
Θεωρία και Σχεδιασμός πρωτοκόλλων

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

•Based on Lectures notes from: * Oleg Chistokhvalov, LUT, IT Dep. ,* Dr. Junzhao Sun U. OULU Dept. Electrical &

Information Engineering, Computer Engineering Lab

Μεταπτυχιακό Πρόγραμμα Σπουδών

Αθανασία Αλωνιστιώτη
nancy@di.uoa.gr

Outline

Introduction to SDL

• Language

• Purpose & Application

• Key SDL features

Static SDL Components

• Description of the System Structure

• Concepts of System, Block and Process

• Communication Paths: Channels, Signals

Dynamic SDL Component

•State, Input, Output, Process, Task, Decision, Procedure …

•Data in SDL

•Inheritance

•Block and Process Sets

Examples

Language

  Γλώσσα περιγραφής συστημάτων και πρωτοκόλλων.

 Προτάθηκε από τον οργανισμό ITU-T (Recommendation Z.100.)

 Καλύπτει ποικίλους τομείς διαδραστικών και κατανεμημένων

συστημάτων (π.χ., δικτυακά πρωτόκολλα, hardware).

 Graphic Representation (SDL/GR) & textual Phrase Representation

(SDL/PR).

 Ένα σύστημα προδιαγράφεται ως ένα σύνολο διασυνδεδεμένων

«μηχανών» που είναι επέκταση των μηχανών πεπερασμένων

καταστάσεων.

 Ο φορμαλισμός της γλώσσας επιτρέπει την προσομοίωση αλλά

και την αυτόματη παραγωγή κώδικα.

Language

  Πρώτη έκδοση 1976.

 Το 1988 -> SDL-88 περιέχει object oriented concepts (π.χ.,

inheritance, abstract generic types etc).

 Τo 1992 βελτιωμένη υποστήριξη για υλοποιήσεις.

 Η SDL-2000 είναι η τελευταία έκδοση η οποία βασίζεται

αποκλειστικά σε object-orientation.

 Κατά την προσομοίωση (simulation) ενός συστήματος παρέχεται

η γραφική αναπαράσταση της διαδοχής των σημάτων με τα MSCs

(Message Sequence Charts).

Introduction to SDL (Purpose & Application)

Why SDL exists ?

The purpose of SDL is to be a language for unambiguous

specification and description of the structure, behaviour and data of

telecommunications systems.

The terms specification and description are used with the

following meaning:

• a specification of a system is the description of its required

behaviour

• a description of a system is the description of its actual

behaviour, that is its implementation.

Introduction to SDL (Purpose & Application)

Why SDL exists ?

SDL may be used for producing

oSpecification and Design of diverse applications: aerospace, automotive

control, electronics, medical systems,

oTelecommunications Standards and Design for (examples):

•Call & Connection Processing,

•Used Worldwide for all kinds of complex, communication systems

•3G,Cellular Phones, switches ,WLANS, Bluetooth device etc,

•Maintenance and fault treatment (for example alarms, automatic

fault clearance, routine tests) in general telecommunications systems,

•Intelligent Network (IN) products,

•Mobile handsets and base stations,

•Satellite protocols,

Increasingly used to generate product code directly with help of tools like

ObjectGeode, Tau/SDT, Cinderella

SDL Representations

SDL has two representation forms:

•SDL-GR - graphical representation

•SDL-PR - textual, phrase representation

SDL-GR SDL-PR

Common

Syntax

Επαυξημένες μηχανές πεπερασμένων
καταστάσεων

Μπορούμε με FSM να περιγράψουμε μεταβλητές

Πόσες καταστάσεις χρειαζόμαστε;

Εισαγωγή μεταβλητών, πράξεις (π.χ., εκχωρήσεις), συνθήκες.

Η κατάσταση μιας μηχανής είναι τώρα η κατάσταση και η

τρέχουσα τιμή των μεταβλητών.

Τις μεταβλητές μιας μηχανής μπορούν να τις βλέπουν άλλες, αλλά

αλλαγές γίνονται από τις άλλες μόνο έμμεσα (π.χ., με κατάλληλο

σήμα).

Ιεραρχική Δομή

Σε επίπεδο συστήματος συναντάμε οντότητες τύπου block, οι οποίες

επικοινωνούν μεταξύ τους και με το περιβάλλον μέσω διαδρομής καναλιών

(channel routes),

Κάθε τύπος block μπορεί να έχει ένα ή περισσότερα στιγμιότυπα.

