

5G Mobile Communication System Cont.

5G Advancements

New Architecture

- Advanced core network functions / NG RAN
- Incorporate SDN/NFV (NFV MANO)
 - Decupling of control and data plane
 - Decupling of functions from the hardware

Network Slicing

- eMBB, URLLC, mMTC | 8 subclasses pes slice type
- New Radio (NR)
 - RAN protocol stack (+SDAP)
 - New numerology for the PHY compared to LTE

Massive MIMO

- Multiple antennas and beamforming
- Functional Split
 - gNodeB Fronthaul Central, Distributed and Radio Units (CU, DU and RU)

General 5G architecture

Access and Mobility-Management Function

Similar to MME in 4G Location Paging Handover

Authentication Temporary ID

Session Management Function

In 4G mobility and session functionality were both in one entity: MME – In 5G this is split to AMF and SMF respectively.

Establishment, modification, termination of PDU sessions

- Interact with Policy Control Function to check the user subscription status
- Interact with User Plane Function to setup the PDU session

Unified Data Management

- Central repository of subscriber information
- Access authorization
- Tracking information
- Data network profile (what the user can and cannot do)

Policy Control Function

- Knowledge of network conditions
- Real time decisions based on these conditions
- May deny or alter service if conditions do not allow
- Information from the Data Network (external) as well

Remains the same for a PDU session

Enforces QoS and data forwarding from/to the UE to/from the data network

Data flow

PDU Sessions and QoS Flows

QoS Flows can be established and removed on the basis of the QoS requirements of the User Plane traffic

PDU Session Establishment

SDAP: Service Data Adaptation Protocol SDF/TFT: Service Data Flow / Traffic Flow Template

5QI Value	Resource Type	Default Priority Level	Packet Delay Budget (NOTE 3)	Packet Error Rate	Default Maximum Data Burst Volume (NOTE 2)	Default Averaging Window	Example Services
1	GBR	20	100 ms (NOTE 11, NOTE 13)	10 ⁻²	N/A	2000 ms	Conversational Voice
2	(NOTE 1)	40	150 ms (NOTE 11, NOTE 13)	10 ⁻³	N/A	2000 ms	Conversational Video (Live Streaming)
3		30	50 ms (NOTE 11, NOTE 13)	10 ⁻³	N/A	2000 ms	Real Time Gaming, V2X messages (see TS 23.287 [121]). Electricity distribution – medium voltage, Process automation monitoring
•••		•••	•••	•••	•••	•••	•••
5	Non-GBR	10	100 ms NOTE 10, NOTE 13)	10 ⁻⁶	N/A	N/A	IMS Signalling
6	(NOTE 1)	60	300 ms (NOTE 10, NOTE 13)	10 ⁻⁶	N/A	N/A	Video (Buffered Streaming) TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive video, etc.)
7		70	100 ms (NOTE 10, NOTE 13)	10 ⁻³	N/A	N/A	Voice, Video (Live Streaming) Interactive Gaming
•••		•••	•••	•••	•••	•••	•••
82	Delay- critical GBR	19	10 ms (NOTE 4)	10 ⁻⁴	255 bytes	2000 ms	Discrete Automation (see TS 22.261 [2])
83		22	10 ms (NOTE 4)	10 ⁻⁴	1354 bytes (NOTE 3)	2000 ms	Discrete Automation (see TS 22.261 [2]); V2X messages (UE - RSU Platooning, Advanced Driving: Cooperative Lane Change with low LoA. See TS 22.186 [111], TS 23.287 [121])
84		24	30 ms (NOTE 6)	10 ⁻⁵	1354 bytes (NOTE 3)	2000 ms	Intelligent transport systems (see TS 22.261 [2])
•••		•••	•••	•••	•••	•••	•••

5QI	: 5G QoS Identifier
ARP	: Allocation and Retention Priority
GFBR	: Guaranteed Flow Bit Rate
MFBR	: Maximum Flow Bit Rate
PDB	: Packet Delay Budget
PER	: Packet Error Rate
QFI	: QoS Flow Identifier
RQA	: Reflective QoS Attribute

5QI Resource Type* Default Priority Level PDB PER Default Maximum Data Burst Volume Default Averaging Window

* GBR, non-GBR or delay critical GBR

- Most of NFV nodes may be virtualized (software processes)
- Running in Commercial Off The Self (COTS) Servers

- Flexibility
- Scaling through software
- MANO in needed
- 5G is a series of virtualized processes
- API driven

Use less power

SLAs needed

What a MANO should do

- Implementable as software only (even virtualized)
- Distributed across NFVI
- •Support full automation without human intervention
- Avoid single-point-of-failure
- •Use standards or "de-facto" standards
- •Support munti-ventor environment

