in several instances of information
provision within non-cooperative environments: the double-
edged impact of information dissemination on the overall
process efficiency, i.e., its assistance with resource/service

discovery against the sharpening of competition for its usage.
On the other hand, contrary to [19], [21] and [22], we
explicitly discriminate between on-street parking spots and
parking lots as two types of resources drivers choose among.
We argue that this dilemma between searching for cheaper yet
non-guaranteed on-street parking space and heading directly
for the granted yet costlier parking lot(s) is a frequently
recurring situation in real urban every day life; and we set our
focus on the impact of information availability and accuracy
on the efficiency of these decisions. Moreover, rather than
considering a particular system or algorithm, as [1] − [5],
[12] − [14], [17] and [18] do, we leverage game-theoretic
abstractions to capture the different levels of information accu-
racy. This way, we can derive closed-form expressions for the
stable operational points in the different settings and insightful
counterintuitive results about the impact of information on the
efficiency of the parking search process.

VII. CONCLUSIONS

In this paper, we seek to assess the ultimate impact that
different types of parking assistance systems, collecting and
sharing information of variable accuracy on parking demand,
can have on the parking space selection process. To this end,
we formulate the information-assisted parking search process
as an instance of resource selection games with three game
variants (strategic, Bayesian, and pre-Bayesian) providing nor-
mative prescriptions for the impact of the information factor on
drivers’s decisions. Essentially, this work derives some bounds
on what may be achievable by fully rational, strategic agents
that aim at minimizing the cost of their decisions. Our results
describe how different amounts of information for the parking
demand steer the equilibrium strategies, reduce the inefficiency
of the parking search process, and favor the social welfare.
Actually, the dissemination of parking information constitutes
an instance of service provision within competitive networking
environments, where more information does not necessarily
improve the efficiency of service delivery but, even worse, may
hamstring users’ efforts to maximize their benefit. This result,
has direct practical implications since it challenges the need for
more elaborate information mechanisms and promotes certain
policies for information dissemination on the service provider
side.

In the remainder of this section, we iterate on two implicit
assumptions behind the game models we introduced in Sec-
tions III and IV, which can motivate further research work.

Drivers’ indifference among individual parking spots:
The formulation of the parking spot selection game assumes
that drivers do not have any preference order over the R on-
street parking spots. This could be the case when these R
spots are quite close to each other, resulting in practically
similar driving times to them and walking times from them
to the drivers’ ultimate destinations. When drivers express
preferences over different parking spots, we come up with
an instance of the stable marriage problem, potentially with
indifference [23], whereby the option of parking lot would
commonly rank as the last one for all drivers. At a theoretical
level, the search is for mechanisms that treat all drivers fairly,
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are strategy-proof, i.e., the drivers are motivated to advertise
their true preference orders because they cannot gain by lying
about them, and efficient in some Pareto-optimality sense.

Drivers’ rationality: Full (or global) rationality demands
an exhaustively analysis of the possible strategies available to
decision-makers and realization of the best-response actions.
This may be feasible when decisions are made by well-
programmed automated software agents on-board the vehicles.
However, when humans are actively involved in the decision-
making process the assumption of full rationality becomes
much more problematic. Indeed, Simon, already more than
half a century ago [24], challenged both the normative and de-
scriptive capacity of the fully rational decision-maker, arguing
that human decisions, are most often made under knowledge,
time and computational constraints. One way to accommodate
the first constraints is through (pre-)Bayesian games of incom-
plete information; whereas the latter ones are well expressed
in alternative solution concepts to the Nash Equilibrium [25]
[26], arguing that “individuals are more likely to select better
choices than worse choices, but do not necessarily succeed
in selecting the very best choice”. However, models that
completely depart from the utility-maximization norm and
draw on fairly simple cognitive heuristics, e.g., [27], reflect
better Simon’s argument that humans are satisficers rather
than maximizers. For example, the authors in [28] explore
the impact of the fixed-distance heuristic on a simpler version
of the unassisted parking search problem. The comparison
of normative and more descriptive decision-making modeling
approaches both in the context of the parking spot selection
problem and more general decision-making contexts, is an
interesting area worth of further exploration.
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