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Abstract—Our paper investigates normative abstractions for
the way drivers pursue parking space and respond to pricing
policies about public and private parking facilities. The drivers
are viewed as strategic agents who make rational decisions while
attempting to minimize the cost of the acquired parking spots. We
propose auction-based systems for realizing centralized parking
allocation schemes, whereby drivers bid for public parking space
and a central authority coordinates the parking assignments and
payments. These are compared against the conventional uncoor-
dinated parking search practice under fixed parking service cost,
formulated as a resource selection game instance. In line with
intuition, the auctioning system increases the revenue of the public
parking operator exploiting the drivers’ differentiated interest in
parking. Less intuitively, the auction-based mechanism does not
necessarily induce higher cost for the drivers: by avoiding the
uncoordinated search and thus, eliminating the cruising cost, it
turns out to be a preferable option for both the operator and
the drivers under various combinations of parking demand and
pricing policies.
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I. INTRODUCTION

The high demand for parking space in city centers has al-
ways been a challenge in the process of city planning. The city
authorities draw on both public and private parking facilities
and more recently deploy parking assistance systems (e.g., [1]
[2]), to respond to the parking needs of the car volumes that
daily visit popular in-city destinations. Under the conventional
parking search practice, drivers choose between the cheap but
scarce on-street parking spots and the more expensive option
of private parking space. In fact, drivers selfishly pursue to
minimize the cost of access to parking facilities. However,
the intuitive decision to head for the cheaper or free-of-cost
on-street parking space, combined with the scarcity of public
parking capacity in urban curbside of typical center areas, give
rise to tragedy of commons effects and highlight the game-
theoretic dynamics behind the parking spot selection problem.

In earlier work [3], we have formulated and studied the
game that arises from the conventional parking search behavior
under a fixed parking cost model. The drivers in search for
parking space are viewed as rational strategic agents that
choose either to compete for the cheaper but scarce on-street
parking spots or head for the more expensive private parking
lots. In the first case, they run the risk of failing to get a spot
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and having to a posteriori take the more expensive alternative,
this time suffering the additional cruising cost in terms of time
and fuel consumption. Drawing on realistic charging schemes,
we have derived the equilibrium strategies of the drivers and
assessed their (in)efficiency via game-theoretic measures such
as the social cost and the Price of Anarchy. We summarize
these results in Section II of this paper.

In this paper, we ask whether and how much can central-
ized parking assistance systems combined with more aggres-
sive pricing schemes improve the outcome for both the on-
street parking space operator and the drivers. More specifically,
in Section III we propose different auction mechanisms for
the assignment of on-street parking space. In fact, auction
mechanisms have been used under various concepts in different
disciplines. In network science, research efforts on node trans-
actions devise auction-based schemes to address the challenge
of resource (energy, bandwidth and storage space) sharing
among multiple networking users [4]. Our paper approaches
the process of parking space selection in urban environments as
a network resource allocation problem. Indeed, the auctioning
of parking spots is a promising key-idea that has only recently
started to gain interest [5]. The number of available auctioned
spots is announced to the drivers, who submit their bids for
them, expressing what they are willing to pay for a parking
spot in that particular occasion with complete information for
the overall parking demand. As central mechanisms, auctions
determine who gets a parking spot and at what cost, saving
the additional expenses of cruising in the non-assisted, un-
coordinated parking search, while unleashing the conventional
buying rules in public parking operation. Indeed, the analytical
results in Section IV show that, as expected, auctions always
raise the revenue of the public parking operator since they
adapt payments to what drivers are willing to pay for on-street
parking space. Nevertheless, this does not come necessarily
at the expense of drivers, who save the cruising cost and find
the auctioning system less expensive on average, under various
combinations of parking demand and pricing policies.

II. THE PARKING SPOT SELECTION GAME

In the parking spot selection game, the set of players
consists of drivers who circulate within a city area in search
for parking space. The players have to decide whether to drive
towards the scarce low-cost on-street public parking spots or
the more expensive private parking lot(s). All parking spots
that lie in the same public or private area are assumed to be of
the same value for the players. Thus, the decisions are made on
the two sets of parking spots rather than individual set items.
The two sets jointly suffice to serve all parking requests.



