OASIS 19

Web Services Business Process
Execution Language Version 2.0

OASIS Standard
11 April 2007

Specification URIs:

This Version:
http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.doc
http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.pdf

Previous Version:
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html

http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.doc
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf

Latest Version:
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.doc
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

Technical Committee:

OASIS Web Services Business Process Execution Language (WSBPEL) TC

Chair(s):
Diane Jordan, IBM
John Evdemon, Microsoft

Editor(s):
Alexandre Alves, BEA
Assaf Arkin, Intalio
Sid Askary, Individual
Charlton Barreto, Adobe Systems
Ben Bloch, Systinet
Francisco Curbera, IBM
Mark Ford, Active Endpoints, Inc.
Yaron Goland, BEA
Alejandro Guizar, JBoss, Inc.
Neelakantan Kartha, Sterling Commerce
Canyang Kevin Liu, SAP
Rania Khalaf, IBM
Dieter Koénig, IBM
Mike Marin, IBM, formerly FileNet Corporation
Vinkesh Mehta, Deloitte
Satish Thatte, Microsoft
Danny van der Rijn, TIBCO Software
Prasad Yendluri, webMethods
Alex Yiu, Oracle

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 1 of 264

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.doc
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.doc
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.doc
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

Related work:

e See Section 3.

Declared XML Namespace(s):

http://docs.oasis-open.org/wsbpel/2.0/process/abstract
http://docs.oasis-open.org/wsbpel/2.0/process/executable
http://docs.oasis-open.org/wsbpel/2.0/plnktype
http://docs.oasis-open.org/wsbpel/2.0/serviceref
http://docs.oasis-open.org/wsbpel/2.0/varprop

Abstract:

Status:

This document defines a language for specifying business process behavior based on Web
Services. This language is called Web Services Business Process Execution Language
(abbreviated to WS-BPEL in the rest of this document). Processes in WS-BPEL export and import
functionality by using Web Service interfaces exclusively.

Business processes can be described in two ways. Executable business processes model actual
behavior of a participant in a business interaction. Abstract business processes are partially
specified processes that are not intended to be executed. An Abstract Process may hide some of
the required concrete operational details. Abstract Processes serve a descriptive role, with more
than one possible use case, including observable behavior and process template. WS-BPEL is
meant to be used to model the behavior of both Executable and Abstract Processes.

WS-BPEL provides a language for the specification of Executable and Abstract business
processes. By doing so, it extends the Web Services interaction model and enables it to support
business transactions. WS-BPEL defines an interoperable integration model that should facilitate
the expansion of automated process integration in both the intra-corporate and the business-to-
business spaces.

This document was last revised or approved by the Web Services Business Process Execution
Language (WSBPEL) TC on the above date. The level of approval is also listed above. Check the
current location noted above for possible later revisions of this document. This document is
updated periodically on no particular schedule.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/wsbpel.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/wsbpel/ipr.php.

The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/wsbpel.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 2 of 264

http://docs.oasis-open.org/wsbpel/2.0/process/abstract
http://docs.oasis-open.org/wsbpel/2.0/process/executable
http://docs.oasis-open.org/wsbpel/2.0/plnktype
http://docs.oasis-open.org/wsbpel/2.0/serviceref
http://docs.oasis-open.org/wsbpel/2.0/varprop
http://www.oasis-open.org/committees/wsbpel
http://www.oasis-open.org/committees/wsbpel
http://www.oasis-open.org/committees/wsbpel/ipr.php
http://www.oasis-open.org/committees/wsbpel/ipr.php
http://www.oasis-open.org/committees/wsbpel
http://www.oasis-open.org/committees/wsbpel

Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS's procedures with
respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such proprietary rights by
implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to implement this
specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

The names "OASIS", “WSBPEL” and “WS-BPEL” are trademarks of OASIS, the owner and developer of
this specification, and should be used only to refer to the organization and its official outputs. OASIS
welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce
its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above
guidance.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 3 of 264

Table of Contents

TaDIE OF CONLENTS.....ccueiieieiesie ettt sttt b s et eneestesaesbesbeenenrenneas 4
IO 0o [F o1 o o S 6
2. NOtatioNal CONVENTIONSccveiiiiiieieiesie sttt st be e e e se st st sresbesseeneeneens 9
3. Relationship with Other SPeCITiCalIONScovreiiieee s 11
4. Static ANalysiS Of @ BUSINESS PIOCESS........cciiiieiieieiee et eee e ste e s sre e te e sre e 13
5. DefiNiNg @ BUSINESS PIOCESS........coiiiiiiriiite sttt 14
5.2, INitial EXBMPIE....c.eeieeeeeecee ettt neene s 14
5.2. The Structure Of @ BUSINESS PIOCESS........ccveiiriieiierieeiesee e eee e sseesee e e eeessessseeneeens 21
5.3. Language EXENSIDIILYc.ccoiiieiiece ettt s 31
5.4. DOCUMENE LINKING -...vitiitiiieiieiei sttt 32
5.5. The Lifecycle of an Executable BUSINESS PrOCESS..........ccccoveieveesieeiie e 33
5.6. Revisiting the Initial EXamMPIEooo i 34
6. Partner Link Types, Partner Links, and Endpoint References..........cccooeceveevecciececceceee 36
6.1, Partner LiNK TYPES.....ueiueieeieieiesie sttt sttt sb e nes 36
6.2, PaANEN LINKS....cviiiiitiiiiiiiiieie et sttt a ettt nb b s enes 37
6.3. ENAPOINT REFEIENCES.......coueiieeeiee e 38
POV (T o [N o 0] 1= o (= 40
48 T o 7= 1 o o PSP 40
7.2. DEfINING PrOPEITIES....c.viiee ettt ettt re e re e b e enneens 40
7.3 DEfiNING Property AlIBSES.......ccuoiieieriiiie et 41

LI DT = 1 =00 oo S 45
ST Y = o - PSR 45
8.2 Usage of Query and EXpression LanQUAGgEScc.eevveeveeeeniecieseesreesee e see e 49
8.3 EXPIESSIONS ...ttt sttt bbbt n b n e n e e 57
o NS o 0] 0= | PR 59

LS I 0 = (o o PR 74
S Y =S o X o g (= (o) o PR 74
9.2. Declaring and Using Correlation SES..........coeieeirienenesesiesieseseeee s 76
10. BASIC ACHVITIES...ccueeueeiesiesiesie sttt st sttt sttt b e e e e et e tesbesbenbessenneeneas 84
10.1. Standard AttributeS for All ACHVITIES.......ccoeceiiece e 84
10.2. Standard ElementS for All ACHVITIES........cceviiiriieseseseeee e 84
10.3. Invoking Web Service Operations — INVOKE...........cooiriiiririiieeesese e 84
10.4. Providing Web Service Operations — Receive and ReplYccceecvevveceveevecceceene, 89
10.5. Updating Variables and Partner LiNkS — ASSIGN.......ccoviiiriririierienesesie e 9
10.6. Signaling Internal FaultS — ThIrOWccccoiiieiieiecec e 9
10.7. Delayed EXECULION — WLcoiririeiiieieeeeses st 95
10.8. DoIiNg NOthiNG — EMPLYcviiiiiieiececece ettt nne s 95
10.9. Adding new Activity Types— EXteNSIONACHVILYccccevereereerieneereeie e 95
10.10. Immediately ENnding @aProCess — EXit........cccovveieeieeiecie e 96
10.11. Propagating Faults — REINIOW.............ooiiiie e 96
11, SHUCTUIEA ACTIVITIES ...ttt bbbttt st b e sr s e 98
11.1. Sequential ProCesSiNg — SEQUENCE..........cerueruerieerieeiesieeieseesieesee e sreseeseeeseeseesseeseeas 98
11.2. Conditional BENAVIOr — ITcc.oiiiiiiieeee e 99
11.3. Repetitive EXeCUtioN — WHIlE.......cc.ooiiieiee e 99
11.4. Repetitive Execution — RepeatUNtil...........cccoveiiiieiecieseee e 100
wsbpel-v2.0-0S 11 April 2007

