EONIKO KAI KAMOAIZTPIAKO NMANEMIZTHMIO AOHNQN
2XOAH OETIKQN ENIZTHMQN
TMHMA NAHPO®OPIKHZ KAI THAEMIKOINQNIQN

Metarntuyiako Mpoypappo Znovdwv

Ocwpla KoL ZYEOLACUOG TIPWTOKOAAWY

ABavaocio AAwvicTiwTn
nancy@di.uoa.gr

Based on Lectures notes from: * Oleg Chistokhvalov, LUT, IT Dep. ,* Dr. Junzhao Sun U. OULU Dept. Electrical &
Information Engineering, Computer Engineering Lab

* Language
* Purpose & Application
* Key SDL features

* Description of the System Structure
* Concepts of System, Block and Process
* Communication Paths: Channels, Signals

*State, Input, Output, Process, Task, Decision, Procedure ...
*Data in SDL

*Inheritance

*Block and Process Sets

O Nwooa mepiypa®ng ouoTnUATWY Kal TTIPWTOKOAAWV.
4 lNMpotaBnke ard Tov opyaviouo ITU-T (Recommendation Z.100.)

O KaAumTel 1roIkiAoug TOMEIC OIadPACTIKWY KAl KATAVEUNMEVWV
ouaTNNATWY (T1.X., OIKTUOKA TIPWTOKOAAQ, hardware).

O Graphic Representation (SDL/GR) & textual Phrase Representation
(SDL/PR).

0 'Eva cuoTtnua mpodiaypa@etal we €va oUVOAO dIaoUVOEDEUEVWIV
«MNXOVWV» TIOU €ival €MEKTOON TWV PNXOVWV TIETTEPACUEVWIV
KATAOTAOEWV.

0 O popuaAIouOC TG YAWOOOC EMTPETTEI TNV TIPOCOMOIWON AAAG
KAl TNV auTOPaTn Tmapaywyr Kwalka.

O MNpwTtn €kdoon 1976.

dTo 1988 -> SDL-88 TmiepiExel object oriented concepts (T.X.,
inheritance, abstract generic types etc).

U To 1992 BeAtiwpévn utootriptén yLa UAOTIOLNOELG.

O H SDL-2000 civai n T1eAeutaia €kdoon n ormoia PaoideTal
QTTOKAEIOTIKA O€ object-orientation.

Q Kara tnv mpooouoiwon (simulation) evOG CUOTAMATOG TTAPEXETAI
N YPO®IK avarmapdoTtaon TNS d1adoxXNg Twv onUAaTtwy Pe 1a MSCs
(Message Sequence Charts).

(Purpose & Application)

Why SDL exists ?

The purpose of SDL is to be a language for
specification and description of the and of
telecommunications systems.

The terms specification and description are used with the
following meaning:

* a specification of a system is the description of its required

behaviour
*a description of a system is the description of its actual

behaviour, that is its implementation.

(Purpose & Application)

Why SDL exists ?

LSDL may be used for producing

oSpecification and Design of diverse applications: aerospace, automotive

control, electronics, medical systems,

oTelecommunications Standards and Design for (examples):
*Call & Connection Processing,
*Used Worldwide for all kinds of complex, communication systems
*3G,Cellular Phones, switches ,WLANS, Bluetooth device etc,
*Maintenance and fault treatment (for example alarms, automatic
fault clearance, routine tests) in general telecommunications systems,
*Intelligent Network (IN) products,
*Mobile handsets and base stations,
*Satellite protocols,

Wlincreasingly used to generate product code directly with help of tools like
ObjectGeode, Tau/SDT, Cinderella

LISDL has two representation forms:

*SDL-GR - graphical representation
*SDL-PR - textual, phrase representation

[<
» <

Common
Syntax

OMrmopoupe ue FSM va mreplypdyoupe JETABANTEC
UlMNooeg karaoTaoelg XpelalOUAOTE;
QEicaywyn yeTaBAnTwy, MPACEIG (T1.X., EKXWPNOEIG), CUVONKEG.

UH xkardotaon pIag pnxavng €ivalr tTwpa n kKaradotaon Kal n
TPEXOUOQ TIMA TWV METABANTWV.

QTic peTaBANTEC HIAC INXAVAS MTTOPOUV va TIC BAETOUV AAAEC, aAAG
aAANQYEG yivovTal Ao TIG AAAEG POVO EPUETA (TT.X., M€ KATAAANAO

onua).

»>2¢ e€mmedo OUOTAUATOC OUVAVTAUME OVTOTNTEG TUMOU block, o1 OTTOiEC
EMKOIVWVOUV HETACU TOUG Kal PE TO TEPIBAANOV pEow OI1adpPOouNG KavaAiwyv
(channel routes),

»Ka0B¢e TUTTOC block pttopei va €xel €va i TEPIOOOTEPA OTIYUIOTUTIA

"KaBe oTiyuidtuno kabopiletal amd pia dedouévn XPOVIKA OTIyur, O1ou ol
dlepyaacieg oy meplEXovTal oTo block BpioKovTal O€ CUYKEKPIUEVEC KATAOTAOEIG
Kal Ol METABANTEC £XOUV OUYKEKPIMEVEG TIMEC.

»2¢ eninmedo block ouvavtaue ovioTnNTEG TUTTOU dIEPYACTiag (process), Ol OTTOIEG
EMKOIVWVOUV JETALU TOUG MECW OladPOUWY ONUATWY (signal routes). Ol
OI00pOMEC KaVOAIWY TOu €mMMMEOOU CUOTAMOTOC KATAAAyouv O udia N
TTEPIOCOTEPEC DIAOPOPEC ONUATWV.