The collective decision making on parking space selection
can be formulated as an instance of the strategic resource selec-
tion games, whereby N players (i.e., drivers) compete against
each other for a finite number of S on-street public parking
spots. More specifically, drivers who decide to compete for
the cheaper on-street public parking space undergo the risk of
not being among the S winner-drivers to get a public spot.
In this case, they have to eventually resort to private parking
space, only after wasting extra time and fuel (plus patience
supply) on the failed attempt. The expected cost of competing
for public parking space, wpub, is therefore a function of the
number of competing drivers k, and is given by

wpub(k) = min(1, S/k)cpub,s + (1−min(1, S/k))cpub,f (1)

where cpub,s is the fixed cost of successfully competing for
public parking space, whereas cpub,f = γ · cpub,s, γ > 1, is the
cost of competing, failing, and eventually paying for private
parking space.

On the other hand, the cost of private parking spots is fixed

wpriv(k) = cpriv = β · cpub,s (2)

where 1 < β < γ, namely the excess cost δ · cpub,s, with
δ = γ − β > 0, reflects the cruising cost in terms of wasted
time and fuel till eventually heading to the private parking
space.

If Npub denotes the number of drivers that decide to
compete for public parking space, then the aggregate drivers’
cost paid by the entire population is given by

C(Npub) =

{
cpub,s [Nβ −Npub(β − 1)] , if Npub ≤ S
cpub,s [Npubδ − S(γ − 1) + βN ] , if S < Npub ≤ N

whereas the revenue for the public parking space operator is
given by:

R(Npub) =

{
Npubcpub,s, if Npub ≤ S
Scpub,s, if S < Npub ≤ N (3)

In [3], we have analyzed the parking spot selection game
assuming both complete and probabilistic knowledge of the
parking demand, i.e., the number of drivers seeking for park-
ing space, as well as complete uncertainty about it. The
main finding for the strategic parking spot selection game
is that, for parking demand exceeding the supply (N > S),
the number of competing drivers in the equilibrium state
Npub,eq = min(N,N0), with N0 = S(γ−1)

δ , exceeds the
optimal number S that would compete for and succeed in
getting an on-street parking spot in the ideal scenario1. In other
words, an expected number of Npub,eq − S ends up wasting
time, fuel, and psychological resources on needless cruising
without eventually saving the more expensive private parking
fee. On the contrary, when N ≤ S, all drivers head to the area
of public parking.

The resulting aggregate drivers’ cost Cg when Npub,eq
drivers compete (i.e., under the equilibrium states of the game)
amounts to

1For given N , any value for the expected number of competing players 0 ≤
Npub ≤ N can be realized through an appropriate choice of the symmetric
mixed-action strategy. Indeed, the parking spot selection game has, in addition
to the pure equilibria, a unique symmetric mixed-action Nash equilibrium
pNE = (pNEpub , p

NE
priv), with pNEpub = min

(
1, N0

N

)
and pNEpub + pNEpriv = 1.

Cg ≡ C(N) = cpub,s [Nγ −min(N,S)(γ − 1)] , if N ≤ N0 and

Cg ≡ C(N0) = cpub,sβN , if N > N0 (4)

which, for N > S, exceeds the optimal cost value Cg,opt ≡
C(S) = cpub,s [S + β(N − S)], the ratio Cg/Cg,opt express-
ing the “price of anarchy” of the game and quantifying the
penalty of lack of coordination across the drivers. On the other
hand, the revenue Rg for the public parking space operator
becomes

Rg ≡ R(N) = min(N,S)cpub,s, if N ≤ N0 and

Rg ≡ R(N0) = Scpub,s, if N > N0 (5)

III. THE AUCTION-BASED PARKING ALLOCATION

Parking assistance schemes can help overcome the ineffi-
ciencies that result from the uncoordinated selfish behavior
of drivers. These systems rely on wireless communication
systems for delegating the parking space assignment task to
a central server, which: a) gets informed about the status of
on-street public parking spots; b) collects the requests and bids
of drivers for parking space; and c) determines who is assigned
a public parking spot and at what cost, and notifies the drivers.
In this paper, in particular, we propose and analyze an auction-
based system for the management of the public parking space
drawing on the theory of multi-unit auctions with single-unit
demand [6].