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 4 of 264

11.5. Selective Event Processing — PICKccuoiiiiiiiirieiee e e 100

11.6. Parallel and Control Dependencies Processing — FIOWcccovveveieveene e, 102
11.7. Processing Multiple Branches — FOrEaChcocevieeiiiii e 112
12, SCOPES ... eeeeueie ettt e bttt s et e a e bt e et et e ettt e et e e e e s b e e e aab e e e nar e e e na e e e Re e e nbe e e nnre e e nares 115
12.1. SCOPE INITTAIIZATONceeeeeeeie et sre e 116
12.2. Message Exchange Handling........ccvevveeenieiecec ettt 117
12.3. Error Handling in BUSINESS PrOCESSEScoiuiiieiieeieseesieeie e ste i ssee e see e 117
12.4. Compensation HaNAIErS.........ccoieeiieieeeceee et 118
12.5. FAUIT HANAIEIS.....c.eeoeeeeeee ettt sttt e 127
12.6 Termination HanAIEr'S ..o e 135
12.7. EVENE HANAIENS. ...ttt st s 137
12.8. IS0l @O SCOPES.......eeiveeieeeesteeieeeesteesaeeeesteesteeeesseesseeseesseeaesseesseeseaseesseessesneesseensens 143
13. WS-BPEL ADSIIaCt PrOCESSESc.ciiueeiiiriisiiesieeiesieeste s e siee st sse e sseese e ssessesseessesnseens 147
13.1. The COMMON BASE........cciiiiiiiesiesiesesee ettt 147
13.2. Abstract Process Profiles and the Semantics of Abstract Processes..........ccocevveenee.. 154
13.3. Abstract Process Profile for Observable Behaviorccooeveiinenincnencncne, 155
13.4. Abstract Process Profile for TEMPIaLes.........cooeeveeiinereeecee e 159
14. EXIENSION DECIAraiONSoiveierieeieeieie ettt sttt bbb 164
15, EXAIMPIES. ..ottt ettt st sttt ae et e e e sae e b e e b e e ae e b e b e s ne e nreenne e 166
15.1. ShiPPING SEIVICE.....citieiieeeeteeiteeee st e ste et esteeste s e s e e seeeesteeaesseesseeseeseesaeensesneesseenseans 166
15.2. OFAEITNG SEIVICE....coitiiiieieiteeite ettt ettt sttt st e beete st e sbeensesseesaeeeesneesreenee e 171
15.3. LOAN APPIOVA SEIVICEeeiuieieeiesieeiieeeesteesieseesteesteeeesseeaesseesseesessensseesesneesseensenns 179
15.4. AUCLION SEIVICE.eitieiieiiesteeiteeee st ettt et te st ste e te st e st e e aesaeesbeebesseesbeebesneesreenee e 183
16. SECUrity CONSIAEIALIONSccveieeeesieesieeeeeesteeee s e sreete s e steeeesneesseesesseesseensesneesseenseens 191
Appendix A. Standard FaUITS. ..o e s 192
Appendix B. Static Analysis requirement summary (Non-Normative)...........coceeceeverevenenne. 194
Appendix C. Attributes and DEfaUItS..........ocoiieeiieie e e 206
Appendix D. Examples of Replacement LOGIC.......cooveueirierinireseeeeeeeeee s 208
APPENIX E. XML SCREMEBSoieiiiecee ettt st et nn e e sre e nne 216
APPENTIX F. REFEIENCES.......eeieiieeeeee bbb 258
1. NOrmMative REFEIENCES........oviriiriisiesiesiesee ettt 258

2. NON-NOImMative REFEIEINCEScoieeeeeeeesieie ettt sneenne s 259
Appendix G. Committee Members (NON-NOrmMative)cccceeveeiecienieeie e 260
wsbpel-v2.0-0S 11 April 2007

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 5 of 264

1. Introduction

The goal of the Web Services effort is to achieve interoperability between applications by using
Web standards. Web Services use aloosely coupled integration model to alow flexible
integration of heterogeneous systemsin avariety of domains including business-to-consumer,
business-to-business and enterprise application integration. The following basic specifications
originally defined the Web Services space: SOAP [SOAP 1.1], Web Services Description
Language (WSDL) [WSDL 1.1], and Universal Description, Discovery, and Integration (UDDI)
[UDDI]. SOAP defines an XML messaging protocol for basic service interoperability. WSDL
introduces a common grammar for describing services. UDDI provides the infrastructure
required to publish and discover servicesin a systematic way. Together, these specifications
allow applications to find each other and interact following aloosely coupled, platform
independent model.

Systems integration requires more than the ability to conduct simple interactions by using
standard protocols. The full potential of Web Services as an integration platform will be
achieved only when applications and business processes are able to integrate their complex
interactions by using a standard process integration model. The interaction model that is directly
supported by WSDL is essentially a stateless model of request-response or uncorrelated one-way
interactions.

Models for business interactions typically assume sequences of peer-to-peer message exchanges,
both request-response and one-way, within stateful, long-running interactions involving two or
more parties. To define such business interactions, aformal description of the message exchange
protocols used by business processes in their interactions is needed. An Abstract Process may be
used to describe observable message exchange behavior of each of the partiesinvolved, without
revealing their internal implementation. There are two good reasons to separate the public
aspects of business process behavior from internal or private aspects. One is that businesses
obviously do not want to reveal al their internal decision making and data management to their
business partners. The other isthat, even where thisis not the case, separating public from
private process provides the freedom to change private aspects of the process implementation
without affecting the observable behavior. Observable behavior must clearly be described in a
platform independent manner and captures behavioral aspects that may have cross enterprise
business significance.

The following concepts for describing business processes should be considered:

e Business processes include data-dependent behavior. For example, a supply-chain
process depends on data such as the number of lineitemsin an order, the total value of an
order, or adeliver-by deadline. Defining business intent in these cases requires the use of
conditional and time-out constructs.

o The ability to specify exceptional conditions and their consequences, including recovery
sequences, is at least as important for business processes as the ability to define the
behavior in the "all goes well" case.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 6 of 264

e Long-running interactions include multiple, often nested units of work, each with its own
data requirements. Business processes frequently require cross partner coordination of the
outcome (success or failure) of units of work at various levels of granularity.

The basic concepts of WS-BPEL can be applied in one of two ways, Abstract or Executable.

A WS-BPEL Abstract Process is a partially specified process that is not intended to be executed
and that must be explicitly declared as *abstract’. Whereas Executable Processes are fully
specified and thus can be executed, an Abstract Process may hide some of the required concrete
operational details expressed by an Executable artifact.

All the constructs of Executables Processes are made available to Abstract Processes;
consequently, Executable and Abstract WS-BPEL Processes share the same expressive power. In
addition to the features available in Executable Processes, Abstract Processes provide two
mechanisms for hiding operational details: (1) the use of explicit opaque tokens and (2) omission.
Although a particular Abstract Process definition might contain complete information that would
render it Executable, its Abstract status states that any concrete realizations of it are permitted to
perform additional processing steps that are not relevant to the audience to which it has been
given.