Κάθε στιγμιότυπο καθορίζεται από μια δεδομένη χρονική στιγμή, όπου οι

διεργασίες που περιέχονται στο block βρίσκονται σε συγκεκριμένες καταστάσεις

και οι μεταβλητές έχουν συγκεκριμένες τιμές.

Σε επίπεδο block συναντάμε οντότητες τύπου διεργασίας (process), οι οποίες

επικοινωνούν μεταξύ τους μέσω διαδρομών σημάτων (signal routes). Οι

διαδρομές καναλιών του επιπέδου συστήματος καταλήγουν σε μία ή

περισσότερες διαδρομές σημάτων.

Σε επίπεδο process συναντάμε μηχανές πεπερασμένων καταστάσεων, οι

οποίες βρίσκονται σε συγκεκριμένες καταστάσεις και μεταβαίνουν σε άλλες με

την αποστολή και λήψη μηνυμάτων. Κατά τις μεταβάσεις αυτές μπορούν να

μεταβάλλουν τις τιμές κάποιων μεταβλητών . Μια διεργασία είναι είτε

αυθύπαρκτη είτε δημιουργείται κατά την εκτέλεση της εφαρμογής από μια άλλη

διεργασία.

Static & Dynamic SDL

SDL has a static component, and a dynamic component.

The Static component describes/specifies system structure

•Functional decomposition to sub-entities

•How they are connected

•What signals they use to communicate

The Dynamic component describes/specifies system operation - behavior

•SDL Transitions, Transitions Actions

•Communications

•Birth, Life and Death of Processes

Static SDL

o System is the highest level of abstraction

o A system can be composed of 1 or more

blocks

o A block can be composed of processes and

blocks

o Processes are finite state machines, and

define dynamic behavior

System

Block

Process

Static SDL Terms

agent

The term agent is used to denote a system, block or process that

contains one or more extended finite state machines.

system

A system is the outermost agent that communicates with the

environment.

block

A block is an agent that contains one or more concurrent blocks .

 process

A process is an agent that contains an extended finite state machine, and

may contain other processes.

System,Block, and Process

System

•Collection of concurrently-running blocks

•Blocks communicate through explicit channels

•Represents distributed, communicating computers

 Block

•Collection of concurrently-running processes or collection of

blocks

•Blocks communicate through explicit channels

•Represents a single processor

Process

•Extended finite-state machine

•Communicate between each other and with environment using

signals

•Processes have explicit and variable defined implicit state

System Decomposition

When dealing with large and complex systems it is best to

decompose down to the manageable size functional components:

BLOCKs (“Divide and Conquer”).

Follow natural subdivisions: BLOCKs may correspond to actual

software/hardware modules.

Minimise interfaces between BLOCKs in terms of the number and

volume of signals being exchanged.

Structuring of the System Description

Process P1

Block B2

Process P2 Process P4

Block B1

Process P3

System S

Process P6 Process P5

SDL Syntax

Σύστημα και Περιβάλλον

E

N

V

SDL

system

System and Environment

The SDL specification defines how

Systems reacts to events in the

Environment which are communicated by

Signals sent to the System

The only form of communication of an

SDL system to environment is via Signals

SDL

System

ENVIRONMENT

signals

 Μηχανές Πεπερασμένων Καταστάσεων

even odd

0
1

1

0

start

Basic Concept of Design Flow

SDL Overview Blocks

System (or another block)

Process

Instance
Process

Instance

signal routes

Block

Block

channels

Block

Large number of process without structure leads to loss of overview

Blocks are used to define a system structure

Signal routes transfer signal immediately while channels may be delaying

(block)

SDL Overview - Process

A process is an agent that contains an extended finite state machine,

and may contain other processes.

A System is composed of a number of communicating process

instances

System Instance

Process

Instance

Process

Instance

signals

signals

signals signals

SDL Overview - Process Diagrams

Χωρίζοντας ένα σύστημα σε blocks

Χωρίζοντας blocks σύνολα διεργασιών

Η έννοια του τύπου στην SDL

SDL representation of FSMs/processes

output

input

state

Dynamic Behavior

A PROCESS exists in a state, waiting for an input (event).

When an input occurs, the logic beneath the current state, and the

current input executes.

Any tasks in the path are executed.

Any outputs listed are sent.

The state machine will end up in either a new state, or return to

the same state.

The process then waits for next input (event)

Process Diagram Example

 process calling 1/5

wait_for_connection

connectTone

reset (T1)

connectTone
VIA uG

connected

Connected

onHook

reset (T1)

connEnd
TO

otherPid

idle

T1

busyTone
VIA uG

connEnd TO
otherPid

set (NOW
+ T_10sec, T2)

wait_for_onHook

Process

PROCESS specifies dynamic behaviour

•Process represents a communicating extended finite state

machine.

