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Probability and Stochastic Precesses

The Notion of a Random Variable

• A random variable, x, is a variable whose variations are due to
chance/randomness. A random variable can be considered as a
function, which assigns a value to the outcome of an experiment.
For example, in a coin tossing experiment, the corresponding
random variable, x, can assume the values x1 = 0 if the result of
the experiment is “heads” and x2 = 1 if the result is “tails.”

• We will denote a random variable with a lower case roman, such
as x, and the values it takes once an experiment has been
performed, with mathmode italics, such as x.

• A random variable is described in terms of a set of probabilities if
its values are of a discrete nature, or in terms of a probability
density function (pdf) if its values lie anywhere within an interval
of the real axis (non-countably infinite set).
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Definitions of Probability

• Relative Frequency Definition: The probability, P (A), of an
event, A, is the limit

P (A) = lim
n→∞

nA
n
,

where n is the total number of trials and nA the number of times
event A occurred.

• In practice, one can use

P (A) ≈ nA
n
,

for large enough values of n. However, care must be taken on
how large n must be, especially when P (A) is very small.

• From a physical reasoning point of view, probability can also be
understood as a measure of our uncertainty concerning the
corresponding event.
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Definitions of Probability

• Axiomatic Definition: This definition of probability is traced back
to 1933 to the work of Andrey Kolmogorov, who found a close
connection between probability theory and the mathematical
theory of sets and functions of a real variable, in the context of
measure theory.

1 The probability of an event A, P (A) is a nonnegative number

P (A) ≥ 0.

2 The probability of an event C, which is certain to occur, is equal
to one,

P (C) = 1.

3 If two events, A and B, are mutually exclusive (they cannot occur
simultaneously), then the probability of occurrence of either A or
B (denoted as A ∪B) is given by

P (A ∪B) = P (A) + P (B).

• These three defining properties (axioms), suffice to develop the
rest of the theory.
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Discrete Random Variables

• A discrete random variable, x, can take any value from a finite or
a countably infinite set, X . The probability of an event “x = x”
is denoted as

P (x = x) or simply P (x).

• Assuming that no two values in X can occur simultaneously and
that an experiment always returns a value, we have that∑

x∈X
P (x) = 1,

and X is known as the sample or state space.

• Joint probability: The joint probability of two events A and B to
occur simultaneously is denoted as P (A,B).

• Given two random variables x ∈ X and y ∈ Y, the following sum
rule is obtained

P (x) =
∑
x∈Y

P (x, y).

Sergios Theodoridis, University of Athens. Machine Learning, 5/69



Discrete Random Variables

• A discrete random variable, x, can take any value from a finite or
a countably infinite set, X . The probability of an event “x = x”
is denoted as

P (x = x) or simply P (x).

• Assuming that no two values in X can occur simultaneously and
that an experiment always returns a value, we have that∑

x∈X
P (x) = 1,

and X is known as the sample or state space.

• Joint probability: The joint probability of two events A and B to
occur simultaneously is denoted as P (A,B).

• Given two random variables x ∈ X and y ∈ Y, the following sum
rule is obtained

P (x) =
∑
x∈Y

P (x, y).

Sergios Theodoridis, University of Athens. Machine Learning, 5/69



Discrete Random Variables

• A discrete random variable, x, can take any value from a finite or
a countably infinite set, X . The probability of an event “x = x”
is denoted as

P (x = x) or simply P (x).

• Assuming that no two values in X can occur simultaneously and
that an experiment always returns a value, we have that∑

x∈X
P (x) = 1,

and X is known as the sample or state space.

• Joint probability: The joint probability of two events A and B to
occur simultaneously is denoted as P (A,B).

• Given two random variables x ∈ X and y ∈ Y, the following sum
rule is obtained

P (x) =
∑
x∈Y

P (x, y).

Sergios Theodoridis, University of Athens. Machine Learning, 5/69



Discrete Random Variables

• A discrete random variable, x, can take any value from a finite or
a countably infinite set, X . The probability of an event “x = x”
is denoted as

P (x = x) or simply P (x).

• Assuming that no two values in X can occur simultaneously and
that an experiment always returns a value, we have that∑

x∈X
P (x) = 1,

and X is known as the sample or state space.

• Joint probability: The joint probability of two events A and B to
occur simultaneously is denoted as P (A,B).

• Given two random variables x ∈ X and y ∈ Y, the following sum
rule is obtained

P (x) =
∑
x∈Y

P (x, y).

Sergios Theodoridis, University of Athens. Machine Learning, 5/69



Discrete Random Variables

• Conditional probability: The conditional probability of an event A
given another event B, is denoted as P (A|B) and it is defined as

P (A|B) :=
P (A,B)

P (B)
.

• The above definition gives rise to the following product rule

P (A,B) = P (A|B)P (B).

• Expressed in terms of two random variables, x and y, we have

P (x, y) = P (x|y)P (y).

• P (x) and P (y) are also known as the marginal probabilities to be
distinguished from the joint and the conditional ones.

• Statistical independence: Two random variables, x and y, are said
to be statistically independent if and only if

P (x, y) = P (x)P (y), ∀x ∈ X , y ∈ Y.
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Discrete Random Variables

• Bayes Theorem: This important and elegant theorem is a direct
consequence of the product rule and the symmetry property of
the joint probability, i.e., P (x, y) = P (y, x), and it is given by the
following two equations,

P (x|y) =
P (y|x)P (x)

P (y)
,

P (y|x) =
P (x|y)P (y)

P (x)
.

This theorem plays a very important role in Machine Learning.