Abstract Processes serve a descriptive role, with more than one use case. One such use case
might be to describe the observable behavior of some or al of the services offered by an
Executable Process. Another use case would be to define a process template that embodies
domain-specific best practices. Such a process template would capture essential processlogicin
amanner compatible with a design-time representation, while excluding execution details to be
completed when mapping to an Executable Process.

Regardless of the specific use case and purpose, all Abstract Processes share a common syntactic
base. They have different requirements for the level of opacity and restrictions on which parts of
a process definition may be omitted or hidden. Tailored uses of Abstract Processes have different
effects on the consistency constraints and on the semantics of that process. Some of these
required constraints are not enforceable by the XML Schema.

A common base specifies the features that define the syntactic universe of Abstract Processes.
Given this common base, a usage profile provides the necessary specializations and semantics
based on Executable WS-BPEL for a particular use of an Abstract Process.

Asmentioned above it is possible to use WS-BPEL to define an Executable Business Process.
While aWS-BPEL Abstract Process definition is not required to be fully specified, the language
effectively defines a portable execution format for business processes that rely exclusively on
Web Service resources and XML data. Moreover, such processes execute and interact with their
partnersin a consistent way regardless of the supporting platform or programming model used
by the implementation of the hosting environment.

The continuity of the basic conceptual model between Abstract and Executable Processes in WS-
BPEL makesit possible to export and import the public aspects embodied in Abstract Processes
as process or role templates while maintaining the intent and structure of the observable behavior.

This applies even where private implementation aspects use platform dependent functionality.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 7 of 264

Thisis akey feature for the use of WS-BPEL from the viewpoint of unlocking the potential of
Web Services because it alows the devel opment of tools and other technologies that greatly
increase the level of automation and thereby lower the cost in establishing cross enterprise
automated business processes.

In this specification, the description of Abstract Business Processes is presented after Executable.
We clearly differentiate concepts required for Abstract Business Process description from the
concepts for Executable in the section 13. WS-BPEL Abstract Processes.

WS-BPEL defines amodel and a grammar for describing the behavior of a business process
based on interactions between the process and its partners. The interaction with each partner
occurs through Web Service interfaces, and the structure of the relationship at the interface level
isencapsulated in what is called a partnerLink. The WS-BPEL process defines how multiple
service interactions with these partners are coordinated to achieve a business goal, as well asthe
state and the logic necessary for this coordination. WS-BPEL also introduces systematic
mechanisms for dealing with business exceptions and processing faults. Moreover, WS-BPEL
introduces a mechanism to define how individual or composite activities within a unit of work
are to be compensated in cases where exceptions occur or a partner requests reversal.

WS-BPEL utilizes several XML specifications: WSDL 1.1, XML Schema 1.0, XPath 1.0 and
XSLT 1.0. WSDL messages and XML Schema type definitions provide the data model used by
WS-BPEL processes. XPath and XSLT provide support for data manipulation. All external
resources and partners are represented as WSDL services. WS-BPEL provides extensibility to
accommodate future versions of these standards, specifically the XPath and related standards
used in XML computation.

A WS-BPEL processis areusable definition that can be deployed in different ways and in
different scenarios, while maintaining a uniform application-level behavior across all of them.
The description of the deployment of a WS-BPEL processis out of scope for this specification.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 8 of 264

2. Notational Conventions

The upper case keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [REC 2119].

Namespace URIs of the general form "some-URI" represent some application dependent or
context dependent URI as defined in [REC 2396].

This specification uses an informal syntax to describe the XML grammar of the XML fragments
that follow:

e The syntax appears as an XML instance, but the values indicate the data types instead of
values.

e Grammar in bold has not been introduced earlier in the document, or is of particular
interest in an example.

e <--description --> is a placeholder for elements from some "other" namespace (like
#other in XSD).

o Characters are appended to elements, attributes, and asfollows: "?' (O or 1), "*" (0 or
more), "+" (1 or more). The characters"[" and "]" are used to indicate that contained
items are to be treated as a group with respect to the "?*, "*", or "+" characters.

o Elements and attributes separated by "[* and grouped by "(* and ")" are meant to be
syntactic alternatives.

e The XML namespace prefixes (defined below) are used to indicate the namespace of the
element being defined.

e Thename of user defined extension activity isindicated by anyElementQName.

Syntax specifications are highlighted as follows:

<vari abl es>
<vari abl e nane="BPELVari abl eNane"
messageType="Q\anme" ?
type="QNane" ?
el ement =" QNane" ?>+
from spec?
</vari abl e>
</vari abl es>

Examples starting with <?xml contain enough information to conform to this specification; other
examples are fragments and require additional information to be specified in order to conform.

The examples and other explanatory material in this document are not fully specified unless
otherwise noted. For instance, some examples import WSDL definitions that are not specified in
this document.

Examples are highlighted as follows:

<vari abl e xm ns: ORD="htt p: // exanpl e. com or der s"
nane="order Det ai | s" nessageType="ORD: orderDetail s" />

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 9 of 264

XSD Schemas are provided as a definition of grammars [XML Schema Part 1]. Where there is
disagreement between the separate XML schema files, the XML schemas in the appendices, any
pseudo-schema in the descriptive text, and the normative descriptive text, the normative
descriptive text will take precedence over the separate XML Schema files. The separate XML
Schema files take precedence over any pseudo-schema and over any XML schemaincluded in
the appendices. The WS-BPEL XML Schemas offer supplementary normative XML syntax
details, such as details regarding extensibility of aWS-BPEL process definition, aslong as those
XML syntax details do not violate explicit normative descriptive text.

XML Schemas only enforce a subset of constraints described in the normative descriptive text.
Hence, aWS-BPEL artifact, such as a process definition, can be valid according to the XML
Schemas only but not valid according to the normative descriptive text.

This specification uses a number of namespace prefixes throughout; their associated URIs are
listed below. Note that the choice of any namespace prefix is arbitrary, non-normative and not
semantically significant.

e XS - "http://www.w3.0rg/2001/X M L Schemarinstance”
e xsd - "http://www.w3.0rg/2001/X ML Schema"
e wsdl - "http://schemas.xmlsoap.org/wsdl/"
e vprop - "http://docs.oasis-open.org/wsbpel/2.0/varprop"
o gref - "http://docs.oasis-open.org/wsbpel/2.0/serviceref”
e plnk —"http://docs.oasi s-open.org/wsbpel/2.0/plnktype"
e bpel —"http://docs.oasis-open.org/wsbpel/2.0/process/executabl e’
e abstract — "http://docs.oasi s-open.org/wsbpel/2.0/process/abstract”
wsbpel-v2.0-0S 11 April 2007

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 10 of 264

3. Relationship with Other Specifications

WS-BPEL refers to the following XM L-based specifications: WSDL 1.1, XML Schema 1.0,
XPath 1.0, XSLT 1.0 and Infoset. All WS-BPEL implementations SHOULD be configurable
such that they can participate in Basic Profile 1.1 [WS-| Basic Profile] conforming interactions.
A WS-BPEL implementation MAY allow the Basic Profile 1.1 configuration to be disabled,
even for scenarios encompassed by the Basic Profile 1.1.

WSDL has the most influence on the WS-BPEL language. The WS-BPEL process model is
layered on top of the service model defined by WSDL 1.1. At the core of the WS-BPEL process
model is the notion of peer-to-peer interaction between services described in WSDL ; both the
process and its partners are exposed as WSDL services. A business process defines how to
coordinate the interactions between a process instance and its partners. In this sense, aWS-BPEL
process definition provides and/or uses one or more WSDL services, and provides the
description of the behavior and interactions of a process instance relative to its partners and
resources through Web Service interfaces. That is, WS-BPEL is used to describe the message
exchanges followed by the business process of a specific role in the interaction.