•each have a queue for input SIGNALs

•may output SIGNALs

•may be created with Formal PARameters and valid input

SIGNALSET

•it reacts to stimuli, represented in SDL by signal inputs.

•stimulus normally triggers a series of actions such as data

handling, signal sending, etc. A sequence of actions is described in

a transition.

PROCESS diagram is a Finite State Machine (FSM) description

Process

STATEs: point in PROCESS where input queue is

being monitored for arrived SIGNALs
osubsequent state transition may or may not have a

NEXTSTATE

INPUT: indicates that the subsequent state

transition should be executed if the SIGNAL

matching the INPUT arrives

oINPUTs may specify SIGNALs and values within

those SIGNALs

oInputs can also specify timer expiry

OUTPUT: specifies the sending of a SIGNAL to

another PROCESS

state_a

sig_a

state_a

sig_c

Process Example

Process Diagram Components

TASK: description of operations on variables

or special operations

The text within the TASK body can contain

assign statements.

DECISION: tests a condition to determine

subsequent PROCESS flow

JOIN: equivalent to GOTO.

do_something

make_

decision

true false

A

A

Process Diagram Components

SAVE: specifies that the consumption of a SIGNAL be

delayed until subsequent SIGNALs have been consumed

the effect is that the SAVEd SIGNAL is not

consumed until the next STATE

no transition follows a SAVE

the SAVEd SIGNAL is put at the end of the queue

and is processed after other SIGNALs arrive

START: used to describe behaviour on creation as well

as indicating initial state

•Similar shape to state only with semi-circular sides

sig_c

SDL processes

Textual form

state Idle;

 input Coin(C);

 task x :=

value(C);

 nextstate Paid;

 input Choice;

 nextstate Idle;

endstate Idle;

Idle

Coin

Paid

Choice

Idle x := value(C)

Graphical form

SDL process states

At a particular state,

A signal is removed from the queue

If a transition defined for the signal in current state,
Run the transition

Transmit signals

Update internal variables

Choose a next state

If no transition defined for the signal in current state,
Discard the signal

Leave the state unchanged

The state symbol

Can denote both a current and a next state

Line leaving leads to rules for a current state

Arrow entering means a next state

Idle

Running

The start symbol

Denotes where the execution of a process begins

Nameless state

Running

...

The receive symbol

Appears immediately after a state

Indicates which signal triggers each transition

Idle

Coin Choice Clear

Lead to diagrams for each transition

Received signals

Complete Valid Input Signal Set

Set of all signals that the process will ever accept

An error occurs if a signal outside this set is received

In any state, only certain signals may have a transition

A valid signal that has no transition is simply

discarded without changing the state

The “implicit transition”

The SAVE symbol

Like receive, but instead pushes the signal back in the

queue

Designed for handling signals that arrive out of order

Idle

Coin Clear Choice

A “Choice” signal

that arrives in this

state will be

deferred to the

next

The SAVE symbol

Single process input queue totally orders the sequence of

events that arrive at a process

What if two events arrive from different processes at more-

or-less the same time?

The save symbol can be used to dictate the order in which

signals that arrive out of order are processed

The Output symbol

Send a signal to another process

Which channel to send it on usually follows from its type

GotMoney

Idle

Coin

Vocal variables

An SDL process has local variables it can manipulate

Partially shared variables
Only the owning process may write a variable

Other processes may be allowed to read a variable

Variables are declared in a text annotation

dcl x Integer;

Task Symbol

Assignment of variable to value of expression

Informal text
•Produces an incomplete specification

•Intended to be later refined

x := value(C) + 3.14159
dcl x Real;

‘Release a can’

The Decision Symbol

A two-way branch that can check a condition

Can be an expression or informal

x < 5
(true) (false)

‘Is anybody awake?’
(‘yes’) (‘no’)

Process Creation Symbol

A transition can cause another process to start

Communication channels stay fixed

Processes marked with initial and maximum number of

copies that can be running

CallHandler

CallHandler(0,63)

Process Creation

Intended use is in a “server” style

A new connection (call, interaction, etc.) appears

A new server is created to handle this particular

interaction

It terminates when it has completed the task (e.g., the

user hangs up the phone

Maximum number of processes usually for resource

constraints

•Can’t handle more than 64 simultaneous calls

without exhausting processor resources

Process Creation

Process is always running

Process starts dormant. At most one instance of the process

ever runs

As many as 64 copies of the process can be running

CallHandler(1,1)

CallHandler(0,1)

CallHandler(0,64)

Process Termination

A process can only terminate itself

‘Utter final words’

 Timers

Idle

T

Idle

Choice

set (now+10, T)

Timer T;

‘Where’s my money?’