• What this theorem says is that, our uncertainty as expressed by
the conditional probability P (y|x) of an output variable, say y,
given the value of an input, x, can be expressed the other way
round; that is, in terms of the (uncertainty) conditional, P (x|y)
and the two marginal probabilities, P (x) and P (y).
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Continuous Random Variables

• A continuous random variable, x, can take values anywhere in an
in interval in the real axis R.

• The starting point to develop tools for describing such variables is
to build bridges with what we know from the discrete random
variables case.

• The cumulative distribution function (cdf) is defined as

Fx(x) := P (x ≤ x).

That is, cdf is the probability of the discrete event: “x takes any
value less or equal to x”.

• Thus, we can write

P (x1 < x ≤ x2) = Fx(x2)− Fx(x1).

• Assuming Fx(x) to be differentiable, the probability density
function (pdf), denoted with lower case p, is defined as

px(x) :=
dFx(x)

dx
.
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Continuous Random Variables

• Then, it is readily seen that

P (x1 < x ≤ x2) =

∫ x2

x1

px(x)dx,

and
Fx(x) =

∫ x

−∞
px(z)dz.

• Since an event is certain to occur in −∞ < x < +∞, we have
that ∫ +∞

−∞
px(x)dx = 1.

• The previously stated rules, for the discrete random variables
case, are also valid for the continuous ones, i.e.,

p(x|y) =
p(x, y)

p(y)
, px(x) =

∫ +∞

−∞
p(x, y)dy.
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Mean, Variance and Covariance

• Two of the most useful quantities associated with a random
variable, x, are:

The mean value, which is defined as:

E[x] :=

∫ +∞

−∞
xp(x)dx.

The variance, which is defined as:

σ2
x :=

∫ +∞

−∞

(
x− E[x]

)2
p(x)dx,

with integrations substituted by summations for the case of
discrete variables, e.g.,

E[x] :=
∑
x∈X

xP (x).

• More general, when a function f is involved, we have,

E[f(x)] :=

∫ +∞

−∞
f(x)p(x)dx.
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Mean, Variance and Covariance

• It can readily be deduced from the respective definitions that, the
mean value with respect to two random variables can be written
as:

E[x, y] := Ex

[
Ey|x[f(x, y)]

]
.

• Given two random variables, x, y, their covariance is defined as

cov(x, y) := E
[
(x− E[x])(y − E[y])

]
.

• Their correlation is defined as

rx,y := E[xy] = cov(x, y)− E[x]E[y].

• A random vector is a collection of random variables,
x := [x1, . . . , xl]

T and their joint pdf is denoted as

p(x) = p(x1, . . . , xl), x = [x1, . . . , xl]
T .
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Mean, Variance and Covariance

• The covariance matrix of a random vector, x ∈ Rl, is defined as

Cov(x) := E
[
(x− E[x])(x− E[x])T

]
,

or

Cov(x) =

 cov(x1, x1) . . . cov(x1, xl)
...

. . .
...

cov(xl, x1) . . . cov(xl, xl)

 .
• Similarly, the correlation matrix of a random vector, x, is defined
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Mean, Variance and Covariance

• Important Property: The covariance as well as the correlation
matrices are positive semidefinite.

• A matrix A is called positive semidefinite, if

yTAy ≥ 0, ∀y ∈ Rl,

and it is called positive definite if the inequality is a strict one.

• Proof: For the covariance matrix, we have

yTE
[(
x− E[x]

)
(x− E[x]

)T ]
y = E

[(
yT
(
x− E[x]

))2] ≥ 0.

• Complex random variables: A complex random variable, z ∈ C, is
defined as the sum

z := x + jy, x, y ∈ R, where j :=
√
−1.

• The pdf p(z) (probability P (z)) of a complex random variable is
defined as the joint pdf of the respective real random variables,

p(z) := p(x, y), or for discrete r.v.s, P (z) := P (x, y).
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Complex Variables

• For complex random variables, the notions of mean and
covariance are defined as,

E[z] := E[x] + jE[y], and

cov(z1, z2) := E
[(

z1 − E[z1]
)(

z2 − E[z2]
)∗]

,

where “ ∗ ” denotes complex conjugation.

• The latter definition leads to the variance of a complex variable,

σ2
z = E

[∣∣z− E[z]
∣∣2] = E

[∣∣z∣∣2]− ∣∣E [z]
∣∣2.

• Similarly, for complex random vectors, z = x + jy ∈ Cl, we have

p(z) := p(x1, . . . , xl, y1, . . . , yl),

where xi, yi, i = 1, 2, . . . , l, are the components of the involved
real vectors, respectively.

• The covariance and correlation matrices are similarly defined, in
terms of the Hermitian transposition,

Cov(z) := E
[(
z− E[z]

)(
z− E[z]

)H]
, Rz := E[zzH ].
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Transformation of Random Variables

• Let x, y be two random vectors, which are related via a
transform,

y = f(x).

• The vector function f is assumed to be invertible. That is, there
is a uniquely defined vector function, denoted as f−1, so that,

x = f−1(y).

• Given the pdf, px(x), of x, it can be shown that,

py(y) =
px(x)∣∣det(J(y;x))

∣∣
∣∣∣∣∣
x=f−1(y)

,

where the Jacobian matrix of the transformation is defined as

J(y;x) :=
∂(y1, y2, . . . , yl)

∂(x1, x2, . . . , xl)
:=


∂y1

∂x1
. . . ∂y1

∂xl
...

. . .
...

∂yl
∂x1

. . . ∂yl
∂xl

 .
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Transformation of Random Variables

• We have denoted as det(·) the determinant of a matrix and | · |
the absolute value.

• For the case of two random variables, the previous formula
becomes

py(y) =
px(x)∣∣ dy
dx

∣∣
∣∣∣∣∣
x=f−1(y)

.