What a MANO actually does

Taking advantage of MANO

• VNFs ETSI Management and orchestration(MANO)

- Virtualized Infrastructure Manager (VIM)
- VNF Manager (VNFM)
- NFV Orchestrator (VNFO)

Taking advantage of MANO

Virtualized Infrastructure Manager (VIM)

- Manages life cycle of virtual resources in an NFVI domain.
- That is, it creates, maintains and tears down virtual machines (VMs) from physical resources in an NFVI domain.
- Keeps inventory of virtual machines (VMs) associated with physical resources.
- Performance and fault management of hardware, software and virtual resources.
- Keeps north bound APIs and thus exposes physical and virtual resources to other management systems.

Reservations and current usage of physical resources

Taking advantage of MANO

VNF Manager (VNFM)

- VNFM manages life cycle of VNFs. That is it creates, maintains and terminates VNF instances which are installed on the Virtual Machines (VMs) which the VIM creates and manages)
- It is responsible for the FCAPS of VNFs (i.e. Fault, Configuration, Accounting, Performance and Security Management of VNFs).
- It scales up/scales down VNFs which results in scaling up and scaling down of CPU usage, storage and/or network.

Taking advantage of MANO

NFV Orchestrator (NFVO) Resource Orchestration

 NFVO coordinates, authorizes, releases and engages NFVI resources. This does so by engaging with the VIMs directly through their north bound APIs instead of engaging with the NFVI resources, directly.

Service Orchestration

- Service Orchestration creates end to end service
 between different VNFs. It achieves this by
 coordinating with the respective VNF Managers so it
 does not need to talk to VNFs directly.
- Service Orchestration can instantiate VNF Managers, where applicable.
- It does the topology management of the network services instances (also called VNF Forwarding Graphs).

Taking advantage of MANO

Example: Open Source MANO

Example: SONATA Platform

In-lab 5G realization

- The 5G architecture allows for the full usage of the MANO architecture
 - 5G Functions can be realized in VNFs (all?)
 - The MANO toolset can be used to manage the VNFs
 - Set a virtual 5G network
 - Control the reuses of the network

5G Advancements

New Architecture

- Advanced core network functions / NG RAN
- Incorporate SDN/NFV (NFV MANO)
 - Decupling of control and data plane
 - Decupling of functions from the hardware

Network Slicing

- eMBB, URLLC, mMTC | 8 subclasses pes slice type
- New Radio (NR)
 - RAN protocol stack (+SDAP)
 - New numerology for the PHY compared to LTE

Massive MIMO

- Multiple antennas and beamforming
- Functional Split
 - gNodeB Fronthaul Central, Distributed and Radio Units (CU, DU and RU)

Network Slicing

 "the capability to "slice" network resources and functions and to offer isolated endto-end network services over shared physical infrastructures"

The ability to create logical networks on top of the same physical infrastructure

Independent Virtual Networks

RAN Slicing

Core Network Slicing

Transport Slicing

MANO

Network Slicing Customization

Network Capability

- Latency
- Data Security
- Energy Efficiency
- Mobility
- Massive Connectivity
- Reachability
- Guaranteed QoS
- Throughput

*GSMA Introduction to Network Slicing

Network Slicing Customization

*GSMA Introduction to Network Slicing

Network Slicing Challenges

- Resource management/sharing among slices
- -Isolation among network slices
- Life-cycle management of the network slices
- -Security Aspects
- Slicing in wireless part (virtualization of RAN functions)

5G Advancements

New Architecture

- Advanced core network functions / NG RAN
- Incorporate SDN/NFV (NFV MANO)
 - Decupling of control and data plane
 - Decupling of functions from the hardware

Network Slicing

- eMBB, URLLC, mMTC | 8 subclasses pes slice type
- New Radio (NR)
 - RAN protocol stack (+SDAP)
 - New numerology for the PHY compared to LTE

Massive MIMO

- Multiple antennas and beamforming
- Functional Split
 - gNodeB Fronthaul Central, Distributed and Radio Units (CU, DU and RU)

5G New Radio Spectrum Range

Spectrum for 5G/NR

1

— Lower frequencies for wide-area coverage

 Higher frequencies for very high traffic capacity and very high data rates in dense deployments

5G New Radio Duplexing

5G New Radio Duplexing

Comparison with 4G

Generic Frame Structure

5G New Radio Carriers

LTE

- Per carrier bandwidth up to 20 MHz
 Minimum carrier bandwidth: 1.25 MHz
- Carrier aggregation up to 5 carriers
 ⇒ Maximum bandwidth: 100 MHz

NR

- Per-carrier bandwidth up to 400 MHz
 Minimum carrier bandwidth: 5 MHz
- Carrier aggregation up to 16 carriers
 ⇒ Maximum bandwidth: 6.4 GHz (!)