»>2¢€ EIMmedO process OCUVAVTAUE HNXOAVEG TIEMEPACUEVWY KATAOTACEWYV, Ol
OTTOIEC BPIOKOVTAI OE CUYKEKPIMEVEC KATAOTAOEIC KAl PMETARAIVOUV O AAAEC pE
TNV amooTOAr} Kal Awn pNVUpaTtwy. Katd Ti¢ YETABACEIC AUTEC UTTOPOUV va
METABAANOUV TIC TINEC KAmOlwv MPeTaBANTWY . Mia digpyacia eival €iTe
QUOUTTOPKTN €iTE dNUIOUPYEITAI KATA TNV EKTEAECN TNG EPAPUOYNC ATTO HIa AAAN
dlepyaaia.

LSDL has a static component, and a dynamic component.

The Static component describes/specifies system structure
*Functional decomposition to sub-entities
*How they are connected
*What signals they use to communicate

dThe Dynamic component describes/specifies system operation - behavior
*SDL Transitions, Transitions Actions
Communications
*Birth, Life and Death of Processes

O is the highest level of abstraction / System

o A system can be composed of | or more 7" Block
-
oA can be composed of processes and Process
blocks
o are finite state machines, and
define dynamic behavior N
_

The term agent is used to denote a system, block or process that
contains one or more extended finite state machines.

A system is the outermost agent that communicates with the
environment.

A block is an agent that contains one or more concurrent blocks .

A process is an agent that contains an extended finite state machine, and
may contain other processes.

*Collection of concurrently-running blocks
*Blocks communicate through explicit channels
*Represents distributed, communicating computers

*Collection of concurrently-running processes or collection of
blocks

*Blocks communicate through explicit channels

*Represents a single processor

*Extended finite-state machine

*Communicate between each other and with environment using
signals

*Processes have explicit and variable defined implicit state

OWhen dealing with large and complex systems it is best to
decompose down to the manageable size functional components:
BLOCKs (“Divide and Conquer”).

UFollow natural subdivisions: BLOCKs may correspond to actual
software/hardware modules.

dMinimise interfaces between BLOCKSs in terms of the number and
volume of signals being exchanged.

System S

Block B1

Process P1

Process P2

Process P3

Block B2

Process P4

Process P5

Process P6

SDL Syntax

S R T S T e L T B [e g s e
—— | Router r deciaration of a | :
A ‘: e : roufe coanecting | |
P | —Isigh, [sig2 processes || ddxtype diagram, for the |
——————————————————— Vool el)| timerT=1% | gedaraionof |
enabling | || synonymNInt:=2; | variables. timers, |
condition X== X>0 | variables, timers, |
on sigaal ' PN constams | I
consumption | decsionboek | ;
| | I "any" construct |
I X< | |
Eonsarnadiertossssnmaara s 1 used to trigger |
S ge—— task with data | non-deterministic |
? ey
instantiation : E(T(Pu)); IPMC and : l I tmaﬁm l
I A ————— I Lo | merhanatig | [T 1 777 -
Block : Procedure
Bk e | Procssype {1 export/import
|
---------------------- 7 [] Beginning of
v : Notation for “all states” prachiee
E e 1182 I T A ————)
| [Process instance of
_______________________ e type p1 (0 instances
: = [P©,2):pl] when initiated & 3
stop | ii+1 statement ¥ simultaneous instances
: : later

2uotnua kot MeptBaAiov

SDL
System

signals

ENVIRONMENT

dThe SDL specification defines how
Systems reacts to events in the
which are communicated by

sent to the

dThe only form of communication of an
SDL system to environment is via Signals

Mnyxaveg Memepaocpuevwy Kataotaoewy

Basic Concept of Design Flow

System architecture
(SDL editor)

W
Use cases
MSC editor

L

SDL coding

)

Code analysis

k4

Code generation

M

Simulation

OK

SDL code

Yes

generation
"

C/C++ source code ‘

Compile and link

0

Execution file

(block)

Process
Instance

Process

“signal routes

System (or another block)

N
Y / 4

channels

Block

Block

ULarge number of process without structure leads to loss of overview

Blocks are used to define a system structure

Signal routes transfer signal immediately while channels may be delaying

System Instance

signals

signals -
P : Process signals Process
Instance Instance
signals
A is an agent that contains an extended finite state machine,

and may contain other processes.

A is composed of a number of communicating process
instances

prosacs ATM

TIMER

Cash = CashDeiay,

Card 1= CardDelay;

ETHONYTM

CashiDelay Durafion = 30.0,
CardDieday Duration = 3000
DL

aCCouniNumber Accounisumbser_T,
cardPi, userPN PINCT,

amourt Haturalk

BectCard

Cardinseried_id

s

cardPI)

Writslin

['Enter password’)

%
FALEE]
| | ’
Wrlisin Writsin writsin
{'Enter amount] [Wrong coae’) =l [Wrong arount)
L | | I
TakeCash_rg
o 08 EechCand ‘a - Eectland
L I L \
Ready BET(RCash) Ready }
N

AmounssK

system (or enclosing block)

—<>— block D

channels .

block

/—\bind some parameters ...

Parameterised Type

par ameteriseT lbind all parameters ...

Type ‘
Ljsp;alises
|
I
specifies ...
Initial ideas > Instance

specifie

instantiate

cess P1

(A (B J(Ce Jo JCE N

g

h

j

w

y

(BJ)Cc JLo JCE JCA JC A]

LA PROCESS exists in a state, waiting for an input (event).

When an input occurs, the logic beneath the current state, and the
current input executes.

L Any tasks in the path are executed.
Any outputs listed are sent.

The state machine will end up in either a new state, or return to
the same state.

The process then waits for next input (event)

process

calling 1/5

wait_for_connection

I

connectTone

I

onHook

reset (TI)

I

[

reset (TI)

connectTone
VIA uG

I

I

connected

connEnd
TO
otherPid

L

L

Connected

idle

connEnd TO
otherPid

I

set (NOW
+ T_10sec, T2)

L

wait_for_onHook

LPROCESS specifies dynamic behaviour
*Process represents a communicating extended finite state
machine.
*each have a queue for input SIGNALs
*may output SIGNALs
*may be created with Formal PARameters and valid input
SIGNALSET
*it reacts to stimuli, represented in SDL by signal inputs.
stimulus normally triggers a series of actions such as data
handling, signal sending, etc. A sequence of actions is described in
a transition.

