
Machine Learning
A Bayesian and Optimization Perspective

Academic Press, 2015

Sergios Theodoridis1

1Dept. of Informatics and Telecommunications, National and Kapodistrian University
of Athens, Athens, Greece.

Spring 2015, Version I

Chapter 5
Stochastic Gradient Descent: The LMS and its Family

Sergios Theodoridis, University of Athens. Machine Learning, 1/77

Online and Batch Processing Algorithms

• The focus in this series of lectures is to introduce online learning
techniques for estimating the unknown parameter vector. These are
time iterative schemes, which update the available estimate every time
a measurement set (input-output pair of observations) is acquired.

• In contrast to the so-called batch processing methods, which process
the whole block of data as a single entity, online algorithms operate on
a single data point at a time; therefore, such schemes do not require the
training data set to be known and stored in advance.

• The fact that such learning algorithms work in a time iterative mode
gives them the agility to learn and track slow time variations of the
statistics of the involved processes/variables; this is the reason why
these algorithms are also known as time-adaptive or simply adaptive,
since they can adapt to the needs of a changing environment.

• More recently, the philosophy behind such schemes is gaining in
popularity in the context of big data applications with massive number
of data points that reside in large data bases, possibly distributed in
various sites; for such tasks, storing all the data points for processing in
the memory may not be possible and they have to be considered one at
a time. Moreover, the complexity of block processing techniques can
amount to prohibitive levels, for today’s technology.

Sergios Theodoridis, University of Athens. Machine Learning, 2/77

Online and Batch Processing Algorithms

• The focus in this series of lectures is to introduce online learning
techniques for estimating the unknown parameter vector. These are
time iterative schemes, which update the available estimate every time
a measurement set (input-output pair of observations) is acquired.

• In contrast to the so-called batch processing methods, which process
the whole block of data as a single entity, online algorithms operate on
a single data point at a time; therefore, such schemes do not require the
training data set to be known and stored in advance.

• The fact that such learning algorithms work in a time iterative mode
gives them the agility to learn and track slow time variations of the
statistics of the involved processes/variables; this is the reason why
these algorithms are also known as time-adaptive or simply adaptive,
since they can adapt to the needs of a changing environment.

• More recently, the philosophy behind such schemes is gaining in
popularity in the context of big data applications with massive number
of data points that reside in large data bases, possibly distributed in
various sites; for such tasks, storing all the data points for processing in
the memory may not be possible and they have to be considered one at
a time. Moreover, the complexity of block processing techniques can
amount to prohibitive levels, for today’s technology.

Sergios Theodoridis, University of Athens. Machine Learning, 2/77

Online and Batch Processing Algorithms

• The focus in this series of lectures is to introduce online learning
techniques for estimating the unknown parameter vector. These are
time iterative schemes, which update the available estimate every time
a measurement set (input-output pair of observations) is acquired.

• In contrast to the so-called batch processing methods, which process
the whole block of data as a single entity, online algorithms operate on
a single data point at a time; therefore, such schemes do not require the
training data set to be known and stored in advance.

• The fact that such learning algorithms work in a time iterative mode
gives them the agility to learn and track slow time variations of the
statistics of the involved processes/variables; this is the reason why
these algorithms are also known as time-adaptive or simply adaptive,
since they can adapt to the needs of a changing environment.

• More recently, the philosophy behind such schemes is gaining in
popularity in the context of big data applications with massive number
of data points that reside in large data bases, possibly distributed in
various sites; for such tasks, storing all the data points for processing in
the memory may not be possible and they have to be considered one at
a time. Moreover, the complexity of block processing techniques can
amount to prohibitive levels, for today’s technology.

Sergios Theodoridis, University of Athens. Machine Learning, 2/77

Online and Batch Processing Algorithms

• The focus in this series of lectures is to introduce online learning
techniques for estimating the unknown parameter vector. These are
time iterative schemes, which update the available estimate every time
a measurement set (input-output pair of observations) is acquired.

• In contrast to the so-called batch processing methods, which process
the whole block of data as a single entity, online algorithms operate on
a single data point at a time; therefore, such schemes do not require the
training data set to be known and stored in advance.

• The fact that such learning algorithms work in a time iterative mode
gives them the agility to learn and track slow time variations of the
statistics of the involved processes/variables; this is the reason why
these algorithms are also known as time-adaptive or simply adaptive,
since they can adapt to the needs of a changing environment.

• More recently, the philosophy behind such schemes is gaining in
popularity in the context of big data applications with massive number
of data points that reside in large data bases, possibly distributed in
various sites; for such tasks, storing all the data points for processing in
the memory may not be possible and they have to be considered one at
a time. Moreover, the complexity of block processing techniques can
amount to prohibitive levels, for today’s technology.

Sergios Theodoridis, University of Athens. Machine Learning, 2/77

The Gradient Descent Method

• Our starting point is the method of gradient descent, one of the most
widely used methods for iterative minimization of a differentiable cost
function, J(θ), θ ∈ Rl. As any other iterative technique, the method
starts from an initial estimate, θ(0), and generates a sequence,
θ(i), i = 1, 2, . . ., such that,

θ(i) = θ(i−1) + µi∆θ
(i), i > 0,

where µi > 0. Different rules for the choice of µi and ∆θ(i) lead to
different algorithms; the latter vector is known as the update direction
or the search direction. The sequence µi is known as the step-size or
the step-length, at the ith iteration; note that the values of µi may
either be constant or change at each iteration.

• The choice of ∆θ(i) is done such that to guarantee that

J(θ(i)) < J(θ(i−1)),

except at a minimizer, θ∗.

• Assume that at the i− 1 iteration step the value θ(i−1) has been
obtained. Then, mobilizing a first order Taylor’s expansion we can write

J
(
θ(i−1) + µi∆θ

(i)
)
≈ J(θ(i−1)) + µi∇TJ(θ(i−1))∆θ(i).

Sergios Theodoridis, University of Athens. Machine Learning, 3/77

The Gradient Descent Method

• Our starting point is the method of gradient descent, one of the most
widely used methods for iterative minimization of a differentiable cost
function, J(θ), θ ∈ Rl. As any other iterative technique, the method
starts from an initial estimate, θ(0), and generates a sequence,
θ(i), i = 1, 2, . . ., such that,

θ(i) = θ(i−1) + µi∆θ
(i), i > 0,

where µi > 0. Different rules for the choice of µi and ∆θ(i) lead to
different algorithms; the latter vector is known as the update direction
or the search direction. The sequence µi is known as the step-size or
the step-length, at the ith iteration; note that the values of µi may
either be constant or change at each iteration.

• The choice of ∆θ(i) is done such that to guarantee that

J(θ(i)) < J(θ(i−1)),

except at a minimizer, θ∗.

• Assume that at the i− 1 iteration step the value θ(i−1) has been
obtained. Then, mobilizing a first order Taylor’s expansion we can write

J
(
θ(i−1) + µi∆θ

(i)
)
≈ J(θ(i−1)) + µi∇TJ(θ(i−1))∆θ(i).

Sergios Theodoridis, University of Athens. Machine Learning, 3/77

The Gradient Descent Method

• Our starting point is the method of gradient descent, one of the most
widely used methods for iterative minimization of a differentiable cost
function, J(θ), θ ∈ Rl. As any other iterative technique, the method
starts from an initial estimate, θ(0), and generates a sequence,
θ(i), i = 1, 2, . . ., such that,

θ(i) = θ(i−1) + µi∆θ
(i), i > 0,

where µi > 0. Different rules for the choice of µi and ∆θ(i) lead to
different algorithms; the latter vector is known as the update direction
or the search direction. The sequence µi is known as the step-size or
the step-length, at the ith iteration; note that the values of µi may
either be constant or change at each iteration.

• The choice of ∆θ(i) is done such that to guarantee that

J(θ(i)) < J(θ(i−1)),

except at a minimizer, θ∗.

• Assume that at the i− 1 iteration step the value θ(i−1) has been
obtained. Then, mobilizing a first order Taylor’s expansion we can write

J
(
θ(i−1) + µi∆θ

(i)
)
≈ J(θ(i−1)) + µi∇TJ(θ(i−1))∆θ(i).

Sergios Theodoridis, University of Athens. Machine Learning, 3/77

The Gradient Descent Method

• Our starting point is the method of gradient descent, one of the most
widely used methods for iterative minimization of a differentiable cost
function, J(θ), θ ∈ Rl. As any other iterative technique, the method
starts from an initial estimate, θ(0), and generates a sequence,
θ(i), i = 1, 2, . . ., such that,

θ(i) = θ(i−1) + µi∆θ
(i), i > 0,

where µi > 0. Different rules for the choice of µi and ∆θ(i) lead to
different algorithms; the latter vector is known as the update direction
or the search direction. The sequence µi is known as the step-size or
the step-length, at the ith iteration; note that the values of µi may
either be constant or change at each iteration.

• The choice of ∆θ(i) is done such that to guarantee that

J(θ(i)) < J(θ(i−1)),

except at a minimizer, θ∗.

• Assume that at the i− 1 iteration step the value θ(i−1) has been
obtained. Then, mobilizing a first order Taylor’s expansion we can write

J
(
θ(i−1) + µi∆θ

(i)
)
≈ J(θ(i−1)) + µi∇TJ(θ(i−1))∆θ(i).

Sergios Theodoridis, University of Athens. Machine Learning, 3/77

The Gradient Descent Method

• Selecting the search direction so that

∇TJ(θ(i−1))∆θ(i) < 0,

then it guarantees that J(θ(i−1) + µi∆θ
(i)) < J(θ(i−1)). For such a

choice, ∆θ(i) and ∇J(θ(i−1)) must form an obtuse angle.

• Figure (a) shows the graph of a cost function in the two-dimensional
case, θ ∈ R2 and Figure (b) shows the respective isovalue contours in
the two-dimensional plane.

Sergios Theodoridis, University of Athens. Machine Learning, 4/77

The Gradient Descent Method

• Selecting the search direction so that

∇TJ(θ(i−1))∆θ(i) < 0,

then it guarantees that J(θ(i−1) + µi∆θ
(i)) < J(θ(i−1)). For such a

choice, ∆θ(i) and ∇J(θ(i−1)) must form an obtuse angle.

• Figure (a) shows the graph of a cost function in the two-dimensional
case, θ ∈ R2 and Figure (b) shows the respective isovalue contours in
the two-dimensional plane.

(a)

A cost function in the 2-D parameter space.

(b)

The isovalue curves of the cost function of Figure (a).

Sergios Theodoridis, University of Athens. Machine Learning, 4/77

The Gradient Descent Method

• For a geometric interpretation of the gradient descent update step,
recall that the gradient vector, ∇J(θ), is perpendicular to the plane
(line) tangent to the corresponding isovalue contour, at the point θ.
The geometry is illustrated in the figure below; to facilitate the drawing
and unclutter notation, we have got rid of the iteration index i. Note
that by selecting the search direction to form an obtuse angle with the
gradient, it places θ(i−1) + µi∆θ

(i) at a point on a contour which
corresponds to a lower value of J(θ).

Sergios Theodoridis, University of Athens. Machine Learning, 5/77

The Gradient Descent Method

• For a geometric interpretation of the gradient descent update step,
recall that the gradient vector, ∇J(θ), is perpendicular to the plane
(line) tangent to the corresponding isovalue contour, at the point θ.
The geometry is illustrated in the figure below; to facilitate the drawing
and unclutter notation, we have got rid of the iteration index i. Note
that by selecting the search direction to form an obtuse angle with the
gradient, it places θ(i−1) + µi∆θ

(i) at a point on a contour which
corresponds to a lower value of J(θ).

The gradient vector at a point θ is
perpendicular to the tangent plane at
the isovalue curve crossing θ. The
descent direction forms an obtuse
angle, φ, with the gradient vector.

Sergios Theodoridis, University of Athens. Machine Learning, 5/77

The Gradient Descent Method

•

The gradient vector at a point θ is
perpendicular to the tangent plane at
the isovalue curve crossing θ. The
descent direction forms an obtuse
angle, φ, with the gradient vector.

• There are two issues which are now raised: a) to choose the best search
direction along which to move and b) to compute how far along this
direction one can go. Even without much mathematics, it is obvious
from the figure that if µi||∆θ(i)|| is too large, then the new point may
be placed on a contour corresponding to a larger value; after all, the
first order Taylor’s expansion holds approximately true for small
deviations from θ(i).

Sergios Theodoridis, University of Athens. Machine Learning, 5/77

The Gradient Descent Method
• Search direction: Let us first assume that µi = 1 and search for all

vectors, z, with unit Euclidean norm, ||z|| = 1. Then, for all possible
directions, the one that gives the most negative value of the inner
product, ∇TJ(θ(i−1))z, is that of the negative gradient, i.e.,

z = − ∇J(θ(i−1))

||∇J(θ(i−1))||
.

This is known as the gradient or steepest descent direction, and it leads
to the following update recursion,

θ(i) = θ(i−1) − µi∇J(θ(i−1)). (1)

Sergios Theodoridis, University of Athens. Machine Learning, 6/77

The Gradient Descent Method
• Search direction: Let us first assume that µi = 1 and search for all

vectors, z, with unit Euclidean norm, ||z|| = 1. Then, for all possible
directions, the one that gives the most negative value of the inner
product, ∇TJ(θ(i−1))z, is that of the negative gradient, i.e.,

z = − ∇J(θ(i−1))

||∇J(θ(i−1))||
.

This is known as the gradient or steepest descent direction, and it leads
to the following update recursion,

θ(i) = θ(i−1) − µi∇J(θ(i−1)). (1)

The respective geometry is shown in the figure below.

From all the descent directions of
unit Euclidean norm (dotted circle),
the negative gradient one leads to
the maximum decrease of the cost
function.

Sergios Theodoridis, University of Athens. Machine Learning, 6/77

The Gradient Descent Method

• Iteration (1) is illustrated in the figure below, for the one-dimensional
case. If at the current iteration the algorithm has “landed” at θ1, then
the derivative of J(θ) at this point is positive (the tangent of an acute
angle, φ1) and this will force the update to move to the left towards
the minimum. The scenario is different if the current estimate was θ2.
The derivative is negative (the tangent of an obtuse angle, φ2) and this
will push the update to the right towards, again, the minimum.

Once the algorithm is at θ1, the
gradient descent will move the point
to the left, towards the minimum.
The opposite is true for the point θ2.

Sergios Theodoridis, University of Athens. Machine Learning, 7/77

The Gradient Descent Method

•

Once the algorithm is at θ1, the
gradient descent will move the point
to the left, towards the minimum.
The opposite is true for the point θ2.

• Note, however, that it is important how far to the left or to the right
one has to move. A large move from, say, θ1, to the left may land the
update on the other side of the optimal value. In such a case, the
algorithm may oscillate around the minimum and never converge. This
brings into the scene the issue on how small or big the step-size µi
should be in order to guarantee convergence of the algorithm.

Sergios Theodoridis, University of Athens. Machine Learning, 7/77

The Gradient Descent Method

• It turns out that, the gradient descent method exhibits
approximately linear convergence; that is, the error between θ(i)

and the true minimum converges to zero asymptotically in the
form of a geometric series. However, the convergence rate
depends heavily on the condition number of the Hessian matrix
of J(θ). For very large values of the condition number, e.g.,
1000, the rate of convergence can become extremely slow. The
great advantage of the method lies in its low computational
requirements.

• Soon, we are going to consider the convergence analysis, and
derive bounds for the step-size that guarantee convergence, in the
context of the Mean-Square-Error cost function.

Sergios Theodoridis, University of Athens. Machine Learning, 8/77

The Gradient Descent Method

• It turns out that, the gradient descent method exhibits
approximately linear convergence; that is, the error between θ(i)

and the true minimum converges to zero asymptotically in the
form of a geometric series. However, the convergence rate
depends heavily on the condition number of the Hessian matrix
of J(θ). For very large values of the condition number, e.g.,
1000, the rate of convergence can become extremely slow. The
great advantage of the method lies in its low computational
requirements.

• Soon, we are going to consider the convergence analysis, and
derive bounds for the step-size that guarantee convergence, in the
context of the Mean-Square-Error cost function.

Sergios Theodoridis, University of Athens. Machine Learning, 8/77

Application to the Mean-Square-Error Loss Function

• Let us now apply the gradient descent scheme to derive an iterative
algorithm to minimize the MSE cost function,

J(θ) = E
[
(y − θTx)2

]
= σ2

y − 2θTp+ θTΣxθ,

where
Σ := E[xxT], p := E[yx],

are the covariance matrix and the cross-correlation vector and σ2
y the

variance of y.

• The gradient of the cost function w.r. to θ is readily seen to be

∇J(θ) = 2Σxθ − 2p.

• The fixed step-size case: Employing the above gradient in the update
recursion in (1) and absorbing the factor 2 in the step-size, we obtain

θ(i) = θ(i−1) − µ
(
Σxθ

(i−1) − p
)
,

= θ(i−1) + µ
(
p−Σxθ(i−1)

)
. (2)

Sergios Theodoridis, University of Athens. Machine Learning, 9/77

Application to the Mean-Square-Error Loss Function

• Let us now apply the gradient descent scheme to derive an iterative
algorithm to minimize the MSE cost function,

J(θ) = E
[
(y − θTx)2

]
= σ2

y − 2θTp+ θTΣxθ,

where
Σ := E[xxT], p := E[yx],

are the covariance matrix and the cross-correlation vector and σ2
y the

variance of y.

• The gradient of the cost function w.r. to θ is readily seen to be

∇J(θ) = 2Σxθ − 2p.

• The fixed step-size case: Employing the above gradient in the update
recursion in (1) and absorbing the factor 2 in the step-size, we obtain

θ(i) = θ(i−1) − µ
(
Σxθ

(i−1) − p
)
,

= θ(i−1) + µ
(
p−Σxθ(i−1)

)
. (2)

Sergios Theodoridis, University of Athens. Machine Learning, 9/77

Application to the Mean-Square-Error Loss Function

• Let us now apply the gradient descent scheme to derive an iterative
algorithm to minimize the MSE cost function,

J(θ) = E
[
(y − θTx)2

]
= σ2

y − 2θTp+ θTΣxθ,

where
Σ := E[xxT], p := E[yx],

are the covariance matrix and the cross-correlation vector and σ2
y the

variance of y.

• The gradient of the cost function w.r. to θ is readily seen to be

∇J(θ) = 2Σxθ − 2p.

• The fixed step-size case: Employing the above gradient in the update
recursion in (1) and absorbing the factor 2 in the step-size, we obtain

θ(i) = θ(i−1) − µ
(
Σxθ

(i−1) − p
)
,

= θ(i−1) + µ
(
p−Σxθ(i−1)

)
. (2)

Sergios Theodoridis, University of Athens. Machine Learning, 9/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• It turns out that the values of the step-size that guarantee convergence lie in
the interval

0 < µ < 2/λmax

where λmax denotes the maximum eigenvalue of Σx.

• Proof: Define
c(i) := θ(i) − θ∗, (3)

where θ∗ is the (unique) optimal MSE solution that results by solving the
respective normal equations, Σxθ∗ = p.

• Subtracting θ∗ from both sides of (2) and plugging in (3), we obtain

c(i) = c(i−1) + µ
(
p−Σxc(i−1) −Σxθ∗

)
= c(i−1) − µΣxc(i−1) = (I − µΣx) c(i−1). (4)

• Recall that Σx is a symmetric positive definite matrix, hence it can be written
as

Σx = QΛQT ,
where

Λ := diag{λ1, . . . , λl} and Q := [q1, q2, . . . , ql],

with λj , qj , j = 1, 2, . . . , l, being the (positive) eigenvalues and the
respective normalized (orthogonal) eigenvectors of the covariance matrix, i.e.,

qTk qj = δkj , k, j = 1, 2, . . . , l =⇒ QT = Q−1.

Sergios Theodoridis, University of Athens. Machine Learning, 10/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• It turns out that the values of the step-size that guarantee convergence lie in
the interval

0 < µ < 2/λmax

where λmax denotes the maximum eigenvalue of Σx.