LTE

- Downlink: Conventional OFDM
- Uplink: DFT-precoded OFDM
- A single numerology with 15 kHz sub-carrier spacing

NR

- Downlink: Conventional OFDM
- Uplink: Conventional OFDM or DFT-precoded OFDM
- Flexible/scalable numerology
 - 15 kHz, 30 kHz, 60 kHz, 120 kHz
 - Correspondingly scaled symbol length

5G New Radio Numerology

5G New Radio Numerology

		+		-	10 m	s Frame	e	_	_	-							_
		0	1	2	3	4	5	6	7	8	9						
Numrology		/	1 ms :	sub fra	me												
0	15 KHz					_			Slot	= 1ms							
1	30 KHz		-		Slot =	0.5 m	5	-				_	S	lot	_		
2	60 KHz		Slot =	0.25 m	5		S	lot			S	lot			S	lot	
3	120 KHz	0.125 ms Slot Slot			lot	S	lot	S	lot	5	Slot	S	lot	S	lot	S	lot
		0.062	0.0625 ms														
4	240 KHz	Slot	Slot	Slot	Slot	Slot	Slot	Slot	Slot	Slot	Slot	Slot	Slot	Slot	Slot	Slot	Slot
		N	umrole	ogy	Su Spa	b Carri cing (K	ier (Hz)	Slot	Durati (ms)	ion	No.of one : Fi	f Slots 1ms Si rame	in N ub	in 1 n Fra	Symbo ns Sub ime	ols –	
				0			15			1			1			14	-
				1			30			0.5			2			28	
		-		2			60			0.25			4			56	
				3	-		120		0	.125		_	8		1	12	
				4			240		0.0	1025	_		10	_	2	24	

Generic LTE Frame Structure

5G New Radio Numerology

4G vs 5G Resource Block

5G New Radio (Protocol Stack – Layer 1)

PHY Layer Functions

- Flexible numerology
 - various structures for the subframe (time domain) and subcarriers grouping (frequency-domain))
- Flexible slot format (mixed DL UL)

Subcarrier Spacing (μ)	Number of OFDM Symbols per Slot (N ^{slot} symb)	Number of Slots per Subframe (N ^{subframe,µ})	Number of Slots per Frame $(N_{slot}^{frame,\mu})$
0	14	1	10
15 kHz	1 ms	1 slot x 1 ms = 1 ms	10 ms
1	14	2	20
30 kHz	500 µs	2 slots x 500 µs = 1 ms	10 ms
2	14	4	40
60 kHz (normal CP)	250 µs	4 slots x 250 µs = 1 ms	10 ms
2	12	4	40
60 kHz (extended CP)	250 µs	4 slots x 250 µs = 1 ms	10 ms
3	14	8	80
120 kHz	125 μs	8 slots x 125 µs = 1 ms	10 ms
4	14	16	160
240 kHz	62.5 µs	16 slots x 62.5 µs = 1 ms	10 ms
5	14	32	320
480 kHz	31.25 μs	32 slots x 31.25 µs = 1 ms	10 ms

5G New Radio Frame Structure

5G New Radio Slot Formats

					Symbol Number in a slot 4 5 6 7 8 9 10 11 12 13 D														
Format	0	1	2	3	4	5	6	7	8	9	10	11	12	13					
0	D	D	D	D	D	D	D	D	D	D	D	D	D	D					
1	U	U	U	U	U	U	U	U	U	U	U	U	U	U					
2	F	F	F	F	F	F	F	F	F	F	F	F	F	F					
3	D	D	D	D	D	D	D	D	D	D	D	D	D	F					
4	D	D	D	D	D	D	D	D	D	D	D	D	F	F					
5	D	D	D	D	D	D	D	D	D	D	D	F	F	F					
6	D	D	D	D	D	D	D	D	D	D	F	F	F	F					
7	D	D	D	D	D	D	D	D	D	F	F	F	F	F					
8	F	F	F	F	F	F	F	F	F	F	F	F	F	U					
9	F	F	F	F	F	F	F	F	F	F	F	F	U	U					
10	F	U	U	U	U	U	U	U	U	U	U	U	U	U					
11	F	F	U	U	U	U	U	U	U	U	U	U	U	U					
12	F	F	F	U	U	U	U	U	U	U	U	U	U	U					
13	F	F	F	F	U	U	U	U	U	U	U	U	U	U					
14	F	F	F	F	F	U	U	U	U	U	U	U	U	U					
15	F	F	F	F	F	F	U	U	U	U	U	U	U	U					
16	D	F	F	F	F	F	F	F	F	F	F	F	F	F					
17	D	D	F	F	F	F	F	F	F	F	F	F	F	F					
18	D	D	D	F	F	F	F	F	F	F	F	F	F	F					
19	D	F	F	F	F	F	F	F	F	F	F	F	F	U					
20	D	D	F	F	F	F	F	F	F	F	F	F	F	U					
21	D	D	D	F	F	F	F	F	F	F	F	F	F	U					
22	D	F	F	F	F	F	F	F	F	F	F	F	U	U					
23	D	D	F	F	F	F	F	F	F	F	F	F	U	U					
24	D	D	D	F	F	F	F	F	F	F	F	F	U	U					
25	D	F	F	F	F	F	F	F	F	F	F	U	U	U					
26	D	D	F	F	F	F	F	F	F	F	F	U	U	U					