LPROCESS diagram is a Finite State Machine (FSM) description

state_a

state_a

-

> sig_a
sig ¢)

LSTATEs: point in PROCESS where input queue is
being monitored for arrived SIGNALs

osubsequent state transition may or may not have a
NEXTSTATE

QINPUT: indicates that the subsequent state
transition should be executed if the SIGNAL
matching the INPUT arrives

oINPUTs may specify SIGNALs and values within
those SIGNALs

olnputs can also specify timer expiry

UOUTPUT: specifies the sending of a SIGNAL to
another PROCESS

process

calling 245

wrait_for_num :}

T

busyTone
WIA S

rum

{tclhlum:|< TREL

reset (T1)

reset (T1)

getliserPid (toMNum, otherFid |

wrait_for omHook

: a1

otherPid = MU l'\

msg (“Somy,
wrong number')

L

wait_for_connRepl

wait_for omHook

do_something

true false

57

*TASK: description of operations on variables
or special operations

"The text within the TASK body can contain
assign statements.

=DECISION: tests a condition to determine
subsequent PROCESS flow

*"|OIN: equivalent to GOTO.

(=]

-

LSAVE: specifies that the consumption of a SIGNAL be
delayed until subsequent SIGNALs have been consumed
sthe effect is that the SAVEd SIGNAL is not
consumed until the next STATE
"no transition follows a SAVE
sthe SAVEd SIGNAL is put at the end of the queue
and is processed after other SIGNALs arrive

LSTART: used to describe behaviour on creation as well
as indicating initial state
*Similar shape to state only with semi-circular sides

Textual form Graphical form

Idle
state ldle; ()

input Coin(C); '
task x := Coin < Choice <
value(C); 1
nextstate Paid;
input Choice; x := value(C) (Idle)

nextstate ldle; !
endstate ldle; (Paid)

At a particular state,
A signal is removed from the queue

LIf a transition defined for the signal in current state,
"Run the transition
" Transmit signals
"Update internal variables
*Choose a next state

UIf no transition defined for the signal in current state,
"Discard the signal
[eave the state unchanged

> Can denote both a current and a next state

> Line leaving leads to rules for a current state

(.)

» Arrow entering means a next state

l
(o)

»Denotes where the execution of a process begins

> Nameless state

)

A 4

(Running)

» Appears immediately after a state

»Indicates which signal triggers each transition

«

<
G

Choice <

Clear <

|
/

Y

Lead to diagrams for each transition

JComplete Valid Input Signal Set
sSet of all signals that the process will ever accept
" An error occurs if a signal outside this set is received

in any state, only certain signals may have a transition
"A valid signal that has no transition is simply
discarded without changing the state
*"The “implicit transition”

(Designed for handling signals that arrive out of order

A “Choice” signal
that arrives in this

Idl state will be
© deferred to the

I | next
Coin < Clear < /Choice/

(Like receive, but instead pushes the signal back in the
queue

»Single process input queue totally orders the sequence of
events that arrive at a process

»What if two events arrive from different processes at more-
or-less the same time?

»The save symbol can be used to dictate the order in which
signals that arrive out of order are processed

»Send a signal to another process

»Which channel to send it on usually follows from its type

=)
—y

GotMoney >

(JAnN SDL process has local variables it can manipulate

Partially shared variables
*Only the owning process may write a variable
=Other processes may be allowed to read a variable

(A Variables are declared in a text annotation

dcl x Integer;

» Assignment of variable to value of expression

x := value(C) + 3.14159

dcl x Real;

»Informal text
*Produces an incomplete specification
*Intended to be later refined

‘Release a can’

A two-way branch that can check a condition

(dCan be an expression or informal

(n) (yes)
‘Is anybody awake?’

» A transition can cause another process to start

CallHandler

»Communication channels stay fixed
> Processes marked with initial and maximum number of
copies that can be running

CallHandler(0,63)

»Intended use is in a “server” style
» A new connection (call, interaction, etc.) appears
» A new server is created to handle this particular
interaction
> |t terminates when it has completed the task (e.g., the
user hangs up the phone
»Maximum number of processes usually for resource
constraints
*Can’t handle more than 64 simultaneous calls
without exhausting processor resources

»Process is always running

[CallHandler(l,1)]

»As many as 64 copies of the process can be running

[CallHandler(0, 1)]

»Process starts dormant. At most one instance of the process

ever runs
[CallHandler(0,64)]

» A process can only terminate itself

‘Utter final words’

Timer must

be declared / . .
‘ Idle ’ like a variabl TimerT,;
|

Choice < T <
+—— When timer

l | expires, it

sends a signal

set (now+10,T) ‘Where’s my money?’ o the process

GO\

Timer is set to
go offat a
particular time

»Variables can be declared locally for processes.
» Their type can be predefined or defined in SDL itself.
»SDL supports abstract data types (ADTs).

Examples:

DCL — Counter := Counter + 3;

Counter Integer;

| Y

Date String; ‘ﬁ
|
Y

(1:10) (11:30) ELSE

¢

L Communication between FSMs (or ,,processes®) is based on
message-passing, assuming a potentially indefinitely large FIFO-
queue.

« Each process fetches
next entry from FIFO,

‘0cess 3 checks if input enables
i transition,

« if yes: transition takes

o place,
* if no: input is ignored
(exception: SAVE-

mechanism).

process 1

Uinteraction between processes can be described in process
interaction diagrams (special case of block diagrams).

In addition to processes, these diagrams contain channels and
declarations of local signals.