• Proof: Define
c(i) := θ(i) − θ∗, (3)

where θ∗ is the (unique) optimal MSE solution that results by solving the
respective normal equations, Σxθ∗ = p.

• Subtracting θ∗ from both sides of (2) and plugging in (3), we obtain

c(i) = c(i−1) + µ
(
p−Σxc(i−1) −Σxθ∗

)
= c(i−1) − µΣxc(i−1) = (I − µΣx) c(i−1). (4)

• Recall that Σx is a symmetric positive definite matrix, hence it can be written
as

Σx = QΛQT ,
where

Λ := diag{λ1, . . . , λl} and Q := [q1, q2, . . . , ql],

with λj , qj , j = 1, 2, . . . , l, being the (positive) eigenvalues and the
respective normalized (orthogonal) eigenvectors of the covariance matrix, i.e.,

qTk qj = δkj , k, j = 1, 2, . . . , l =⇒ QT = Q−1.

Sergios Theodoridis, University of Athens. Machine Learning, 10/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• It turns out that the values of the step-size that guarantee convergence lie in
the interval

0 < µ < 2/λmax

where λmax denotes the maximum eigenvalue of Σx.

• Proof: Define
c(i) := θ(i) − θ∗, (3)

where θ∗ is the (unique) optimal MSE solution that results by solving the
respective normal equations, Σxθ∗ = p.

• Subtracting θ∗ from both sides of (2) and plugging in (3), we obtain

c(i) = c(i−1) + µ
(
p−Σxc(i−1) −Σxθ∗

)
= c(i−1) − µΣxc(i−1) = (I − µΣx) c(i−1). (4)

• Recall that Σx is a symmetric positive definite matrix, hence it can be written
as

Σx = QΛQT ,
where

Λ := diag{λ1, . . . , λl} and Q := [q1, q2, . . . , ql],

with λj , qj , j = 1, 2, . . . , l, being the (positive) eigenvalues and the
respective normalized (orthogonal) eigenvectors of the covariance matrix, i.e.,

qTk qj = δkj , k, j = 1, 2, . . . , l =⇒ QT = Q−1.

Sergios Theodoridis, University of Athens. Machine Learning, 10/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• It turns out that the values of the step-size that guarantee convergence lie in
the interval

0 < µ < 2/λmax

where λmax denotes the maximum eigenvalue of Σx.

• Proof: Define
c(i) := θ(i) − θ∗, (3)

where θ∗ is the (unique) optimal MSE solution that results by solving the
respective normal equations, Σxθ∗ = p.

• Subtracting θ∗ from both sides of (2) and plugging in (3), we obtain

c(i) = c(i−1) + µ
(
p−Σxc(i−1) −Σxθ∗

)
= c(i−1) − µΣxc(i−1) = (I − µΣx) c(i−1). (4)

• Recall that Σx is a symmetric positive definite matrix, hence it can be written
as

Σx = QΛQT ,
where

Λ := diag{λ1, . . . , λl} and Q := [q1, q2, . . . , ql],

with λj , qj , j = 1, 2, . . . , l, being the (positive) eigenvalues and the
respective normalized (orthogonal) eigenvectors of the covariance matrix, i.e.,

qTk qj = δkj , k, j = 1, 2, . . . , l =⇒ QT = Q−1.

Sergios Theodoridis, University of Athens. Machine Learning, 10/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• Plugging the factorization of Σx into (4), we obtain

c(i) = Q (I − µΛ)QT c(i−1),

or
v(i) = (I − µΛ)v(i−1),

where
v(i) := QT c(i), i = 1, 2, (5)

• The previously used “trick” is a standard one and its aim is to “decouple” the
various components of θ(i) in (2). Indeed, each one of the components,
v(i)(j), j = 1, 2, . . . , l, of v(i) follows an iteration path, which is independent
on the rest of the components. If we denote by v(0)(j) is the jth component
of v(0), we get,

v(i)(j) = (1− µλj)v(i−1)(j) = (1− µλj)2v(i−2)(j) = . . .

= (1− µλj)iv(0)(j), (6)

• It is now readily seen that if

|1− µλj | < 1⇐⇒ −1 < 1− µλj < 1, j = 1, 2, . . . , l, (7)

the geometric series converges to zero or

v(i) −→ 0 =⇒ QT (θ(i) − θ∗) −→ 0 =⇒ θ(i) −→ θ∗.

• Note that (7) is equivalent to 0 < µ < 2/λmax and the claim has been proved.

Sergios Theodoridis, University of Athens. Machine Learning, 11/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• Plugging the factorization of Σx into (4), we obtain

c(i) = Q (I − µΛ)QT c(i−1),

or
v(i) = (I − µΛ)v(i−1),

where
v(i) := QT c(i), i = 1, 2, (5)

• The previously used “trick” is a standard one and its aim is to “decouple” the
various components of θ(i) in (2). Indeed, each one of the components,
v(i)(j), j = 1, 2, . . . , l, of v(i) follows an iteration path, which is independent
on the rest of the components. If we denote by v(0)(j) is the jth component
of v(0), we get,

v(i)(j) = (1− µλj)v(i−1)(j) = (1− µλj)2v(i−2)(j) = . . .

= (1− µλj)iv(0)(j), (6)

• It is now readily seen that if

|1− µλj | < 1⇐⇒ −1 < 1− µλj < 1, j = 1, 2, . . . , l, (7)

the geometric series converges to zero or

v(i) −→ 0 =⇒ QT (θ(i) − θ∗) −→ 0 =⇒ θ(i) −→ θ∗.

• Note that (7) is equivalent to 0 < µ < 2/λmax and the claim has been proved.

Sergios Theodoridis, University of Athens. Machine Learning, 11/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• Plugging the factorization of Σx into (4), we obtain

c(i) = Q (I − µΛ)QT c(i−1),

or
v(i) = (I − µΛ)v(i−1),

where
v(i) := QT c(i), i = 1, 2, (5)

• The previously used “trick” is a standard one and its aim is to “decouple” the
various components of θ(i) in (2). Indeed, each one of the components,
v(i)(j), j = 1, 2, . . . , l, of v(i) follows an iteration path, which is independent
on the rest of the components. If we denote by v(0)(j) is the jth component
of v(0), we get,

v(i)(j) = (1− µλj)v(i−1)(j) = (1− µλj)2v(i−2)(j) = . . .

= (1− µλj)iv(0)(j), (6)

• It is now readily seen that if

|1− µλj | < 1⇐⇒ −1 < 1− µλj < 1, j = 1, 2, . . . , l, (7)

the geometric series converges to zero or

v(i) −→ 0 =⇒ QT (θ(i) − θ∗) −→ 0 =⇒ θ(i) −→ θ∗.

• Note that (7) is equivalent to 0 < µ < 2/λmax and the claim has been proved.

Sergios Theodoridis, University of Athens. Machine Learning, 11/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• Plugging the factorization of Σx into (4), we obtain

c(i) = Q (I − µΛ)QT c(i−1),

or
v(i) = (I − µΛ)v(i−1),

where
v(i) := QT c(i), i = 1, 2, (5)

• The previously used “trick” is a standard one and its aim is to “decouple” the
various components of θ(i) in (2). Indeed, each one of the components,
v(i)(j), j = 1, 2, . . . , l, of v(i) follows an iteration path, which is independent
on the rest of the components. If we denote by v(0)(j) is the jth component
of v(0), we get,

v(i)(j) = (1− µλj)v(i−1)(j) = (1− µλj)2v(i−2)(j) = . . .

= (1− µλj)iv(0)(j), (6)

• It is now readily seen that if

|1− µλj | < 1⇐⇒ −1 < 1− µλj < 1, j = 1, 2, . . . , l, (7)

the geometric series converges to zero or

v(i) −→ 0 =⇒ QT (θ(i) − θ∗) −→ 0 =⇒ θ(i) −→ θ∗.

• Note that (7) is equivalent to 0 < µ < 2/λmax and the claim has been proved.

Sergios Theodoridis, University of Athens. Machine Learning, 11/77

Convergence of the Gradient Descent Algorithm For The MSE Case

The figure shows a typical sketch of
the evolution of a transformed vector
component, v(i)(j), as a function of
the iteration steps for the case
0 < 1− µλj < 1. Observe that the
curve is of an approximate
exponentially decreasing type.

• Time Constant: Assume that the envelope, denoted by the red line in
the figure above, is (approximately) of an exponential form,
f(t) = exp(−t/τj). Plug into f(t), as the values corresponding at the
time instants, t = iT and t = (i− 1)T , the values of v(i)(j), v(i−1)(j)
from (6); then, the time constant results as

τj =
−1

ln(1− µλj)
,

assuming that the sampling time between two successive iterations is
T = 1. For small values of µ, we can write

τj ≈
1

µλj
, for µ� 1.

Sergios Theodoridis, University of Athens. Machine Learning, 12/77

Convergence of the Gradient Descent Algorithm For The MSE Case

The figure shows a typical sketch of
the evolution of a transformed vector
component, v(i)(j), as a function of
the iteration steps for the case
0 < 1− µλj < 1. Observe that the
curve is of an approximate
exponentially decreasing type.

• Time Constant: Assume that the envelope, denoted by the red line in
the figure above, is (approximately) of an exponential form,
f(t) = exp(−t/τj). Plug into f(t), as the values corresponding at the
time instants, t = iT and t = (i− 1)T , the values of v(i)(j), v(i−1)(j)
from (6); then, the time constant results as

τj =
−1

ln(1− µλj)
,

assuming that the sampling time between two successive iterations is
T = 1. For small values of µ, we can write

τj ≈
1

µλj
, for µ� 1.

Sergios Theodoridis, University of Athens. Machine Learning, 12/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• That is, the slowest rate of convergence is associated with the
component that corresponds to the smallest eigenvalue. However, this
is only true for small enough values of µ. For the more general case,
this may not be true. Recall that the rate of convergence depends on
the value of the term 1− µλj . This is also known as the jth mode. Its
value depends not only on λj but also on µ.

• Let us take, as an example, the case of µ taking a value very close to the
maximum allowable one, µ ' 2/λmax. Then, the mode corresponding to
the maximum eigenvalue will have an absolute value very close to one.
On the other hand, the time constant of the mode corresponding to the
minimum eigenvalue will be controlled by the value of |1− 2λmin/λmax|,
which can be much smaller than one. In such a case, the mode
corresponding to the maximum eigenvalue exhibits slower convergence.

• In order to obtain the optimum value for the step-size, one has to select
its value in a way so that the resulting maximum absolute mode value
to be minimum. This is a min/max task, i.e.,

µo = arg min
µ

max
j
|1− µλj |,

s.t. |1− µλi| < 1, j = 1, 2, . . . , l.

Sergios Theodoridis, University of Athens. Machine Learning, 13/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• That is, the slowest rate of convergence is associated with the
component that corresponds to the smallest eigenvalue. However, this
is only true for small enough values of µ. For the more general case,
this may not be true. Recall that the rate of convergence depends on
the value of the term 1− µλj . This is also known as the jth mode. Its
value depends not only on λj but also on µ.

• Let us take, as an example, the case of µ taking a value very close to the
maximum allowable one, µ ' 2/λmax. Then, the mode corresponding to
the maximum eigenvalue will have an absolute value very close to one.
On the other hand, the time constant of the mode corresponding to the
minimum eigenvalue will be controlled by the value of |1− 2λmin/λmax|,
which can be much smaller than one. In such a case, the mode
corresponding to the maximum eigenvalue exhibits slower convergence.

• In order to obtain the optimum value for the step-size, one has to select
its value in a way so that the resulting maximum absolute mode value
to be minimum. This is a min/max task, i.e.,

µo = arg min
µ

max
j
|1− µλj |,

s.t. |1− µλi| < 1, j = 1, 2, . . . , l.

Sergios Theodoridis, University of Athens. Machine Learning, 13/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• That is, the slowest rate of convergence is associated with the
component that corresponds to the smallest eigenvalue. However, this
is only true for small enough values of µ. For the more general case,
this may not be true. Recall that the rate of convergence depends on
the value of the term 1− µλj . This is also known as the jth mode. Its
value depends not only on λj but also on µ.

• Let us take, as an example, the case of µ taking a value very close to the
maximum allowable one, µ ' 2/λmax. Then, the mode corresponding to
the maximum eigenvalue will have an absolute value very close to one.
On the other hand, the time constant of the mode corresponding to the
minimum eigenvalue will be controlled by the value of |1− 2λmin/λmax|,
which can be much smaller than one. In such a case, the mode
corresponding to the maximum eigenvalue exhibits slower convergence.

• In order to obtain the optimum value for the step-size, one has to select
its value in a way so that the resulting maximum absolute mode value
to be minimum. This is a min/max task, i.e.,

µo = arg min
µ

max
j
|1− µλj |,

s.t. |1− µλi| < 1, j = 1, 2, . . . , l.

Sergios Theodoridis, University of Athens. Machine Learning, 13/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• The task can be solved easily graphically. The figure below shows the
absolute values of the modes (corresponding to the maximum,
minimum and an intermediate one eigenvalues). The (absolute) values
of the modes initially decrease, as µ increases and then they start
increasing. Observe that the optimal value results when the curves for
the maximum and minimum eigenvalues intersect. Indeed, this
corresponds to the minimum maximum value.

Sergios Theodoridis, University of Athens. Machine Learning, 14/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• The task can be solved easily graphically. The figure below shows the
absolute values of the modes (corresponding to the maximum,
minimum and an intermediate one eigenvalues). The (absolute) values
of the modes initially decrease, as µ increases and then they start
increasing. Observe that the optimal value results when the curves for
the maximum and minimum eigenvalues intersect. Indeed, this
corresponds to the minimum maximum value.

At the intersection, we have

1− µoλmin = −(1− µoλmax),

which results in

µo =
2

λmax + λmin
.

Sergios Theodoridis, University of Athens. Machine Learning, 14/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• At the optimal value, µo, there are two slowest modes; one
corresponding to λmin (i.e., 1− µoλmin) and another one corresponding
to λmax (i.e., 1− µoλmax). They have equal magnitudes but opposite
signs, and they are given by,

±ρ− 1

ρ+ 1
, where ρ :=

λmax

λmin
.

In other words, the convergence rate depends on the eigenvalues
spread of the covariance matrix.

• Parameter Error Vector Convergence: From the definitions in (3) and
(5), we get

θ(i) = θ∗ +Qv(i)

= θ∗ + [q1, . . . , ql][v
(i)(1), . . . , v(i)(l)]T

= θ∗ +

l∑
k=1

qkv
(i)(k). (8)

• The above is written component-wise as

θ(i)(j) = θ
(i)
∗ (j) +

l∑
k=1

qk(j)v(0)(k)(1− µλk)i, j = 1, 2, . . . l.

Sergios Theodoridis, University of Athens. Machine Learning, 15/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• At the optimal value, µo, there are two slowest modes; one
corresponding to λmin (i.e., 1− µoλmin) and another one corresponding
to λmax (i.e., 1− µoλmax). They have equal magnitudes but opposite
signs, and they are given by,

±ρ− 1

ρ+ 1
, where ρ :=

λmax

λmin
.

In other words, the convergence rate depends on the eigenvalues
spread of the covariance matrix.

• Parameter Error Vector Convergence: From the definitions in (3) and
(5), we get

θ(i) = θ∗ +Qv(i)

= θ∗ + [q1, . . . , ql][v
(i)(1), . . . , v(i)(l)]T

= θ∗ +

l∑
k=1

qkv
(i)(k). (8)

• The above is written component-wise as

θ(i)(j) = θ
(i)
∗ (j) +

l∑
k=1

qk(j)v(0)(k)(1− µλk)i, j = 1, 2, . . . l.

Sergios Theodoridis, University of Athens. Machine Learning, 15/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• At the optimal value, µo, there are two slowest modes; one
corresponding to λmin (i.e., 1− µoλmin) and another one corresponding
to λmax (i.e., 1− µoλmax). They have equal magnitudes but opposite
signs, and they are given by,

±ρ− 1

ρ+ 1
, where ρ :=

λmax

λmin
.

In other words, the convergence rate depends on the eigenvalues
spread of the covariance matrix.

• Parameter Error Vector Convergence: From the definitions in (3) and
(5), we get

θ(i) = θ∗ +Qv(i)

= θ∗ + [q1, . . . , ql][v
(i)(1), . . . , v(i)(l)]T

= θ∗ +

l∑
k=1

qkv
(i)(k). (8)

• The above is written component-wise as

θ(i)(j) = θ
(i)
∗ (j) +

l∑
k=1

qk(j)v(0)(k)(1− µλk)i, j = 1, 2, . . . l.

Sergios Theodoridis, University of Athens. Machine Learning, 15/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• In other words, the components of θ(i) converge into the respective
components of the optimum vector θ∗ as a weighted average of
exponentials, (1− µλk)i. Computing the respective time constant in
close form is not possible; however, we can state lower and upper
bounds. The lower bound corresponds to the time constant of the
fastest converging mode and the upper bound to the slowest of the
modes. For small values of µ << 1, we can write

1

µλmax
≤ τ ≤ 1

µλmin
.

• The learning curve: We now turn our focus on the mean-square error.
In chapter 4, it has been shown that

J(θ(i)) = J(θ∗) + (θ(i) − θ∗)TΣx(θ(i) − θ∗),
or, mobilizing (8), the factorization Σx = QΛQT and the
orthonormality of the eigenvectors, we obtain

J(θ(i)) = J(θ∗) +

l∑
j=1

λj |v(i)(j)|2

or
J(θ(i)) = J(θ∗) +

l∑
j=1

λj(1− µλj)2i|v(0)(j)|2. (9)

Sergios Theodoridis, University of Athens. Machine Learning, 16/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• In other words, the components of θ(i) converge into the respective
components of the optimum vector θ∗ as a weighted average of
exponentials, (1− µλk)i. Computing the respective time constant in
close form is not possible; however, we can state lower and upper
bounds. The lower bound corresponds to the time constant of the
fastest converging mode and the upper bound to the slowest of the
modes. For small values of µ << 1, we can write

1

µλmax
≤ τ ≤ 1

µλmin
.

• The learning curve: We now turn our focus on the mean-square error.
In chapter 4, it has been shown that

J(θ(i)) = J(θ∗) + (θ(i) − θ∗)TΣx(θ(i) − θ∗),
or, mobilizing (8), the factorization Σx = QΛQT and the
orthonormality of the eigenvectors, we obtain

J(θ(i)) = J(θ∗) +

l∑
j=1

λj |v(i)(j)|2

or
J(θ(i)) = J(θ∗) +

l∑
j=1

λj(1− µλj)2i|v(0)(j)|2. (9)

Sergios Theodoridis, University of Athens. Machine Learning, 16/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• For i −→∞, recursion (9) converges to the minimum value
J(θ∗) asymptotically. Moreover, observe that this convergence is
monotonic, since λj(1− µλj)2 is positive. Following similar
arguments as before, the respective time constants for each one
of the modes are now,

τmse
j =

−1

2 ln(1− µλj)
≈ 1

2µλj
.

• The previous approximation for the time constant makes crystal
clear the role that the step-size, µ, plays in the gradient descent
iterative scheme. Its choice is crucial not only to guarantee
convergence, but also it determines the speed with which the
algorithm converges to the solution. The smaller its value is the
slower the convergence rate becomes.

• The other factor which the convergence speed depends on is the
eigenvalue structure of the input data covariance matrix.

Sergios Theodoridis, University of Athens. Machine Learning, 17/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• For i −→∞, recursion (9) converges to the minimum value
J(θ∗) asymptotically. Moreover, observe that this convergence is
monotonic, since λj(1− µλj)2 is positive. Following similar
arguments as before, the respective time constants for each one
of the modes are now,

τmse
j =

−1

2 ln(1− µλj)
≈ 1

2µλj
.

• The previous approximation for the time constant makes crystal
clear the role that the step-size, µ, plays in the gradient descent
iterative scheme. Its choice is crucial not only to guarantee
convergence, but also it determines the speed with which the
algorithm converges to the solution. The smaller its value is the
slower the convergence rate becomes.