In particular, N drivers (buyers) bid in a single auction for
no more than one of S spare on-street public parking spots
(non-divisible, physically identical goods). Drivers (bidders)
are assumed to be symmetric: their valuations of parking spots
are i.i.d RVs continuously distributed in the same interval
[vmin, vmax] and FV (), fV () are their cumulative distribution
and probability density functions, respectively. An appropriate
choice for this interval is [cpub,s, cpriv]. In other words, the
operator of the public parking resources will typically impose
a threshold on the selling price, i.e., a reserve price, that will
be no less than the on-street public parking spot price under
fixed cost. Drivers, in turn, will account for this lower bound
in their bidding decisions, while they will not be willing to pay
more than what the private parking operator charges. Although
each driver is aware of the distribution of his competitors’
valuations, upon bidding, he can only know the realization of
his own RV (i.e., his bid). Bidders are also assumed to be risk-
neutral, i.e., they seek to maximize their expected profit from
bidding, and free of budget constraints [6].

In general, if N = {1, ..., N} with N > 1 is the set of
drivers who seek parking space, a selling auction mechanism
consists of three components: the set of bids Bi (increasing
functions of valuations) for each driver i ∈ N ; an allocation
rule π : B1 × ... × BN → D(N ), where D is the set of
probability distributions over N determining who are awarded
parking spots, and a payment rule p : B1 × ... × BN → RN
for the selling price of each allocated spot. Out of the variety
of options, hereafter we consider the three most thoroughly
analyzed implementations, the uniform-price, discriminatory-
price and Vickrey auctions. All three auction formats are
standard in that they assign the parking spots to the users
that submit the highest bids. Under single-unit demand and



symmetric risk-neutral bidders, all three auctions are also
efficient in the sense that they assign the parking spots to
the users that value them most2. In other words, they induce
equilibrium states, whereby the top-bids are submitted by the
drivers that value the parking spots most. On the other hand,
whereas all three auctioning mechanisms follow the same
allocation rule, they differ in the payment rule they apply.

• Under the uniform-price auction (upa) and the Vickrey
auction (va), all parking spots are sold at the same
price, the “market-clearing price”, which is equal to
the first losing bid, i.e., the (S + 1)th highest over all
drivers’ bids.

• Under the discriminatory-price auction (dpa), the win-
ning drivers pay an amount equal to their individual
bids.

In the sequel, we first define the equilibrium bidding strate-
gies when the drivers are aware of the number of competitors;
for instance, because the parking assistance system provides
them with this information. We then discuss their effectiveness
from the bidders’ and operator’s perspective, given that the
auctioned parking spots do not suffice to fulfil the entire
parking demand. Otherwise, it is trivial to show that the
centralized auction’s and the distributed practice’s outcomes
(i.e., parking spot allocation and winners’ payments) coincide.

1) Uniform-price and Vickrey auction: Both the single-unit
demand uniform-price and Vickrey auction mechanisms come
under the broader category of incentive-compatible (truthful)
mechanisms in that the equilibrium strategy, β(v) for the
drivers is to bid their real valuations v,

βupa(v) = βva(v) = v (6)

For N > S, the conditional expectation of the driver’s
payment for a given valuation v is

pupa(v) = pva(v) = Pr(V(N−S,N−1) < v)

·E{V(N−S,N−1)|V(N−S,N−1) < v}

=

∫ v

vmin

yfV(N−S,N−1)
(y)dy (7)

where E{·} is the expectation operator and V(k,n) is the
kth order statistic of the n competing valuations (i.e., the
kth smallest out of n samples drawn from RVs V1, ..., Vn)
with probability density function fV(k,n)

(y) = {B(k, n − k +

1)}−1{FV (y)}k−1{1−FV (y)}n−kfV (y), where B(·, ·) stands
for the complete Beta function [7].