The definition of a WS-BPEL business process follows the WSDL model of separation between
the abstract message contents used by the business process and deployment information
(messages and port type versus binding and address information). In particular, a WS-BPEL
process represents all partners and interactions with these partnersin terms of abstract WSDL
interfaces (port types and operations); no references are made to the actual services used by a
process instance. WS-BPEL does not make any assumptions about the WSDL binding.
Constraints, ambiguities, provided or missing capabilities of WSDL bindings are out of scope of
this specification.

However, the abstract part of WSDL does not define the constraints imposed on the
communication patterns supported by the concrete bindings. Therefore aWS-BPEL process may
define behavior relative to a partner service that is not supported by all possible bindings, and it
may happen that some bindings are invalid for aWS-BPEL process definition.

While WS-BPEL attempts to provide as much compatibility with WSDL 1.1 as possible there
are three areas where such compatibility is not feasible.

e Fault naming with itsrestriction, as discussed later in this document (see section
10.3. Invoking Web Service Operations — Invoke)

e [SA00002] Overloaded operation namesin WSDL port types. Regardless of whether the
WS-| Basic Profile configuration is enabled, a WS-BPEL processor MUST regject any
WSDL port type definition that includes overloaded operation names. This restriction
was deemed appropriate as overloaded operations are rare, they are actually banned in the
WS- Basic Profile and supporting them was felt to introduce more complexity than
benefit.

e [SAQ0001] Port types that contain solicit-response or notification operations as defined in
the WSDL 1.1 specification. Regardless of whether the WS- Basic Profile configuration
isenabled, aWS-BPEL processor MUST reject a WS-BPEL that refers to such port types.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 11 of 264

At the time this specification was completed, various Web Service standards work, such as
WSDL 2.0 and WS-Addressing, were ongoing and not ready for consideration for WS-BPEL
2.0. Future versions of WS-BPEL may provide support for these standards.

It should be noted that the examples provided in this specification adopt the Schema at location
"http://schemas.xml soap.org/wsdl/2004-08-24.xsd" for the namespace URI
http://schemas.xmlsoap.org/wsdl/ [WSDL 1.1]. This XML Schema incorporates fixes for known
errors, and isthe XML Schema selected by the [WS-1 Basic Profile 1.1 Errata] (October 25,
2005).

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 12 of 264

http://schemas.xmlsoap.org/wsdl/2004-08-24.xsd
http://schemas.xmlsoap.org/wsdl/

4. Static Analysis of a Business Process

WS-BPEL takesit as agenera principle that conformant implementations MUST perform basic
static analysis listed in Appendix B to detect and reject process definitions that fail any of those
static analysis checks. Please note that such analysis might in some cases prevent the use of
processes that would not, in fact, create situations with errors, either in specific uses or in any use.
For example, a WS-BPEL implementation will reject a process with <i nvoke> activity referring
to an undefined variable, where the <i nvoke> activity may not be actually reached during
execution of the process.

A WS-BPEL implementation MAY perform extra static analysis checking beyond the basic
static analysis required by this specification to signal warnings or even reject process definitions.
Such an implementation SHOULD be configurable to disable these non-specified static analysis
checks.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 13 of 264

5. Defining a Business Process

5.1. Initial Example

Before describing the structure of business processes in detail, this section presentsasimple
example of aWS-BPEL process for handling a purchase order. The aim is to introduce the most
basic structures and some of the fundamental concepts of the language.

The operation of the processisvery simple, and is represented in Figure 1: Purchase Order
Process Outline. Dotted lines represent sequencing. Free grouping of sequences represents
concurrent sequences. Solid arrows represent control links used for synchronization across
concurrent activities. Note that thisis not meant to be a definitive graphical notation for WS-
BPEL processes. It is used here informally as an aid to understanding.

On receiving the purchase order from a customer, the process initiates three paths concurrently:
calculating the final price for the order, selecting a shipper, and scheduling the production and
shipment for the order. While some of the processing can proceed concurrently, there are control
and data dependencies between the three paths. In particular, the shipping price isrequired to
finalize the price calculation, and the shipping date is required for the complete fulfillment
schedule. When the three concurrent paths are compl eted, invoice processing can proceed and
the invoice is sent to the customer.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 14 of 264

Receive

Purchase
Order
|
| |
/ Initiate i Initiate \
Price De(gzl = Production
Calculation on Scheduling
Shipper .
| |
| |
| |
| |
| |
| |
Arrange
Complete Logistics \ Complete
Price Production

\ Calculation Scheduling /

A 4

Invoice
Processing

Figure 1. Purchase Order Process- Outline

The WSDL port type offered by the serviceto its customers (pur chaseOr der PT) is shown in the
following WSDL document. Other WSDL definitions required by the business process are
included in the same WSDL document for simplicity; in particular, the port types for the Web
Services providing price calculation, shipping selection and scheduling, and production
scheduling functions are also defined there. Observe that there are no bindings or service
elementsin the WSDL document. A WS-BPEL process is defined by referencing only the port
types of the services involved in the process, and not their possible deployments. Defining
business processes in this way allows the reuse of business process definitions over multiple
deployments of compatible services.

The <par t ner Li nkType>sincluded at the bottom of the WSDL document represent the
interaction between the purchase order service and each of the parties with which it interacts (see
section 6. Partner Link Types, Partner Links, and Endpoint References). <Par t ner Li nkType>S
can be used to represent dependencies between services, regardless of whether a WS-BPEL
business process is defined for one or more of those services. Each <par t ner Li nkType> defines
up to two "role" names, and lists the port types that each role must support for the interaction to
be carried out successfully. In this example, two <par t ner Li nkType>s, "purchasingL T" and
"schedulingL T", list asingle role because, in the corresponding service interactions, one of the
parties provides all the invoked operations: The "purchasingLT" <par t ner Li nkType> represents
the connection between the process and the requesting customer, where only the purchase order
service needs to offers a service operation ("'sendPurchaseOrder"); the "schedulingL T"

<par t ner Li nkType> represents the interaction between the purchase order service and the
scheduling service, in which only operations of the latter are invoked. The two other

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 15 of 264

<par t ner Li nkType>s, "i nvoi ci ngLT" and "shi ppi ngLT", define two roles because both the
user of the invoice calculation and the user of the shipping service (the invoice or the shipping
schedule) must provide callback operations to enable notifications to be sent

("i nvoi ceCal | backPT" and "shi ppi ngCal | backPT" port types).

Process
purchaseOrderProcess
purchaseOrder PT .

PartnerLink
purchasing

COMPULEPTCEPT [melp

invoiceCallbackPT |«

|

shippingPT —

shippingCallbackPT |«

schedulingPT jr=lp-

<wsdl : definitions
t ar get Namespace="htt p: // manuf act uri ng. or g/ wsdl / pur chase"

xm ns
xm ns:
xm ns
xm ns:
xm ns

<wsdl :

sns="http:// manuf act uri ng. or g/ xsd/ pur chase"
pos="http:// manuf acturi ng. or g/ wsdl / pur chase"

:wsdl ="http://schemas. xm soap. or g/ wsdl /"

pl nk="htt p://docs. oasi s- open. or g/ wsbpel / 2. 0/ pl nkt ype"
xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" >

types>

<xsd: schena>

<xsd: i nmport nanmespace="http://manufacturing. org/ xsd/ pur chase"
schemalLocat i on="htt p: // manuf act uri ng. or g/ xsd/ pur chase. xsd" />

</ xsd: schema>

</ wsdl

<wsdl :

‘types>

nessage nane="PO\essage" >

<wsdl| : part name="custoner | nfo" type="sns:custonerlnfoType" />
<wsdl : part name="purchaseOrder" type="sns: purchaseOr der Type" />