• The other factor which the convergence speed depends on is the
eigenvalue structure of the input data covariance matrix.

Sergios Theodoridis, University of Athens. Machine Learning, 17/77

Convergence of the Gradient Descent Algorithm For The MSE Case

• For i −→∞, recursion (9) converges to the minimum value
J(θ∗) asymptotically. Moreover, observe that this convergence is
monotonic, since λj(1− µλj)2 is positive. Following similar
arguments as before, the respective time constants for each one
of the modes are now,

τmse
j =

−1

2 ln(1− µλj)
≈ 1

2µλj
.

• The previous approximation for the time constant makes crystal
clear the role that the step-size, µ, plays in the gradient descent
iterative scheme. Its choice is crucial not only to guarantee
convergence, but also it determines the speed with which the
algorithm converges to the solution. The smaller its value is the
slower the convergence rate becomes.

• The other factor which the convergence speed depends on is the
eigenvalue structure of the input data covariance matrix.

Sergios Theodoridis, University of Athens. Machine Learning, 17/77

Gradient Descent: Some Examples

• The aim of the example is to demonstrate what we have said so
far, concerning the convergence issues of the gradient descent
scheme

θ(i) = θ(i−1) + µ
(
p−Σxθ

(i−1)
)
.

The cross-correlation vector was chosen to be

p = [0.05, 0.03]T ,

and we consider two different covariance matrices,

Σ1 =

[
1 0
0 0.1

]
Σ2 =

[
1 0
0 1

]
.

Note that, for the case of Σ2, both eigenvalues are qual to 1 and
for Σ1 they are λ1 = 1 and λ2 = 0.1 (for diagonal matrices the
eigenvalues are equal to the diagonal elements of the matrix).

Sergios Theodoridis, University of Athens. Machine Learning, 18/77

Gradient Descent: Some Examples

• The figure below shows the error curves for two values of µ, for the case
of Σ1; the gray one corresponds to the optimum value (µo = 1.81) and
the red one to µ = µo/2 = 0.9. Observe the faster convergence towards
zero that is achieved by the optimal value. Note that it may happen, as
it is the case in this figure, that the initial convergence for some µ 6= µo
to be faster compared to µo. What the theory guarantees is that,
eventually, the curve corresponding to the optimal will tend to zero
faster than for any other value of µ.

Sergios Theodoridis, University of Athens. Machine Learning, 19/77

Gradient Descent: Some Examples

• The figures below show the respective trajectories of the successive
estimates in the two-dimensional space, together with the isovalue
curves; the latter are ellipses, due to the quadratic nature of the cost
function. Observe the zig-zag path, which corresponds to the larger
value of µ = 1.81 compared to the smoother one obtained for the
smaller step size µ = 0.9

(a)
(b)

The trajectories of the successive estimates (dots) obtained by the gradient descent algorithm for a) the larger
value of µ = 1.81 and b) for the smaller value of µ = 0.9. In b), the trajectory towards the minimum is

smooth. In contrast in a), the trajectory consists of zig-zags.

Sergios Theodoridis, University of Athens. Machine Learning, 20/77

Gradient Descent: Some Examples

• For comparison reasons, in order to demonstrate the dependence of the
convergence speed on the eigenvalues spread, Figure (a) shows the error
curves using the same step size, µ = 1.81, for both cases, Σ1 and Σ2.
Observe that large eigenvalues spread of the input covariance matrix
slows down the convergence rate.

(a)

For the same value of µ = 1.81, the error curves for the case of
unequal eigenvalues (λ1 = 1 and λ2 = 0.1) (gray) and for equal

eigenvalues (λ1 = λ2 = 1).

Sergios Theodoridis, University of Athens. Machine Learning, 21/77

Gradient Descent: Some Examples

• Note that, if the eigenvalues of the covariance matrix are equal to, say,
λ, the isovalue curves are circles; the optimal step-size in this case is
µ = 1/λ and convergence is achieved in only one step, Figure (b).

(b)

When the eigenvalues of the covariance matrix are all equal to a values,
λ, the use of the optimal µo = 1/λ achieves convergence in one step.

Sergios Theodoridis, University of Athens. Machine Learning, 21/77

Gradient Descent: Time Varying Step-Sizes

• Time-varying step-sizes: The previous analysis cannot be carried out for
the case of an iteration-dependent step-size. It can be shown that, in
this case, the gradient descent algorithm converges if

µi −→ 0, as i −→∞∑∞
i=1 µi =∞.

• A typical example of sequences, which comply with both conditions, are
those which satisfy the following:

∞∑
i=1

µ2
i <∞,

∞∑
i=1

µi =∞,

as, for example, the sequence,

µi =
1

i
.

• The two (sufficient) conditions require that the sequence tends to zero,
yet its infinite sum diverges. In words, the step-size has to decrease as
iterations progress, but not in an aggressive manner; thus, the algorithm
remains active for a sufficient number of iterations in order to learn the
solution. If the step-size tends to zero very fast, then updates are
practically frozen after a few iterations, without the algorithm having
acquired enough information so that to get close to the solution.

Sergios Theodoridis, University of Athens. Machine Learning, 22/77

Gradient Descent: Time Varying Step-Sizes

• Time-varying step-sizes: The previous analysis cannot be carried out for
the case of an iteration-dependent step-size. It can be shown that, in
this case, the gradient descent algorithm converges if

µi −→ 0, as i −→∞∑∞
i=1 µi =∞.

• A typical example of sequences, which comply with both conditions, are
those which satisfy the following:

∞∑
i=1

µ2
i <∞,

∞∑
i=1

µi =∞,

as, for example, the sequence,

µi =
1

i
.

• The two (sufficient) conditions require that the sequence tends to zero,
yet its infinite sum diverges. In words, the step-size has to decrease as
iterations progress, but not in an aggressive manner; thus, the algorithm
remains active for a sufficient number of iterations in order to learn the
solution. If the step-size tends to zero very fast, then updates are
practically frozen after a few iterations, without the algorithm having
acquired enough information so that to get close to the solution.

Sergios Theodoridis, University of Athens. Machine Learning, 22/77

Gradient Descent: Time Varying Step-Sizes

• Time-varying step-sizes: The previous analysis cannot be carried out for
the case of an iteration-dependent step-size. It can be shown that, in
this case, the gradient descent algorithm converges if

µi −→ 0, as i −→∞∑∞
i=1 µi =∞.

• A typical example of sequences, which comply with both conditions, are
those which satisfy the following:

∞∑
i=1

µ2
i <∞,

∞∑
i=1

µi =∞,

as, for example, the sequence,

µi =
1

i
.

• The two (sufficient) conditions require that the sequence tends to zero,
yet its infinite sum diverges. In words, the step-size has to decrease as
iterations progress, but not in an aggressive manner; thus, the algorithm
remains active for a sufficient number of iterations in order to learn the
solution. If the step-size tends to zero very fast, then updates are
practically frozen after a few iterations, without the algorithm having
acquired enough information so that to get close to the solution.

Sergios Theodoridis, University of Athens. Machine Learning, 22/77

Stochastic Approximation

• Solving for the normal equations as well as using the gradient descent
iterative scheme (for the case of the MSE), one has to have access to
the second order statistics of the involved processes/variables. However,
in most of the cases, this is not known and it has to be approximated
using a set of measurements.

• We now turn our attention to algorithms that can learn the statistics
iteratively via the training set. Such techniques evolve around the
method of stochastic approximation, or the Robbins-Monro algorithm.

• Let us consider the case of a function which is defined in terms of the
expected value of another one, i.e.,

f(θ) = E
[
φ(θ,η)

]
, θ ∈ Rl,

where η is a random vector of unknown statistics. The goal is to
compute a root of f(θ). If the statistics were known, the expectation
could be computed, at least in principle, and one could use any
root-finding algorithm to compute the roots. The problem emerges
when the statistics is unknown, hence the exact form of f(θ) is not
known. All one has at his/her disposal is a sequence of i.i.d
observations η0,η1,

Sergios Theodoridis, University of Athens. Machine Learning, 23/77

Stochastic Approximation

• Solving for the normal equations as well as using the gradient descent
iterative scheme (for the case of the MSE), one has to have access to
the second order statistics of the involved processes/variables. However,
in most of the cases, this is not known and it has to be approximated
using a set of measurements.

• We now turn our attention to algorithms that can learn the statistics
iteratively via the training set. Such techniques evolve around the
method of stochastic approximation, or the Robbins-Monro algorithm.

• Let us consider the case of a function which is defined in terms of the
expected value of another one, i.e.,

f(θ) = E
[
φ(θ,η)

]
, θ ∈ Rl,

where η is a random vector of unknown statistics. The goal is to
compute a root of f(θ). If the statistics were known, the expectation
could be computed, at least in principle, and one could use any
root-finding algorithm to compute the roots. The problem emerges
when the statistics is unknown, hence the exact form of f(θ) is not
known. All one has at his/her disposal is a sequence of i.i.d
observations η0,η1,

Sergios Theodoridis, University of Athens. Machine Learning, 23/77

Stochastic Approximation

• Solving for the normal equations as well as using the gradient descent
iterative scheme (for the case of the MSE), one has to have access to
the second order statistics of the involved processes/variables. However,
in most of the cases, this is not known and it has to be approximated
using a set of measurements.

• We now turn our attention to algorithms that can learn the statistics
iteratively via the training set. Such techniques evolve around the
method of stochastic approximation, or the Robbins-Monro algorithm.

• Let us consider the case of a function which is defined in terms of the
expected value of another one, i.e.,

f(θ) = E
[
φ(θ,η)

]
, θ ∈ Rl,

where η is a random vector of unknown statistics. The goal is to
compute a root of f(θ). If the statistics were known, the expectation
could be computed, at least in principle, and one could use any
root-finding algorithm to compute the roots. The problem emerges
when the statistics is unknown, hence the exact form of f(θ) is not
known. All one has at his/her disposal is a sequence of i.i.d
observations η0,η1,

Sergios Theodoridis, University of Athens. Machine Learning, 23/77

Stochastic Approximation

• The Robbins-Monro algorithm: Robbins and Monro proved that
the following iterative scheme

θn = θn−1 − µnφ(θn−1,ηn),

starting from an arbitrary initial condition, θ−1, converges (in
probability) to a root of f(θ), under some general conditions and
provided that ∑

n

µ2n <∞,
∑
n

µn −→∞. (10)

• In other words, in the previous iterative scheme, we get rid of the
expectation operation and use the value of φ(·, ·), which is
computed using the current observations/measurements and the
currently available estimate. That is, the algorithm learns both
the statistics as well as the root; two into one! The same
comments made in the previous slide for the convergence
conditions, met in the iteration dependent step-size case, are
valid here too.

Sergios Theodoridis, University of Athens. Machine Learning, 24/77

Stochastic Approximation

• The Robbins-Monro algorithm: Robbins and Monro proved that
the following iterative scheme

θn = θn−1 − µnφ(θn−1,ηn),

starting from an arbitrary initial condition, θ−1, converges (in
probability) to a root of f(θ), under some general conditions and
provided that ∑

n

µ2n <∞,
∑
n

µn −→∞. (10)

• In other words, in the previous iterative scheme, we get rid of the
expectation operation and use the value of φ(·, ·), which is
computed using the current observations/measurements and the
currently available estimate. That is, the algorithm learns both
the statistics as well as the root; two into one! The same
comments made in the previous slide for the convergence
conditions, met in the iteration dependent step-size case, are
valid here too.

Sergios Theodoridis, University of Athens. Machine Learning, 24/77

Stochastic Approximation

• Cost function optimization: In the context of optimizing a general
differentiable cost function of the form,

J(θ) = E
[
L(θ, y,x)

]
,

the Robbins-Monro scheme can be mobilized to find a root of the
respected gradient, i.e,

∇J(θ) = E
[
∇L(θ, y,x)

]
,

where the expectation is w.r. to the pair (y,x). Recall that, such cost
functions in the Machine Learning terminology are also known as the
expected risk or the expected loss.

• Given the sequence of observations (yn,xn), n = 0, 1, . . . , the
Robbins-Monro recursion now becomes

θn = θn−1 − µn∇L(θn−1, yn,xn).

• Let us now assume, for simplicity, that the expected risk has a unique
minimum, θ∗. Then, according to Robbins-Monro theorem and using an
appropriate sequence µn, θn will converge to θ∗. However, although
this information is important, it is not by itself enough. In practice, one
has to seize iterations after a finite number of steps.

Sergios Theodoridis, University of Athens. Machine Learning, 25/77

Stochastic Approximation

• Cost function optimization: In the context of optimizing a general
differentiable cost function of the form,

J(θ) = E
[
L(θ, y,x)

]
,

the Robbins-Monro scheme can be mobilized to find a root of the
respected gradient, i.e,

∇J(θ) = E
[
∇L(θ, y,x)

]
,

where the expectation is w.r. to the pair (y,x). Recall that, such cost
functions in the Machine Learning terminology are also known as the
expected risk or the expected loss.

• Given the sequence of observations (yn,xn), n = 0, 1, . . . , the
Robbins-Monro recursion now becomes

θn = θn−1 − µn∇L(θn−1, yn,xn).

• Let us now assume, for simplicity, that the expected risk has a unique
minimum, θ∗. Then, according to Robbins-Monro theorem and using an
appropriate sequence µn, θn will converge to θ∗. However, although
this information is important, it is not by itself enough. In practice, one
has to seize iterations after a finite number of steps.

Sergios Theodoridis, University of Athens. Machine Learning, 25/77

Stochastic Approximation

• Cost function optimization: In the context of optimizing a general
differentiable cost function of the form,

J(θ) = E
[
L(θ, y,x)

]
,

the Robbins-Monro scheme can be mobilized to find a root of the
respected gradient, i.e,

∇J(θ) = E
[
∇L(θ, y,x)

]
,

where the expectation is w.r. to the pair (y,x). Recall that, such cost
functions in the Machine Learning terminology are also known as the
expected risk or the expected loss.

• Given the sequence of observations (yn,xn), n = 0, 1, . . . , the
Robbins-Monro recursion now becomes

θn = θn−1 − µn∇L(θn−1, yn,xn).

• Let us now assume, for simplicity, that the expected risk has a unique
minimum, θ∗. Then, according to Robbins-Monro theorem and using an
appropriate sequence µn, θn will converge to θ∗. However, although
this information is important, it is not by itself enough. In practice, one
has to seize iterations after a finite number of steps.

Sergios Theodoridis, University of Athens. Machine Learning, 25/77

Stochastic Approximation

• To this end, two quantities are of interest, namely the mean and the
covariance matrix of the estimate at iteration n, i.e.,

E [θn] , Cov(θn).

It can be shown that, if µn = O(1/n) and assuming that iterations have
brought the estimate close to the optimal value, then

E [θn] = θ∗ +
1

n
c, Cov(θn) =

1

n
V +O(1/n2),

where c and V are constants that depend on the cost function.

• That is, both the mean as well as the standard deviations of the
components follow an O(1/n) pattern. Moreover, these formulae
indicate that the parameter vector estimate fluctuates around the
optimal value.

• This fluctuation depends on the choice of the sequence µn, being
smaller for smaller values of the step-size sequence. However, µn
cannot be made to decrease very fast due to the two convergence
conditions, as discussed before. This is the price one pays for using the
noisy version of the gradient and it is the reason that such schemes
suffer from relatively slow convergence rates.

Sergios Theodoridis, University of Athens. Machine Learning, 26/77

Stochastic Approximation

• To this end, two quantities are of interest, namely the mean and the
covariance matrix of the estimate at iteration n, i.e.,

E [θn] , Cov(θn).

It can be shown that, if µn = O(1/n) and assuming that iterations have
brought the estimate close to the optimal value, then

E [θn] = θ∗ +
1

n
c, Cov(θn) =

1

n
V +O(1/n2),

where c and V are constants that depend on the cost function.

• That is, both the mean as well as the standard deviations of the
components follow an O(1/n) pattern. Moreover, these formulae
indicate that the parameter vector estimate fluctuates around the
optimal value.

• This fluctuation depends on the choice of the sequence µn, being
smaller for smaller values of the step-size sequence. However, µn
cannot be made to decrease very fast due to the two convergence
conditions, as discussed before. This is the price one pays for using the
noisy version of the gradient and it is the reason that such schemes
suffer from relatively slow convergence rates.

Sergios Theodoridis, University of Athens. Machine Learning, 26/77

Stochastic Approximation

• To this end, two quantities are of interest, namely the mean and the
covariance matrix of the estimate at iteration n, i.e.,

E [θn] , Cov(θn).

It can be shown that, if µn = O(1/n) and assuming that iterations have
brought the estimate close to the optimal value, then

E [θn] = θ∗ +
1

n
c, Cov(θn) =

1

n
V +O(1/n2),

where c and V are constants that depend on the cost function.

• That is, both the mean as well as the standard deviations of the
components follow an O(1/n) pattern. Moreover, these formulae
indicate that the parameter vector estimate fluctuates around the
optimal value.

• This fluctuation depends on the choice of the sequence µn, being
smaller for smaller values of the step-size sequence. However, µn
cannot be made to decrease very fast due to the two convergence
conditions, as discussed before. This is the price one pays for using the
noisy version of the gradient and it is the reason that such schemes
suffer from relatively slow convergence rates.

Sergios Theodoridis, University of Athens. Machine Learning, 26/77

Stochastic Approximation And The MSE Linear Estimation

• Let us apply the Robbins-Monro algorithm to solve for the optimal MSE
linear estimator if the covariance matrix and the cross-correlation vector
are unknown. We know that the solution corresponds to the root of the
gradient of the cost function, which can be written in the form (recall
the orthogonality theorem from Chapter 4),

Σxθ − p = E
[
x(xTθ − y)

]
= 0.

• Given the training sequence of observations, (yn,xn), which are
assumed to be i.i.d. drawn from the joint distribution of (y,x), the
Robbins-Monro algorithm becomes,

θn = θn−1 + µnxn
(
yn − xTnθn−1

)
, (11)

which converges to the optimal MSE solution provided that the two
sufficient conditions in (10) are satisfied.

• Compare the above Robbins-Monro recursions with the gradient descent
one, i.e,

θ(i) = θ(i−1) + µ
(
p−Σxθ(i−1)

)
.

The former equation results from the latter one by dropping out the
expectation operations and using an iteration-dependent step-size.
Moreover, the iterations in (11) coincide with time updates; time has
now explicitly entered into the scene.

Sergios Theodoridis, University of Athens. Machine Learning, 27/77

Stochastic Approximation And The MSE Linear Estimation

• Let us apply the Robbins-Monro algorithm to solve for the optimal MSE
linear estimator if the covariance matrix and the cross-correlation vector
are unknown. We know that the solution corresponds to the root of the
gradient of the cost function, which can be written in the form (recall
the orthogonality theorem from Chapter 4),

Σxθ − p = E
[
x(xTθ − y)

]
= 0.

• Given the training sequence of observations, (yn,xn), which are
assumed to be i.i.d. drawn from the joint distribution of (y,x), the
Robbins-Monro algorithm becomes,

θn = θn−1 + µnxn
(
yn − xTnθn−1

)
, (11)

which converges to the optimal MSE solution provided that the two
sufficient conditions in (10) are satisfied.

• Compare the above Robbins-Monro recursions with the gradient descent
one, i.e,

θ(i) = θ(i−1) + µ
(
p−Σxθ(i−1)

)
.

The former equation results from the latter one by dropping out the
expectation operations and using an iteration-dependent step-size.
Moreover, the iterations in (11) coincide with time updates; time has
now explicitly entered into the scene.

Sergios Theodoridis, University of Athens. Machine Learning, 27/77

Stochastic Approximation And The MSE Linear Estimation

• Let us apply the Robbins-Monro algorithm to solve for the optimal MSE
linear estimator if the covariance matrix and the cross-correlation vector
are unknown. We know that the solution corresponds to the root of the
gradient of the cost function, which can be written in the form (recall
the orthogonality theorem from Chapter 4),

Σxθ − p = E
[
x(xTθ − y)

]
= 0.