Therefore, the unconditional (ex ante) expectation of the
driver’s payment is given by

pupa = pva =

∫ vmax

vmin

pupa(v)fV (v)dv

=
S

N
E{V(N−S,N)} (8)

while the expected revenue of the public parking operator
becomes

2In general, reserve prices introduce a positive probability that the auctioned
object remains unsold impacting on the efficiency of the mechanism. Herein,
however, this event is excluded, since drivers’ bids range in [cpub,s, cpriv ].

Ra ≡ E{Rupa} = E{Rva} = Npva

= SE{V(N−S,N)} (9)

and is collected from the drivers with the top S bids.

On the other hand, drivers with the N − S lowest bids
resort to private parking facilities, all paying the fixed cost
vmax = cpriv. Thus, the expected aggregate drivers’ cost turns
out to be

Ca ≡ E{Cupa} = E{Cva} = SE{V(N−S,N)}+ (N − S)vmax
(10)

For N ≤ S, it is trivial to show that,

pupa = pva = vmin
Ra ≡ E{Rupa} = E{Rva} = Nvmin (11)
Ca ≡ E{Cupa} = E{Cva} = Nvmin (12)

2) Discriminatory-price auction: The discriminatory-price
auction mechanism is the multi-unit counterpart of the single-
unit first-price auctions. Vickrey, already in [8], showed that
the expected revenue for all multi-unit auctions with single-
unit demand featuring the same allocation rule is the same, a
demonstration of the revenue equivalence principle. Therefore,

pdpa(v) = pupa(v) = pva(v),

Ra = E{Rdpa} and Ca = E{Cdpa} (13)

For N > S, the equilibrium bidding strategy equals

βdpa(v) = E{V(N−S,N−1)|V(N−S,N−1) < v}

=
1

FV(N−S,N−1)
(v)

∫ v

vmin

y · fV(N−S,N−1)
(y)dy (14)

Otherwise,

βdpa(v) = vmin (15)

IV. NUMERICAL RESULTS

In Sections II and III we have outlined the game for-
mulations of the two main practices in managing on-street
public parking space and derived the equilibrium behaviors
they induce. Under conventional uncoordinated search for on-
street public parking, drivers have the chance to pay a lower
parking fee when they succeed in getting a public parking spot.
However, they run the risk of paying a normalized per-hour
cruising cost δcpub,s, on top of the private more expensive
parking fee, when they fail to seize a public parking spot
and, eventually, drive to a private parking lot. On the other
hand, the auctioning of public parking places exploits the
diverse drivers’ personalities and level of interest for parking
and allows for higher payments for public parking space,
while saving the “price of anarchy” paid in the absence of
coordination as under the aforementioned game formulation.
In this section, we explore how different pricing schemes and
the drivers’ personalities and interest in parking (as captured in
their valuation distributions) affect a) the revenue achievable
by the public parking service operator; and b) the resulting
per-driver expected cost of the parking service, under the two
radically different paradigms of parking space management.
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Fig. 1. Probability density functions for drivers’ valuations of public parking spots, cpub,s = 1, β = 4.

For the pricing policy, we adopt values used in the mu-
nicipal parking system in the city of Athens [9]. In particular,
cpub,s ≤ 2 e, and β ≤ 7, for 60-minute period. The cruising
cost parameter δ is allowed to range in (0, 10]. On the other
hand, we consider three alternatives for the distribution of the
drivers’ valuations, fV (v). In all three of them, V lies within
an interval [vmin, vmax] = [cpub,s, βcpub,s], yet the mass of the
distribution is spread differently over this interval (see Fig. 1):

Doubly-truncated decay exponential valuations: This in-
stance of valuation function corresponds to scenarios, whereby
drivers are not willing to pay high for a parking spot. It could
model driving in the center during leisure hours, where the
acquisition of a parking spot is less urgent. The moments of
the (N − S)th order statistic can be computed numerically
through the recurrence relations derived by Joshi in [10].