</ wsdl
<wsdl :

. message>
nessage nanme="| nvMessage" >

<wsdl : part name="I|VC' type="sns:|nvoi ceType" />

</ wsdl
<wsdl :

. nessage>
nmessage nane="order Faul t Type" >

<wsdl : part name="probl em nfo" el ement="sns: OrderFault " />

</ wsdl
<wsdl :

: message>
nessage name="shi ppi ngRequest Message" >

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 16 of 264

<wsdl : part name="custoner| nfo" el enent="sns: custonerlnfo" />
</ wsdl : nressage>
<wsdl : message nane="shi ppi ngl nf oMessage" >

<wsdl : part nanme="shi ppi ngl nfo" el enent ="sns: shi ppi ngl nfo" />
</ wsdl : nressage>
<wsdl : nessage nanme="schedul eMessage" >

<wsdl : part nanme="schedul e" el enent ="sns: schedul el nfo" />
</ wsdl : nressage>

<I-- portTypes supported by the purchase order process -->
<wsdl : port Type nane="pur chaseCOr der PT" >
<wsdl : operati on name="sendPur chaseO der" >
<wsdl : i nput nessage="pos: POVessage" />
<wsdl| : out put nmessage="pos: | nvMessage" />
<wsdl : faul t nanme="cannot Conpl et eOr der"
nessage="pos: or der Faul t Type" />
</ wsdl : oper ati on>
</ wsdl : port Type>
<wsdl : port Type name="invoi ceCal | backPT" >
<wsdl : operati on nane="sendl nvoi ce">
<wsdl : i nput nessage="pos: | nvMessage" />
</ wsdl : oper ati on>
</ wsdl : port Type>
<wsdl : port Type name="shi ppi ngCal | backPT" >
<wsdl : oper ati on nanme="sendSchedul e" >
<wsdl : i nput nessage="pos: schedul eMessage" />
</ wsdl : oper ati on>
</ wsdl : port Type>

<I-- portType supported by the invoice services -->
<wsdl : port Type nane="conput ePri cePT">
<wsdl : operation name="initiatePriceCal cul ati on">
<wsdl : i nput nmessage="pos: POVessage" />
</ wsdl : oper ati on>
<wsdl : operati on name="sendShi ppi ngPrice" >
<wsdl : i nput nessage="pos: shi ppi ngl nf oMessage" />
</ wsdl : oper ati on>
</ wsdl : port Type>

<l-- portType supported by the shipping service -->
<wsdl : port Type nane="shi ppi ngPT" >
<wsdl : operati on nane="r equest Shi ppi ng" >
<wsdl : i nput nessage="pos: shi ppi ngRequest Message" />
<wsdl : out put message="pos: shi ppi ngl nf oMessage" />
<wsdl : faul t nanme="cannot Conpl et eOr der "
nessage="pos: or der Faul t Type" />
</ wsdl : oper ati on>
</ wsdl : port Type>

<I-- portType supported by the production scheduling process -->
<wsdl : port Type nane="schedul i ngPT" >
<wsdl| : operati on nane="request Producti onSchedul i ng" >
<wsdl : i nput nmessage="pos: POVessage" />
</ wsdl : oper ati on>
<wsdl : operati on name="sendShi ppi ngSchedul e" >
<wsdl : i nput nessage="pos: schedul eMessage" />
</ wsdl : oper ati on>
</ wsdl : port Type>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 17 of 264

<pl nk: par t ner Li nkType name="pur chasi ngLT" >
<pl nk: rol e name="purchaseServi ce"
port Type="pos: pur chaseOr der PT" />
</ pl nk: part ner Li nkType>

<pl nk: part ner Li nkType nanme="i nvoi ci ngLT" >
<pl nk: rol e nanme="i nvoi ceServi ce"
port Type="pos: conput ePri cePT" />
<pl nk: rol e name="i nvoi ceRequest er"
port Type="pos: i nvoi ceCal | backPT" />
</ pl nk: part ner Li nkType>

<pl nk: part ner Li nkType name="shi ppi ngLT" >
<pl nk: rol e name="shi ppi ngServi ce"
port Type="pos: shi ppi ngPT" />
<pl nk: rol e nane="shi ppi ngRequest er"
port Type="pos: shi ppi ngCal | backPT" />
</ pl nk: part ner Li nkType>

<pl nk: part ner Li nkType name="schedul i ngLT" >
<pl nk: rol e nanme="schedul i ngServi ce"
port Type="pos: schedul i ngPT" />
</ pl nk: part ner Li nkType>

</ wsdl : definitions>

The business process for the order service is defined next. There are four major sectionsin this
process definition. Note that the example provides a simple case. In order to complete it,
additional elements may be needed such as<correl ati onSet s>.

e The<part ner Li nks> section defines the different parties that interact with the business
processin the course of processing the order. The four <par t ner Li nk> definitions
shown here correspond to the sender of the order (customer), as well as the providers of
price (invoicing provider), shipment (shipping provider), and manufacturing scheduling
services (scheduling provider). Each <par t ner Li nk> is characterized by a
par t ner Li nkType and either one or two role names. This information identifies the
functionality that must be provided by the business process and by the partner service for
the relationship to succeed, that is, the port types that the purchase order process and the
partner need to implement.

e The<vari abl es> section defines the data variables used by the process, providing their
definitionsin terms of WSDL message types, XML Schematypes (simple or complex),
or XML Schema elements. Variables allow processes to maintain state between message
exchanges.

e The<faul t Handl er s> section contains fault handlers defining the activities that must be
performed in response to faults resulting from the invocation of the assessment and
approval services. In WS-BPEL, all faults, whether internal or resulting from a service
invocation, are identified by a qualified name. In particular, each WSDL fault is
identified in WS-BPEL by a qualified name formed by the target namespace of the
WSDL document in which the relevant port type and fault are defined, and the NCName
of the fault.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 18 of 264

e Therest of the <pr ocess> definition contains the description of the normal behavior for
handling a purchase request. The major elements of this description are explained in the
section following the process definition.

<process name="pur chaseO der Process"
t ar get Nanmespace="htt p: / / exanpl e. com ws- bp/ pur chase"
xm ns="http://docs. oasi s- open. or g/ wshpel / 2. 0/ pr ocess/ execut abl e"
xm ns: | ns="http://manufacturi ng. or g/ wsdl / pur chase" >

<documnent ati on xm : | ang="EN'>
A sinpl e exanpl e of a W5-BPEL process for handling a purchase
or der.

</ docunent at i on>

<part ner Li nks>
<partner Li nk nanme="pur chasi ng"
part ner Li nkType="1 ns: pur chasi ngLT" nyRol e="pur chaseServi ce" />
<partnerLi nk nanme="i nvoi ci ng" partnerLinkType="1Ins:invoi ci ngLT"
nyRol e="i nvoi ceRequest er"” partner Rol e="i nvoi ceServi ce" />
<part ner Li nk nanme="shi ppi ng" partnerLi nkType="1I ns: shi ppi ngLT"
nyRol e="shi ppi ngRequest er" part ner Rol e="shi ppi ngServi ce" />
<partner Li nk name="schedul i ng"
part ner Li nkType="1 ns: schedul i ngLT"
part ner Rol e="schedul i ngServi ce" />
</ part nerLi nks>

<vari abl es>
<vari abl e nane="PO' nessageType="I| ns: POVessage" />
<vari abl e nane="1nvoi ce" nessageType="I ns:|nvMessage" />
<vari abl e nane="shi ppi ngRequest "
messageType="I ns: shi ppi ngRequest Message" />
<vari abl e nane="shi ppi ngl nf 0"
nessageType="I ns: shi ppi ngl nf oMessage" />
<vari abl e nane="shi ppi ngSchedul e"
nmessageType="I| ns: schedul eMessage" />
</vari abl es>