• The proof of the previous formula can be justified by carefully
looking at the following figure and noting that p(x)|∆x| =
p(y)|∆y|.
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Example

• Let the two random vectors x and y be related by a linear
transform, via an invertible matrix A,

y = Ax.

• Then, it is easily checked out that the Jacobian matrix is equal to
the matrix A,

J(y;x) = A.

• Thus, we readily obtain that,

py(y) =
px(A−1x)

|detA|
.
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Typical Distributions for Discrete Variables

• The Bernoulli distribution: A random variable is said to be
distributed according to a Bernoulli distribution, if it is binary,
X = {0, 1}, with

P (x = 1) = p, P (x = 0) = 1− p.

• In a more compact way, we write that x ∼ Bern(x|p) where

P (x) = Bern(x; p) := px(1− p)1−x.

• Its mean value is equal to:

E[x] = 1p+ 0(1− p) = p.

• Its variance is equal to:

σ2
x = (1− p)2p+ p2(1− p) = p(1− p).
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Typical Distributions for Discrete Variables

• The Binomial Distribution: A random variable, x, is said to follow
a binomial distribution, with parameters n, p and we write
x ∼ Bin(x|n, p), if X = {0, 1, . . . , n} and

P (x = k) := Bin(k|n, p) =

(
n
k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

• For example, this distribution models the times that head occurs
in n successive trials, where P (Head) = p.

• The binomial is a generalization of the Bernoulli distribution,
which results if we set n = 1.

• The mean and variance of the binomial distribution are:

E[x] = np, and σ2
x = np(1− p).
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Typical Distributions for Discrete Variables

• The two figures below show he probability mass function and the
corresponding CDF for the binomial distribution, for p = 0.4 and
n = 9.

• Observe that in the case of discrete variables, the cdf function has
a step-wise form.
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Typical Distributions for Discrete Variables

• The Multinomial Distribution: This is a generalization of the
binomial distribution, if the outcome of each experiment is not
binary, but it can take one out of K possible values. For example,
instead of tossing a coin, a die with K sides is thrown.

• Each one of the possible K outcomes has probability
P1, P2, . . . , PK to occur, and we denote

P = [P1, P2, . . . , PK ]T .

• After n experiments, assume that x1, x2, . . . , xK times sides
x = 1, x = 2,. . ., x = K occurred, respectively.
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Typical Distributions for Discrete Variables

• The random (discrete) vector,

x = [x1, x2, . . . , xK ]T ,

follows a multinomial distribution, x ∼ Mult(x|n,P ), if

P (x) = Mult(x|n,P ) :=

(
n

x1, x2, . . . , xK

) K∏
i=1

P xkk ,

where (
n

x1, x2, . . . , xK

)
=

n!

x1!x2! . . . xK !
.

• Note that the variables, x1, . . . , xK , are subject to the constraints

K∑
k=1

xk = n,

K∑
k=1

PK = 1.
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Typical Distributions for Discrete Variables

• For the multinomial distribution:

the mean values is given by,

E[x] = nP ,

the variances by

σ2
k = nPk(1− Pk), k = 1, 2, . . . ,K,

and the covariances by

cov(xi, xj) = −nPiPj , i 6= j.
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Typical Distributions for Continuous Variables

• The Uniform Distribution: A random variable, x, is said to follow
a uniform distribution in an interval [a, b] and we write
x ∼ U(a, b), with a > −∞ and b < +∞, if

p(x) =

{
1
b−a , if a ≤ x ≤ b,

0 otherwise.

• The distribution is shown in the figure below:

• The mean value and the variance are
equal to

E[x] =
a+ b

2
, σ2

x =
1

12
(b− a)2.
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Typical Distributions for Continuous Variables

• The Gaussian Distribution: The Gaussian or normal distribution is
one among the most widely used distributions in all scientific
disciplines. We say that a random variable, x, is Gaussian or
normal with parameters µ and σ2, and we write x ∼ N (µ, σ2) or
N (x|µ, σ2), if

p(x) =
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
.

• The distribution is shown in the figure below:

• The mean value and the variance are
equal to:

E[x] = µ, σ2
x = σ2.
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Typical Distributions for Continuous Variables: The Gaussian

• Proof of the mean value: By the definition of the mean value,
we have that,

E[x] =
1√
2πσ

∫ +∞

−∞
x exp

(
− (x− µ)2

2σ2

)
dx

=
1√
2πσ

∫ +∞

−∞
(y + µ) exp

(
− y2

2σ2

)
dy.

Due to the symmetry of the exponential function, performing the
integration involving y gives zero and the only surviving term is
due to µ. Taking into account that a pdf integrates to one, we
obtain the result.
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Typical Distributions for Continuous Variables: The Gaussian

• Proof of the variance: For the variance, we have that,∫ +∞

−∞
exp

(
− (x− µ)2

2σ2

)
dx =

√
2πσ.

• Taking the derivative of both sides with respect to σ, we obtain∫ +∞

−∞

(x− µ)2

σ3
exp

(
− (x− µ)2

2σ2

)
dx =

√
2π,

or
1√
2πσ

∫ +∞

−∞
(x− µ)2 exp

(
− (x− µ)2

2σ2

)
dx = σ2,

which proves the claim.
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Typical Distributions for Continuous Variables: The Gaussian

• Multivariate Gaussian: This is the generalization of the Gaussian
to vector variables, x ∈ Rl. We write x ∼ N (x|µ, Σ), with
parameters µ and Σ, and it is defined as

p(x) =
1

(2π)l/2|Σ|1/2
exp

(
− 1

2

(
x− µ

)T
Σ−1

(
x− µ

))
,

where | · | denotes the determinant of a matrix. It can be shown
that,

E[x] = µ and Cov(x) = Σ.
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Typical Distributions for Continuous Variables: The Gaussian

• Isovalue curves of multivariate Gaussians: The isovalue curves are
formed by all the points which correspond to the same value of
the pdf, i.e., p(x) = c,

(x− µ)TΣ−1(x− µ) = constant = c.