• Given the training sequence of observations, (yn,xn), which are
assumed to be i.i.d. drawn from the joint distribution of (y,x), the
Robbins-Monro algorithm becomes,

θn = θn−1 + µnxn
(
yn − xTnθn−1

)
, (11)

which converges to the optimal MSE solution provided that the two
sufficient conditions in (10) are satisfied.

• Compare the above Robbins-Monro recursions with the gradient descent
one, i.e,

θ(i) = θ(i−1) + µ
(
p−Σxθ(i−1)

)
.

The former equation results from the latter one by dropping out the
expectation operations and using an iteration-dependent step-size.
Moreover, the iterations in (11) coincide with time updates; time has
now explicitly entered into the scene.

Sergios Theodoridis, University of Athens. Machine Learning, 27/77

Stochastic Gradient Descent

• Algorithms such as the one in (11), which result from the generic
gradient descent formulation by replacing the expectation by the
respective instantaneous observations, are also known as
stochastic gradient descent schemes.

• Now that each iteration step coincides with time updates,
provides us with the spark of starting thinking on modifying such
schemes appropriately so that to track time-varying environments.

• All the algorithms to be derived next can also be applied to
nonlinear estimation/filtering tasks of the form,

ŷ =
l∑

k=1

θkφk(x) = θTφ,

and the place of x is taken by φ, where

φ = [φ1(x), . . . , φl(x)]T .

Sergios Theodoridis, University of Athens. Machine Learning, 28/77

Stochastic Gradient Descent

• Algorithms such as the one in (11), which result from the generic
gradient descent formulation by replacing the expectation by the
respective instantaneous observations, are also known as
stochastic gradient descent schemes.

• Now that each iteration step coincides with time updates,
provides us with the spark of starting thinking on modifying such
schemes appropriately so that to track time-varying environments.

• All the algorithms to be derived next can also be applied to
nonlinear estimation/filtering tasks of the form,

ŷ =
l∑

k=1

θkφk(x) = θTφ,

and the place of x is taken by φ, where

φ = [φ1(x), . . . , φl(x)]T .

Sergios Theodoridis, University of Athens. Machine Learning, 28/77

Stochastic Gradient Descent

• Algorithms such as the one in (11), which result from the generic
gradient descent formulation by replacing the expectation by the
respective instantaneous observations, are also known as
stochastic gradient descent schemes.

• Now that each iteration step coincides with time updates,
provides us with the spark of starting thinking on modifying such
schemes appropriately so that to track time-varying environments.

• All the algorithms to be derived next can also be applied to
nonlinear estimation/filtering tasks of the form,

ŷ =
l∑

k=1

θkφk(x) = θTφ,

and the place of x is taken by φ, where

φ = [φ1(x), . . . , φl(x)]T .

Sergios Theodoridis, University of Athens. Machine Learning, 28/77

An Example

• The aim of this example is to demonstrate the convergence of the
stochastic gradient descent concerning the mean and the variance
of the obtained estimates, as a function of time.

• Data samples were first generated according to the regression
model

yn = θTxn + ηn,

where, θ ∈ R2 was randomly chosen and then fixed. The
elements of xn were i.i.d generated via a normal distribution
N (0, 1) and ηn is a white noise sequence with variance equal to
σ2 = 0.1. Then, the observations (yn,xn) were used in the
recursive scheme in (11) in order to obtain an estimate of θ. The
experiment was repeated 200 times and the mean and variance of
the obtained estimates were computed, for each iteration step.

Sergios Theodoridis, University of Athens. Machine Learning, 29/77

An Example

• The aim of this example is to demonstrate the convergence of the
stochastic gradient descent concerning the mean and the variance
of the obtained estimates, as a function of time.

• Data samples were first generated according to the regression
model

yn = θTxn + ηn,

where, θ ∈ R2 was randomly chosen and then fixed. The
elements of xn were i.i.d generated via a normal distribution
N (0, 1) and ηn is a white noise sequence with variance equal to
σ2 = 0.1. Then, the observations (yn,xn) were used in the
recursive scheme in (11) in order to obtain an estimate of θ. The
experiment was repeated 200 times and the mean and variance of
the obtained estimates were computed, for each iteration step.

Sergios Theodoridis, University of Athens. Machine Learning, 29/77

An Example

• The figure below shows the resulting curve for one of the parameters
(the other one being similar). Observe that the mean values of the
estimates tend to the true value, corresponding to the red line, and the
standard deviation keeps decreasing as n grows. The step-size was
chosen equal µn = 1/n.

The red line corresponds to the true value of the unknown parameter. The black curve corresponds to the
average over 200 realizations of the experiment. Observe that the mean value converges to the true value. The

bars correspond to the respective standard deviation, which keeps decreasing as n grows.

Sergios Theodoridis, University of Athens. Machine Learning, 30/77

The Least-Mean-Square Adaptive Algorithm (LMS)

• The stochastic gradient algorithm in (11) converges to the optimal
Mean-Square-Error solution, provided µn satisfies the two convergence
conditions. Once the algorithm has converged, it “locks” at the
obtained solution. In case the statistics of the involved variables/
unknown parameters start changing, the algorithm cannot track the
changes. Note that if such changes occur, the error term,

en = yn − θTn−1xn,
gets larger values; however, since µn is very small, the increased value
of the error will not lead to corresponding changes of the estimate.

• This can be overcome if one sets the value of µn to a preselected fixed
value, µ. The resulting algorithm is the celebrated LMS algorithm

• The LMS Algorithm
Initialize

θ−1 = 0 ∈ Rl; other values can also be used.
Select the value of µ.

For n = 0, 1, . . ., Do

en = yn − θTn−1xn
θn = θn−1 + µenxn

End For

Sergios Theodoridis, University of Athens. Machine Learning, 31/77

The Least-Mean-Square Adaptive Algorithm (LMS)

• The stochastic gradient algorithm in (11) converges to the optimal
Mean-Square-Error solution, provided µn satisfies the two convergence
conditions. Once the algorithm has converged, it “locks” at the
obtained solution. In case the statistics of the involved variables/
unknown parameters start changing, the algorithm cannot track the
changes. Note that if such changes occur, the error term,

en = yn − θTn−1xn,
gets larger values; however, since µn is very small, the increased value
of the error will not lead to corresponding changes of the estimate.

• This can be overcome if one sets the value of µn to a preselected fixed
value, µ. The resulting algorithm is the celebrated LMS algorithm

• The LMS Algorithm
Initialize

θ−1 = 0 ∈ Rl; other values can also be used.
Select the value of µ.

For n = 0, 1, . . ., Do

en = yn − θTn−1xn
θn = θn−1 + µenxn

End For

Sergios Theodoridis, University of Athens. Machine Learning, 31/77

The Least-Mean-Square Adaptive Algorithm (LMS)

• The stochastic gradient algorithm in (11) converges to the optimal
Mean-Square-Error solution, provided µn satisfies the two convergence
conditions. Once the algorithm has converged, it “locks” at the
obtained solution. In case the statistics of the involved variables/
unknown parameters start changing, the algorithm cannot track the
changes. Note that if such changes occur, the error term,

en = yn − θTn−1xn,
gets larger values; however, since µn is very small, the increased value
of the error will not lead to corresponding changes of the estimate.

• This can be overcome if one sets the value of µn to a preselected fixed
value, µ. The resulting algorithm is the celebrated LMS algorithm

• The LMS Algorithm
Initialize

θ−1 = 0 ∈ Rl; other values can also be used.
Select the value of µ.

For n = 0, 1, . . ., Do

en = yn − θTn−1xn
θn = θn−1 + µenxn

End For

Sergios Theodoridis, University of Athens. Machine Learning, 31/77

The Least-Mean-Square Adaptive Algorithm (LMS)

• In case the input is a time series, denoted as un,un−1, . . . the
initialization also involves the samples, u−1, . . . , u−l+1 = 0, in order to
form the input vectors, un, n = 0, 1, . . . , l − 2. The complexity of the
algorithm amounts to 2l multiplications/additions (MADs) per time
update. We have assumed that observations start arriving at time
instant n = 0, to be in line with most references treating the LMS.

• Assume that the algorithm has converged close to the solution; then the
error term is expected to take small values and thus the updates will
remain close to the solution. If now the statistics and/or the system
parameters start changing, the error values are expected to increase.
Given that µ has a constant value, the algorithm has now the “agility”
to update the estimates so that to “push” the error to lower values.

• This small variation of the iterative scheme has important implications.
The resulting algorithm is no more a member of the Robbins-Monro
stochastic approximation family. Thus, one has to study its convergence
conditions as well as its performance properties. Moreover, since the
algorithm has now the potential to track changes in time-varying
environments one has to study its performance in non-stationary
environments; this is associated to what is known as the tracking
performance of the algorithm.

Sergios Theodoridis, University of Athens. Machine Learning, 32/77

The Least-Mean-Square Adaptive Algorithm (LMS)

• In case the input is a time series, denoted as un,un−1, . . . the
initialization also involves the samples, u−1, . . . , u−l+1 = 0, in order to
form the input vectors, un, n = 0, 1, . . . , l − 2. The complexity of the
algorithm amounts to 2l multiplications/additions (MADs) per time
update. We have assumed that observations start arriving at time
instant n = 0, to be in line with most references treating the LMS.

• Assume that the algorithm has converged close to the solution; then the
error term is expected to take small values and thus the updates will
remain close to the solution. If now the statistics and/or the system
parameters start changing, the error values are expected to increase.
Given that µ has a constant value, the algorithm has now the “agility”
to update the estimates so that to “push” the error to lower values.

• This small variation of the iterative scheme has important implications.
The resulting algorithm is no more a member of the Robbins-Monro
stochastic approximation family. Thus, one has to study its convergence
conditions as well as its performance properties. Moreover, since the
algorithm has now the potential to track changes in time-varying
environments one has to study its performance in non-stationary
environments; this is associated to what is known as the tracking
performance of the algorithm.

Sergios Theodoridis, University of Athens. Machine Learning, 32/77

The Least-Mean-Square Adaptive Algorithm (LMS)

• In case the input is a time series, denoted as un,un−1, . . . the
initialization also involves the samples, u−1, . . . , u−l+1 = 0, in order to
form the input vectors, un, n = 0, 1, . . . , l − 2. The complexity of the
algorithm amounts to 2l multiplications/additions (MADs) per time
update. We have assumed that observations start arriving at time
instant n = 0, to be in line with most references treating the LMS.

• Assume that the algorithm has converged close to the solution; then the
error term is expected to take small values and thus the updates will
remain close to the solution. If now the statistics and/or the system
parameters start changing, the error values are expected to increase.
Given that µ has a constant value, the algorithm has now the “agility”
to update the estimates so that to “push” the error to lower values.

• This small variation of the iterative scheme has important implications.
The resulting algorithm is no more a member of the Robbins-Monro
stochastic approximation family. Thus, one has to study its convergence
conditions as well as its performance properties. Moreover, since the
algorithm has now the potential to track changes in time-varying
environments one has to study its performance in non-stationary
environments; this is associated to what is known as the tracking
performance of the algorithm.

Sergios Theodoridis, University of Athens. Machine Learning, 32/77

Convergence And Steady-State Performance of the LMS in Stationary
Environments

• Our focus now shifts to the study the performance of the LMS in
stationary environments. That is, to answer the questions: a) does the
scheme converge and under which conditions and b) if it converges,
where does it converge. Although we introduced the scheme having in
mind non-stationary environments, still we have to know how it behaves
under stationarity; after all, the environment can change very slowly and
it can be considered “locally” stationary.

• The convergence properties of the LMS, as well as of any other
online/adaptive algorithm, is related to its transient characteristics; that
is, the period from the initial estimate till the algorithm reaches a
steady-state mode of operation. The latter refers to the period, after
convergence, where the statistical properties of the estimator do not
change with time.

• In general, analyzing the transient performance of an online algorithm is
a formidable task indeed. This is also true even for the very simple
structure of the LMS algorithm. The LMS update recursions are
equivalent to a time-varying, nonlinear and stochastic in nature
estimator.

Sergios Theodoridis, University of Athens. Machine Learning, 33/77

Convergence And Steady-State Performance of the LMS in Stationary
Environments

• Our focus now shifts to the study the performance of the LMS in
stationary environments. That is, to answer the questions: a) does the
scheme converge and under which conditions and b) if it converges,
where does it converge. Although we introduced the scheme having in
mind non-stationary environments, still we have to know how it behaves
under stationarity; after all, the environment can change very slowly and
it can be considered “locally” stationary.

• The convergence properties of the LMS, as well as of any other
online/adaptive algorithm, is related to its transient characteristics; that
is, the period from the initial estimate till the algorithm reaches a
steady-state mode of operation. The latter refers to the period, after
convergence, where the statistical properties of the estimator do not
change with time.

• In general, analyzing the transient performance of an online algorithm is
a formidable task indeed. This is also true even for the very simple
structure of the LMS algorithm. The LMS update recursions are
equivalent to a time-varying, nonlinear and stochastic in nature
estimator.

Sergios Theodoridis, University of Athens. Machine Learning, 33/77

Convergence And Steady-State Performance of the LMS in Stationary
Environments

• Our focus now shifts to the study the performance of the LMS in
stationary environments. That is, to answer the questions: a) does the
scheme converge and under which conditions and b) if it converges,
where does it converge. Although we introduced the scheme having in
mind non-stationary environments, still we have to know how it behaves
under stationarity; after all, the environment can change very slowly and
it can be considered “locally” stationary.

• The convergence properties of the LMS, as well as of any other
online/adaptive algorithm, is related to its transient characteristics; that
is, the period from the initial estimate till the algorithm reaches a
steady-state mode of operation. The latter refers to the period, after
convergence, where the statistical properties of the estimator do not
change with time.

• In general, analyzing the transient performance of an online algorithm is
a formidable task indeed. This is also true even for the very simple
structure of the LMS algorithm. The LMS update recursions are
equivalent to a time-varying, nonlinear and stochastic in nature
estimator.

Sergios Theodoridis, University of Athens. Machine Learning, 33/77

Convergence of the Parameter Error Vector

• Convergence in the mean: The LMS is a variant of the stochastic
gradient descent algorithm for the solution of the MSE linear
estimation task. Let us assume that θ∗ is the solution of the
respective normal equations, Σxθ = p. Then, it can be shown
that the estimator, θn, which results from the LMS, converges in
the mean to the MSE solution, i.e.,

E[θn] −→ θ∗, as n −→∞,
provided that

0 < µ <
2

λmax
,

where λmax is the maximum eigenvalue of Σx. Recall that the
gradient algorithm in (2), for the solution of the MSE, converges
under the same condition to θ∗. The LMS converges only in the
mean. This is the price one pays for using an estimate of the
gradient and not the gradient itself.

• Thus, by fixing the value of the step-size to be a constant, we
lose something; the obtained estimates, even after convergence,
hover around the optimal solution.

Sergios Theodoridis, University of Athens. Machine Learning, 34/77

Convergence of the Parameter Error Vector

• Convergence in the mean: The LMS is a variant of the stochastic
gradient descent algorithm for the solution of the MSE linear
estimation task. Let us assume that θ∗ is the solution of the
respective normal equations, Σxθ = p. Then, it can be shown
that the estimator, θn, which results from the LMS, converges in
the mean to the MSE solution, i.e.,

E[θn] −→ θ∗, as n −→∞,
provided that

0 < µ <
2

λmax
,

where λmax is the maximum eigenvalue of Σx. Recall that the
gradient algorithm in (2), for the solution of the MSE, converges
under the same condition to θ∗. The LMS converges only in the
mean. This is the price one pays for using an estimate of the
gradient and not the gradient itself.

• Thus, by fixing the value of the step-size to be a constant, we
lose something; the obtained estimates, even after convergence,
hover around the optimal solution.

Sergios Theodoridis, University of Athens. Machine Learning, 34/77

Convergence of the Parameter Error Vector

• Proof: Define
cn := θn − θ∗,

where θ∗ is the optimal solution resulting from the normal equations.
The LMS update recursion can now be written as

cn = cn−1 + µxn(yn − θTn−1xn + θT∗ xn − θT∗ xn).

• Since we are going to study the statistical properties of the obtained
estimates, we have to switch our notation to involve the respective
random variables. Then we can write that,

cn = cn−1 + µx(y − θTn−1x + θT∗ x− θT∗ x)

= cn−1 − µxxT cn−1 + µxe∗

= (I − µxxT)cn−1 + µxe∗,

where
e∗ = y − θT∗ x,

is the error random variable associated with the optimal θ∗. Taking
expectations on both sides, we obtain,

E[cn] = E
[
(I − µxxT)cn−1

]
+ µE[xe∗]. (12)

In order to proceed, it is time to introduce assumptions.
Sergios Theodoridis, University of Athens. Machine Learning, 35/77

Convergence of the Parameter Error Vector

• Proof: Define
cn := θn − θ∗,

where θ∗ is the optimal solution resulting from the normal equations.
The LMS update recursion can now be written as

cn = cn−1 + µxn(yn − θTn−1xn + θT∗ xn − θT∗ xn).

• Since we are going to study the statistical properties of the obtained
estimates, we have to switch our notation to involve the respective
random variables. Then we can write that,

cn = cn−1 + µx(y − θTn−1x + θT∗ x− θT∗ x)

= cn−1 − µxxT cn−1 + µxe∗

= (I − µxxT)cn−1 + µxe∗,

where
e∗ = y − θT∗ x,

is the error random variable associated with the optimal θ∗. Taking
expectations on both sides, we obtain,

E[cn] = E
[
(I − µxxT)cn−1

]
+ µE[xe∗]. (12)

In order to proceed, it is time to introduce assumptions.
Sergios Theodoridis, University of Athens. Machine Learning, 35/77

Convergence of the Parameter Error Vector

• Proof: Define
cn := θn − θ∗,

where θ∗ is the optimal solution resulting from the normal equations.
The LMS update recursion can now be written as

cn = cn−1 + µxn(yn − θTn−1xn + θT∗ xn − θT∗ xn).

• Since we are going to study the statistical properties of the obtained
estimates, we have to switch our notation to involve the respective
random variables. Then we can write that,

cn = cn−1 + µx(y − θTn−1x + θT∗ x− θT∗ x)

= cn−1 − µxxT cn−1 + µxe∗

= (I − µxxT)cn−1 + µxe∗,

where
e∗ = y − θT∗ x,

is the error random variable associated with the optimal θ∗. Taking
expectations on both sides, we obtain,

E[cn] = E
[
(I − µxxT)cn−1

]
+ µE[xe∗]. (12)

In order to proceed, it is time to introduce assumptions.
Sergios Theodoridis, University of Athens. Machine Learning, 35/77

Convergence of the Parameter Error Vector

• Assumption 1: The involved random variables are jointly linked via the
regression model,

y = θTo x + η,

where η is the noise variable with variance σ2
η and it is assumed to be

independent of x. Moreover, successive samples ηn, that generate the
data, are assumed to be i.i.d. We know form chapter 4 that, in this
case, θ∗ = θo, and σ2

e∗ = σ2
η. Also, due to the orthogonality condition,

E[xe∗] = 0. In addition, a stronger condition will be adopted, and e∗
and x will be assumed to be statistically independent. This is justified
by the fact that under the above model, e∗,n = ηn, and the noise
sequence has been assumed to be independent of the input.

Sergios Theodoridis, University of Athens. Machine Learning, 36/77

Convergence of the Parameter Error Vector

• Assumption 1: The involved random variables are jointly linked via the
regression model,

y = θTo x + η,

where η is the noise variable with variance σ2
η and it is assumed to be

independent of x. Moreover, successive samples ηn, that generate the
data, are assumed to be i.i.d. We know form chapter 4 that, in this
case, θ∗ = θo, and σ2

e∗ = σ2
η. Also, due to the orthogonality condition,

E[xe∗] = 0. In addition, a stronger condition will be adopted, and e∗
and x will be assumed to be statistically independent. This is justified
by the fact that under the above model, e∗,n = ηn, and the noise
sequence has been assumed to be independent of the input.