Example:

BLOCK B1

Signal A.B; \W

K process P1

Sw2 i[A]

[AB]
--‘ process P2

Sw1

Through process
identifiers:

Example: OFFSPRING
represents identifiers of
processes generated
dynamically.

Explicitly:
By including the channel
name.

Implicitly:
If signal names imply

channel names (B —
Swl)

Counter

TO OFFSPRING >

Counter
Via Swl

sSw2 |[A]

Process interaction diagrams can be included in blocks. The root
block is called system.

Block B

Y

C3

B2

C4

System S

(8)
(A (B (&
B) (2

F) @2

Processes cannot contain
other processes, unlike In
StateCharts.

» Timers can be declared locally. Elapsed timers put signal into queue
(not necessarily processed immediately).

»RESET also removes timer signal from queue.

© Process S m
(A(CB)Ce e) (B

w > X > y > set(now+p,T) v > RESET(T)

SDL includes a number of additional language elements,
like

»procedures
»creation and termination of processes
»advanced description of data

System

Processor A Router

Processor B

Processor C

P o1} T 2 !}

C3

|

Block Processor A

layer—n

Block Router

layer-2

T

layer—1

v ¥y

Block Processor B

layer—n

layer—1

Block Processor C

layer—-n

layer—1

Machine® selling pretzels, (potato) chips, cookies, "
and doughnuts: i

f
accepts nickels, dime, quarters, and half-dollar coins. E—g

Not a distributed application.

° [J.M. Bergé, O. Levia, J. Roullard: High-Level System Modeling, Kluwer
Academic Publishers, 1995]

System VendingMachine Creject
[reject_coin]
Ccoins Cadd CamontDisplay
[nickel,dime, Coinlnterface| [add] [amount_entered]
quarter,half] . DecodeRequests| Cemptydisplay
Cﬂ?l?mtll;l _ [pretzel_empty, chip_empty,
[re)_furt er_coins, cookie_empty, doughnut_empty]
c accept_coins] CspitPurchased
request [spit_pretzel, spit_chip,

[pur_pretzel, pur_chip, pur_cookie, pur_doughnut, spit_cookie, spit_doughnut]
reload_pretzel, reload_chip, reload_cookie,

reload_doughnut] CexaktDisplay

[spit_change] Cchange | [exact_only]

Changelnterface :
N g CspitChange

SIGNAL [spit_nickel,
[dime, nickel, quarter, half, pur_pretzel, spit_dime]
pur_cookie, pur_doughnut, pur_chip,

add(int), spit_change(int), ‘ SYNTYPE items=INTEGER "
amount_entered(int), reject_further_coins, CONSTANTS 0:7

exact_only, accept_coins, reject_coins, ENDSYNTYPE items:

spit_dime, spit_nickel, pretzel _empty,
spit_pretzel,chip_empty, spit_chip,
cookie_empty, spit_cookie, doughnut_empty,
spit_doughnut, reload_pretzel, reload_chip,
reload_cookie, reload_doughnut]

SYNTYPE int=INTEGER

CONSTANTS 0:127
ENDSYNTYPE int;

Rchange [spit_change]

Block DecodeRequests |

Rcointctrl [accept_coins,
Radd = W rej CCt_ﬁ.ll’t]‘lC]‘_Eﬂ_i_nS]
[add] L AmountHandler
| RamountDisplay
Rsl [amount_entered]

Rpretzel I/Prctzcll—landlcrw[—suhl Rpretzel_e [pretzel_empty]
I

[pur_pretzel, rclnad_prctzclﬂ Rpreizel s [SpitJ__p]I‘CtZCII

Ca
)

Rs2

Rchi m Rchip_e [chip_empt
P ChipHandler | P [chip pty]

[pur_chip, reload_chip] k Rchip_s [spit_chip]

Rcookie Rs3[sub] Rcookie_e [cookie_empty]

v

" _ - - CookieHandler|
[pur_cookie, reload_cookie]f_|\ Rcookic_s [spit_cookic]

&

Rdoughnut r/D Rs4[sub] Rdoughnut_e [doughnut_empty
oughnutHandler | =
[pur_doughnut, k Rdoughnut_s [spit_doughnut]
reload doughnut] = - - = —
=
. &2
CONNECT Cadd AND Radd; SYNONYM PRETZEL int=50 [~
CONNECT Ccoinctrl AND Rcoinctrl; SYNONYM PCHIP int=15;
CONNECT Cchange AND Rchange; SYMNONY M PCOOKIE int=55;
CONNECT CAmountDisplay AND RamountDisplay; SYNONYM PDOUGHNUT
CONNECT Crequest AND Rpretzel, Rechip,Recookie, int=610;
Rdoughnut; SYMNONYM PMAX int=60:
CONNECT CemptyDisplay AND Rpretzel_e.Rchip_e, SYMNONYM NITEMS items—7;
Recookie e,Rdoughnut_e;
CONNECT CspitPurchased AND Rpretzel_s. p— o
Rchip_s,Rcookie_s,Rdoughnut_s; SIGNAL sub(int); Il\‘

Process ChipHandler

DCL nchip items:=NITEMS; %

VIEWED current int; %

pur_wait

pur_chip

VIEW ((current)

>= PCHIP

sub(PCHIP) >

nchip:= nchip-1;

|
spit_chip >

nein
pur_wait

—=| chip_empty >
reload_chip

nchip:=NITEMS

pur_wait

L2uvABwg, Ta ouoTtriuara dououvTtal oxedialovTag KATOIEG DIEPYATIES
QUBOUTTOPKTEG, 01 OTT0IEC avaAauBavouv Tn dnuIoupyia KATToIwV GAAWV.

OH pev digpyaoia, Tou €ival aubummapkTn Kal dnUIoUpyYEi pia GAAn,
KOAEITAI yoveéQG (parent process), I Ot ONUIOUPYOUMEVN oOvopadeTal
dlepyaaia — maidi (child process).