Timer must

be declared

like a variable

Timer is set to

go off at a

particular time

When timer

expires, it

sends a signal

to the process

Operations on Data

Variables can be declared locally for processes.
Their type can be predefined or defined in SDL itself.
SDL supports abstract data types (ADTs).

Examples:

Επικοινωνία μεταξύ SDL-FSMs

Communication between FSMs (or „processes“) is based on
message-passing, assuming a potentially indefinitely large FIFO-
queue.

• Each process fetches

next entry from FIFO,

• checks if input enables

transition,

• if yes: transition takes

place,

• if no: input is ignored

(exception: SAVE-

mechanism).

Επικοινωνία μεταξύ SDL-FSMs

Interaction between processes can be described in process

interaction diagrams (special case of block diagrams).

In addition to processes, these diagrams contain channels and

declarations of local signals.

Example:

Designation of recipients

1. Through process
identifiers:
Example: OFFSPRING
represents identifiers of
processes generated
dynamically.

2. Explicitly:
By including the channel
name.

3. Implicitly:
If signal names imply
channel names (B 
Sw1)

Counter

TO OFFSPRING

Counter

Via Sw1

Ιεραρχία SDL

Process interaction diagrams can be included in blocks. The root

block is called system.

Processes cannot contain

other processes, unlike in

StateCharts.

Timers

Timers can be declared locally. Elapsed timers put signal into queue

(not necessarily processed immediately).

RESET also removes timer signal from queue.

Additional language elements

SDL includes a number of additional language elements,
like

procedures
creation and termination of processes
advanced description of data

Application: description of network protocols

Larger example: vending

Larger example: vending

Decode Requests

p

Process ChipHandler

Δυναμική δημιουργία διεργασιών

Συνήθως, τα συστήματα δομούνται σχεδιάζοντας κάποιες διεργασίες

αυθύπαρκτες, οι οποίες αναλαμβάνουν τη δημιουργία κάποιων άλλων.

Η μεν διεργασία, που είναι αυθύπαρκτη και δημιουργεί μία άλλη,

καλείται γονέας (parent process), ή δε δημιουργούμενη ονομάζεται

διεργασία – παιδί (child process).

Τα στιγμιότυπα κάθε διεργασίας σέβονται τη δομή και τη

συμπεριφορά της διεργασίας αυτής.

Είναι αυτόνομα, ωστόσο επικοινωνούν μεταξύ τους, αλλά και με

άλλες διεργασίες.

Στην περίπτωση όπου υπάρχουν περισσότερα του ενός στιγμιότυπα,

η αποστολή σημάτων προς ένα συγκεκριμένο στιγμιότυπο γίνεται με

ρητή διευθυνσιοδότηση (explicit addressing), δηλαδή με τη χρήση της

ταυτότητας του (process identity).

Παράδειγμα

Score[1]

Win

Env Demongame

Newgame

Probe

Result

Endgame

Παράδειγμα

Probe

Newgame

Probe

Env Main Demon

Game

Lose
Bump

Win

Bump

Score[0]

Result

Endgame

GameOver

Παράδειγμα

 Env Main Demon

Game

Probe

Probe

Lose
Bump

Probe

Win

Win
Bump

Score[1]

Result

Endgame

GameOver

Παράδειγμα

Παράδειγμα

Παράδειγμα

Παράδειγμα

Παράδειγμα

env_0

proces s M ain

M ain_1_1

process G am e

Game_1 1

process D emon

D em on_1_2

G am e_Of f

T (1.0000)

Generate

N ewgam e

task

G am eP := G am e:1

G am e_On

tas k

C ount := 0

Los ing
(5)

D el iver tim er T

to D emon

(3)

In itial ization Of Gam e

(2)

Send sign al N ew game to Main

(1)

Set T im er T at t=1

T ranstition Of D em on

to s tate Generate

(1)

In itia l trans ition of M ain to

s tate Gam e_of f
Sim ulation trac e

generated by

SD T Sim ulator 3.4

Περισσότερα στοιχεία

Περισσότερα στοιχεία

Περισσότερα στοιχεία

Διάγραμμα Πακέτου

A package is a set of types. Types

that are only used in one system

will normally be defined as part

of the system specification, but

for convenience they may be

collected and defined in a

package and then used by the

system. If a set of related types

are to be used in many systems

within a specific application

domain, then a package is the

right place to define the types.