<f aul t Handl er s>
<catch faul t Nane="1| ns: cannot Conpl et eOr der "
faul t Vari abl e="POFaul t "
faul t MessageType="1 ns: or der Faul t Type" >
<reply partnerLink="purchasi ng"
port Type="I ns: pur chaseCOr der PT"
oper ati on="sendPur chaseOrder" vari abl e="POFaul t"
faul t Name="cannot Conpl et eOr der" />
</ catch>
</ faul t Handl er s>

<sequence>
<recei ve partnerLink="purchasing" portType="I|ns: purchaseOr der PT"
oper ati on="sendPur chaseOrder" vari abl e="PO'
creat el nstance="yes" >
<docunent at i on>Recei ve Purchase O der </ docunentati on>
</receive>

<f | ow>
<docunent at i on>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 19 of 264

A parallel flowto handl e shipping, invoicing and

schedul i ng
</ document ati on>
<l i nks>

<l i nk name="shi p-to-invoice" />
<l i nk nanme="shi p-to-scheduling" />
</links>
<sequence>
<assi gn>
<copy>
<f r om>$PO. cust oner | nf o</ f r o>
<t 0>$shi ppi ngRequest . cust oner | nf o</ t 0>
</ copy>
</ assi gn>
<i nvoke partnerLi nk="shi ppi ng" port T Type="I ns: shi ppi ngPT"
oper ati on="r equest Shi ppi ng"
i nput Var i abl e="shi ppi ngRequest "
out put Vari abl e="shi ppi ngl nf 0" >
<docunent at i on>Deci de On Shi pper </ docunent at i on>
<sour ces>
<source |inkNane="shi p-to-invoice" />
</ sour ces>
</i nvoke>
<recei ve partnerLi nk="shi ppi ng"
port Type="1 ns: shi ppi ngCal | backPT"
oper ati on="sendSchedul e" vari abl e="shi ppi ngSchedul e" >
<docunent at i on>Arrange Logi sti cs</docunent ati on>
<sour ces>
<source |inkName="shi p-to-scheduling" />
</ sour ces>
</receive>
</ sequence>
<sequence>
<i nvoke partnerLi nk="invoi ci ng"
port Type="I ns: conput ePri cePT"
operation="initiatePriceCal cul ati on"
i nput Vari abl e="PQ'>
<docunent ati on>
Initial Price Calculation
</ docunent at i on>
</invoke>
<i nvoke partnerLi nk="i nvoi ci ng"
port Type="I| ns: conput ePri cePT"
oper at i on="sendShi ppi ngPri ce"
i nput Vari abl e="shi ppi ngl nf 0" >
<docunent at i on>
Conpl ete Price Cal cul ation
</ docunent at i on>
<t ar get s>
<target |inkNane="ship-to-invoice" />
</targets>
</i nvoke>
<recei ve partnerLink="invoi cing"
port Type="I ns: i nvoi ceCal | backPT"
oper ati on="sendl nvoi ce" vari abl e="Invoi ce" />
</ sequence>
<sequence>
<i nvoke partnerLi nk="schedul i ng"

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 20 of 264

port Type="I ns: schedul i ngPT"
oper ati on="r equest Producti onSchedul i ng"
i nput Vari abl e="PO'>
<docunent ati on>
Initiate Production Scheduling
</ docunent at i on>
</i nvoke>
<i nvoke partnerLi nk="schedul i ng"
port Type="I ns: schedul i ngPT"
oper ati on="sendShi ppi ngSchedul e"
i nput Var i abl e="shi ppi ngSchedul e" >
<docunent ati on>
Conpl ete Production Schedul i ng
</ docunent at i on>
<t ar get s>
<target |inkNanme="shi p-to-scheduling" />
</target s>
</i nvoke>
</ sequence>
</fl ow>
<reply partnerLink="purchasi ng" portType="Ins: purchaseOr derP
oper ati on="sendPur chaseOrder" vari abl e="I nvoi ce">
<docunent at i on>I nvoi ce Processi ng</docunent ati on>
</reply>
</ sequence>

</ process>

5.2. The Structure of a Business Process

This section provides a quick summary of the WS-BPEL syntax. It provides only a brief
overview; the details of each language construct are described in the rest of this document.

The basic structure of the language is:

<process name="NCNanme" target Nanmespace="anyURl "
quer yLanguage="anyURI " ?
expr essi onLanguage="anyURl " ?
suppr essJoi nFai | ure="yes| no"?
exi t OnSt andar dFaul t ="yes| no" ?

xm ns="htt p://docs. oasi s- open. or g/ wshpel / 2. 0/ pr ocess/ execut abl e" >

<ext ensi ons>?
<ext ensi on nanmespace="anyURl " nust Under st and="yes| no" />+
</ ext ensi ons>

<i nport nanmespace="anyURIl " ?
| ocati on="anyURI " ?
i mport Type="anyURI " />*

<part ner Li nks>?
<I-- Note: At |east one role nust be specified. -->
<part ner Li nk nane="NCNane"
part ner Li nkType="QNang"
nyRol e=" NCNane" ?
part ner Rol e=" NCNang" ?

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 21 of 264

initializePartnerRol e="yes| no" ?>+
</ par t ner Li nk>
</ part nerLi nks>

<nmessageExchanges>?
<nessageExchange name="NCNanme" />+
</ messageExchanges>

<vari abl es>?
<vari abl e name="BPELVari abl eName"
nmessageType="Q\anme" ?
type="QNanme" ?
el ement =" QNane" ?>+
from spec?
</vari abl e>
</vari abl es>

<correl ati onSet s>?
<correl ati onSet nanme="NCNane" properties="QName-list" />+
</correl ati onSet s>

<f aul t Handl er s>?
<I-- Note: There must be at |east one faul tHandl er -->
<cat ch faul t Name="Q\anme" ?
faul t Vari abl e="BPELVar i abl eNane" ?

(faul t MessageType="Q\ane" | faultEl ement="QNane")? >*

activity
</ cat ch>
<cat chAl | >?
activity
</ cat chAl | >
</ f aul t Handl er s>

<event Handl er s>?
<I-- Note: There nust be at |east one onEvent or onAl arm
<onEvent part nerLi nk="NCNange"
port Type="(QNane" ?
oper ati on="NCNane"
(nessageType="QNane" | el enent="QNanme")?
vari abl e="BPELVari abl eNanme" ?
nmessageExchange="NCNange" ?>*
<correl ati ons>?

S0

<correlation set="NCNane" initiate="yes|join|no"? />+

</correl ati ons>
<fronPart s>?