Doubly-truncated growth exponential valuations: The mass
in this valuation distribution is concentrated towards the
rightmost values of its support. Compared with the doubly-
truncated decay exponential distribution, this one can model
driving in the city center during busy hours for business
purposes.

Uniform valuations: This is the intermediate scenario,
where the valuation of parking spots for individual drivers
may lie anywhere in [vmin, vmax] equiprobably. In this case,
the expected value of the (N − S)th order statistic can be
also computed through the mean value of the generalized Beta
distribution f(v;N −S, S + 1), for v ∈ [vmin, vmax], that is,

E{XN−S,N} = vmin +
N − S
N + 1

(vmax − vmin) (16)

We consider medium to high parking demand levels (up to
160 drivers) and limited public parking supply (S = 20 spots)
during the time window over which the parking requests are
issued.

Figures 2a and 2b plot the aggregate drivers’ cost as a
function of the parking demand intensity (i.e., number of
drivers, N ), under the distributed parking spot selection game
and centralized parking auctioning system, respectively. In line
with intuition, the aggregate drivers’ cost increases with the
parking demand under both parking allocation approaches.
Under the distributed game (see Fig. 2a), the aggregate drivers’
cost grows as the penalty cost for cruising between the public
and private parking facilities (i.e., δ) increases. Under the
auctioning system (see Fig. 2b), the valuation distribution
induces the following ordering of the aggregate drivers’ costs
(also formally proven in the Appendix)

Cga ≥ Cua ≥ Cda (17)
where the superscripts g, u and d indicate quantities derived
under growth exponential, uniform and decay exponential
valuations, respectively.

On the parking operator’s side, the revenue from auctioning
the public parking spots exceeds that under the fixed-cost
distributed parking service provision (see Fig. 2c). This is
expected since the same number of drivers park in public space
under both practices and these drivers pay at least cpub,s in
the first case, while they pay exactly cpub,s in the latter case.
The operator exploits the differentiated drivers’ interest in the
lower-cost public parking space and adapts the payments to
what they are willing to pay for it. Thus, the revenue under
the three valuation distributions is strictly ordered, with the
growth exponential valuations inducing the highest revenue
values and the decay exponential valuations the lowest values
(ref. Appendix).

On the drivers’ side, the picture is mixed as some drivers
pay more and some pay less for public parking space under
the auctioning system. Specifically, on one hand, the aggregate
cost of the drivers parking in public space (i.e., operator’s
revenue) under the auctioning system exceeds that under the
parking spot selection game, as Figure 2c illustrates. On the
other hand, the aggregate cost of the drivers parking in private
space under the auctioning system is lower than that under the
parking spot selection game, as shown in Figure 2d. This is
due to the fact that under the auctioning system all bidders
that are not awarded public parking spots enjoy the benefits
from the coordination of drivers’ parking spot selection, avoid
the “price of anarchy” and end up paying the same fixed cost
cpriv , irrespective of their valuations.

Overall, when the excess cost (in terms of fuel and time
wasted on cruising) due to the lack of coordination in the
distributed parking game, exceeds the excess cost from bidding
over the fixed minimum cost cpub,s (collected by the operator),
both the drivers and the operator are doing better under the
auctioning system. Otherwise, the distributed parking spot
selection represents a less expensive practice for the drivers. In
the remainder of this section, we compare the per-driver cost
under the two parking space management practices and explore
the conditions on the number of drivers and the cruising, public
and private costs under which the aforementioned win-win
situation emerges in the auctioning practice.