OTa omnyuidtunma kaBe Oiepyaciag oéBoviar TR dopnl KAl TN
OUNTTEPIPOPA TNG DIEPYATiIiag AUTAG.

QEivar autévopa, woTtdoo EMKOIVWVOUV HETACU TOUG, AAAA Kal ME
AAAEG Digpyaaied.

U2T1nv mrepimmwaon O1mou UmapxouV TTEPICOOTEPA TOU £VOG OTIYMIOTUTIQ,
N ATMMOCTOAN ONUATWY TIPOG EVA OUYKEKPIMEVO OTIYMIOTUTIO YiVETAI UE
pNTA d1EuBuvol0d0TNON (explicit addressing), dNAAd PE TN XPHRON NG
TAUTOTNTAG TOU (process identity).

Env Demongame
Newgame
>
Probe
g
Win
<
Result
>
Score[l
P [1]
Endgame

Demon

Env Main
Newgame
>
——————————— >| Game
Probe
P
Lose
< Bump -
N
Probe
P
Win
.
Result
g Bump -
Score[0 ¢
< [O]
Endgame q
GameOver
>

Env Main Demon

Game
Probe
o
Lose
< Bump <
Probe N
>
Probe
Win
l
Win
- Bump ¢
¢
Result >
< Score[1]
Endgame q
GameOver q

Noapaodelyua

Systemn DemonGame

SIGNAL
Newgame, Probe, Result, Endgam
Win, Lose, Scare{lnteger), Bump;

2

Result, Endgame

[Newgame, Prohe,
; c2

|

\[Win, Lose, Score]

GameBlock

rC3

[Bump]

>

DemonBlock

@

C2

C3

Napdoelyua

Block GameBlock
Vo s SIGNAL lj
‘ : GameOQver,
R1 (
[Newgame'] Main(1,1)
Endgame
.
R2 RS
Probe,
[Result] [GameOver]
>
R3
[Win,Lose,Score] Game(0,1)
R4
[buma] N

Noapaodelyua

Process Game 1(1)

DCL
Count Integer;

>

Count=0 Result < GameOve<

. Score
(Losing) (Count) >k

:

Probe < Bump < (-)
Lose Winning
| []

C t=

Count1 Puimi < RIgRE <

() (Losing) WWin
Count=
Count+1

)

——

Noapaodelyua

€3

Block DemonBlock

R1

Demon(1,1)
[Bump]

Process Demon

N | <
)

(Generate) Bump

Set

(Now+1, T)

() (Generate) TImeET; B}
Set T
(Now+1, T)

env_0O

Simulation trace
generated by
SDT Simulator 3.4

Newgame

process Main

G ame_Off

(1)

state Game_ off

Initial transition of Main to

(2)

Send signal Newgame to Main

process Game

Game_11

process Demon

Demon_1_2 |

T(1.0000)

@)

Set Timer T at t=1
Transtition Of Demon
to state Generate

Generate

®3)

Initialization Of Game

task
Count:=0

{ Losing >
N

)

Deliver timer T

to Demon

- System diagram

system AccessControl

SIGMNAL

display,
keys;

eject-card, lock, unlock
input-card, isOpen, isClosed [/ ENV

SIGNAL OK,NOK,ERR ;

/* Signal definitions for AccessPoint communication */

/* Display
/I ENV

SIGNALLIST validity = OK, NOK, ERR ;
SIGNALLIST outp = EjectCard, display;
SIGNALLIST inp = InputCard, keys ;

/* AccessPoint TO ENY */

1(1)

TO AccessPoint™/
TO ENY =/
TO Keyboard */

SIGNAL Code(integer,integer); /* AccessPoint TOQO CentralUnit */
[* CentralUnit TO AccessPoint */

AccessPoint "-

_AP(100) | Lvalidity)]

‘ Accgss Point

i
!

#
|

CcD

[isOpen, isCIosed,]

[lock,unlock] f
|

—‘j—k CentralUnit
C

block type
(reference)

[Code]

|
!

T T

signal block set accord-

list ing to a block type

channel

block (single)

Open figure

block (type) heading

blocktype diagram

block type AccessPoint - 1(1) .

signal
signal opened,closed ; /* Door -> Controller *z’%’ definitions
signal open, close ; /* Controller -> Door */

/" [* signal lists (inp), (out) and (validity) defined in rocess tvpe
text enclosing block. This holds also for signal '‘Code’ */ P YP
symbol o

_ process
Controller
. [unlock,
e NP1 ~E [(inp)] q lock]
- > » Panel -t
[(outp)] [(outp)] [1sOpen, [[1sOpen,
A N [(validity)] 1sClosed] [1sClosed]
[code] [opened, [open,
e P D)glosedl D | closel [(valicity)]
j U — -t -
Controller = J [(validity)] I\ CU [Code] | C [Code]
gate signal list / \ _
. signalroute

process type diagram

»

variables

process type Controller

1(1)

dcl cur_panel Pld ;{current panel whose Code will be validated *J[f
dcl cid, PIN integer ; /* temporary variables for the data attributes of 'Code’ */ ‘

®tal~t

state

et

Code(cid,PIl‘a/

mput

[* from Panel */
| task

< Validation >

unlockDoor)

procedure
reference

OK
/™ from

Central */

OK
| =
gt,llzrﬁ%agRe TO cur_pane|
[~ ~
TO
i _ unlockDoor
Code(cid.PIND=~ o iralunit
nextstate ¢

(Validation ?/

)

procedure

call

NOK
I* from

Central */

>

NOK
TO cur_panel

output

Y

(" a

S

A package is a set of types.