<fronPart part="NCNane" toVari abl e="BPELVari abl eNane" />+

</fronParts>

<scope ...>...</scope>

</ onEvent >

<onAl ar np*
<I-- Note: There nust be at |east one expression. -->
(

<f or expressi onLanguage="anyURl " ?>dur ati on- expr</for>

<unti| expressi onLanguage="anyURI " ?>deadl i ne- expr</until >

)?
<repeat Every expressi onLanguage="anyURl " ?>
dur at i on- expr

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 22 of 264

</ repeat Ever y>?
<scope ...>...</scope>
</ onAl ar n»
</ event Handl er s>
activity
</ process>

The top-level attributes are as follows:

e querylLanguage. This attribute specifies the query language used in the process for
selection of nodesin assignment. The default value for this attribute is:

"urn: oasi s: names: t ¢c: wshpel : 2. 0: subl ang: xpat h1. 0", which represents the usage
of [XPath 1.0] within WS-BPEL 2.0.

e expressi onLanguage. This attribute specifies the expression language used in the
<pr ocess>. The default value for this attribute is:

"urn: oasi s: names: t ¢c: wshpel : 2. 0: subl ang: xpat h1. 0", which represents the usage
of [XPath 1.0] within WS-BPEL 2.0.

e suppressJoi nFai | ur e. This attribute determines whether the joinFailure fault will be
suppressed for all activitiesin the process. The effect of the attribute at the process level
can be overridden by an activity using a different value for the attribute. The default for
this attribute is "no" at the process level. When this attribute is not specified for an
activity, it inheritsits value from its closest enclosing activity or from the <pr ocess> if
no enclosing activity specifies this attribute.

e exitnStandardFaul t. If thevalue of thisattribute is set to “yes”, then the process
MUST exit immediately asif an <exi t > activity has been reached, when a WS-BPEL
standard fault other than bpel : j oi nFai | ur e is encountered’. If the value of this attribute
isset to “no”, then the process can handle a standard fault using a fault handler. The
default value for this attribute is “no”. When this attribute is not specified on a<scope> it
inheritsits value from its enclosing <scope> or <pr ocess>.

[SA00003] If the value of exi t OnSt andar dFaul t Of a<scope> Or <pr ocess> IS Set to
“yes”, then afault handler that explicitly targets the WS-BPEL standard faults MUST

NOT be used in that scope. A process definition that violates this condition MUST be

detected by static analysis and MUST be rejected by a conformant implementation.

e Thesyntax of Abstract Process hasits own distinct target namespace. Additional top-
level attributes are defined for Abstract Processes.

The value of the quer yLanguage and expr essi onLanguage attributes on the <pr ocess>
element are global defaults and can be overridden on specific constructs, such as <condi ti on>
of a<whi | e> activity, as defined later in this specification. In addition, the quer yLanguage
attribute is also available for use in defining WS-BPEL <vpr op: propertyAl i as>esin WSDL.
WS-BPEL processors MUST:

! bpel:joinFailure does not represent a modeling error and hence it is excluded from other standard faults in this case.
wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 23 of 264

o dtatically determine which languages are referenced by quer yLanguage or
expr essi onLanguage attributes either in the WS-BPEL process definition itself or in any
WS-BPEL property definitions in associated WSDLs and

o [SA00004] if any referenced language is unsupported by the WS-BPEL processor then
the processor MUST reject the submitted WS-BPEL process definition.

Note that: <docunent at i on> construct may be added to virtually all WS-BPEL constructs as the
formal way to annotate processes definition with human documentation. Examples of

<docunent at i on> construct can be found in the previous sections. Detailed description of
<docunent i on> is provided in the next section 5.3. Language Extensibility.

Each business process has one main activity.
A WS-BPEL activity can be any of the following:

<recei ve>
<reply>

<i nvoke>
<assi gn>

<t hr ow>
<exit>

<wai t >
<enpty>
<sequence>
<if>

<whi | e>
<repeatUntil >
<f or Each>

<pi ck>

<fl ow>
<scope>
<conpensat e>
<conpensat eScope>
<r et hr ow>
<val i dat e>
<ext ensi onActivity>

The syntax of each of these elements is described in the following paragraphs.

The <r ecei ve> activity allows the business process to wait for a matching message to arrive.
The <r ecei ve> activity completes when the message arrives. The por t Type attribute on the

<r ecei ve> activity is optional. [SA00005] If the por t Type attribute isincluded for readability,
the value of the por t Type attribute MUST match the por t Type value implied by the
combination of the specified par t ner Li nk and ther ol e implicitly specified by the activity (see
also par t ner Li nk description in the next section). The optional messageExchange attributeis
used to associate a <r epl y> activity with a<r ecei ve> activity.

<recei ve partnerLi nk="NCNanme"
port Type="QNane" ?

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 24 of 264

oper at i on="NCNane"
vari abl e="BPELVari abl eNanme" ?
creat el nst ance="yes| no"?
nmessageExchange="NCNane" ?
standard-attri but es>
st andar d- el enent s
<correl ati ons>?
<correlation set="NCNane" initiate="yes|join|no"? />+
</correl ati ons>
<fronPart s>?
<fronPart part="NCNane" toVari abl e="BPELVari abl eNane" / >+
</fronPart s>
</receive>

The <r epl y> activity allows the business process to send a message in reply to a message that
was received by an inbound message activity (IMA), that is, <receive>, <onMessage>, Or
<onEvent >. The combination of an IMA and a<r epl y> forms a request-response operation on a
WSDL portType for the process. The por t Type attribute on the <r epl y> activity isoptiona. If
the por t Type attribute isincluded for readability, the value of the por t Type attribute MUST
match the por t Type value implied by the combination of the specified par t ner Li nk and the

rol e implicitly specified by the activity (see also par t ner Li nk description in the next section).
The optional nessageExchange attribute is used to associate a <r epl y> activity with an IMA.

<reply partnerLink="NCNanme"
port Type="(QNane" ?
oper at i on="NCNane"
vari abl e="BPELVar i abl eNane" ?
faul t Name=" QNane" ?
nmessageExchange="NCNane" ?
standard-attri butes>
st andar d- el ement s
<correl ati ons>?
<correlation set="NCNane" initiate="yes|join|no"? />+
</correl ati ons>
<t oPart s>?
<toPart part="NCNane" fronVari abl e="BPELVari abl eNane" / >+
</toParts>
</reply>

The <i nvoke> activity allows the business process to invoke a one-way or request-response
operation on apor t Type offered by a partner. In the request-response case, the invoke activity
completes when the response isreceived. The por t Type attribute on the <i nvoke> activity is
optional. If the por t Type attribute isincluded for readability, the value of the por t Type attribute
MUST match the por t Type value implied by the combination of the specified par t ner Li nk and
ther ol e implicitly specified by the activity (see also par t ner Li nk description in the next
section).

<i nvoke part nerLi nk="NCNane"
port Type="(QNane" ?
oper at i on="NCNane"
i nput Vari abl e=" BPELVar i abl eNane" ?
out put Vari abl e="BPELVar i abl eNang" ?
standard-attri butes>
st andar d- el ement s

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 25 of 264

<correl ati ons>?
<correlation set="NCNane" initiate="yes|join|no"?
pattern="request|response|request-response"? />+
</correl ati ons>
<cat ch faul t Name=" QNane" ?
faul t Vari abl e="BPELVari abl eNange" ?
faul t MessageType=" QNane" ?
faul t El enent =" QNang" ?>*
activity
</ cat ch>
<cat chAl | >?
activity
</ catchAl | >
<conpensat i onHandl er >?
activity
</ conpensat i onHandl er >
<t oPart s>?
<toPart part="NCName" fronVariabl e="BPELVari abl eNanme" />+
</toParts>
<fronmPart s>?
<fronPart part="NCNane" toVari abl e="BPELVari abl eNane" / >+
</fronmParts>
</i nvoke>

The <assi gn> activity is used to update the values of variables with new data. An <assi gn>
construct can contain any number of elementary assignments, including <copy> assign elements
or data update operations defined as extension under other namespaces.

<assi gn val i date="yes| no"? standard-attributes>
st andar d- el ement s
(
<copy keepSrcEl ement Nane="yes| no"? i gnoreM ssi ngFr onDat a="yes| no" ?>
from spec
t 0- spec
</ copy>
|
<ext ensi onAssi gnQper at i on>
assi gn- el enent - of - ot her - nanespace
</ ext ensi onAssi gnOper at i on>
) +
</ assi gn>

The <val i dat e> activity is used to validate the values of variables against their associated XML
and WSDL data definition. The construct hasavari abl es attribute, which pointsto the
variables being validated.