A package is a set of types.

Types that are only used in

one system will normally be

defined as part of the

system specification, but for

convenience they may be

collected and defined in a

package and then used by

the system. If a set of

related types are to be used

in many systems within a

specific application domain,

then a package is the right

place to define the types

SDL Sorts

Each variable is of a particular “sort” (type)

•Possible values (e.g., integer numbers)

•Operators on those values (e.g., +, *)

•Literals (e.g., “zero”, “1”, “2”)

Built-in sorts: integer, Boolean, real, character, and string

Can be combined in structures, arrays, enumerations, and sets

Procedure

PROCEDURE: similar to a subroutine

allow reuse of SDL code sections

reduce size of SDL descriptions

can pass parameters by value (IN) or by reference

(IN/OUT)

sigA

stateC

ProcB

(SENDER)

PROCEDURE ProcB

fpar player PId;

Gameid to
player

Priority & Internal Inputs

Priority inputs are inputs that are given priority

in a state

If several signals exist in the input queue for a

given state, the signals defined as priority are

consumed before others (in order of their arrival)

sig_a

sig_a

sig_c

 Internal Input/Outputs signals are used for

signals sent/received within a same FSM or SW

component

There is no formal definition when they should

be used.

Shorthands - All Other Input/Save

The Save with an asterisk covers all possible

signals which are not explicitly defined for

this state in other input or save constructs

*

*

The input with an asterisk covers all possible

input signals which are not explicitly defined

for this state in other input or save constructs

Shorthands - Same State

When next state is same as current state the

“dash” symbol may be used instead of state

name.

This is particularly useful in combination with

* (any state).

-

process star_dash_combination

*

SendAlarm

Alarm

-

Shorthands Example

process Star_Input

Idle

Input1

Online

*

-

Online

Input2

Idle

*

-

Specification of Data in SDL

SDL diagrams can contain variables

Variables are declared using the DCL statement

in a text box.

Variables can set in a task box and read in

decisions

A data type is called a sort in SDL

DCL numthings INTEGER;

StateA

SigA

numthings =

numthings

+1;

numthings > 7

 Dynamic Processes

Processes can be created and destroyed in SDL

Each process has a unique process id. The self
expression returns the process id of the current

process.

Processes are created within a SDL process using

the CREATE symbol. The Create body contains the

type of the process to create

The offspring expression returns the process id

of the last process created by the process.

The PROCESS that is created must be in the

same block as the process that creates it.

The Stop symbol is used within the SDL

PROCESS to signify that the process stops.

ProcessA

offspring

> 0

true false

 Predefined Sorts (types) in SDL

INTEGER: signed integer

NATURAL: positive integer

REAL: real, float

CHARACTER: 1 character

CHARSTRING: string of characters

BOOLEAN: True or False

TIME: absolute time, date (syntype of REAL)

DURATION: a TIME minus a TIME (syntype of REAL)

PID: to identify a process instance

 Predefined Sorts (types) in SDL

Operations := (assignment) , = (equality) and /= (nonequality) are

defined for all sorts

INTEGER -, +, *, /, >, <, >=, <=, Float (Integer to

Real), Mod (modulo), Rem

(remainder)

REAL -, +, *, /, >, <, >=, <=, Fix (Real to Integer)

NATURAL Like Integer

CHARACTER Chr (Integer to Char), Num (Char to Integer),

 >,<,>=,<=

CHARSTRING Mkstring (Char to Charstring), Length, First, Last,

 // (concatenation), Substring

BOOLEAN True, False, NOT, AND, OR, XOR

PID Self, Sender, Offspring, Parent

Specification of Timers in SDL

Timer is an object capable of generating an

input signal and placing this signal to the input

queue of the process. Signal is generated on the

expiry of pre-set time.

SET(NOW+20ms,T7): sets a T7 timeout in

20ms time.

RESET(T7): cancels the specified timeout.

Timer T7; SET(NOW

+20ms,T7)

T7 SigA

WaitForTimer

RESET(T7)

Communication Related SDL Terms

signal:

•The primary means of communication is by signals that are

output by the sending agent and input by the receiving agent.

stimulus:

•A stimulus is an event that can cause an agent that is in a

state to enter a transition.

channel:

•A channel is a communication path between agents.