<38.213 v15.7 -Table 11.1.1-1: Slot formats for normal cyclic prefix> D : Downlink, U : Uplink, F : Flexible

Slot Format Examples

DL-	heav	/y tra	ansr	nissi	on w	ith (UL p	art																			
	Slot (e.g, slot format 28)																	Slot	:(e.g	, slo	t for	mat	28)				
D	D	D	D	D	D	D	D	D	D	D	D	F	U	D	D	D	D	D	D	D	D	D	D	D	D	F	U

UL-ł	neav	y tra	ansn	nissi	on w	ith I	DL C	ontr	ol																		
	Slot(e.g, slot format 34)																	Slot	(e.g	, slo	t for	mat	34)				
D	F	U	U	U	U	U	U	U	U	U	U	U	U	D	F	U	U	U	U	U	U	U	U	U	U	U	U

Slot	t ago	greg	atio	n for	DL-I	heav	y tra	ansm	nissi	on (e	e.g, 1	for e	MBE	3)												
	Slot(e.g, slot format 0)																	Slot	(e.g	, slo	ot fo	rmat	: 28)			
D	D	D	D	D	D	D	D	D	D	D	D	D	D	D D D D D D D D D D D D								F	U			

Slot	agg	jrega	ntion	for	UL-ŀ	ieav	y tra	ansm	nissi	on (e	e.g,	for e	MBE	3)													
	Slot																			S	ot						
D										U	D	U	U	U	U	U	U	U	U	U	U	U	U	U			

5G Advancements

New Architecture

- Advanced core network functions / NG RAN
- Incorporate SDN/NFV (NFV MANO)
 - Decupling of control and data plane
 - Decupling of functions from the hardware

Network Slicing

- eMBB, URLLC, mMTC | 8 subclasses pes slice type
- New Radio (NR)
 - RAN protocol stack (+SDAP)
 - New numerology for the PHY compared to LTE

Massive MIMO

Multiple antennas and beamforming

Functional Split

 gNodeB Fronthaul Central, Distributed and Radio Units (CU, DU and RU)

Beam-Forming Mechanism

Smaller Array Size

A smaller number of Tx elements can generate beams with bigger beamwidth. So they are good in cases where we want to cover wide spaces with minimum cost

Increase coverage and capacity

Less interference

Why not sharing frequency also for Orange UE?

CSI Feedback

CSI Feedback has three parts

- Rank Indicator (RI)
- Channel Quality Indicator (CQI)
- Precoding Matrix Information (PMI)

How To Choose The Beam

- > The UE needs to tell the 5G cell about the best beam
- This can be done by using CSI feedback
- The CSI Feedback carries PMI information which has two important components - i11 and i12
- The i11 is used to tell about beams in azimuth direction while i12 is used to tell about beams in vertical direction

CSI Feedback Indicating Beam#2

5G Advancements

New Architecture

- Advanced core network functions / NG RAN
- Incorporate SDN/NFV (NFV MANO)
 - Decupling of control and data plane
 - Decupling of functions from the hardware

Network Slicing

- eMBB, URLLC, mMTC | 8 subclasses pes slice type
- New Radio (NR)
 - RAN protocol stack (+SDAP)
 - New numerology for the PHY compared to LTE

Massive MIMO

Multiple antennas and beamforming

Functional Split

 gNodeB Fronthaul Central, Distributed and Radio Units (CU, DU and RU)

Functional Split

- Introduction of the Backhaul and Fronthaul network
- The main challenge refers to the RAN layer where the split is performed

Functional Split

Functional Split

Functional Split

Functional Split

Functional Split