• The isovalue curves are of a quadric nature: circles
(hyperspheres) or ellipses (hyperellipsoids) centered at the mean
value. The minor/major axes are determined by the
eigenstructure of the corresponding covariance matrix Σ.

Sergios Theodoridis, University of Athens. Machine Learning, 29/69



Typical Distributions for Continuous Variables: The Gaussian

• Isovalue curves of multivariate Gaussians: The isovalue curves are
formed by all the points which correspond to the same value of
the pdf, i.e., p(x) = c,

(x− µ)TΣ−1(x− µ) = constant = c.

• The isovalue curves are of a quadric nature: circles
(hyperspheres) or ellipses (hyperellipsoids) centered at the mean
value. The minor/major axes are determined by the
eigenstructure of the corresponding covariance matrix Σ.

Σ = σ2I Σ 6= σ2I
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Typical Distributions for Continuous Variables: The Gaussian

• Proof for the shape of the contours: All points x ∈ Rl, lying
on a isovalue contour satisfy

(x− µ)TΣ−1(x− µ) = constant = c.

• The covariance matrix is symmetric, Σ = ΣT . Thus, its
eigenvalues are real and the corresponding eigenvectors can be
chosen to form an orthonormal basis, which leads to its
diagonalization, i.e.,

Σ = UTΛU, with U := [u1, . . . ,ul],

where ui, i = 1, 2, . . . , l, are the corresponding orthonormal
eigenvectors, and

Λ := diag{λ1, . . . , λl},

is the diagonal matrix comprising the respective eigenvalues.
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Typical Distributions for Continuous Variables: The Gaussian

• Assuming Σ to be invertible, all eigenvalues are positive (being a
positive definite matrix, it has positive eigenvalues). Due to the
orthonormality of the eigenvectors, matrix U is unitary, i.e.,
UUT = UTU = I. Thus, we can now write

yTΛ−1y = c, where y := U(x− µ), (1)

which corresponds to a rotation of the axes by U and a
translation of the origin to µ.

• Equation (1) can be written as

y2
1

λ1
+ . . .+

y2
l

λl
= c.

• The last equation is describing a (hyper)ellipsoid in the Rl. It is
centered at µ and the major axes of the ellipsoid are parallel to
u1, . . . ,ul. The size of the respective axes are controlled by the
values of the corresponding eigenvalues.
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Typical Distributions for Continuous Variables: The Gaussian

• Properties of the Gaussian distribution: If the covariance matrix is
diagonal,

Σ = diag{σ2
1, . . . , σ

2
l },

that is, when the covariance of all the elements
cov(xi, xj) = 0, i, j = 1, 2, . . . , l, then the random variables
comprising x are statistically independent. This is not true in
general. Uncorrelated variables do not necessarily mean that they
are independent. Independence is a much stronger condition.

• Indeed, if the covariance matrix is diagonal, then the multivariate
Gaussian is written as,

p(x) =

l∏
i=1

1√
2πσi

exp
(
− (xi − µi)2

2σ2
i

)
.

In other words,
p(x) =

l∏
i=1

p(xi),

which is the condition for statistical independence.
Sergios Theodoridis, University of Athens. Machine Learning, 32/69



Typical Distributions for Continuous Variables: The Gaussian

• Properties of the Gaussian distribution: If the covariance matrix is
diagonal,

Σ = diag{σ2
1, . . . , σ

2
l },

that is, when the covariance of all the elements
cov(xi, xj) = 0, i, j = 1, 2, . . . , l, then the random variables
comprising x are statistically independent. This is not true in
general. Uncorrelated variables do not necessarily mean that they
are independent. Independence is a much stronger condition.

• Indeed, if the covariance matrix is diagonal, then the multivariate
Gaussian is written as,

p(x) =

l∏
i=1

1√
2πσi

exp
(
− (xi − µi)2

2σ2
i

)
.

In other words,
p(x) =

l∏
i=1

p(xi),

which is the condition for statistical independence.
Sergios Theodoridis, University of Athens. Machine Learning, 32/69



Typical Distributions for Continuous Variables: The Gaussian

• The Central Limit Theorem: Consider N mutually independent
random variables, each following its own distribution with mean
values µi and variances σ2

i , i = 1, 2, . . . , N . Define a new
random variable as their sum, i.e.,

x =
N∑
i=1

xi.

Then, the mean and variance of the new variable are given by,

µ =

N∑
i=1

µi, and σ2
x =

N∑
i=1

σ2
i .

• It can be shown that, as N −→∞ the distribution of the
normalized variable

z =
x− µ
σ

,

tends to the standard normal distribution, N (z|0, 1)
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Typical Distributions for Continuous Variables: The Gaussian

• The Central Limit Theorem is one of the most important theorems in
probability and statistics and it partly explains the popularity of the
Gaussian distribution.

• In practice, even summing up a relatively small number of random
variables, one can obtain a good approximation to a Gaussian. For
example, if the individual pdfs are smooth enough and the random
variables are identically and independently distributed (iid), a number
between 5 to 10 may be sufficient.
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Typical Distributions for Continuous Variables

• The Exponential Distribution: We say that a random variable
follows an exponential distribution with parameter λ > 0, if

p(x) =

{
λ exp (−λx) , if x ≥ 0,

0, otherwise.