Text Symbol

Text Symbol is used to group various textual declarations

It can be located on any type of diagram

Concrete graphical grammar

<text symbol> ::=

package defs

/* Signals betw een users
 * (internal) */
SIGNAL
 connReq,
 connFree,
 connBusy,
 connEstablish,
 connEnd;

/* Signals from a user (ENV) */
SIGNAL
 offHook,
 onHook,
 num (num_t);

Text Box

Example

System Diagram

Topmost level of abstraction - system level

Has a name specified by SYSTEM keyword

Composed of a number of BLOCKs

BLOCKs communicate via CHANNELs

Textual Descriptions/Definitions

•Signal Descriptions

•Channel Descriptions

•Data Type Descriptions

•Block Descriptions

Example System Diagram

SYSTEM s

SIGNAL S1, S2, S3,

 S4,S5 ;

B1

B1

C1 [S1,S2]

C4 [S5]

C2 [S3]

C3 [S4]

Blocks Channels

Signal Lists

Signal Descriptions

in text symbol

Frame symbol -

boundary between

system and environment

Packages & Libraries

Since SDL 92 reusable components may be defined as types and

placed into libraries called packages.

This allow the common type specifications to be used in more

then a single system.

Package is defined specifying the package clause followed by the

<package name>.

A system specification imports an external type specification

defined in a package with the use clause.

Package Example

system localExchange

USE defs;

userCh

(tones),
msg(userSigs)

localExchange

package defs

/* Signals from a user (ENV) */
SIGNAL
 offHook,
 onHook,
 num (num_t);

SIGNALLIST userSigs =
 offHook,
 onHook,
 num;

/* Signals to a user (ENV) */
SIGNAL
 dialTone,
 ringTone,
 busyTone,
 shortBusyTone,
 connectTone,
 msg (CharString);

SIGNALLIST tones =
 dialTone, ringTone,
 busyTone, shortBusyTone,
 connectTone;

SDL Entity Visibility Rules

Entities are

oPackages, agents (system, blocks, processes), agent types, channels,

signals, timers, interfaces, data types, variables, sorts, signal lists;

Possible Scope Units are

oAgent diagrams (System, Block, Process), Data Type Definitions,

Package diagrams, task areas, interface definitions ...

The Entity is visible in the scope unit if

ois defined in a scope unit

othe scope unit is specialisation and the entity is visible in base type

othe scope unit has a “package use clause” of a package where

entity is defined

othe scope unit contains an <interface definition> where entity is

defined

othe entity is visible in the scope unit that defines that scope unit

Additional Structural Concepts in SDL

A tree diagram can be constructed to illustrate the hierarchy of

the entire SYSTEM .

Macros can be used to repeat a definition or a structure. They are

defined using the MACRODEFINITION syntax .

Paramaterised types exist using the generator construct.

Gates

oA gate represents a connection point for communication

with an agent type, and when the type is instantiated it

determines the connection of the agent instance with other

instances.

 ATM Example - System Diagram

system ATM

use bank_lib;
/* This model corresponds to an Automated
Teller Machine (ATM). Banking transactions
are performed by means of cash card.
This ATM allows cash withdrawal only.
Withdrawals must be authorized by the
consortium, and in case of success, must
be reported to the consortium. */

Consortium

r_accept,
go_ATM,

stop_ATM

q_accept,
wdrok

ce_ui

display_wait,
print,
cash,
eject,

go_ATM,
stop_ATM

card,
entry,
cashtaken,
quit

Customer

card,
entry,
cashtaken,
quit

Central UI

 ATM Example - Central Block Diagram

block Central

Consortium

ce_ui

co_spv

go_ATM,
stop_ATM

co_tr

q_accept,
wdrok

r_accept

spv_tr

tr_end

stop_tr

spv_ui

card

go_ATM,
stop_ATM

tr_ui

display_wait,
print, cash,

eject

entry,
cashtaken,
quit

Supervisor
(1,1)

Tr (0,1):
Transaction

spv

cns

ui

 ATM Example – UI Block Diagram

block UI

ce_ui Customer
ce_ui0

display_wait,
print,
cash,
eject,

go_ATM,
stop_ATM

card,
entry,
cashtaken,
quit

cu_ui

card,
entry,
cashtaken,
quit

Eco_UI

UI (1,1):
Eco_UIcent cust

 ATM Example – Hierarchy Diagram

ATM

Central

Supervisor Tr

UI

Eco_UI UI

 ATM Example – Package Bank_lib

package bank_lib

/* This SDL components library
contains SDL block and process
types w hich are useful to
develop banking systems. */