Types that are only used in
one system will normally be
defined as part of the
system specification, but for
convenience they may be
collected and defined in a
package and then used by
the system. If a set of
related types are to be used
in many systems within a
specific application domain,
then a package is the right
place to define the types

package diagram

package Signalli signal definitions
£ Signal definitions far Access Poipdtommunication
signal
gject-card, lock, unlock FaccessPoint bo ENV
input-card, is0Open, isClosed & EMY bo AccessPoint™
cisplay, F Display bo ENYW Y
kg_l.rs,' _ _ FEMNS bo Beyboard
s!gnal Codefinteger jntegery F AccessPoirt bo CentrallJnit %
sigmal OF,MOE,ERR ; FCentrallnit bo AccessPaint ®

signallist validity = O, NOK,ERR; signalbist defnitions
signadlist cutp = Eject Card, display;
gignallist inp = hputCard, keys ;

F Signal defnitions for BlockingAccess Foint comnunication “Il

signal

Cisakble, & Centralnitte BlockingAccessPoint %

Enabile ; & Centralnitte BlockingAccessPoint %
H

F Signal definitiors within .ﬂctﬂsm\ I
signal opened clozed ; F Door te Contraller % 1enal deﬁrniﬁnni

signal open, dose ; F troller o Door =

(Each variable is of a particular “sort” (type)
*Possible values (e.g., integer numbers)
*Operators on those values (e.g., +, *)
*Literals (e.g.,"“zero”,“1”,2”)

Built-in sorts: integer, Boolean, real, character, and string

(JCan be combined in structures, arrays, enumerations, and sets

LJPROCEDURE: similar to a subroutine
mallow reuse of SDL code sections

"reduce size of SDL descriptions
"can pass parameters by value (IN) or by reference

(IN/OUT)

> sigA

l

ProcB
(SENDER)

(stateC

PROCEDURE ProcB
fpar player Pld;

v

Gameid to
player

=

UPriority inputs are inputs that are given priority

_ | in a state
>> 2162 QIf several signals exist in the input queue for a
| given state, the signals defined as priority are
consumed before others (in order of their arrival)

. Q Internal Input/Outputs signals are used for
> >18-2 signals sent/received within a same FSM or SW

| component

. There is no formal definition when they should
S18© be used.

The input with an asterisk covers all possible
input signals which are not explicitly defined
for this state in other input or save constructs

The Save with an asterisk covers all possible
signals which are not explicitly defined for
this state in other input or save constructs

process star_dash_combination

When next state is same as current state the

N “dash” symbol may be used instead of state
name.
|
. This is particularly useful in combination with
* (any state).

Alarm

process Star_Input

Online

Inputl L Input2

N N N

N2

Online - [dle

DCL numthings INTEGER; 7

(SateA | JSDL diagrams can contain variables

(Variables are declared using the DCL statement

> Sigh in a text box.
J7 (QVariables can set in a task box and read in
numthings = decisions
numthings
+1:
) A data type is called a sort in SDL

>

ProcessA

offspring
>0

true

X

false

Processes can be created and destroyed in SDL
QEach process has a unique process id.The self
expression returns the process id of the current
process.

(Processes are created within a SDL process using
the CREATE symbol.The Create body contains the
type of the process to create

U The offspring expression returns the process id
of the last process created by the process.

The PROCESS that is created must be in the
same block as the process that creates it.

dThe Stop symbol is used within the SDL
PROCESS to signify that the process stops.

QINTEGER: signed integer

NATURAL: positive integer

REAL: real, float

UCHARACTER: | character

L CHARSTRING: string of characters
UBOOLEAN:True or False

LTIME: absolute time, date (syntype of REAL)
LUDURATION: a TIME minus a TIME (syntype of REAL)

LPID: to identify a process instance

Operations := (assignment) , = (equality) and /= (nonequality) are
defined for all sorts

QINTEGER -+, % 1,>,<,>=, <=, Float (Integer to
Real), Mod (modulo), Rem
(remainder)

UREAL -+, % 1,>,<,>=, <=, Fix (Real to Integer)
ONATURAL Like Integer

UCHARACTER Chr (Integer to Char), Num (Char to Integer),
> < >= <=

LUCHARSTRING Mkstring (Char to Charstring), Length, First, Last,
Il (concatenation), Substring

UBOOLEAN True, False, NOT,AND, OR, XOR

QPID Self, Sender, Offspring, Parent

SET(NOW

+20ms, T7)

Timer T7; Iﬁ

(WaitForTimer'

%

SigA

RESET(T7)

Timer is an object capable of generating an
input signal and placing this signal to the input
queue of the process. Signal is generated on the
expiry of pre-set time.

LSET(NOW+20ms,T7): sets a T7 timeout in
20ms time.

RESET(T7): cancels the specified timeout.

Usignal:
*The primary means of communication is by signals that are
output by the sending agent and input by the receiving agent.

Ustimulus:
*A stimulus is an event that can cause an agent that is in a
state to enter a transition.

dchannel:
*A channel is a communication path between agents.

Text Symbol is used to group various textual declarations
LIt can be located on any type of diagram

. k def
Concrete graphical grammar pacikage fes

e— /* Signals betw een users
<text symbol> = * (internal) */

SIGNAL

connReq,
connFree,
connBusy,
connEstablish,
connknd;

[* Signals froma user (ENV) */
SIGNAL

offHook,

onHook,

num (num_t);

Text Box

Example

U Topmost level of abstraction - system level
Has a name specified by SYSTEM keyword
L Composed of a number of BLOCKSs

LBLOCKSs communicate via CHANNELs

W Textual Descriptions/Definitions
*Signal Descriptions
*Channel Descriptions
*Data Type Descriptions
*Block Descriptions

Signal Descriptions

in text symbol
SYSTEM s
SIGNAL S1,S2,S3, "
S4,S5;
Cl [S1,S2] C2 [S3]
) BI ,
|_-Signal Lists
C3 [$4] B C4[55]
/ / Frame symbol -
Channels Blocks boundary between

system and environment

(Since SDL 92 reusable components may be defined as types and
placed into libraries called packages.