• The distribution has been used, for example, to model the time
between arrivals of telephone calls or of a bus at a bus stop.
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Typical Distributions for Continuous Variables

• The Beta Distribution: We say that a random variable, x ∈ [0, 1],
follows a beta distribution with positive parameters, a, b, and we
write, x ∼ Beta(x|a, b, ), if

p(x) =

{ 1
B(a,b)x

a−1(1− x)b−1, if 0 ≤ x ≤ 1,

0 otherwise,

where B(a, b) is the beta function, defined as,

B(a, b) :=

∫ 1

0
xa−1(1− x)b−1dx, and B(a, b) =

Γ(a)Γ(b)

Γ(a+ b)
,

where Γ(·) is the gamma function defined as,

Γ(a) =

∫ ∞
0

xa−1e−xdx.
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Typical Distributions for Continuous Variables-Beta

• The mean value and the variance are equal to:

E[x] =
a

a+ b
, σ2

x =
ab

(a+ b)2(a+ b+ 1)
.

• The graphs of the pdfs of the Beta distribution for different values of the parameters. a) The dotted line
corresponds to a = 1, b = 1, the gray line to a = 0.5, b = 0.5 and the red one to a = 3, b = 3. b) The
gray line corresponds to a = 2, b = 3 and the red one to a = 8, b = 4. For values a = b, the shape is
symmetric around 1/2. For a < 1, b < 1 it is convex. For a > 1, b > 1, it is zero at x = 0 and x = 1.
For a = 1 = b, it becomes the uniform distribution. If a < 1, p(x) −→ ∞, x −→ 0 and if
b < 1, p(x) −→ ∞, x −→ 1.
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Typical Distributions for Continuous Variables-Beta

• The Gamma Distribution: A random variable follows the gamma
distribution with positive parameters a, b, and we write
x ∼ Gamma(x|a, b), if

p(x) =

{
ba

Γ(a)x
a−1e−bx, x > 0,

0 otherwise.

• The mean and variance are given by

E[x] =
a

b
, σ2

x =
a

b2
.

• The gamma distribution also takes various shapes by varying the parameters. For a < 1, it is strictly decreasing
and p(x) −→ ∞ as x −→ 0 and p(x) −→ 0 as x −→ ∞.
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Typical Distributions for Continuous Variables

• The Dirichlet Distribution: The Dirichlet distribution can be
considered as the multivariate generalization of the beta
distribution. Let x = [x1, . . . , xK ]T be a random vector, with
components such as

0 ≤ xk ≤ 1, k = 1, 2, . . . ,K, and
K∑
k=1

xk = 1.

In other words, the random variables lie on (K − 1)-dimensional
simplex, as shown below
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Typical Distributions for Continuous Variables-Dirichlet

• We say that the random vector, x, follows a Dirichlet distribution
with parameters a = [a1, . . . , aK ]T , and we write x ∼ Dir(x|a), if

p(x) = Dir(x|a) :=
Γ(ā)

Γ(a1) . . .Γ(aK)

K∏
k=1

xak−1
k , ā :=

K∑
k=1

ak.

• The mean, variance and covariances of the involved random
variables are given by,

E[x] =
1

ā
a, σ2

k =
ak(ā− ak)
ā2(ā+ 1)

, cov(xi, xj) = − aiaj
ā2(ā+ 1)

.
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k , ā :=

K∑
k=1

ak.

• The mean, variance and covariances of the involved random
variables are given by,

E[x] =
1

ā
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ak(ā− ak)
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.

• The Dirichlet distribution over the 2D-simplex for a) (0.1,0.1,0.1), b) (1,1,1) and c) (10,10,10).
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Stochastic Processes

• The notion of a stochastic process is used to describe random
experiments where the outcome of each experiment is a function
or a sequence; in other words, the outcome of each experiment is
an infinite number of values. Our focus will be on sequences.
Thus, the result of a random experiment is a sequence,
un (or sometimes denoted as u(n)), n ∈ Z, where Z is the set of
integers. Usually, n is interpreted as a time index, and un is
called a time series or in the signal processing jargon a
discrete-time signal. In contrast, if the outcome is a function,
u(t), it is called a continuous-time signal.

• We are going to use un to denote the specific sequence resulting
from a single experiment and the roman font, un, to denote the
corresponding discrete-time random process; that is, the rule that
assigns a specific sequence as the outcome of an experiment.
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Stochastic Processes

• A stochastic process can be considered as a family or ensemble of
sequences. The individual sequences are known as sample
sequences or simply as realizations.

• Note that fixing the time to a specific value, e.g., n = n0, then
un0 is a random variable. Indeed, for each random experiment,
which we perform, a single value results at time instant n0. From
this perspective, a random process can be considered as the
collection of infinite many random variables, i.e., {un, n ∈ Z}.
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un0 is a random variable. Indeed, for each random experiment,
which we perform, a single value results at time instant n0. From
this perspective, a random process can be considered as the
collection of infinite many random variables, i.e., {un, n ∈ Z}.

• The outcome of each experiment, associated with a discrete-time stochastic process, is a sequence of values. For
each one of the realizations, the corresponding values obtained at any instant, e.g., n or m, comprise the
outcomes of a corresponding random variable, un or um respectively.
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Stochastic Processes

• First and Second Order Statistics: For a stochastic process to be
fully described, one must know the joint pdfs (pmfs for
discrete-valued random variables)

p(un, um, . . . , ur),

for all possible combinations of random variables, un, um, . . . ,ur.
However, in practice, the emphasis is on computing first and
second order statistics only, based on p(un) and p(un, um).

• Mean at Time n:

µn := E[un] =

∫ +∞

−∞
unp(un)dun.

• Autocovariance at Time Instants, n,m:

cov(n,m) := E
[(

un − E[un]
)(

um − E[um]
)]
.
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Stochastic Processes

• Autocorrelation at Time Instants, n,m:

r(n,m) := E [unum] .