/* Types used by the Transaction Process */
newtype CashCard
struct
 id Integer;
 expirDate Integer;
 pssw d Charstring;
operators
 checkCard: CashCard -> Boolean;
 checkPssw d: CashCard, Charstring -> Boolean;
operator checkCard;
 fpar cc CashCard;
 returns res Boolean;
 start;
 task res := (cc!expirDate > 9701) and (cc!id /= 0);
 return;
endoperator;
operator checkPssw d;
 fpar cc CashCard, cpw Charstring;
 returns res Boolean;
 start;
 task res := (cc!pssw d = cpw);
 return;
endoperator;
endnewtype ;

QuestConso::= sequence {
 cardData CashCard,
 amount Charstring};

RespConso ::= sequence {
 cardData CashCard,
 accept Boolean,
 amount Charstring optional};

/* This implements a
simplif ied banking
transaction. */

/* Signals received by the
Transaction Process Type */
signal
entry (Charstring),
cashtaken,
quit,
r_accept (RespConso),
stop_tr;

/* Signals sent by the
Transaction Process Type */
signal
display_w ait (Charstring),
print (Charstring),
cash (Charstring),
eject,
tr_end,
q_accept (QuestConso),
w drok (CashCard, Charstring);

/* Additional signals for
Basic_ATM_UI */
signal
card (CashCard),
go_ATM,
stop_ATM;

/* This implements a
basic terminal
interacting w ith the
customer. */

/* This package contains:
- ASN.1 declarations (QuestConso, RespConso)
mixed into SDL declarations
- Process types (Transaction, Basic_ATM_UI)
- Virtual transitions (in Transaction)
- Axioms (New type CashCard)
*/

Transaction

Basic_ATM_UI

Dynamic Processes

Dynamically created processes become part of an instance

set.

The instance set in the block diagram contains two variables,

the number initial process instances and the maximum number

of instances.

Process Sets

The following Describes a set of Identical Processes

Initially there are no members of the set

Can be up to 7 members in the set

BLOCK ExampleProcessSet

bidders (0, 7) :

S2[***,***,****]

S1[***,***,****] C1

C2
Bidder

Block Sets

The following Describes a set of Identical Blocks

Initially there is one member of the set

There is no limit to the number of members in the set

SYSTEM ExampleBlockSet

bidders (1,) :

C2[***,***,****]

C1[***,***,****]

Bidder

 Formal Parameters

Dynamic processes can have data passed into them at creation

time using Formal Parameters

Similar to C++ constructor

PROCESS TYPE Proc1

fpar player PId,

numtries Integer;

Gameid to
player

Idle

Proc1

(offspring,3)

sig1

Idle

PROCESS Proc2

Addressing Signals

The destination of an output can be defined in a number of ways:

Implicit when only one destination is possible

An explicit destination can be named using the keyword to X, where

X is of type Pid.

oSELF, giving the address of the process itself

oSENDER, giving the address of the process from which the last

consumed signal has been sent;

oOFFSPRING, giving the address of the process that has been

most recently created by the process; and

oPARENT, giving the address of the creating process.

sig_c
sig_c

to X

Implicit Addressing Explicit Addressing

Addressing Signals

sig_c

via G3

sig_c

via all

Or it can be sent everywhere it possibly can

using the “via all” qualifier (broadcasting).

The term “via” can be used followed by a

signal route or channel. This means it can be

sent to all process attached to a particular

channel or signal route(multicasting).

Daemon Game Example

The Z.100 standard partially defines an example of SDL in the form of a

game called DaemonGame. A modified version is described here.

The game consists of a quickly oscillating state machine, oscillating

between odd and even.

At random intervals the player queries the state machine.

If the machine is in the odd state the player wins.

If the machine is in the even state the player looses.

System Diagram

SYSTEM Daemongame

NewGame,

Probe,

Result,

Endgame

Gameid,

Win,

Lose,

Score

SIGNAL

NewGame,

Probe,

Result,

Endgame,

Gameid,

Win,

Lose,

Score(Integer);

Gameserver.in Gameserver.out

GameBlock

Block Diagram

BLOCK GameBlock

game (0, 7) :

Game

Monitor

R4

[Gameover]

[NewGame]

R1

Probe,

Result,

Endgame

R2

R3 Gameid,

Win,

Lose,

Score

signal

Gameover(Pid);

Gameserver.in Gameserver.out

Game

T1

Set(Now
+1ms,T1)

odd

Probe

PAGE 1(3) PROCESS TYPE Game

fpar player PId;

dcl count Integer := 0;
/* counter to keep track of score */
Timer T1;