W This allow the common type specifications to be used in more
then a single system.

Package is defined specifying the package clause followed by the
<package name>.

LA system specification imports an external type specification
defined in a package with the use clause.

system localExchange

USE defs;
(tones),
[(userSigs)] msg
localExchange < >
userCh

package defs

/* Signals from a user (ENV) */
SIGNAL

offHook,

onHook,

num (num_t);

SIGNALLIST userSigs =
offHook,
onHook,
num;

[* Signals to a user (ENV) */
SIGNAL
dialTone,
ringTone,
busyTone,
shortBusyTone,
connectTone,
msg (CharString);

SIGNALLIST tones =
dialTone, ringTone,
busyTone, shortBusyTone,
connectTone;

JEntities are
oPackages, agents (system, blocks, processes), agent types, channels,
signals, timers, interfaces, data types, variables, sorts, signal lists;

(dPossible Scope Units are
oAgent diagrams (System, Block, Process), Data Type Definitions,
Package diagrams, task areas, interface definitions ...

dThe Entity is visible in the scope unit if
ois defined in a scope unit
othe scope unit is specialisation and the entity is visible in base type
othe scope unit has a “package use clause” of a package where
entity is defined
othe scope unit contains an <interface definition> where entity is
defined
othe entity is visible in the scope unit that defines that scope unit

LA tree diagram can be constructed to illustrate the hierarchy of
the entire SYSTEM .

Macros can be used to repeat a definition or a structure.They are
defined using the MACRODEFINITION syntax .

Paramaterised types exist using the generator construct.

U Gates
oA gate represents a connection point for communication
with an agent type, and when the type is instantiated it
determines the connection of the agent instance with other
instances.

systemATM

use bank_lib;

Consortium

Teller Machine (ATM). Banking transactions
are performed by means of cash card.
This ATM allows cash withdrawal only.
Withdrawals must be authorized by tKe
consortium, and in case of success, must
be reported to the consortium. */

B‘ /* This model corresponds to an Automated

< -

q_accept,
[wdrok ﬂ [

r_accept,
go_ATM|
stop_ATM

Central

ul

ce_ui
< >
card, display_w
entry, prinft
cashtakep, cash
quit eject
go_ATM,

stop_ATM

Customer
d
|
card,
entry,
cashtakep,
quit

Consortium

block Central

go_ATM, [card]
stop_ATM <
Supervisor
(1.9)
————
[tr_end]
\4
Sp_tr |: :| —r_] Spv
- stop_tr
- Tr(0.1):
Transaction
1 cns
co_tr |: r_acc epﬂ

ui O

|

entry,
cashtaken,

quit

ce_ui

block Ul

ce_ui @¢

Eco_Ul

ce_uio
card, display_wait,
entry, print,
cashtaken, cash,
quit eject,
go_ATM,

stop_ATM

cu_ui

@ Customer

ul(1,1):
cent Ec(o J| CUSt
- card,
entry,
cashtaken,
quit

ATM

[

Central

|

[

Supervisor

package bank_lib

/* This SDL components library
contains SDL block and process
types w hich are useful to
develop banking systems. */

/* Signals received by the
Transaction Process Type */
signal

entry (Charstring),
cashtaken,

quit,

r_accept (RespConso),
stop_tr;

/* Signals sent by the
Transaction Process Type */
signal

display_w ait (Charstring),
print (Charstring),

cash (Charstring),

eject,

tr_end,

g_accept (QuestConso),

w drok (CashCard, Charstring);

/* Additional signals for
Basic_ATM_UI'*/
signal

card (CashCard),
go_ATM,

stop_ATM;

/* Types used by the Transaction Process */
newtype CashCard
struct
id Integer;
expirDate Integer;
psswd Charstring;
operators
checkCard: CashCard -> Boolean;
checkPssw d: CashCard, Charstring -> Boolean;
operator checkCard;
fpar cc CashCard;
returns res Boolean;
start;
task res := (cclexpirDate > 9701) and (cclid /= 0);
return;
endoperator;
operator checkPssw d;
fpar cc CashCard, cpw Charstring;
returns res Boolean;
start;
task res := (cclpsswd =cpw);
return;
endoperator;
endnewtype;

QuestConso::=sequence {
cardData CashCard,
amount Charstring};

RespConso ::=sequence {
cardData CashCard,
accept Boolean,
amount Charstring optional};

/* This package contains:

- ASN.1 declarations (QuestConso, RespConso)
mixed into SDL declarations

- Process types (Transaction, Basic_ATM_Ul)

- Virtual transitions (in Transaction)

- Axioms (New type CashCard)

*

/* This implements a
simplified banking
transaction. */
Transaction

/* This implements a
basic terminal

. interacting w ith the
Basic_ATM_UI customer. */

UDynamically created processes become part of an instance
set.

UThe instance set in the block diagram contains two variables,
the number initial process instances and the maximum number
of instances.

dThe following Describes a set of Identical Processes
initially there are no members of the set

dCan be up to 7 members in the set

BLOCK ExampleProcessSet

C 1 S l [*"k'k , *kk , ****]

bidders (0, 7) :
Bidder

C2
AN

S 2 [*** , *k* , ****]

W The following Describes a set of Identical Blocks
Qinitially there is one member of the set

There is no limit to the number of members in the set

SYSTEM ExampleBlockSet

C 1 [*** , *kk , ****]

= bidders (1,) :
Bidder

C 2 [*** , *kk , ****]

Dynamic processes can have data passed into them at creation
time using Formal Parameters

USimilar to C++ constructor

PROCESS Proc2 . PROCESS TYPE Procl
sigl
fpar player Pld,

numtries Integer;

Gameid to
Procl player

(offspring,3)

=3)

The destination of an output can be defined in a number of ways:
iImplicit when only one destination is possible

AN explicit destination can be named using the keyword to X, where
X is of type Pid.
oSELF giving the address of the process itself
oSENDER, giving the address of the process from which the last
consumed signal has been sent;
oOFFSPRING, giving the address of the process that has been
most recently created by the process; and
oPARENT, giving the address of the creating process.