• We refer to these mean values as ensemble averages, to stress out
that they convey statistical information over the ensemble of
sequences, that comprise the process.

• The respective definitions for complex stochastic processes are:

cov(n,m) = E
[(

un − E[un]
)(

um − E[um]
)∗]

and
r(n,m) = E [unu∗m] .
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Stationarity and Ergodicity

• Strict Sense Stationarity: A stochastic process, un, is said to be
strict-sense stationary (SSS) if its statistical properties are
invariant to a shift of the origin, i.e., if ∀k ∈ Z

p(un, um, . . . , ur) = p(un−k, um−k, . . . , ur−k),

and for any possible combination of time instants, n,m, . . . , r. In
other words, the stochastic processes un and un−k are described
by the same joint pdfs of all orders.

• A weaker version of stationarity is that of the mth order
stationarity, where joint pdfs involving up to m variables, are
invariant to the choice of the origin. For example, for a second
order (m = 2) stationary process, we have that p(un) = p(un−k)
and p(un, ur) = p(un−k, ur−k), ∀n, r, k ∈ Z.
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Stationarity and Ergodicity

• Wide Sense Stationarity: A stochastic process, un, is said to be
wide-sense stationary (WSS) if the mean value is constant over all
time instants and the autocorrelation/autocovariance sequences
depend on the difference of the involved time indices, i.e.,

µn = µ, and r(n, n− k) = r(k).

A WSS is a weaker version of the second order stationarity; in the
latter, all possible second order statistics are independent of the
origin. In the former, this is only required for the autocorrelation
(autocovariance).

• A strict-sense stationary precess is also wide-sense stationary but,
in general, not the other way round.

• For stationary processes, the autocorrelation becomes a sequence
with a single time index as the free parameter; thus, its value,
that measures a relation of the variables at two time instants,
depends solely on how much these time instants differ, and not
on their specific values.
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Stationarity and Ergodicity

• Ergodicity: A stochastic process is said to be ergodic, if the
complete statistics can be determined by any one of the
realizations.

• In other words, if a process is ergodic, every single realization
carries an identical statistical information and it can describe the
entire random process. Since from a single sequence only one set
of pdfs can be obtained, we conclude that every ergodic process
is necessarily stationary.

• A special type of ergodicity is that of the second order ergodicity.
This means that only statistics up to a second order can be
obtained from a single realization. Second order ergodic processes
are necessarily wide-sense stationary.

• For second order ergodic processes, the following are true:

E[un] = µ = lim
N→∞

µ̂n, where µ̂n :=
1

2N + 1

N∑
n=−N

un.
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Stationarity and Ergodicity

• Also,

cov(k) = lim
N→∞

1

2N + 1

N∑
n=−N

(un − µ)(un−k − µ),

where the limits are in the mean square sense; that is,

lim
N→∞

E
[
|µ̂N − µ|2

]
= 0,

and similarly for the autocovariance.

• Note that often, ergodicity is only required to be assumed for the
computation of the mean and covariance and not for all possible
second order statistics. In this case, we talk about mean-ergodic
and covariance-ergodic processes.
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Stationarity and Ergodicity

• In summary, when ergodic processes are involved, ensemble
averages “across the process” can be obtained as time averages
“along the process”.
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Example

• The goal of this example is to construct a process which is WSS,
yet it is not ergodic. Let a WSS process, xn, i.e.,

E[xn] = µ, and E[xnxn−k] = rx(k).

• Define the process,
zn := axn,

where a is a random variable taking values in {0, 1}, with
probabilities P (0) = P (1) = 0.5. Moreover, a and xn are
statistically independent. Then, we have that

E[zn] = E[axn] = E[a]E[xn] = 0.5µ,

and
E[znzn−k] = E[a2]E[xnxn−k] = 0.5rx(k).

• Thus, zn is WSS. However, it is not covariance-ergodic. Indeed,
some of the realizations will be equal to zero (when a = 0), and
the mean value and autocorrelation will be zero, which is different
from the ensemble average.
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Autocorrelation Sequence: Properties

• Let un be a wide-sense stationary process. Its autocorrelation
sequence has the following properties:

1

r(k) = r∗(−k), ∀k ∈ Z.
Proof: This property is a direct consequence of the invariance
with respect to the choice of the origin. Indeed,

r(k) = E[unu∗n−k] = E[un+ku∗n] = r∗(−k).

2

r(0) = E
[
|un|2

]
.

That is, the value of the autocorrelation at k = 0 is equal to the
mean square value of the process. Interpreting the square of a
variable as its energy, then r(0) can be interpreted as the
corresponding (average) power.
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Autocorrelation Sequence: Properties

• (Properties continued)
3

r(0) ≥ |r(k)|, ∀k 6= 0.

In other words, the correlation of the variables, corresponding to
two different time instants, cannot be larger (in magnitude) than
r(0). This property is essentially the Cauchy-Schwartz inequality
for the inner products.

4 The autocorrelation of a stochastic process is a positive definite
sequence. That is,

N∑
n=1

N∑
m=1

ana
∗
mr(n,m) ≥ 0, ∀an ∈ C, n = 1, 2, . . . , N, ∀N ∈ Z.

Proof: The proof is easily obtained by the definition of the
autocorrelation,

0 ≤ E
[∣∣∣ N∑
n=1

anxn

∣∣∣2] =

N∑
n=1

N∑
m=1

ana
∗
mE [xnxm] ,

which proves the claim.
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Autocorrelation Sequence: Properties

• (Properties continued)

5 Let un and vn be two WSS processes. Define the new process

zn = un + vn.

Then,
rz(k) = ru(k) + rv(k) + ruv(k) + rvu(k),

where the cross-correlation between two jointly WSS stationary
stochastic processes is defined as

ruv(k) := E[unv∗n−k], k ∈ Z.