Gameid to
player

even

Set(Now
+1ms,T1)

Lose to
player

count := count -1

even

PROCESS TYPE Game

odd

T1 Probe

Set(Now
+1ms,T1)

even

Win to
player

count := count +1

odd

PROCESS TYPE Game

*

Result Endgame

Score(count)

 to player

-

Gameover
(player)

Transition Table
State Input Task Output NextState

even T1 Set(Now+1ms T1) odd

even Probe count := count -1 Lose to player even

odd T1 Set(Now +1ms T1) even

odd Probe count := count +1 Win to player odd

odd Result Score(count) to player odd

odd Endgame Gameover STOP

even Result Score(count) to player even

even Endgame Gameover STOP

SDL is case insensitive

One Block Diagram for each Block in System Diagram

One Process Diagram for each Process in Block Diagram

Only Signals listed on SignalRoute used in Process Diagram

* State used to represent any state

- NextState means return to the previous state (i.e. no

state change)

 Notes on Example

 Notes on Example

To transition out of state requires input.

Process Diagrams are of type PROCESS TYPE rather

than PROCESS because they are part of a Process Set.

Gameover message always sent to Monitor so no need

for explicit destination address.

Lose, Score, Win GameId require explicit destination

address.

player passed in as a formal parameter, like a C++

constructor.

Creating new Data Types

New data types can be defined in SDL.

An example data definition is shown below

newtype even literals 0;

 operators

 plusee: even, even -> even;

 plusoo: odd, odd -> even;

 axioms

 plusee(a,0) == a;

 plusee(a,b) == plusee(b,a);

 plusoo(a,b) == plusoo(b,a);

endnewtype even; /* even "numbers" with plus–

depends on odd

Creating new Data Types

A syntype definition introduces a new type name which is fully

compatible with the base type

 An enumeration sort is a sort containing only the values

enumerated in the sort

The struct concept in SDL can be used to make an aggregate of

data that belongs together

The predefined generator Array represents a set of indexed

elements

Creating new Data Types Data Types and

Inheritance

 New Data types can inherit from other data types in SDL

newtype bit inherits Boolean

 literals 1 = True, 0 = False;

 operators ("not", "and", "or")

 adding operators

 Exor: bit,bit -> bit;

 axioms

 Exor(a,b) == (a and (not b)) or ((not a) and b));

endnewtype bit;

Most SDL protocol specifications used ASN.1 to describe data.

Z.105 describes how SDL and ASN.1 can be used together.

True, False are renamed

to 1 & 0

Operators that are

perserved

From this point new

items are defined

Key SDL Features (1 of 2)

Structure

oConcerned with the composition of blocks and

process agents.

oSDL is structured either to make the system easier

to understand or to reflect the structure (required

or as realised) of a system.

oStructure is a strongly related to interfaces.

Behavior

oConcerns the sending and receiving of signals and

the interpretation of transitions within agents.

oThe dynamic interpretation of agents and signals

communication is the base of the semantics of SDL.

Data

oData used to store information.

oThe data stored in signals and processes is used to

make decisions within processes.

Key SDL Features (2 of 2)

 Interfaces

oConcerned with signals and the communication paths for

signals.

oCommunication is asynchronous: when a signal is sent from

one agent there may be a delay before it reaches its destination

and the signal may be queued at the destination.

oCommunication is constrained to the paths in the structure.

oThe behaviour of the system is characterised by the

communication on external interfaces.

Types

oClasses can be be used to define general cases of entities

(such as agents, signals and data).

oInstances are based on the types, filling in parameters where

they are used.

oA type can also inherit from another type of the same kind,

add and (where permitted) change properties.

References

 1. A. Mitschele-Thiel, Systems Engineering with SDL“, John Wiley & Sons,

Ltd, 2001, Print ISBN: 9780471498759, Online ISBN: 9780470841969

2. J. Ellsberger, D. Hogrefe, A. Sarma, SDL Formal Object-Oriented

Language for Communication Systems“, Prentice Hall 2007, ISBN:

0136328865

3. Oleg Chistokhvalov, http://www.it.lut.fi/kurssit/05-

06/Ti5315800/Slides/Lecture_7/lecture7.html

4. Dr. Junzhao Sun http://www.ee.oulu.fi/research/tklab/courses/

521265A/lectures/ch5_SDL.pdf

5. SDL forum society: http://www.sdl-forum.org/SDL/index.htm

http://www.ee.oulu.fi/research/tklab/courses/