• Assumption 2- Independence Assumption: Assume that cn−1 is
statistically independent on both x and e∗. No doubt this is a strong
assumption. It will be adopted in order to simplify computations.

Sergios Theodoridis, University of Athens. Machine Learning, 36/77

Convergence of the Parameter Error Vector

• Assumption 1: The involved random variables are jointly linked via the
regression model,

y = θTo x + η,

where η is the noise variable with variance σ2
η and it is assumed to be

independent of x. Moreover, successive samples ηn, that generate the
data, are assumed to be i.i.d. We know form chapter 4 that, in this
case, θ∗ = θo, and σ2

e∗ = σ2
η. Also, due to the orthogonality condition,

E[xe∗] = 0. In addition, a stronger condition will be adopted, and e∗
and x will be assumed to be statistically independent. This is justified
by the fact that under the above model, e∗,n = ηn, and the noise
sequence has been assumed to be independent of the input.

• Assumption 2- Independence Assumption: Assume that cn−1 is
statistically independent on both x and e∗. No doubt this is a strong
assumption. It will be adopted in order to simplify computations.

• Having adopted the previous assumptions, (12) becomes

E[cn] = E
[(
I − µxxT

)
cn−1

]
= (I − µΣx)E[cn−1].

In the sequel, we follow similar arguments as we did for its gradient
descent counterpart.

Sergios Theodoridis, University of Athens. Machine Learning, 36/77

Convergence of the Parameter Error Vector

• Recall, Σx = QΛQT and define vn = QT cn. Then, plugging into

E[cn] = (I − µΣx)E[cn−1],

we finally obtain

E[vn] = (I − µΛ)E[vn−1].

The last equation leads to,

E[θn] −→ θ∗, as n −→∞,

provided that

0 < µ <
2

λmax
,

and the claim has been proved.

Sergios Theodoridis, University of Athens. Machine Learning, 37/77

Covariance and Excess Mean-Square Error

• Convergence in the mean is important, but it does not say much by
itself. One has to get extra information concerning the involved
variances. It can be shown that the covariance matrix of the parameter
error vector,

Σc := E[ccT],

remains bounded as n −→∞, provided that

µ <
2

trace{Σx}
.

• Excess MSE and misadjustment: We know that the minimum MSE is
achieved at θ∗. Any other weight vector results in higher values of the
squared error. We have already said that in the steady-state, the
estimates obtained via the LMS fluctuate randomly around θ∗; thus, the
mean-square error will be larger than the minimum Jmin. This “extra”
error power, denoted as Jexc, is known as the excess mean-square error.
Also the ratio

M :=
Jexc

Jmin
,

is known as the misadjustment.

Sergios Theodoridis, University of Athens. Machine Learning, 38/77

Covariance and Excess Mean-Square Error

• Convergence in the mean is important, but it does not say much by
itself. One has to get extra information concerning the involved
variances. It can be shown that the covariance matrix of the parameter
error vector,

Σc := E[ccT],

remains bounded as n −→∞, provided that

µ <
2

trace{Σx}
.

• Excess MSE and misadjustment: We know that the minimum MSE is
achieved at θ∗. Any other weight vector results in higher values of the
squared error. We have already said that in the steady-state, the
estimates obtained via the LMS fluctuate randomly around θ∗; thus, the
mean-square error will be larger than the minimum Jmin. This “extra”
error power, denoted as Jexc, is known as the excess mean-square error.
Also the ratio

M :=
Jexc

Jmin
,

is known as the misadjustment.

Sergios Theodoridis, University of Athens. Machine Learning, 38/77

Covariance and Excess Mean-Square Error

• It can be shown, under a number of assumptions (details in the text)
that,

Jexc,n = trace{ΣxΣc,n−1}.

Moreover, asymptotically, at the steady-state, which is defined as the
state where,

E[θn] = E[θn−1] = Constant, and Σθ,n = Σθ,n−1 = Constant,

and for small values of µ, we get

Jexc,∞ '
1

2
µσ2

ntrace{Σx}, M'
1

2
µtrace{Σx}.

• Time constant: It turns out that the time constant for the jth mode for
the LMS is given by

τLMS
j ' 1

2µλj
.

• That is, the time constant for each one of the modes is inversely
proportional to µ. Hence, the slower the rate of convergence (small
values of µ) the lower the misadjustment and vice versa. Viewing it
differently, the more time the algorithm spends on learning, prior to
reaching the steady state, the smaller its deviation from the optimal is.

Sergios Theodoridis, University of Athens. Machine Learning, 39/77

Covariance and Excess Mean-Square Error

• It can be shown, under a number of assumptions (details in the text)
that,

Jexc,n = trace{ΣxΣc,n−1}.

Moreover, asymptotically, at the steady-state, which is defined as the
state where,

E[θn] = E[θn−1] = Constant, and Σθ,n = Σθ,n−1 = Constant,

and for small values of µ, we get

Jexc,∞ '
1

2
µσ2

ntrace{Σx}, M'
1

2
µtrace{Σx}.

• Time constant: It turns out that the time constant for the jth mode for
the LMS is given by

τLMS
j ' 1

2µλj
.

• That is, the time constant for each one of the modes is inversely
proportional to µ. Hence, the slower the rate of convergence (small
values of µ) the lower the misadjustment and vice versa. Viewing it
differently, the more time the algorithm spends on learning, prior to
reaching the steady state, the smaller its deviation from the optimal is.

Sergios Theodoridis, University of Athens. Machine Learning, 39/77

Covariance and Excess Mean-Square Error

• It can be shown, under a number of assumptions (details in the text)
that,

Jexc,n = trace{ΣxΣc,n−1}.

Moreover, asymptotically, at the steady-state, which is defined as the
state where,

E[θn] = E[θn−1] = Constant, and Σθ,n = Σθ,n−1 = Constant,

and for small values of µ, we get

Jexc,∞ '
1

2
µσ2

ntrace{Σx}, M'
1

2
µtrace{Σx}.

• Time constant: It turns out that the time constant for the jth mode for
the LMS is given by

τLMS
j ' 1

2µλj
.

• That is, the time constant for each one of the modes is inversely
proportional to µ. Hence, the slower the rate of convergence (small
values of µ) the lower the misadjustment and vice versa. Viewing it
differently, the more time the algorithm spends on learning, prior to
reaching the steady state, the smaller its deviation from the optimal is.

Sergios Theodoridis, University of Athens. Machine Learning, 39/77

The LMS: Some Simulation Examples

• The goal of this example is to demonstrate the sensitivity of the
convergence rate of the LMS on the eigenvalues spread of the input
covariance matrix. To this end, two sets of data were generated, in the
context of the regression task,

yn = θTxn + ηn.

The parameters, θ ∈ R10, were randomly chosen from a N (0, 1) and
then frozen.

• For the first set, the input vectors were formed by a white noise
sequence with samples i.i.d drawn from a N (0, 1). Thus, the input
covariance matrix was diagonal with all the elements being equal to the
corresponding noise variance (as explained in Chapter 2). The noise
samples, ηn, were also i.i.d drawn with zero mean and variance
σ2 = 0.01.

• For the second set, the input vectors were formed by an AR(1) process
with coefficient equal to a1 = 0.85 and the corresponding white noise
excitation was of variance equal to 1 (Chapter 2). Thus, the input
covariance matrix is no more diagonal and the eigenvalues are not equal.
The LMS was run on both cases with the same step size µ = 0.01.

Sergios Theodoridis, University of Athens. Machine Learning, 40/77

The LMS: Some Simulation Examples

• The goal of this example is to demonstrate the sensitivity of the
convergence rate of the LMS on the eigenvalues spread of the input
covariance matrix. To this end, two sets of data were generated, in the
context of the regression task,

yn = θTxn + ηn.

The parameters, θ ∈ R10, were randomly chosen from a N (0, 1) and
then frozen.

• For the first set, the input vectors were formed by a white noise
sequence with samples i.i.d drawn from a N (0, 1). Thus, the input
covariance matrix was diagonal with all the elements being equal to the
corresponding noise variance (as explained in Chapter 2). The noise
samples, ηn, were also i.i.d drawn with zero mean and variance
σ2 = 0.01.

• For the second set, the input vectors were formed by an AR(1) process
with coefficient equal to a1 = 0.85 and the corresponding white noise
excitation was of variance equal to 1 (Chapter 2). Thus, the input
covariance matrix is no more diagonal and the eigenvalues are not equal.
The LMS was run on both cases with the same step size µ = 0.01.

Sergios Theodoridis, University of Athens. Machine Learning, 40/77

The LMS: Some Simulation Examples

• The goal of this example is to demonstrate the sensitivity of the
convergence rate of the LMS on the eigenvalues spread of the input
covariance matrix. To this end, two sets of data were generated, in the
context of the regression task,

yn = θTxn + ηn.

The parameters, θ ∈ R10, were randomly chosen from a N (0, 1) and
then frozen.

• For the first set, the input vectors were formed by a white noise
sequence with samples i.i.d drawn from a N (0, 1). Thus, the input
covariance matrix was diagonal with all the elements being equal to the
corresponding noise variance (as explained in Chapter 2). The noise
samples, ηn, were also i.i.d drawn with zero mean and variance
σ2 = 0.01.

• For the second set, the input vectors were formed by an AR(1) process
with coefficient equal to a1 = 0.85 and the corresponding white noise
excitation was of variance equal to 1 (Chapter 2). Thus, the input
covariance matrix is no more diagonal and the eigenvalues are not equal.
The LMS was run on both cases with the same step size µ = 0.01.

Sergios Theodoridis, University of Athens. Machine Learning, 40/77

The LMS: Some Simulation Examples

• The figure below summarizes the results. The vertical axis (denoted as
MSE) shows the squared error, e2n, and the horizontal axis the time
instants (iterations) n. Note that both curves level out at the same
error floor (same misadjustment). However, the convergence rate for
the case of the white noise sequence is significantly higher.

• When comparing convergence performance of different algorithms,
either all algorithms should converge to the same error floor and
compare the respective convergence rates, or all algorithms should have
the same convergence rate and compare respective error floors.

Sergios Theodoridis, University of Athens. Machine Learning, 41/77

The LMS: Some Simulation Examples

• The figure below summarizes the results. The vertical axis (denoted as
MSE) shows the squared error, e2n, and the horizontal axis the time
instants (iterations) n. Note that both curves level out at the same
error floor (same misadjustment). However, the convergence rate for
the case of the white noise sequence is significantly higher.

• When comparing convergence performance of different algorithms,
either all algorithms should converge to the same error floor and
compare the respective convergence rates, or all algorithms should have
the same convergence rate and compare respective error floors.

Sergios Theodoridis, University of Athens. Machine Learning, 41/77

The LMS: Some Simulation Examples

• In this example, the dependence of the LMS on the choice of the
step-size is demonstrated. The unknown parameters, θ ∈ R10, as well
as the data were exactly the same with the white noise case of the
previous example. The LMS was run using the generated samples, with
two different step-sizes, namely, µ = 0.01 and µ = 0.0075. The
obtained error curves are shown in the figure below. Observe that the
larger the step-size, the faster the convergence becomes albeit at the
expense of a higher error floor (misadjustment), in accordance to the
theory, which has already been presented.

Sergios Theodoridis, University of Athens. Machine Learning, 42/77

The Affine Projection Algorithm

• A major drawback of the basic LMS scheme is its fairly slow
convergence speed. In an attempt to improve upon it, a number of
variants have been proposed over the years. The Affine Projection
Algorithm (APA) belongs to the so-called data-reusing family, where, at
each time instant, past data are reused. Such a rationale helps the
algorithm to “learn faster” and improve the convergence speed. Besides
the increased complexity, the faster convergence speed is achieved at the
expense of a misadjustment level that increases with the values of q.

• Let the currently available estimate be θn−1. According to APA, the
updated estimate, θ, must satisfy the following constraints,

xTn−iθ = yn−i, i = 0, 1, . . . , q − 1.

In other words, we force the parameter vector, θ, to provide at its
output the desired response samples, for the q most recent time
instants, where q is a user-defined parameter.

• At the same time, APA requires θ to be as close as possible, in the
Euclidean norm sense, to the current estimate, θn−1. Thus, APA, at
each time instant, solves the following constrained optimization task,

θn = arg min
θ
||θ − θn−1||2

s.t. xTn−iθ = yn−i, i = 0, 1, . . . , q − 1.

Sergios Theodoridis, University of Athens. Machine Learning, 43/77

The Affine Projection Algorithm

• A major drawback of the basic LMS scheme is its fairly slow
convergence speed. In an attempt to improve upon it, a number of
variants have been proposed over the years. The Affine Projection
Algorithm (APA) belongs to the so-called data-reusing family, where, at
each time instant, past data are reused. Such a rationale helps the
algorithm to “learn faster” and improve the convergence speed. Besides
the increased complexity, the faster convergence speed is achieved at the
expense of a misadjustment level that increases with the values of q.

• Let the currently available estimate be θn−1. According to APA, the
updated estimate, θ, must satisfy the following constraints,

xTn−iθ = yn−i, i = 0, 1, . . . , q − 1.

In other words, we force the parameter vector, θ, to provide at its
output the desired response samples, for the q most recent time
instants, where q is a user-defined parameter.

• At the same time, APA requires θ to be as close as possible, in the
Euclidean norm sense, to the current estimate, θn−1. Thus, APA, at
each time instant, solves the following constrained optimization task,

θn = arg min
θ
||θ − θn−1||2

s.t. xTn−iθ = yn−i, i = 0, 1, . . . , q − 1.

Sergios Theodoridis, University of Athens. Machine Learning, 43/77

The Affine Projection Algorithm

• A major drawback of the basic LMS scheme is its fairly slow
convergence speed. In an attempt to improve upon it, a number of
variants have been proposed over the years. The Affine Projection
Algorithm (APA) belongs to the so-called data-reusing family, where, at
each time instant, past data are reused. Such a rationale helps the
algorithm to “learn faster” and improve the convergence speed. Besides
the increased complexity, the faster convergence speed is achieved at the
expense of a misadjustment level that increases with the values of q.

• Let the currently available estimate be θn−1. According to APA, the
updated estimate, θ, must satisfy the following constraints,

xTn−iθ = yn−i, i = 0, 1, . . . , q − 1.

In other words, we force the parameter vector, θ, to provide at its
output the desired response samples, for the q most recent time
instants, where q is a user-defined parameter.

• At the same time, APA requires θ to be as close as possible, in the
Euclidean norm sense, to the current estimate, θn−1. Thus, APA, at
each time instant, solves the following constrained optimization task,

θn = arg min
θ
||θ − θn−1||2

s.t. xTn−iθ = yn−i, i = 0, 1, . . . , q − 1.

Sergios Theodoridis, University of Athens. Machine Learning, 43/77

The Affine Projection Algorithm

• Let us define the q × l matrix

Xn =

 xT
n
...

xT
n−q+1

 ,
then the set of constraints can be compactly written as,

Xnθ = yn, yn = [yn . . . yn−q+1]
T .

• Using Lagrange multipliers to solve the previous constrained
optimization task, provided that XnX

T
n is invertible, we obtain,

θn = θn−1 +XT
n

(
XnX

T
n

)−1
en,

en = yn −Xnθn−1.

• Usually, a step-size is also used to control the update. The
resulting scheme is summarized in the next slide.

Sergios Theodoridis, University of Athens. Machine Learning, 44/77

The Affine Projection Algorithm

• Let us define the q × l matrix

Xn =

 xT
n
...

xT
n−q+1

 ,
then the set of constraints can be compactly written as,

Xnθ = yn, yn = [yn . . . yn−q+1]
T .

• Using Lagrange multipliers to solve the previous constrained
optimization task, provided that XnX

T
n is invertible, we obtain,

θn = θn−1 +XT
n

(
XnX

T
n

)−1
en,

en = yn −Xnθn−1.

• Usually, a step-size is also used to control the update. The
resulting scheme is summarized in the next slide.

Sergios Theodoridis, University of Athens. Machine Learning, 44/77

The Affine Projection Algorithm

• Let us define the q × l matrix

Xn =

 xT
n
...

xT
n−q+1

 ,
then the set of constraints can be compactly written as,

Xnθ = yn, yn = [yn . . . yn−q+1]
T .

• Using Lagrange multipliers to solve the previous constrained
optimization task, provided that XnX

T
n is invertible, we obtain,

θn = θn−1 +XT
n

(
XnX

T
n

)−1
en,

en = yn −Xnθn−1.

• Usually, a step-size is also used to control the update. The
resulting scheme is summarized in the next slide.

Sergios Theodoridis, University of Athens. Machine Learning, 44/77

The Affine Projection Algorithm

• The Affine Projection Algorithm

Initialize

x−1 = . . . = x−q+1 = 0, y−1 . . . y−q+1 = 0
θ−1 = 0 ∈ Rl (or any other value).
Choose 0 < µ < 2 and δ to be small.

For n = 0, 1, . . ., Do

en = yn −Xnθn−1

θn = θn−1 + µXT
n

(
δI +XnX

T
n

)−1
en

End For

• When the input is a time series, the corresponding input vector, denoted
as un, is initialized by setting to zero all required samples with negative
time index, u−1, u−2, Note that in the algorithm a parameter, δ, of
a small value has also been used in order to prevent numerical problems
in the associated matrix inversion. Also, a step-size µ has been
introduced, that controls the size of the update and whose presence will
be justified soon. The complexity of APA is increased, compared to that
of the LMS, due to the involved matrix inversion and matrix operations,
requiring O(q3) MADs.

Sergios Theodoridis, University of Athens. Machine Learning, 45/77

The Affine Projection Algorithm

• The Affine Projection Algorithm

Initialize

x−1 = . . . = x−q+1 = 0, y−1 . . . y−q+1 = 0
θ−1 = 0 ∈ Rl (or any other value).
Choose 0 < µ < 2 and δ to be small.

For n = 0, 1, . . ., Do

en = yn −Xnθn−1

θn = θn−1 + µXT
n

(
δI +XnX

T
n

)−1
en

End For

• When the input is a time series, the corresponding input vector, denoted
as un, is initialized by setting to zero all required samples with negative
time index, u−1, u−2, Note that in the algorithm a parameter, δ, of
a small value has also been used in order to prevent numerical problems
in the associated matrix inversion. Also, a step-size µ has been
introduced, that controls the size of the update and whose presence will
be justified soon. The complexity of APA is increased, compared to that
of the LMS, due to the involved matrix inversion and matrix operations,
requiring O(q3) MADs.

Sergios Theodoridis, University of Athens. Machine Learning, 45/77

The Affine Projection Algorithm

• The convergence analysis of the APA is more involved than that of the
LMS. It turns out that provided that 0 < µ < 2, stability of the
algorithm is guaranteed. The misadjustment is approximately given by,

M'
µqσ2

η

2− µ
E
[

1

||xn||2

]
trace{Σx}.

In words, the misadjustment increases as the parameter q increases;
that is, as the number of the reused past data increases.

• Geometric Interpretation of APA: Let us recall the optimization task
associated with the APA. Each one of the q constraints
(xTn−iθ = yn−i, i = 0, 1, . . . , q − 1) defines a hyperplane in the
l-dimensional space. Hence, θn is constrained to lie on all these
hyperplanes; it thus lies in their intersection.

• Provided that xn−i, i = 0, . . . , q − 1, are linearly independent, these
hyperplanes share a nonempty intersection, which is an affine set of
dimension l − q. An affine set is the translation of a linear subspace
(i.e., a plane crossing the origin) by a constant vector; that is, it is a
plane in a general position.

Sergios Theodoridis, University of Athens. Machine Learning, 46/77

The Affine Projection Algorithm

• The convergence analysis of the APA is more involved than that of the
LMS. It turns out that provided that 0 < µ < 2, stability of the
algorithm is guaranteed. The misadjustment is approximately given by,

M'
µqσ2

η

2− µ
E
[

1

||xn||2

]
trace{Σx}.

In words, the misadjustment increases as the parameter q increases;
that is, as the number of the reused past data increases.