The proof is a direct consequence of the definition. Note that if
the two processes are uncorrelated, i.e., ruv(k) = rvu(k) = 0, then

rz(k) = ru(k) + rv(k).

Obviously, this is also true if the processes un and vn are
independent and of zero mean value, since then
E[unvn−k] = E[un]E[vn−k] = 0. Note that, uncorelateness is a
weaker condition and it does not necessarily imply independence;
the opposite is true, for zero mean values.
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Autocorrelation Sequence: Properties

• (Properties continued)
6

ruv(k) = r∗vu(−k)

7

ru(0)rv(0) ≥ |ruv(k)|, ∀k ∈ Z.

Power Spectral Density

• Power Spectral Density: Given a WSS stochastic process, un, its
power spectral density (PSD) (or simply the power spectrum) is
defined as the Fourier transform of its autocorrelation sequence,
i.e.,

S(ω) :=

∞∑
k=−∞

r(k) exp (−jωk) .

The autocorrelation sequence is obtained via the inverse Fourier
transform, i.e.,

r(k) =
1

2π

∫ +π

−π
S(ω) exp (jωk) dω. (2)
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−π
S(ω) exp (jωk) dω. (2)
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Autocorrelation Sequence: Properties

• (Properties continued)
6
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7

ru(0)rv(0) ≥ |ruv(k)|, ∀k ∈ Z.

Power Spectral Density

• Power Spectral Density: Given a WSS stochastic process, un, its
power spectral density (PSD) (or simply the power spectrum) is
defined as the Fourier transform of its autocorrelation sequence,
i.e.,

S(ω) :=

∞∑
k=−∞

r(k) exp (−jωk) .

The autocorrelation sequence is obtained via the inverse Fourier
transform, i.e.,

r(k) =
1

2π

∫ +π

−π
S(ω) exp (jωk) dω. (2)

Sergios Theodoridis, University of Athens. Machine Learning, 54/69



Properties of PSD

• The PSD of a WSS stochastic process is a real and non-negative
function of ω.

Proof: Indeed, we have that,

S(ω) =

+∞∑
k=−∞

r(k) exp (−jωk)

= r(0) +

−1∑
k=−∞

r(k) exp (−jωk) +

∞∑
k=1

r(k) exp (−jωk)

= r(0) +

+∞∑
k=1

r∗(k) exp (jωk) +
∞∑
k=1

r(k) exp (−jωk)

= r(0) + 2

+∞∑
k=1

Real
(
r(k) exp (−jωk)

)
,

which proves the claim that PSD is a real number. In the proof,

Property 1 of the autocorrelation sequence has been used. We defer the

proof for the non-negative part for later on.
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Properties of PSD

• The area under the graph of S(ω) is equal to the power of the
stochastic process, i.e.,

E[|un|2] = r(0) =
1

2π

∫ +π

−π
S(ω)dω,

which is obtained from (2) if we set k = 0. We will come to the
physical meaning of this property very soon.

• Transmission through a linear system: We will now derive the
relation between the PSDs of the input and output in a linear
filtering operation, expressed via the convolution sum,

dn = wn ∗ un :=

+∞∑
k=−∞

w∗kun−k

where . . . , w0, w1, w2, . . . are the parameters comprising the
impulse response describing the filter.
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Properties of PSD

• In case the impulse response is of finite duration, for example,
w0, w1, . . . , wl−1, then the convolution can be written as

dn =

l−1∑
k=0

w∗kun−k = wHun,

w := [w0, w1, . . . , wl−1]T , un := [un,un−1, . . . ,un−l+1]T ∈ Rl.
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Properties of PSD

• The random vector at the input

un := [un,un−1, . . . ,un−l+1]T ∈ Rl.

is known as the input vector of order l and at time n. Note that
its elements are part of the stochastic process at successive time
instants. This imposes on the respective autocorrelation matrix a
rich structure, which can be exploited to develop efficient
computational algorithms for its inversion.

Moreover, observe that, if the impulse response of the system is
zero for negative values of the time index, n, this guarantees
causality. That is, the output depends only on the values of the
input at the current and previous time instants only, and there is
no dependence on future values.
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Properties of PSD

• Theorem: The power spectral density of the output, dn, of a
linear time invariant system, when it is excited by a WSS
stochastic process, un, is given by,

Sd(ω) =
∣∣W (ω)

∣∣2Su(ω),

where

W (ω) :=
+∞∑

n=−∞
wn exp (−jωn) .

• Proof: First, it is shown that,

rd(k) = ru(k) ∗ wk ∗ w∗−k.

Then the claim is proved by taking the Fourier transform of both
sides. Two well known properties of the Fourier transform have
been used, i.e.,

ru(k) ∗ wk 7−→ Su(ω)W (ω), and w∗−k 7−→W ∗(ω).
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Power Spectral Density

• Physical Interpretation of the PSD: The following figure shows
the Fourier transform of the impulse response of a very narrow
bandpass filter.

An ideal bandpass filter. The output contains frequencies only in the range of |ω − ω0| < ∆ω/2.
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Power Spectral Density

• We assume that ∆ω is very small. Then, for this special case, the
input-output PSD relation can be written as

∆P := E
[
|dn|2

]
= rd(0) =

1

2π

∫ +∞

−∞
Sd(ω)dω ≈ Su(ωo)

∆ω

π
.

where real data have been assumed, which guarantees the
symmetry of the (magnitude) of the Fourier transform
(Su(ω) = Su(−ω)).
Hence, 1

π
Su(ωo) =

∆P

∆ω
.

In other words, the value Su(ωo) can be interpreted as the power
density (power per frequency interval) in the frequency
(spectrum) domain.