Let ∆ denote the difference between the per-driver cost
under the conventional distributed parking spot selection game,
Cg/N , and its counterpart under the centralized auction-based
allocation, Ca/N , that is,

∆ =
1

N
(Cg − Ca) (18)

For ∆ > 0 (∆ < 0), this difference expresses the
excess cost that drivers pay in the parking spot selection
game (auctioning system) compared to the auctioning system
(parking spot selection game). Drivers are indifferent over the
two approaches for ∆ = 0.
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Case N > N0: By equations (4) and (18) we have that

∆ =
1

N
(Nβcpub,s − Ca) (19)

=
1

N
[Nβcpub,s − [Ra + (N − S)βcpub,s]]

=
S

N
(βcpub,s − E{VN−S,N}) > 0

since the per-spot expected payment E{VN−S,N} is strictly
smaller than the cost of private parking space. Therefore,
for N > N0, with N0 = S(γ−1)

δ , drivers are always better
off with the auctioning system. Consequently, if the demand
is high enough, win-win situations always emerge under the
auctioning practice.

Case N ≤ N0: Unlike the first case, when N ≤ N0

(i.e., δ ≤ S(β−1)
N−S ) the picture is not clear from the drivers’

perspective. By equations (4) and (18) we have that

∆ =
1

N
[cpub,s[Nγ − S(γ − 1)]− Ca] (20)

Therefore, the two parking assignment options can be
equivalent or either of them prevail. In particular, the two
parking assignment options become equivalent when

δ =
1

N − S

[
Ca
cpub,s

+ S(β − 1)−Nβ
]

(21)

The cruising cost that achieves equivalence is plotted in
Figure 3a as a function of the parking demand. By equation
(21) and as shown in Figure 3a, the equivalence is possible
by decreasing (increasing) the cruising cost as the parking
demand increases (decreases). In addition, the higher the
drivers’ valuations are, the higher revenue the operator gains,
the higher the aggregate drivers’ cost the auctioning system
induces and, finally, the more the cruising between the area of

public and private parking should cost to counterbalance the
higher payments of drivers under the auctioning system. This
causal relation between valuations and cruising cost parameter
is clearly seen in Figure 3a.

In order to proceed further and identify conditions under
which the win-win situations emerge (i.e., ∆ > 0), we need
a specific valuation distribution to consider. In the sequel, we
study the difference ∆u = 1

N (Cg−Ca,u) between the induced
per-driver expected cost under the parking spot selection
game and that under the auctioning system with uniformly
distributed drivers’ valuations. By equations (4), (10) and (16),
with [vmin, vmax] = [cpub,s, βcpub,s], the difference ∆u is

∆u =

{
cpub,s

(N−S)
N

[
δ − (β − 1) S

N+1

]
, if N ≤ N0

cpub,s(β − 1) S(S+1)
N(N+1)

, if N > N0

(22)

As Figures 3b, c, d and equation (22) suggest, the shape of
∆u function is primarily determined by the relation between
the number of drivers N and the number N0 = S(γ−1)

δ . The
turning point at N = N0 is shifted to the left as (a) the
public parking capacity, S, decreases; or (b) the cruising cost,
δ, increases; or (c) the cost of private parking space, β, drops.

Impact of number of drivers: For given public parking
capacity and charging parameters and if N > N0, we have
already shown that drivers always prefer the auctioning system
(i.e., ∆u > 0). However, as Figures 3b, c and d also illustrate,
∆u approaches zero as the demand increases which suggests
that the auctioning system will have marginal advantage, irre-
spective of the applied charging scheme. Indeed, the difference
∆u is strictly decreasing with N since,

ϑ∆u

ϑN
= −cpub,s(β − 1)

S(S + 1)(2N + 1)

[N(N + 1)]2
< 0 (23)

On the contrary, under lower parking demand (N ≤ N0),



no scheme dominates. Drivers end up paying less on average
under the auctioning scheme only if S(β−1)

δ − 1 < N ≤ N0.