• Geometric Interpretation of APA: Let us recall the optimization task
associated with the APA. Each one of the q constraints
(xTn−iθ = yn−i, i = 0, 1, . . . , q − 1) defines a hyperplane in the
l-dimensional space. Hence, θn is constrained to lie on all these
hyperplanes; it thus lies in their intersection.

• Provided that xn−i, i = 0, . . . , q − 1, are linearly independent, these
hyperplanes share a nonempty intersection, which is an affine set of
dimension l − q. An affine set is the translation of a linear subspace
(i.e., a plane crossing the origin) by a constant vector; that is, it is a
plane in a general position.

Sergios Theodoridis, University of Athens. Machine Learning, 46/77

The Affine Projection Algorithm

• The convergence analysis of the APA is more involved than that of the
LMS. It turns out that provided that 0 < µ < 2, stability of the
algorithm is guaranteed. The misadjustment is approximately given by,

M'
µqσ2

η

2− µ
E
[

1

||xn||2

]
trace{Σx}.

In words, the misadjustment increases as the parameter q increases;
that is, as the number of the reused past data increases.

• Geometric Interpretation of APA: Let us recall the optimization task
associated with the APA. Each one of the q constraints
(xTn−iθ = yn−i, i = 0, 1, . . . , q − 1) defines a hyperplane in the
l-dimensional space. Hence, θn is constrained to lie on all these
hyperplanes; it thus lies in their intersection.

• Provided that xn−i, i = 0, . . . , q − 1, are linearly independent, these
hyperplanes share a nonempty intersection, which is an affine set of
dimension l − q. An affine set is the translation of a linear subspace
(i.e., a plane crossing the origin) by a constant vector; that is, it is a
plane in a general position.

Sergios Theodoridis, University of Athens. Machine Learning, 46/77

The Affine Projection Algorithm

• Thus, θn can lie anywhere in this affine set. From the infinite many
points lying in this set, APA selects the one which lies closest, in the
Euclidean sense, to θn−1. In other words, θn is the projection of θn−1
on the affine set defined by the intersection of the q hyperplanes.

Sergios Theodoridis, University of Athens. Machine Learning, 47/77

The Affine Projection Algorithm

• Thus, θn can lie anywhere in this affine set. From the infinite many
points lying in this set, APA selects the one which lies closest, in the
Euclidean sense, to θn−1. In other words, θn is the projection of θn−1
on the affine set defined by the intersection of the q hyperplanes. The
figure below illustrates the geometry for the case of q = 2; this special
case of APA is also known as the binormalized data reusing LMS.

The geometry associated with the
APA algorithm, for q = 2 and l = 3.
The intersection of the two
hyperplanes is a straight line (affine
set of dimension 3− 2 = 1). θn is
the projection of θn−1 on this line
(point 1) for µ = 1 and δ = 0. Point
2 corresponds to the case µ < 1.
Point 3 is the projection of θn on the
hyperplane defined by (yn,xn). This
is the case for q = 1. The latter case
corresponds to the normalized LMS.

Sergios Theodoridis, University of Athens. Machine Learning, 47/77

The Normalized LMS

• The normalized LMS a special case of the APA and it corresponds to
q = 1. We treat it separately due to its popularity and it is summarized
below.

• The Normalized LMS

Initialization

θ−1 = 0 ∈ Rl, or any other value.
Choose 0 < µ < 2, and δ a small value.

For n = 0, 1, 2, . . ., Do

en = yn − θTn−1xn
θn = θn−1 + µ

δ+xT
nxn

xnen

End For

• The complexity of the normalized LMS, is 3l MADs. Stability of the
normalized LMS is guaranteed if 0 < µ < 2. One can look at the
normalized LMS as an LMS, whose step-size is left to vary with the
iterations, i.e.,

µn =
µ

δ + xTnxn
,

which turns out to have a beneficial effect on the convergence speed,
compared to the LMS.

Sergios Theodoridis, University of Athens. Machine Learning, 48/77

The Normalized LMS

• The normalized LMS a special case of the APA and it corresponds to
q = 1. We treat it separately due to its popularity and it is summarized
below.

• The Normalized LMS

Initialization

θ−1 = 0 ∈ Rl, or any other value.
Choose 0 < µ < 2, and δ a small value.

For n = 0, 1, 2, . . ., Do

en = yn − θTn−1xn
θn = θn−1 + µ

δ+xT
nxn

xnen

End For

• The complexity of the normalized LMS, is 3l MADs. Stability of the
normalized LMS is guaranteed if 0 < µ < 2. One can look at the
normalized LMS as an LMS, whose step-size is left to vary with the
iterations, i.e.,

µn =
µ

δ + xTnxn
,

which turns out to have a beneficial effect on the convergence speed,
compared to the LMS.

Sergios Theodoridis, University of Athens. Machine Learning, 48/77

Simulation Examples

• The experimental set up was that of the regression model, as in the example
before, with the only exception that the unknown parameter vector was of
higher dimension, θ ∈ R60, so that the differences in the performance of the
algorithms to be more clear. The goal is to compare the LMS, the normalized
LMS (NLMS) and the affine projection algorithm (APA). The figure below
shows the obtained error curves.

The step-size of the LMS was chosen
equal to µ = 0.025 and for the NLMS
µ = 0.35 and δ = 0.001, so that both
algorithms to have similar convergence
rate. The step-size for the APA was
chosen equal to µ = 0.1, so that for
q = 10 to settle at the same error floor as
that of the NLMS. For the APA, we also
chose δ = 0.001.

• Observe the faster convergence obtained by the NLMS compared to the LMS
and the improved performance obtained by the APA for q = 10. Increasing,
the value to q = 30, we can see the improved convergence rate which is
obtained, however at the expense of higher error floor.

Sergios Theodoridis, University of Athens. Machine Learning, 49/77

Simulation Examples

• The experimental set up was that of the regression model, as in the example
before, with the only exception that the unknown parameter vector was of
higher dimension, θ ∈ R60, so that the differences in the performance of the
algorithms to be more clear. The goal is to compare the LMS, the normalized
LMS (NLMS) and the affine projection algorithm (APA). The figure below
shows the obtained error curves.

The step-size of the LMS was chosen
equal to µ = 0.025 and for the NLMS
µ = 0.35 and δ = 0.001, so that both
algorithms to have similar convergence
rate. The step-size for the APA was
chosen equal to µ = 0.1, so that for
q = 10 to settle at the same error floor as
that of the NLMS. For the APA, we also
chose δ = 0.001.

• Observe the faster convergence obtained by the NLMS compared to the LMS
and the improved performance obtained by the APA for q = 10. Increasing,
the value to q = 30, we can see the improved convergence rate which is
obtained, however at the expense of higher error floor.

Sergios Theodoridis, University of Athens. Machine Learning, 49/77

Relatives of the LMS

• The Sign-Error LMS: The update recursion for this algorithm becomes,

θn = θn−1 + µsgn[en]xn.

If in addition, µ is chosen to be a power of two, then the recursion
becomes multiplication free, and l multiplications are only needed for
the computation of the error. It turns out that the algorithm minimizes,
in the stochastic approximation sense, the following cost function,

J(θ) = E
[
|y − θTx|

]
,

and stability is guaranteed for sufficiently small values of µ.

• The Least Mean Fourth Algorithm (LMF) The scheme minimizes the
following cost function,

J(θ) = E
[
|y − θTx|4

]
,

and the corresponding update recursion is given by,

θn = θn−1 + µ|en|2xnen.
• Minimization of the fourth power of the error may lead to an adaptive

scheme with better compromise between convergence rate and excess
mean-square error than the LMS, if the noise source is sub-Gaussian. In
a sub-Gaussian distribution, the tails of the pdf graph are decaying at a
faster rate compared to the Gaussian one.

Sergios Theodoridis, University of Athens. Machine Learning, 50/77

Relatives of the LMS

• The Sign-Error LMS: The update recursion for this algorithm becomes,

θn = θn−1 + µsgn[en]xn.

If in addition, µ is chosen to be a power of two, then the recursion
becomes multiplication free, and l multiplications are only needed for
the computation of the error. It turns out that the algorithm minimizes,
in the stochastic approximation sense, the following cost function,

J(θ) = E
[
|y − θTx|

]
,

and stability is guaranteed for sufficiently small values of µ.

• The Least Mean Fourth Algorithm (LMF) The scheme minimizes the
following cost function,

J(θ) = E
[
|y − θTx|4

]
,

and the corresponding update recursion is given by,

θn = θn−1 + µ|en|2xnen.
• Minimization of the fourth power of the error may lead to an adaptive

scheme with better compromise between convergence rate and excess
mean-square error than the LMS, if the noise source is sub-Gaussian. In
a sub-Gaussian distribution, the tails of the pdf graph are decaying at a
faster rate compared to the Gaussian one.

Sergios Theodoridis, University of Athens. Machine Learning, 50/77

Relatives of the LMS

• The Sign-Error LMS: The update recursion for this algorithm becomes,

θn = θn−1 + µsgn[en]xn.

If in addition, µ is chosen to be a power of two, then the recursion
becomes multiplication free, and l multiplications are only needed for
the computation of the error. It turns out that the algorithm minimizes,
in the stochastic approximation sense, the following cost function,

J(θ) = E
[
|y − θTx|

]
,

and stability is guaranteed for sufficiently small values of µ.

• The Least Mean Fourth Algorithm (LMF) The scheme minimizes the
following cost function,

J(θ) = E
[
|y − θTx|4

]
,

and the corresponding update recursion is given by,

θn = θn−1 + µ|en|2xnen.
• Minimization of the fourth power of the error may lead to an adaptive

scheme with better compromise between convergence rate and excess
mean-square error than the LMS, if the noise source is sub-Gaussian. In
a sub-Gaussian distribution, the tails of the pdf graph are decaying at a
faster rate compared to the Gaussian one.

Sergios Theodoridis, University of Athens. Machine Learning, 50/77

Relatives of the LMS

• Transform-Domain LMS: We have already commented that the
convergence speed of the LMS heavily depends on the condition

number
(
λmax

λmin

)
of the covariance matrix.

• Transform domain techniques exploit the de-correlation properties of
certain transforms, such as DFT and DCT, in order to de-correlate the
input variables. When the input comprises a stochastic process, we say
that such transforms “pre-whiten” the input process.

• Let T be a unitary transform in the complex domain, i.e., TTH =
THT = I. Furthermore, define

x̂n = THxn,

and the diagonal matrix D, such as

[D]ii = E
[
(x̂n(i))2

]
= σ2

i , i = 1, 2, . . . , l,

• Then, the transform domain LMS, in the complex domain, becomes:

Sergios Theodoridis, University of Athens. Machine Learning, 51/77

Relatives of the LMS

• Transform-Domain LMS: We have already commented that the
convergence speed of the LMS heavily depends on the condition

number
(
λmax

λmin

)
of the covariance matrix.

• Transform domain techniques exploit the de-correlation properties of
certain transforms, such as DFT and DCT, in order to de-correlate the
input variables. When the input comprises a stochastic process, we say
that such transforms “pre-whiten” the input process.

• Let T be a unitary transform in the complex domain, i.e., TTH =
THT = I. Furthermore, define

x̂n = THxn,

and the diagonal matrix D, such as

[D]ii = E
[
(x̂n(i))2

]
= σ2

i , i = 1, 2, . . . , l,

• Then, the transform domain LMS, in the complex domain, becomes:

Sergios Theodoridis, University of Athens. Machine Learning, 51/77

Relatives of the LMS

• Transform-Domain LMS: We have already commented that the
convergence speed of the LMS heavily depends on the condition

number
(
λmax

λmin

)
of the covariance matrix.

• Transform domain techniques exploit the de-correlation properties of
certain transforms, such as DFT and DCT, in order to de-correlate the
input variables. When the input comprises a stochastic process, we say
that such transforms “pre-whiten” the input process.

• Let T be a unitary transform in the complex domain, i.e., TTH =
THT = I. Furthermore, define

x̂n = THxn,

and the diagonal matrix D, such as

[D]ii = E
[
(x̂n(i))2

]
= σ2

i , i = 1, 2, . . . , l,

• Then, the transform domain LMS, in the complex domain, becomes:

Sergios Theodoridis, University of Athens. Machine Learning, 51/77

Relatives of the LMS

• Transform-Domain LMS: We have already commented that the
convergence speed of the LMS heavily depends on the condition

number
(
λmax

λmin

)
of the covariance matrix.

• Transform domain techniques exploit the de-correlation properties of
certain transforms, such as DFT and DCT, in order to de-correlate the
input variables. When the input comprises a stochastic process, we say
that such transforms “pre-whiten” the input process.

• Let T be a unitary transform in the complex domain, i.e., TTH =
THT = I. Furthermore, define

x̂n = THxn,

and the diagonal matrix D, such as

[D]ii = E
[
(x̂n(i))2

]
= σ2

i , i = 1, 2, . . . , l,

• Then, the transform domain LMS, in the complex domain, becomes:

Sergios Theodoridis, University of Athens. Machine Learning, 51/77

Relatives of the LMS

• Transform Domain LMS

Initialization

θ̂−1 = 0; or any other value.
σ2
−1 = δ, i = 1, 2, . . . , l; δ a small value.

Choose µ, and 0 << β < 1.

For n = 0, 1, 2, . . ., Do

x̂n = THxn
en = yn − θ̂Hn−1x̂n
θ̂n = θ̂n−1 + µD−1x̂ne

∗
n

For i = 1, 2, . . . , l, DO

- σ2
i (n) = βσ2

i (n− 1) + (1− β)|x̂n(i)|2

End For
D = diag{σ2

i (n)}
End For

Sergios Theodoridis, University of Athens. Machine Learning, 52/77

Simulation Examples

• In this example, the stage of the experimental set up is the same as the
one previously considered for the LMS, when the input was excited by a
first order autoregressive AR(1) sequence. The goal is to compare the
LMS and the transform domain LMS. The figure below shows the
obtained error curves, employing the DCT transform. The step-size was
the same as the one used before, i.e., µ = 0.01. Observe the
significantly faster convergence achieved by the transform domain LMS,
due to its (approximate) whitening effect on the input.

Sergios Theodoridis, University of Athens. Machine Learning, 53/77

Adaptive Decision Feedback Equalization

• The task of channel equalization is introduced in Chapter 4 and it is
illustrated in the figure below. The input to the equalizer is a stochastic
process (random signal), un. Note that upon receiving the noisy and
distorted by the (communications) channel sample, un, one has to
obtain an estimate of the originally transmitted information sequence,
sn, delayed by L time lags, which accounts for the various delays
imposed by the overall transmission system involved.

• Thus, at time n, the equalizer decides for ŝn−L+1. Ideally, if one knew
the true values of the initially transmitted information sequence up to
and including time instant n− L, i.e., sn−L, sn−L−1, . . ., it could only
be beneficial to use this information, together with the received
sequence, un, in order to recover an estimate of ŝn−L+1.

Sergios Theodoridis, University of Athens. Machine Learning, 54/77

Adaptive Decision Feedback Equalization

• The task of channel equalization is introduced in Chapter 4 and it is
illustrated in the figure below. The input to the equalizer is a stochastic
process (random signal), un. Note that upon receiving the noisy and
distorted by the (communications) channel sample, un, one has to
obtain an estimate of the originally transmitted information sequence,
sn, delayed by L time lags, which accounts for the various delays
imposed by the overall transmission system involved.

• Thus, at time n, the equalizer decides for ŝn−L+1. Ideally, if one knew
the true values of the initially transmitted information sequence up to
and including time instant n− L, i.e., sn−L, sn−L−1, . . ., it could only
be beneficial to use this information, together with the received
sequence, un, in order to recover an estimate of ŝn−L+1.

Sergios Theodoridis, University of Athens. Machine Learning, 54/77

Adaptive Decision Feedback Equalization

• This idea is explored in the Decision Feedback Equalizer. The
equalizer’s output is now written as

d̂n =

L−1∑
i=0

wfi un−i +

l−1∑
i=0

wbi sn−L−i = wTue,n

where,
w :=

[
wf

wb

]
∈ RL+l, ue,n :=

[
un
sn

]
∈ RL+l,

and the desired response process is dn = sn−L+1. In practice, after the
initial training period, the information samples, sn−L−i are replaced by
their computed estimates, ŝn−L−i, i = 0, 1, . . . , l − 1, which are
available from decisions taken in previous time instants. It is said that
the equalizer operates in the decision directed mode.

Sergios Theodoridis, University of Athens. Machine Learning, 55/77

Adaptive Decision Feedback Equalization

• This idea is explored in the Decision Feedback Equalizer. The
equalizer’s output is now written as

d̂n =

L−1∑
i=0

wfi un−i +

l−1∑
i=0

wbi sn−L−i = wTue,n

where,
w :=

[
wf

wb

]
∈ RL+l, ue,n :=

[
un
sn

]
∈ RL+l,

and the desired response process is dn = sn−L+1. In practice, after the
initial training period, the information samples, sn−L−i are replaced by
their computed estimates, ŝn−L−i, i = 0, 1, . . . , l − 1, which are
available from decisions taken in previous time instants. It is said that
the equalizer operates in the decision directed mode. The structure is
shown in the figure below.

Sergios Theodoridis, University of Athens. Machine Learning, 55/77

Adaptive Decision Feedback Equalization

• Note that during the training period, the parameter vector, w, is
trained so that to minimize the power of the error,

en = dn − d̂n = sn−L+1 − d̂n.
Once all the available training samples have been used, training carries
on using the estimates ŝn−L+1. For example, for a binary information
sequence sn ∈ {1,−1}, the decision concerning the estimate at time n,

is obtained by passing d̂n through a threshold device and ŝn−L+1 is
obtained.

• Note that DFE is one of the early examples of semisupervised learning,
where training data is not enough, and then the estimates are used for
training. In this way, assuming that at the end of the training phase,
ŝn−L+1 = sn−L+1, and assuming that time variations are slow so that
to guarantee that d̂n ' dn, then we expect, with good enough
probability, that ŝn−L+1 will remain equal to sn−L+1, so that the
equalizer can track the changes.

• Anyone of the online schemes, treated so far, can be used in a DFE
scenario by replacing in the input vector, ue, the term sn by ŝn, when
operating in the decision directed mode.

Sergios Theodoridis, University of Athens. Machine Learning, 56/77

Adaptive Decision Feedback Equalization

• Note that during the training period, the parameter vector, w, is
trained so that to minimize the power of the error,

en = dn − d̂n = sn−L+1 − d̂n.
Once all the available training samples have been used, training carries
on using the estimates ŝn−L+1. For example, for a binary information
sequence sn ∈ {1,−1}, the decision concerning the estimate at time n,

is obtained by passing d̂n through a threshold device and ŝn−L+1 is
obtained.

• Note that DFE is one of the early examples of semisupervised learning,
where training data is not enough, and then the estimates are used for
training. In this way, assuming that at the end of the training phase,
ŝn−L+1 = sn−L+1, and assuming that time variations are slow so that
to guarantee that d̂n ' dn, then we expect, with good enough
probability, that ŝn−L+1 will remain equal to sn−L+1, so that the
equalizer can track the changes.

• Anyone of the online schemes, treated so far, can be used in a DFE
scenario by replacing in the input vector, ue, the term sn by ŝn, when
operating in the decision directed mode.

Sergios Theodoridis, University of Athens. Machine Learning, 56/77

Adaptive Decision Feedback Equalization

• Note that during the training period, the parameter vector, w, is
trained so that to minimize the power of the error,

en = dn − d̂n = sn−L+1 − d̂n.
Once all the available training samples have been used, training carries
on using the estimates ŝn−L+1. For example, for a binary information
sequence sn ∈ {1,−1}, the decision concerning the estimate at time n,

is obtained by passing d̂n through a threshold device and ŝn−L+1 is
obtained.

• Note that DFE is one of the early examples of semisupervised learning,
where training data is not enough, and then the estimates are used for
training. In this way, assuming that at the end of the training phase,
ŝn−L+1 = sn−L+1, and assuming that time variations are slow so that
to guarantee that d̂n ' dn, then we expect, with good enough
probability, that ŝn−L+1 will remain equal to sn−L+1, so that the
equalizer can track the changes.