• This also establishes what was said before: the PSD is a
non-negative real function, for any value of ω ∈ [−π,+π] (The
PSD, being the Fourier transform of a sequence, is periodic with
period 2π).
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Example: White Noise Sequence

• A stochastic process, ηn, is said to be white noise if the mean
and its autocorrelation sequence satisfy the following:

E[ηn] = 0 and r(k) =

{
σ2
η if k = 0,

0, if k 6= 0,

where σ2
η is its variance.

• In other words, all variables at different time instants are
uncorrelated. If, in addition, they are independent, we say that it
is strictly white noise.

• It is readily seen that its PSD is given by

Sη(ω) = σ2
η.

That is, it is constant and this is the reason it is called white
noise, in analogy to the white light whose spectrum is equally
spread over all the wavelengths.
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Autoregressive Processes

• Autoregressive Models: Autoregressive processes are one among the
most popular and widely used models. An autoregressive process of
order l, denoted as AR(l), is defined via the following recursion

un + a1un−1 + . . .+ alun−l = ηn,

where ηn is a white noise process with variance σ2
η.

• To generate samples, one starts form some initial conditions. The input
samples here correspond to the white noise sequence and the initial
conditions are set equal to zero, u−1 = . . . u−l = 0.

• This is not a stationary process. Indeed, time instant n = 0 is distinctly
different form all the rest, since it is the time that initial conditions are
applied in.

• The effects of the initial conditions tend asymptotically to zero, if all
the roots of the corresponding characteristic polynomial,

zl + a1z
l−1 + . . .+ al = 0,

have magnitude less that unity (the solution of the corresponding
homogeneous equation, without input, tends to zero). Then, it can be
shown that AR(l) models become asymptotically WSS.
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Autoregressive Processes

• Autocorrelation sequence of an AR process: Multiplying both sides of
the defining equation with un−k, k > 0, and taking the expectation, we
obtain

l∑
i=0

aiE[un−iun−k] = E[ηnun−k], k > 0, where a0 := 1, or

l∑
i=1

air(k − i) = 0.

We have used the fact that E[ηnun−k], k > 0 is zero. Indeed, un−k
depends recursively on ηn−k,ηn−k−1 . . . , which are all uncorrelated to
ηn, since this is a white noise process.

• Note that the above is a difference equation and it can be solved,
provided we have the initial conditions. To this end, we again multiply
the defining equation by un and take expectations, which results in

l∑
i=0

air(i) = σ2
η,

since un recursively depends on ηn, which contributes the σ2
η term, and

ηn−1, . . ., which result to zeros.
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Autoregressive Processes

• Yule-Walker equations: Combining the previous two equations, we end
up with the elegant linear system of equations:

r(0) r(1) . . . r(l)
r(1) r(0) . . . r(l − 1)

...
...

...
...

r(l) r(l − 1) . . . r(0)




1
a1
...
al

 =


σ2
η

0
...
0

 .
These are known as the Yule-Walker equations, whose solution results in
the values, r(0), . . . , r(l), which are then used as the initial conditions
to solve the corresponding difference equation and obtain r(k), ∀k ∈ Z.

• Observe the special structure of the matrix in the linear system. This
type of matrices are known as Toeplitz. All the elements along any
diagonal are equal.

• Moving Average (MA) models: These are defined by the recursion,

un = b1ηn + . . .+ bmηn−m.

• Autoregressive-Moving Average (ARMA) models: These are defined as,

un + a1un−1 + . . . un−l = b1ηn + . . .+ bmηn−m.
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• Autoregressive-Moving Average (ARMA) models: These are defined as,

un + a1un−1 + . . . un−l = b1ηn + . . .+ bmηn−m.
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Example: AR processes

• Consider the AR(1) process. The goal is to compute the corresponding
autocorrelation sequence. To this end, we have

un + aun−1 = ηn.

• Following the general methodology explained before, we have

r(k) + ar(k − 1) = 0, k = 1, 2, . . .

r(0) + ar(1) = σ2
η.

Considering the first equation for k = 1 together with the second one
readily results in

r(0) =
σ2
η

1− a2
.

Plugging this value in the difference equation, we recursively obtain

r(k) = (−a)|k|
σ2
η

1− a2
, k = 0,±1,±2, . . . ,

where we used the property, r(k) = r(−k).
• Remark: Observe that if |a| > 1, r(0) < 0 which is meaningless. Also, |a| < 1 guarantees that the

magnitude of the root of the characteristic polynomial (z∗ = −a) is smaller than one. Moreover, |a| < 1
guarantees that r(k) −→ 0 as k −→ ∞. This is in line with common sense, since random variables which are
far away in time must be uncorrelated.
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Example: AR processes

• Plots of a realization (left) and the autocorrelation sequence
(right) corresponding to the value a = −0.9.
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Example: AR processes

• Plots of a realization (left) and the autocorrelation sequence
(right) corresponding to the value a = −0.4. Compared to the
value of a = −0.9, the variables at different time instants are less
correlated an the autocorrelation sequence fades to zero much
faster.
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Example: AR processes

• Plots of a realization (left) and the autocorrelation sequence
(right) corresponding to the value a = −0.4. Compared to the
value of a = −0.9, the variables at different time instants are less
correlated an the autocorrelation sequence fades to zero much
faster.
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Example: AR processes

• Plots of the PSDs for the two previous cases (left). To the right,
a realization of a white noise sequence is given for the sake of
comparison with the previously plotted ones.
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Example: AR processes

• Plots of the PSDs for the two previous cases (left). To the right,
a realization of a white noise sequence is given for the sake of
comparison with the previously plotted ones.

a = −0.9 (black), a = −0.4 (red)
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