. sig_¢
sig_¢ to X

Implicit Addressing Explicit Addressing

UThe term *“via” can be used followed by a
sig_c > signal route or channel. This means it can be
via G3 sent to all process attached to a particular

channel or signal route(multicasting).

sig_c > LOr it can be sent everywhere it possibly can
via all using the “via all” qualifier (broadcasting).

UThe Z.100 standard partially defines an example of SDL in the form of a
game called DaemonGame. A modified version is described here.

The game consists of a quickly oscillating state machine, oscillating
between odd and even.

LAt random intervals the player queries the state machine.
QIf the machine is in the odd state the player wins.

QIf the machine is in the even state the player looses.

SYSTEM Daemongame

SIGNAL 1\

NewGame,

Probe,

Result,

Endgame,

Gameid, GameBlock

Win,

Lose, Gameserver.in Gameserver.out

Score(Integer); | _ _ _
NewGame, Gameid,
Probe, V| Win,
Result, Lose,

|_Endgame _| Score

BLOCK GameBlock

signal R4 Game
Gameover(Pid);
! [Gameover]
Monitor game (0, 7) :
Game
Probe, — C
[NewGame] Result, R3 Ga.meld,
Endgame Win,
Lose,
RI S
R? B core 3
Gameserver.in Gameserver.out

PROCESS TYPE Game
fpar player Pld;

C

Gameid to
player

Set(Now
+Ims,T1)

PAGE 1(3)

dcl count Integer := 0;
/* counter to keep track of score */
TimerTI;

!

Set(Now
+Ims,T1)

=

> Probe

Lose to
player

-

count := count -|

(even

PROCESSTYPE Game

(odd

Tl

|

Set(Now
+Ims,T1)

)

even

Probe

Win to
player

J,

count := count +|

J,

odd

PROCESSTYPE Game

Result Endgame
Score(count) Gameover
to player (player)

Transition Table

State

even

Input
T1

Result

Task
Set(Now+1ms T1
count := count -1

Set(Now +1ms T

count := count +|

o

Endgam:

Gameover STOP

Score(count) to playéeeven

Output NextState
) odd

,,,,,,,, Losetop'ayerée"e”
1) even

Gameover STOP

LSDL is case insensitive

L One Block Diagram for each Block in System Diagram
One Process Diagram for each Process in Block Diagram
L Only Signals listed on SignalRoute used in Process Diagram
(J* State used to represent any state

(- NextState means return to the previous state (i.e. no
state change)

W To transition out of state requires input.

Process Diagrams are of type PROCESS TYPE rather
than PROCESS because they are part of a Process Set.

L Gameover message always sent to Monitor so no need
for explicit destination address.

Lose, Score,Win Gameld require explicit destination
address.

Uplayer passed in as a formal parameter, like a C++
constructor.

(New data types can be defined in SDL.
AN example data definition is shown below

newtype even literals 0;
operators
plusee: even, even -> even;
plusoo: odd, odd -> even;
axioms
plusee(a,0) == a;
plusee(a,b) == plusee(b,a);
plusoo(a,b) == plusoo(b,a);
endnewtype even; /* even "numbers' with plus—
depends on odd

LA syntype definition introduces a new type name which is fully
compatible with the base type

O An enumeration sort is a sort containing only the values
enumerated in the sort

W The struct concept in SDL can be used to make an aggregate of
data that belongs together

dThe predefined generator Array represents a set of indexed
elements

(ANew Data types can inherit from other data types in SDL

True, False are renamed
tol &0

newtype bit inherits Bool
literals | =True, 0= False;
operators ("'not", "and", "or"")

) r

adding operators Operators that are
Exor: bit,bit -> bit; L perserved

axioms

L1 N\

From this point new J

Exor(a,b) == (a and (n

endnewtype bit;
YP ’ items are defined

Most SDL protocol specifications used ASN.| to describe data.
(Z.105 describes how SDL and ASN.| can be used together.

Structure
oConcerned with the composition of blocks and
process agents.
oSDL is structured either to make the system easier
to understand or to reflect the structure (required
or as realised) of a system.
oStructure is a strongly related to interfaces.
LBehavior
oConcerns the sending and receiving of signals and
the interpretation of transitions within agents.
oThe dynamic interpretation of agents and signals
communication is the base of the semantics of SDL.
Data
oData used to store information.
oThe data stored in signals and processes is used to
make decisions within processes.

Winterfaces
oConcerned with signals and the communication paths for
signals.
oCommunication is asynchronous: when a signal is sent from
one agent there may be a delay before it reaches its destination
and the signal may be queued at the destination.
oCommunication is constrained to the paths in the structure.
oThe behaviour of the system is characterised by the
communication on external interfaces.

QTypes
oClasses can be be used to define general cases of entities
(such as agents, signals and data).
olnstances are based on the types, filling in parameters where
they are used.
oA type can also inherit from another type of the same kind,
add and (where permitted) change properties.

|. A. Mitschele-Thiel, Systems Engineering with SDL*, John Wiley & Sons,
Ltd, 2001, Print ISBN: 9780471498759, Online ISBN: 9780470841969

2. |. Ellsberger, D. Hogrefe, A. Sarma, SDL Formal Object-Oriented
Language for Communication Systems*, Prentice Hall 2007, ISBN:

0136328865

3. Oleg Chistokhvalov, http://www.it.lut.fi/kurssit/05-
06/Ti5315800/Slides/Lecture_7/lecture/.html

4.Dr. Junzhao Sun
521265A/lectures/ch5_SDL.pdf

5.SDL forum society: http://www.sdl-forum.org/SDL/index.htm

http://www.ee.oulu.fi/research/tklab/courses/