• Anyone of the online schemes, treated so far, can be used in a DFE
scenario by replacing in the input vector, ue, the term sn by ŝn, when
operating in the decision directed mode.

Sergios Theodoridis, University of Athens. Machine Learning, 56/77

Adaptive Decision Feedback Equalization: An Example

• Let us consider a communication system where the input information
sequence comprises a stream of randomly generated symbols sn = ±1,
with equal probability. This sequence is sent to a channel with impulse
response,

h = [0.04,−0.05, 0.07,−0.21, 0.72, 0.36, 0.21, 0.03, 0.07]T .

The output of the channel is contaminated by white Gaussian noise at
the 11dB level. A DFE is used with L = 21 and l = 10. The DFE was
trained with 250 symbols; then, it was switched on to the decision mode
and it was run for 10000 iterations. At each iteration, the decision
(sgn (d̂n)) was compared with the true transmitted symbol sn−L+1.

• If T [·] denotes the thresholding operation, the LMS recursion for the
linear DFE becomes,

d̂n = wT
n−1ue,n

dn = sn−L+1; in the training mode, or

dn = T
[
d̂n
]

; in the decision directed mode,

en = dn −wT
n−1ue,n

wn = wn−1 + µue,nen.

Sergios Theodoridis, University of Athens. Machine Learning, 57/77

Adaptive Decision Feedback Equalization: An Example

• Let us consider a communication system where the input information
sequence comprises a stream of randomly generated symbols sn = ±1,
with equal probability. This sequence is sent to a channel with impulse
response,

h = [0.04,−0.05, 0.07,−0.21, 0.72, 0.36, 0.21, 0.03, 0.07]T .

The output of the channel is contaminated by white Gaussian noise at
the 11dB level. A DFE is used with L = 21 and l = 10. The DFE was
trained with 250 symbols; then, it was switched on to the decision mode
and it was run for 10000 iterations. At each iteration, the decision
(sgn (d̂n)) was compared with the true transmitted symbol sn−L+1.

• If T [·] denotes the thresholding operation, the LMS recursion for the
linear DFE becomes,

d̂n = wT
n−1ue,n

dn = sn−L+1; in the training mode, or

dn = T
[
d̂n
]

; in the decision directed mode,

en = dn −wT
n−1ue,n

wn = wn−1 + µue,nen.

Sergios Theodoridis, University of Athens. Machine Learning, 57/77

Adaptive Decision Feedback Equalization: An Example

• The figure below shows the MSE curve as a function of iterations. For
the LMS, we used µ = 0.025.

The MSE in dBs for the DFE. After the time instant n = 250, the LMS is trained with the decisions ŝn−L+1.

• The error rate (total number of errors over the corresponding number of
symbols) was approximately equal 1%.

Sergios Theodoridis, University of Athens. Machine Learning, 58/77

Adaptive Decision Feedback Equalization: An Example

• The figure below shows the MSE curve as a function of iterations. For
the LMS, we used µ = 0.025.

The MSE in dBs for the DFE. After the time instant n = 250, the LMS is trained with the decisions ŝn−L+1.

• The error rate (total number of errors over the corresponding number of
symbols) was approximately equal 1%.

Sergios Theodoridis, University of Athens. Machine Learning, 58/77

Distributed Learning

• There is an increasing number of applications where data are
received/reside in different sensors/data bases, which are spatially
distributed. However, all this spatially distributed information has to be
exploited towards achieving a common goal; that is, to perform a
common inference task. We refer to such tasks as distributed or
decentralized learning.

• At the heart of this problem lies the concept of cooperation, which is
another name for the process of exchanging learning experience/
information in order to reach a common goal/decision.

• Distributed learning is common in many biological systems, where no
individual/agent is in charge yet the group exhibits a high degree of
intelligence (we humans refer to it as instinct). Look at the way birds
fly in formation and bees swarm in a new hive.

• Wireless Sensor Networks (WSN) is another typical example in
engineering applications. Each sensor node is equipped with an onboard
processor, in order to perform locally some simple processing and
transmit the required and partially processed data. Sensors/nodes are
characterized by low processing, memory and communication
capabilities due to low energy and bandwidth constraints.

Sergios Theodoridis, University of Athens. Machine Learning, 59/77

Distributed Learning

• There is an increasing number of applications where data are
received/reside in different sensors/data bases, which are spatially
distributed. However, all this spatially distributed information has to be
exploited towards achieving a common goal; that is, to perform a
common inference task. We refer to such tasks as distributed or
decentralized learning.

• At the heart of this problem lies the concept of cooperation, which is
another name for the process of exchanging learning experience/
information in order to reach a common goal/decision.

• Distributed learning is common in many biological systems, where no
individual/agent is in charge yet the group exhibits a high degree of
intelligence (we humans refer to it as instinct). Look at the way birds
fly in formation and bees swarm in a new hive.

• Wireless Sensor Networks (WSN) is another typical example in
engineering applications. Each sensor node is equipped with an onboard
processor, in order to perform locally some simple processing and
transmit the required and partially processed data. Sensors/nodes are
characterized by low processing, memory and communication
capabilities due to low energy and bandwidth constraints.

Sergios Theodoridis, University of Athens. Machine Learning, 59/77

Distributed Learning

• There is an increasing number of applications where data are
received/reside in different sensors/data bases, which are spatially
distributed. However, all this spatially distributed information has to be
exploited towards achieving a common goal; that is, to perform a
common inference task. We refer to such tasks as distributed or
decentralized learning.

• At the heart of this problem lies the concept of cooperation, which is
another name for the process of exchanging learning experience/
information in order to reach a common goal/decision.

• Distributed learning is common in many biological systems, where no
individual/agent is in charge yet the group exhibits a high degree of
intelligence (we humans refer to it as instinct). Look at the way birds
fly in formation and bees swarm in a new hive.

• Wireless Sensor Networks (WSN) is another typical example in
engineering applications. Each sensor node is equipped with an onboard
processor, in order to perform locally some simple processing and
transmit the required and partially processed data. Sensors/nodes are
characterized by low processing, memory and communication
capabilities due to low energy and bandwidth constraints.

Sergios Theodoridis, University of Athens. Machine Learning, 59/77

Distributed Learning

• There is an increasing number of applications where data are
received/reside in different sensors/data bases, which are spatially
distributed. However, all this spatially distributed information has to be
exploited towards achieving a common goal; that is, to perform a
common inference task. We refer to such tasks as distributed or
decentralized learning.

• At the heart of this problem lies the concept of cooperation, which is
another name for the process of exchanging learning experience/
information in order to reach a common goal/decision.

• Distributed learning is common in many biological systems, where no
individual/agent is in charge yet the group exhibits a high degree of
intelligence (we humans refer to it as instinct). Look at the way birds
fly in formation and bees swarm in a new hive.

• Wireless Sensor Networks (WSN) is another typical example in
engineering applications. Each sensor node is equipped with an onboard
processor, in order to perform locally some simple processing and
transmit the required and partially processed data. Sensors/nodes are
characterized by low processing, memory and communication
capabilities due to low energy and bandwidth constraints.

Sergios Theodoridis, University of Athens. Machine Learning, 59/77

Cooperation Strategies

• In distributed learning, each individual agent is represented as a node in
a graph. Edges between nodes indicate that the respective agents can
exchange information. Undirected edges indicate that information can
be exchanged in both directions, while directed edges indicate the
allowed direction of information flow.

Sergios Theodoridis, University of Athens. Machine Learning, 60/77

Cooperation Strategies

• In distributed learning, each individual agent is represented as a node in
a graph. Edges between nodes indicate that the respective agents can
exchange information. Undirected edges indicate that information can
be exchanged in both directions, while directed edges indicate the
allowed direction of information flow.

• Centralized Networks: Under this scenario of cooperation, nodes
communicate their measurements to a central fusion unit for processing.
The obtained estimate can be communicated back to each one of the
nodes.

All nodes communicate directly to the fusion center Some nodes are connected directly to the fusion center.
Others, communicate their own data to a neighboring node

and so on, till the information reaches the fusion center.
The bolder a connection is drawn, the higher the amount of

data transmitted via the corresponding link.

Sergios Theodoridis, University of Athens. Machine Learning, 60/77

Cooperation Strategies

• The major advantage in this cooperation strategy is that the
fusion center can compute optimal estimates, since it has access
to all the available information. However, the optimality is
obtained under a number of drawbacks, such as: demand for
increased communication costs and delays, especially for large
networks. In addition, when the fusion center breaks down, the
whole network collapses. Moreover, in certain applications,
privacy issues are involved. To overcome the drawbacks of
centralized processing scenario, different distributed processing
schemes have been proposed.

• Decentralized Networks: Under this scenario, there is not a
central fusion center. Processing is performed locally at each
node, employing the locally received measurements and in the
sequel each node communicates the locally obtained estimates to
its neighbors; that is, to the nodes which is linked with. These
links are denoted as edges in the respective graph. There are
different decentralized schemes.

Sergios Theodoridis, University of Athens. Machine Learning, 61/77

Cooperation Strategies

• The major advantage in this cooperation strategy is that the
fusion center can compute optimal estimates, since it has access
to all the available information. However, the optimality is
obtained under a number of drawbacks, such as: demand for
increased communication costs and delays, especially for large
networks. In addition, when the fusion center breaks down, the
whole network collapses. Moreover, in certain applications,
privacy issues are involved. To overcome the drawbacks of
centralized processing scenario, different distributed processing
schemes have been proposed.

• Decentralized Networks: Under this scenario, there is not a
central fusion center. Processing is performed locally at each
node, employing the locally received measurements and in the
sequel each node communicates the locally obtained estimates to
its neighbors; that is, to the nodes which is linked with. These
links are denoted as edges in the respective graph. There are
different decentralized schemes.

Sergios Theodoridis, University of Athens. Machine Learning, 61/77

Incremental/Ring Networks

• Ring networks require the existence of a cyclic path following the edges
through the network. Starting from a node, such a cycle has to visit
every node, at least once, and then return to the first one. Such a
topology implements an iterative computational scheme. At each
iteration, every node performs its data acquisition and processing
locally and communicates the required information to its neighbor in
the cyclic path. It has been shown that incremental schemes achieve
global performance. The main disadvantage of this mode of
cooperation is that cycling information around at each iteration is a
problem in large networks. The construction and maintenance of a
cyclic graph, visiting each node, is an NP–hard task.

In the incremental or ring topology, the
information flow follows a cyclic path. Note
that the whole network collapses if one node
is malfunctioning.

Sergios Theodoridis, University of Athens. Machine Learning, 62/77

Ad Hoc Networks

• According to this philosophy of cooperation, nodes perform locally data
acquisition as well as processing, at each iteration. Each node
communicates information to its neighboring nodes with which it shares
an edge; in this way, information is diffused across the whole network.

Topology corresponding to a diffusion
strategy. Each node communicates
information with the nodes with which it
shares an edge.

Sergios Theodoridis, University of Athens. Machine Learning, 63/77

Ad Hoc Networks

• According to this philosophy of cooperation, nodes perform locally data
acquisition as well as processing, at each iteration. Each node
communicates information to its neighboring nodes with which it shares
an edge; in this way, information is diffused across the whole network.

• An advantage of such schemes is that operation is not seized if some
nodes are malfunctioning. Also, the topology of the network may not be
fixed.

Topology corresponding to a diffusion
strategy. Each node communicates
information with the nodes with which it
shares an edge.

Sergios Theodoridis, University of Athens. Machine Learning, 63/77

Ad Hoc Networks

• According to this philosophy of cooperation, nodes perform locally data
acquisition as well as processing, at each iteration. Each node
communicates information to its neighboring nodes with which it shares
an edge; in this way, information is diffused across the whole network.

• An advantage of such schemes is that operation is not seized if some
nodes are malfunctioning. Also, the topology of the network may not be
fixed.

• The price one pays for such “extras” is that the final obtained
performance, after convergence, is inferior to those obtained by its
incremental counterpart and by the centralized processing. This is
natural, since at each iteration every node has access to only limited
amount of information.

Topology corresponding to a diffusion
strategy. Each node communicates
information with the nodes with which it
shares an edge.

Sergios Theodoridis, University of Athens. Machine Learning, 63/77

Diffusion Gradient Descent

• Let us consider a network of K agents/nodes. Each node exchanges
information with the nodes in its neighborhood. Given a node, k, in a
graph, let Nk be the set of nodes with which this node shares an edge;
moreover, node k is also included in Nk. This comprises the
neighborhood set of k. We will denote the cardinality of this set as nk.
For the needs of the section, we assume that the graph is a connected
one; that is, there is at least one path of edges that connects any pair
of nodes.

A graph corresponding to a network
operating under a diffusion strategy. The
red dotted line encircles the nodes
comprising the neighborhood of node
k = 6. As an example, the neighborhood
of node k = 6 is N6 = {2, 3, 6}, with
cardinality n6 = 3. Also, On the contrary,
nodes k = 6 and k = 5 are not neighbors.

• Each node in the network has access to a local data acquisition process,
that provides the pair of training data (yk(n), xk(n)), k = 1, 2, . . . ,K,
n = 0, 1, We further assume that, in all cases, the pairs of the
input-output variables are associated with a common to all (unknown)
parameter vector θo.

Sergios Theodoridis, University of Athens. Machine Learning, 64/77

Diffusion Gradient Descent

• Let us consider a network of K agents/nodes. Each node exchanges
information with the nodes in its neighborhood. Given a node, k, in a
graph, let Nk be the set of nodes with which this node shares an edge;
moreover, node k is also included in Nk. This comprises the
neighborhood set of k. We will denote the cardinality of this set as nk.
For the needs of the section, we assume that the graph is a connected
one; that is, there is at least one path of edges that connects any pair
of nodes.

A graph corresponding to a network
operating under a diffusion strategy. The
red dotted line encircles the nodes
comprising the neighborhood of node
k = 6. As an example, the neighborhood
of node k = 6 is N6 = {2, 3, 6}, with
cardinality n6 = 3. Also, On the contrary,
nodes k = 6 and k = 5 are not neighbors.

• Each node in the network has access to a local data acquisition process,
that provides the pair of training data (yk(n), xk(n)), k = 1, 2, . . . ,K,
n = 0, 1, We further assume that, in all cases, the pairs of the
input-output variables are associated with a common to all (unknown)
parameter vector θo.

Sergios Theodoridis, University of Athens. Machine Learning, 64/77

Diffusion Gradient Descent

• Let us consider that, in every node, the data are generated by a
corresponding regression model

yk = θTo xk + ηk, k = 1, 2, . . . ,K,

where xk, as well as the zero mean noise variable, ηk, obey different
statistical properties in each node.

• Treating each node individually, the MSE optimal solution which
minimizes the local cost function

Jk(θ) = E
[
|yk − θTxk|2

]
,

will be given by the respective normal equations, involving the
respective covariance matrix and cross-correlation vector, i.e.,

Σxk
θ∗ = pk.

Recall that for the case of a regression model, θ∗ = θo and the same
solution results from all nodes. No doubt, if the statistics
Σxk

, pk, k = 1, 2, . . . ,K, were known we could stop here.

• However, in practice, they have to be estimated and one has to resort
to iterative techniques to learn the statistics as well as the unknown
parameters. Thus, one has to consider all nodes, in order to benefit
from all the observations, which are distributed across the network.

Sergios Theodoridis, University of Athens. Machine Learning, 65/77

Diffusion Gradient Descent

• Let us consider that, in every node, the data are generated by a
corresponding regression model

yk = θTo xk + ηk, k = 1, 2, . . . ,K,

where xk, as well as the zero mean noise variable, ηk, obey different
statistical properties in each node.

• Treating each node individually, the MSE optimal solution which
minimizes the local cost function

Jk(θ) = E
[
|yk − θTxk|2

]
,

will be given by the respective normal equations, involving the
respective covariance matrix and cross-correlation vector, i.e.,

Σxk
θ∗ = pk.

Recall that for the case of a regression model, θ∗ = θo and the same
solution results from all nodes. No doubt, if the statistics
Σxk

, pk, k = 1, 2, . . . ,K, were known we could stop here.

• However, in practice, they have to be estimated and one has to resort
to iterative techniques to learn the statistics as well as the unknown
parameters. Thus, one has to consider all nodes, in order to benefit
from all the observations, which are distributed across the network.

Sergios Theodoridis, University of Athens. Machine Learning, 65/77

Diffusion Gradient Descent

• Let us consider that, in every node, the data are generated by a
corresponding regression model

yk = θTo xk + ηk, k = 1, 2, . . . ,K,

where xk, as well as the zero mean noise variable, ηk, obey different
statistical properties in each node.

• Treating each node individually, the MSE optimal solution which
minimizes the local cost function

Jk(θ) = E
[
|yk − θTxk|2

]
,

will be given by the respective normal equations, involving the
respective covariance matrix and cross-correlation vector, i.e.,

Σxk
θ∗ = pk.

Recall that for the case of a regression model, θ∗ = θo and the same
solution results from all nodes. No doubt, if the statistics
Σxk

, pk, k = 1, 2, . . . ,K, were known we could stop here.

• However, in practice, they have to be estimated and one has to resort
to iterative techniques to learn the statistics as well as the unknown
parameters. Thus, one has to consider all nodes, in order to benefit
from all the observations, which are distributed across the network.

Sergios Theodoridis, University of Athens. Machine Learning, 65/77

Diffusion Gradient Descent

• Thus, a more natural criterion to adopt is

J(θ) =

K∑
k=1

Jk(θ) =

K∑
k=1

E
[∣∣yk − θTxk∣∣2]. (13)

Using the standard arguments, it is readily seen that the (common)
estimate of the unknown θo will be provided as a solution of(K∑

k=1

Σxk

)
θ∗ =

K∑
k=1

pk.

• Let us use the global cost in (13) as our kick off point to apply a
gradient descent optimization scheme

θ(i) = θ(i−1) + µ

K∑
k=1

(
pk −Σxk

θ(i−1)
)
,

from which a corresponding stochastic gradient scheme results, by
replacing expectations with instantaneous observations and associating
iteration steps with time updates, i.e.,

θn = θn−1 + µ

K∑
k=1

xk(n)ek(n), ek(n) = yk(n)− θTn−1xk(n).

Sergios Theodoridis, University of Athens. Machine Learning, 66/77

Diffusion Gradient Descent

• Thus, a more natural criterion to adopt is

J(θ) =

K∑
k=1

Jk(θ) =

K∑
k=1

E
[∣∣yk − θTxk∣∣2]. (13)

Using the standard arguments, it is readily seen that the (common)
estimate of the unknown θo will be provided as a solution of(K∑

k=1

Σxk

)
θ∗ =

K∑
k=1

pk.

• Let us use the global cost in (13) as our kick off point to apply a
gradient descent optimization scheme

θ(i) = θ(i−1) + µ

K∑
k=1

(
pk −Σxk

θ(i−1)
)
,

from which a corresponding stochastic gradient scheme results, by
replacing expectations with instantaneous observations and associating
iteration steps with time updates, i.e.,

θn = θn−1 + µ

K∑
k=1

xk(n)ek(n), ek(n) = yk(n)− θTn−1xk(n).

Sergios Theodoridis, University of Athens. Machine Learning, 66/77

Diffusion Gradient Descent

• Such an LMS-type recursion is perfect for a centralized scenario, where all
data are transmitted to a fusion center. This is one of the extremes, having at
its opposite end the scenario involving nodes acting individually without
cooperation. However, there is an intermediate path, which will lead us to the
distributed diffusion mode of operation.

• Instead of trying to minimize (13), let us select a specific node k, and
construct a local cost as the weighted aggregate in Nk, i.e.,

J lock (θ) =
∑
m∈Nk

cmkJm(θ), k = 1, 2, . . . ,K, (14)

so that
K∑
k=1

cmk = 1, cmk ≥ 0, and cmk = 0 if m /∈ Nk, m = 1, 2, . . . ,K.