Impact of cruising, private and public parking costs: For
given parking demand and supply, ∆u increases with the
cruising cost, δ, as shown in Figures 3b, c, d and captured
in equation (24),

ϑ∆u

ϑδ
=

{
cpub,s

(N−S)
N

> 0, if δ ≤ S(β−1)
N−S

0, if δ > S(β−1)
N−S

(24)

The dependance of ∆u from the private parking cost, β, can
be analyzed from equation (25). Namely, ∆u increases with
β under high parking demand (i.e., N > N0 or equivalently
β < 1+ δ(N−S)

S ), thus motivating more drivers to compete for
the scarce on-street parking space and increasing the “price of
anarchy” of the uncoordinated parking search. However, under
low-to-medium parking demand (i.e., N ≤ N0 or equivalently
β ≥ 1+ δ(N−S)

S ), any increase in β raises the payments in the
auctioning system and hence, reduces the advantage of saving
the cruising cost. This trend is also shown in Figures 3b, d.

ϑ∆u

ϑβ
=

{
cpub,s

−S(N−S)
N(N+1)

< 0, if β ≥ 1 + δ(N−S)
S

cpub,s
S(S+1)
N(N+1)

> 0, if β < 1 + δ(N−S)
S

(25)

Finally, by equation (26) we infer that ∆u increases as
the public parking gets more expensive (cheaper), while the
distance between public and private parking is significant
(close). Namely, drivers benefit from the auctioning system if
the cruising cost outweighs the cost of bidding over a higher
reserve price. This effect is also shown in Figures 3b, c.

ϑ∆u

ϑcpub,s
=


(β − 1)

S(S+1)
N(N+1)

> 0, if δ > S(β−1)
N−S

(N−S)
N

[
δ − (β − 1) S

N+1

]
≥ 0, if S(β−1)

N+1
≤ δ ≤ S(β−1)

N−S
(N−S)
N

[
δ − (β − 1) S

N+1

]
< 0, otherwise

(26)

V. CONCLUSIONS

In this paper, we propose auction-based mechanisms for al-
location of public parking space and analyze their effectiveness
in terms of the induced drivers’ cost and achievable revenue by
the public parking operator. These mechanisms are compared
against the conventional uncoordinated parking space search
with fixed parking service cost. While the operator profits from
auctioning the public parking resources, exploiting the diverse
drivers’ personalities and interest in parking (as captured by
their valuation distributions), the comparative study reveals that
drivers also benefit due to the savings of the “price of anarchy”.
A detailed analytical study determines the conditions under
which such win-win situations emerge. It turns out that this is
always the case under high parking demand.
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APPENDIX

We want to prove that under the auction-based mechanism,
there is a strict ordering of the drivers’ expected payments
(i.e., operator’s revenue) with respect to the three valuation
functions, that leads to the following ordering

Cga ≥ Cua ≥ Cda (27)

Equivalently, we want to derive a similar relationship for the
(N − S)th order statistics of the three valuation functions.

The proof proceeds in three steps. Firstly, we note that there
are first-order stochastic dominance relationships between the
three cumulative distribution functions, that is

F gV (v) ≺ FuV (v) ≺ F dV (v) (28)

as can be readily seen in the following Figure.
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Fig. 4. Stochastic ordering of the three valuation functions FV (v), (vmin =
1, vmax = 7).

Then, we need to recall that the cumulative distribution
function of the (N − S)th order statistic is written [7]

F(N−S,N)(v) =

∫ F (v)

0

N !

S!(N − S − 1)!
tN−S−1(1− t)Sdt (29)

Therefore, the first-order dominance relationships in the
drivers’ valuations as given in (28) is inherited by their (N −
S)th order statistics. As a result it holds that,

F gV(N−S,N)
(v) ≺ FuV(N−S,N)

(v) ≺ F dV(N−S,N)
(v) (30)

Finally, the ordering in (27) emerges directly when relating
the expected values of the valuations to their cumulative
distribution functions through a general relation concerning
non-negative RVs [11],

E{X(N−S,N)} =

∫ ∞
0

(
1− F(N−S,N)(x)

)
dx (31)