• Stochastic matrices: Let C be the K ×K matrix with entries [C]mk = cmk,
then the summation condition above can be written as

C1 = 1,

where 1 is the vector with all its entries being equal to 1. That is, all the
entries across a row are summing to 1. Such matrices are known as right
stochastic matrices. In contrast, a matrix is said to be left stochastic if

CT1 = 1.

Also, a matrix that is both left and right stochastic is known as doubly
stochastic.

Sergios Theodoridis, University of Athens. Machine Learning, 67/77

Diffusion Gradient Descent

• Such an LMS-type recursion is perfect for a centralized scenario, where all
data are transmitted to a fusion center. This is one of the extremes, having at
its opposite end the scenario involving nodes acting individually without
cooperation. However, there is an intermediate path, which will lead us to the
distributed diffusion mode of operation.

• Instead of trying to minimize (13), let us select a specific node k, and
construct a local cost as the weighted aggregate in Nk, i.e.,

J lock (θ) =
∑
m∈Nk

cmkJm(θ), k = 1, 2, . . . ,K, (14)

so that
K∑
k=1

cmk = 1, cmk ≥ 0, and cmk = 0 if m /∈ Nk, m = 1, 2, . . . ,K.

• Stochastic matrices: Let C be the K ×K matrix with entries [C]mk = cmk,
then the summation condition above can be written as

C1 = 1,

where 1 is the vector with all its entries being equal to 1. That is, all the
entries across a row are summing to 1. Such matrices are known as right
stochastic matrices. In contrast, a matrix is said to be left stochastic if

CT1 = 1.

Also, a matrix that is both left and right stochastic is known as doubly
stochastic.

Sergios Theodoridis, University of Athens. Machine Learning, 67/77

Diffusion Gradient Descent

• Such an LMS-type recursion is perfect for a centralized scenario, where all
data are transmitted to a fusion center. This is one of the extremes, having at
its opposite end the scenario involving nodes acting individually without
cooperation. However, there is an intermediate path, which will lead us to the
distributed diffusion mode of operation.

• Instead of trying to minimize (13), let us select a specific node k, and
construct a local cost as the weighted aggregate in Nk, i.e.,

J lock (θ) =
∑
m∈Nk

cmkJm(θ), k = 1, 2, . . . ,K, (14)

so that
K∑
k=1

cmk = 1, cmk ≥ 0, and cmk = 0 if m /∈ Nk, m = 1, 2, . . . ,K.

• Stochastic matrices: Let C be the K ×K matrix with entries [C]mk = cmk,
then the summation condition above can be written as

C1 = 1,

where 1 is the vector with all its entries being equal to 1. That is, all the
entries across a row are summing to 1. Such matrices are known as right
stochastic matrices. In contrast, a matrix is said to be left stochastic if

CT1 = 1.

Also, a matrix that is both left and right stochastic is known as doubly
stochastic.

Sergios Theodoridis, University of Athens. Machine Learning, 67/77

Diffusion Gradient Descent

• Note that due to this matrix constraint, we still have that
K∑
k=1

J lock (θ) =

K∑
k=1

∑
m∈Nk

cmkJm(θ) =

K∑
k=1

K∑
m=1

cmkJm(θ) = J(θ)

That is, summing all local costs, the global one results.

• Let us focus on minimizing (14). The gradient descent scheme results in

θ
(i)
k = θ

(i−1)
k + µk

∑
m∈Nk

cmk

(
pm −Σxm

θ
(i−1)
k

)
.

• However, since nodes in the neighborhood exchange information, they
could also share their current estimates. This is justified by the fact
that the ultimate goal is to reach a common estimate; thus, knowing
each others current estimates could be used for the benefit of the
algorithmic process in order to achieve this goal. To this end, we will
modify the cost in (14) by regularizing it, i.e.,

J̃ lock (θ) =
∑
m∈Nk

cmkJm(θ) + λ||θ − θ̃||2, (15)

where θ̃ encodes information with respect to the unknown vector, which
is obtained by the neighboring nodes and λ > 0.

Sergios Theodoridis, University of Athens. Machine Learning, 68/77

Diffusion Gradient Descent

• Note that due to this matrix constraint, we still have that
K∑
k=1

J lock (θ) =

K∑
k=1

∑
m∈Nk

cmkJm(θ) =

K∑
k=1

K∑
m=1

cmkJm(θ) = J(θ)

That is, summing all local costs, the global one results.

• Let us focus on minimizing (14). The gradient descent scheme results in

θ
(i)
k = θ

(i−1)
k + µk

∑
m∈Nk

cmk

(
pm −Σxm

θ
(i−1)
k

)
.

• However, since nodes in the neighborhood exchange information, they
could also share their current estimates. This is justified by the fact
that the ultimate goal is to reach a common estimate; thus, knowing
each others current estimates could be used for the benefit of the
algorithmic process in order to achieve this goal. To this end, we will
modify the cost in (14) by regularizing it, i.e.,

J̃ lock (θ) =
∑
m∈Nk

cmkJm(θ) + λ||θ − θ̃||2, (15)

where θ̃ encodes information with respect to the unknown vector, which
is obtained by the neighboring nodes and λ > 0.

Sergios Theodoridis, University of Athens. Machine Learning, 68/77

Diffusion Gradient Descent

• Note that due to this matrix constraint, we still have that
K∑
k=1

J lock (θ) =

K∑
k=1

∑
m∈Nk

cmkJm(θ) =

K∑
k=1

K∑
m=1

cmkJm(θ) = J(θ)

That is, summing all local costs, the global one results.

• Let us focus on minimizing (14). The gradient descent scheme results in

θ
(i)
k = θ

(i−1)
k + µk

∑
m∈Nk

cmk

(
pm −Σxm

θ
(i−1)
k

)
.

• However, since nodes in the neighborhood exchange information, they
could also share their current estimates. This is justified by the fact
that the ultimate goal is to reach a common estimate; thus, knowing
each others current estimates could be used for the benefit of the
algorithmic process in order to achieve this goal. To this end, we will
modify the cost in (14) by regularizing it, i.e.,

J̃ lock (θ) =
∑
m∈Nk

cmkJm(θ) + λ||θ − θ̃||2, (15)

where θ̃ encodes information with respect to the unknown vector, which
is obtained by the neighboring nodes and λ > 0.

Sergios Theodoridis, University of Athens. Machine Learning, 68/77

Diffusion Gradient Descent

• Applying the gradient descent scheme (and absorbing the factor “2”,
which comes from the exponents, into the step-size), we obtain

θ
(i)
k = θ

(i−1)
k + µk

∑
m∈Nk

cmk

(
pm −Σxmθ

(i−1)
k

)
+ µkλ(θ̃ − θ(i−1)k),

which can be broken into the following two steps:

Step 1: ψ
(i)
k = θ

(i−1)
k + µk

∑
m∈Nk

cmk

(
pm −Σxm

θ
(i−1)
k

)
,

Step 2: θ
(i)
k = ψ

(i)
k + µkλ(θ̃ − θ(i−1)k).

• Step 2 can slightly be modified and replace θ
(i−1)
k by ψ

(i)
k , since this

encodes more recent information, and we obtain

θ
(i)
k = ψ

(i)
k + µkλ(θ̃ −ψ(i)

k).

• Furthermore, a reasonable choice of θ̃, at each iteration step, would be

θ̃ = θ̃(i) :=
∑

m∈Nk\k

bmkψ
(i)
m , where

∑
m∈Nk\k

bmk = 1, bmk ≥ 0,

and Nk\k denotes the elements in Nk excluding k.

Sergios Theodoridis, University of Athens. Machine Learning, 69/77

Diffusion Gradient Descent

• Applying the gradient descent scheme (and absorbing the factor “2”,
which comes from the exponents, into the step-size), we obtain

θ
(i)
k = θ

(i−1)
k + µk

∑
m∈Nk

cmk

(
pm −Σxmθ

(i−1)
k

)
+ µkλ(θ̃ − θ(i−1)k),

which can be broken into the following two steps:

Step 1: ψ
(i)
k = θ

(i−1)
k + µk

∑
m∈Nk

cmk

(
pm −Σxm

θ
(i−1)
k

)
,

Step 2: θ
(i)
k = ψ

(i)
k + µkλ(θ̃ − θ(i−1)k).

• Step 2 can slightly be modified and replace θ
(i−1)
k by ψ

(i)
k , since this

encodes more recent information, and we obtain

θ
(i)
k = ψ

(i)
k + µkλ(θ̃ −ψ(i)

k).

• Furthermore, a reasonable choice of θ̃, at each iteration step, would be

θ̃ = θ̃(i) :=
∑

m∈Nk\k

bmkψ
(i)
m , where

∑
m∈Nk\k

bmk = 1, bmk ≥ 0,

and Nk\k denotes the elements in Nk excluding k.

Sergios Theodoridis, University of Athens. Machine Learning, 69/77

Diffusion Gradient Descent

• Applying the gradient descent scheme (and absorbing the factor “2”,
which comes from the exponents, into the step-size), we obtain

θ
(i)
k = θ

(i−1)
k + µk

∑
m∈Nk

cmk

(
pm −Σxmθ

(i−1)
k

)
+ µkλ(θ̃ − θ(i−1)k),

which can be broken into the following two steps:

Step 1: ψ
(i)
k = θ

(i−1)
k + µk

∑
m∈Nk

cmk

(
pm −Σxm

θ
(i−1)
k

)
,

Step 2: θ
(i)
k = ψ

(i)
k + µkλ(θ̃ − θ(i−1)k).

• Step 2 can slightly be modified and replace θ
(i−1)
k by ψ

(i)
k , since this

encodes more recent information, and we obtain

θ
(i)
k = ψ

(i)
k + µkλ(θ̃ −ψ(i)

k).

• Furthermore, a reasonable choice of θ̃, at each iteration step, would be

θ̃ = θ̃(i) :=
∑

m∈Nk\k

bmkψ
(i)
m , where

∑
m∈Nk\k

bmk = 1, bmk ≥ 0,

and Nk\k denotes the elements in Nk excluding k.

Sergios Theodoridis, University of Athens. Machine Learning, 69/77

Diffusion Gradient Descent

• In other words, at each iteration, we update θk so that to move it
towards the descent direction of the local cost and at the same time we
constrain it to stay close to the convex combination of the rest of
the updates, which are obtained during the computations in step 1 from
all the nodes in its neighborhood. Thus, we end up with the following
recursions:

Diffusion Gradient Descent

Step 1: ψ
(i)
k = θ

(i−1)
k + µk

∑
m∈Nk

cmk

(
pm −Σxm

θ
(i−1)
k

)
,

Step 2: θ
(i)
k =

∑
m∈Nk

amkψ
(i)
m .

• Note that we have set

akk := 1− µkλ, amk := µkλbmk =⇒
∑
m∈Nk

amk = 1 , amk ≥ 0,

for small enough values of µkλ. Setting amk = 0, m /∈ Nk and defining
A to be the matrix with entries [A]mk = amk, we have that AT1 = 1.
That is, A is a left stochastic matrix. Note that, any left stochastic
matrix A can also be used.

Sergios Theodoridis, University of Athens. Machine Learning, 70/77

Diffusion LMS

• To state the diffusion LMS, we only have to replace in gradient descent

scheme the expectations with instantaneous observations and interpreting

iterations as time updates.

The Adapt-then-Combine Diffusion LMS
Initialize

For k = 1, 2, . . . ,K, Do
- θk(−1) = 0 ∈ Rl; or any other value.
End For
Select µk, k = 1, 2, . . . ,K; a small positive number.
Select C : C1 = 1
Select A : AT1 = 1

For n = 0, 1, . . ., Do
For k = 1, 2, . . . ,K, Do
- For m ∈ Nk, Do
- ek,m(n) = ym(n)− θTk (n− 1)xm(n)
- End For
- ψk(n) = θk(n− 1) + µk

∑
m∈Nk

cmkxm(n)ek,m(n);
End For
For k = 1, 2, . . . ,K
- θk(n) =

∑
m∈Nk

amkψm(n)

End For
End For

Sergios Theodoridis, University of Athens. Machine Learning, 71/77

Diffusion LMS

• The following comments are in order:

This form of diffusion LMS (DiLMS) is known as Adapt-then-Combine
DiLMS (ATC) since the first step refers to the update and the
combination step follows. If one reverts the orders of the two steps the
version known as Combine-then-Adapt DiLMS (CTA) results.
In the special case of C = I, then the adaptation step becomes

ψk(n) = θk(n− 1) + µxk(n)ek(n),

and nodes need not exchange their observations/measuremnts.
Two popular paths for the choices of C(A) are:

Averaging Rule:

cmk =

{
1
nk
, if k = m, or if nodes k and m are neighbors,

0, otherwise,

and the respective matrix is left stochastic.

Metropolis Rule:

cmk =


1

max{nk,nm} , if k 6= m and k, m are neighbors,

1−
∑
i∈Nk\k

cik, m = k,

0, otherwise,

which makes the respective matrix to be doubly stochastic.

Sergios Theodoridis, University of Athens. Machine Learning, 72/77

Diffusion LMS

• At time n, all three neighbors exchange the received data. In case the
input vector corresponds to a realization of a random signal, uk(n), the
exchange of information comprises two values, i.e., (yk(n), uk(n)) in
each direction for each one of the links. In the more general case, where
the input is a random vector of jointly distributed variables, then all l
variables have to be exchanged. After this message passing, adaptation
is taken place as shown in Figure (a). Then, the nodes exchange their
obtained estimates, ψk(n), k = 1, 2, 3, across the links, Figure (b).

(a) (b)

a) In step 1, adaptation is carried out after the exchange of the received observations. b) In step 2, the nodes
exchange their locally computed estimates to obtain the updated one.

Sergios Theodoridis, University of Athens. Machine Learning, 73/77

Some Hints On Convergence and Steady State Performance

• The previously stated diffusion gradient descent scheme is guaranteed to
converge, i.e.,

θ
(i)
k −−−→i→∞

θ∗,
provided that

µk ≤
2

λmax{Σloc
k }

, where Σloc
k =

∑
m∈Nk

cmkΣxm .

This is the counterpart of the condition that holds for the standard gradient
descent scheme.

• For the LMS and under a number of assumptions, stated in the text, the
following hold:
Convergence in the Mean: Provided that

µk <
2

λmax{Σ loc
k }

,

then E
[
θk(n)

]
−−−−→
n→∞

θ∗, k = 1, 2, . . . ,K.

It is important to state here that the previous stability condition depends on
C and not on A. If in addition to the previous assumption, C is chosen to be
doubly stochastic, then the convergence in the mean, in any node under the
distributed scenario, is faster than that obtained if the node is operating
individually without cooperation, provided µk = µ is the same and it is
chosen so that to guarantee convergence.

Sergios Theodoridis, University of Athens. Machine Learning, 74/77

Some Hints On Convergence and Steady State Performance

• The previously stated diffusion gradient descent scheme is guaranteed to
converge, i.e.,

θ
(i)
k −−−→i→∞

θ∗,
provided that

µk ≤
2

λmax{Σloc
k }

, where Σloc
k =

∑
m∈Nk

cmkΣxm .

This is the counterpart of the condition that holds for the standard gradient
descent scheme.

• For the LMS and under a number of assumptions, stated in the text, the
following hold:
Convergence in the Mean: Provided that

µk <
2

λmax{Σ loc
k }

,

then E
[
θk(n)

]
−−−−→
n→∞

θ∗, k = 1, 2, . . . ,K.

It is important to state here that the previous stability condition depends on
C and not on A. If in addition to the previous assumption, C is chosen to be
doubly stochastic, then the convergence in the mean, in any node under the
distributed scenario, is faster than that obtained if the node is operating
individually without cooperation, provided µk = µ is the same and it is
chosen so that to guarantee convergence.

Sergios Theodoridis, University of Athens. Machine Learning, 74/77

Some Hints On Convergence and Steady State Performance

• Misadjustment: under the assumptions of C and A being doubly
stochastic, the following are true:

The average misadjustment over all nodes in the steady-state for
the Adapt-then-Combine strategy is always smaller than that of
the Combine-then-Adapt one.

The average misadjustment over all the nodes of the network in
the distributed operation is always lower than that obtained if
nodes are adapted individually, without cooperation, by using the
same µk = µ in all cases. That is, cooperation does not only
improve convergence speed but it also improves the steady-state
performance.

Sergios Theodoridis, University of Athens. Machine Learning, 75/77

A Simulation Example

• In this example, a network of L = 10 nodes is considered. The nodes
were randomly connected with a total number of 32 connections; the
resulting network was checked out that it was strongly connected. In
each node, data are generated according to a regression model, using
the same vector θo ∈ R30. The latter was randomly generated by a
N (0, 1). The input vectors, xk, were i.i.d generated according to a
N (0, 1) and the noise level was different for each node, varying from
20-25 dBs.

• Three experiments were carried out. The first involved the distributed
LMS in its ATC form and the second one the CTA version. In the third
experiment, the LMS algorithm was run independently for each node,
without cooperation. In all cases, the step-size was chosen equal to
µ = 0.01.

• The average (over all nodes) MSD(n) : 1
K

∑K
k=1 ||θk(n)− θo||2 was

computed obtained for each one of the experiments. As it is verified by
the next figure, cooperation improves the performance significantly,
both in terms of convergence as well as in steady-state error floor.
Moreover, the ATC performs slightly better that the CTA version.

Sergios Theodoridis, University of Athens. Machine Learning, 76/77

A Simulation Example

• In this example, a network of L = 10 nodes is considered. The nodes
were randomly connected with a total number of 32 connections; the
resulting network was checked out that it was strongly connected. In
each node, data are generated according to a regression model, using
the same vector θo ∈ R30. The latter was randomly generated by a
N (0, 1). The input vectors, xk, were i.i.d generated according to a
N (0, 1) and the noise level was different for each node, varying from
20-25 dBs.

• Three experiments were carried out. The first involved the distributed
LMS in its ATC form and the second one the CTA version. In the third
experiment, the LMS algorithm was run independently for each node,
without cooperation. In all cases, the step-size was chosen equal to
µ = 0.01.

• The average (over all nodes) MSD(n) : 1
K

∑K
k=1 ||θk(n)− θo||2 was

computed obtained for each one of the experiments. As it is verified by
the next figure, cooperation improves the performance significantly,
both in terms of convergence as well as in steady-state error floor.
Moreover, the ATC performs slightly better that the CTA version.

Sergios Theodoridis, University of Athens. Machine Learning, 76/77

A Simulation Example

• In this example, a network of L = 10 nodes is considered. The nodes
were randomly connected with a total number of 32 connections; the
resulting network was checked out that it was strongly connected. In
each node, data are generated according to a regression model, using
the same vector θo ∈ R30. The latter was randomly generated by a
N (0, 1). The input vectors, xk, were i.i.d generated according to a
N (0, 1) and the noise level was different for each node, varying from
20-25 dBs.

• Three experiments were carried out. The first involved the distributed
LMS in its ATC form and the second one the CTA version. In the third
experiment, the LMS algorithm was run independently for each node,
without cooperation. In all cases, the step-size was chosen equal to
µ = 0.01.

• The average (over all nodes) MSD(n) : 1
K

∑K
k=1 ||θk(n)− θo||2 was

computed obtained for each one of the experiments. As it is verified by
the next figure, cooperation improves the performance significantly,
both in terms of convergence as well as in steady-state error floor.
Moreover, the ATC performs slightly better that the CTA version.

Sergios Theodoridis, University of Athens. Machine Learning, 76/77

A Simulation Example

• The figure shows the average (over all nodes)

MSD(n) : 1
K

∑K
k=1 ||θk(n)− θo||2 obtained for each one of the

experiments.

Average (over all the nodes) error convergence curves (MSD) for the LMS in non-cooperative mode of operation
(dotted line) and for the case of the diffusion LMS, in the ATC mode (red line) and the CTA mode (gray line).
The step size µ was the same in all three cases. Co-operation among modes significantly improves performance.
For the case of the diffusion LMS, the ATC version results in slightly better performance compared to that of the

CTA.

Sergios Theodoridis, University of Athens. Machine Learning, 77/77