<val i dat e vari abl es="BPELVari abl eNanes" standard-attri butes>
st andar d- el enent s
</val i dat e>

The <t hr ow> activity is used to generate a fault from inside the business process.

<t hr ow f aul t Nanme=" QNane"
faul t Vari abl e="BPELVar i abl eNane" ?
standard-attri butes>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 26 of 264

st andar d- el enent s
</t hr ow>

The <wai t > activity isused to wait for agiven time period or until a certain point in time has
been reached. Exactly one of the expiration criteriaMUST be specified.

<wai t standard-attributes>
st andar d- el enent s

(

<f or expressi onLanguage="anyURl " ?>dur ati on- expr</for>
I
<unti| expressi onLanguage="anyURI " ?>deadl i ne- expr</until >

)

</ wai t >

The <enpt y> activity isa"no-op" in abusiness process. Thisis useful for synchronization of
concurrent activities, for instance.

<enpty standard-attributes>
st andar d- el enent s

</ enpty>

The <sequence> activity is used to define a collection of activities to be performed sequentially
inlexical order.

<sequence standard-attri butes>
st andar d- el ement s
activity+

</ sequence>

The<i f > activity isused to select exactly one activity for execution from a set of choices.

<if standard-attributes>
st andar d- el ement s
<condi ti on expressi onLanguage="anyURI " ?>bool - expr </ condi ti on>
activity
<el sei f>*
<condi ti on expressi onLanguage="anyURI " ?>bool - expr </ condi ti on>
activity
</ el sei f>
<el se>?
activity
</ el se>
</if>

The <whi | e> activity is used to define that the child activity is to be repeated as long as the
specified <condi ti on> iStrue.

<whi | e standard-attri butes>
st andar d- el ement s
<condi ti on expressi onLanguage="anyURI " ?>bool - expr </ condi ti on>
activity

</ whi | e>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 27 of 264

The <r epeat Unt i | > activity is used to define that the child activity is to be repeated until the
specified <condi t i on> becomes true. The <condi t i on> istested after the child activity
completes. The <r epeat Unt i | > activity is used to execute the child activity at least once.

<repeatUntil| standard-attributes>

st andar d- el ement s

activity

<condi ti on expressi onLanguage="anyURI " ?>bool - expr </ condi ti on>
</repeat Until >

The <f or Each> activity iteratesits child scope activity exactly N+1 times where N equals the

<f i nal Count er Val ue> minusthe <st art Count er Val ue>. If paral | el ="yes" thenthisisa
parallel <f or Each> where the N+1 instances of the enclosed <scope> activity SHOULD occur in
parallel. In essence an implicit flow is dynamically created with N+1 copies of the <f or Each>'s
<scope> activity as children. A <conpl et i onCondi t i on> may be used within the <f or Each> to
allow the <f or Each> activity to complete without executing or finishing all the branches
specified.

<f or Each count er Nanme="BPELVar i abl eName" paral | el ="yes| no"
standard-attri butes>
st andar d- el ement s
<start Count er Val ue expressi onLanguage="anyURI " ?>
unsi gned- i nt eger - expr essi on
</ st art Count er Val ue>
<fi nal Count er Val ue expressi onLanguage="anyURI " ?>
unsi gned- i nt eger - expr essi on
</ fi nal Count er Val ue>
<conpl et i onCondi ti on>?
<branches expressi onLanguage="anyURl " ?
successful BranchesOnl y="yes| no" ?>?
unsi gned- i nt eger - expr essi on
</ branches>
</ conpl eti onCondi ti on>
<scope ...>...</scope>
</ f or Each>

The <pi ck> activity isused to wait for one of several possible messagesto arrive or for atime-
out to occur. When one of these triggers occurs, the associated child activity is performed. When
the child activity completes then the <pi ck> activity completes.

Theport Type attribute on the <onMessage> activity isoptional. If the por t Type attributeis
included for readability, the value of the por t Type attribute MUST match the portType value
implied by the combination of the specified par t ner Li nk and ther ol e implicitly specified by
the activity. The optional nessageExchange attribute is used to associate a <r epl y> activity with
a<onMessage> event.

<pi ck createl nstance="yes| no"? standard-attri butes>
st andar d- el ement s
<onMessage partnerLi nk="NCNane"
port Type="(QNane" ?
oper at i on="NCNane"
vari abl e="BPELVar i abl eNane" ?

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 28 of 264

nmessageExchange="NCNane" ?>+
<correl ati ons>?
<correlation set="NCNane" initiate="yes|join|no"? />+
</correl ati ons>
<fronmPart s>?
<fronPart part="NCNane" toVari abl e="BPELVari abl eNane" / >+
</fronParts>
activity
</ onMessage>
<onAl ar np*
(

<f or expressi onLanguage="anyURl " ?>dur ati on- expr</for>

<unti| expressionLanguage="anyURI " ?>deadl i ne- expr</until >

)
activity
</ onAl ar n»

</ pi ck>

The <f | ows> activity is used to specify one or more activities to be performed concurrently.
<l i nks> can be used within a<f | ow> to define explicit control dependencies between nested
child activities.

<f| ow standard-attributes>
st andar d- el enent s
<l i nks>?
<l i nk nanme="NCNanme" />+
</links>
activity+
</ fl ow>

The <scope> activity is used to define a nested activity with its own associated <par t ner Li nks>,
<nessageExchanges>, <vari abl es>, <correl ati onSet s>, <f aul t Handl er s>,
<conpensat i onHandl er >, <t er ni nat i onHandl er >, and <event Handl er s>

<scope isol at ed="yes| no"? exitOnSt andar dFaul t ="yes| no"?

standard-attri butes>
st andar d- el ement s
<part ner Li nks>?

see above under <process> for syntax ..
</ part ner Li nks>
<nessageExchanges>?

see above under <process> for syntax ..
</ messageExchanges>
<vari abl es>?

see above under <process> for syntax ..
</vari abl es>
<correl ati onSet s>?

see above under <process> for syntax ..
</correl ati onSet s>
<f aul t Handl er s>?

see above under <process> for syntax ..
</ faul t Handl er s>
<conpensat i onHandl er >?

</ conpensat i onHandl er >

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 29 of 264

<t er m nat i onHandl| er >?

</term nati onHandl er >
<event Handl er s>?
see above under <process> for syntax ..
</ event Handl er s>
activity
</ scope>

The <conpensat eScope> activity is used to start compensation on a specified inner scope that
has already completed successfully. [SA00007] This activity MUST only be used from within a
fault handler, another compensation handler, or atermination handler.

<conpensat eScope target="NCNane" standard-attributes>
st andar d- el ement s
</ conpensat eScope>

The <conpensat e> activity is used to start compensation on all inner scopes that have already
completed successfully, in default order. [SA00008] This activity MUST only be used from
within afault handler, another compensation handler, or atermination handler.

<conpensate standard-attri butes>
st andar d- el ement s
</ conpensat e>

The <exi t > activity isused to immediately end a business process instance within which the
<exi t > activity is contained.

<exit standard-attributes>
st andar d- el enent s
</ exit>

The <r et hr ow> activity is used to rethrow the fault that was originally caught by the
immediately enclosing fault handler. [SAO0006] The <r et hr ows> activity MUST only be used
within afault handler (i.e. <cat ch> and <cat chAl | > elements). This syntactic constraint MUST
be statically enforced.

<ret hrow standard-attribut es>
st andar d- el enent s
</ ret hrow>

The <ext ensi onAct i vi t y> element is used to extend WS-BPEL by introducing a new activity
type. The contents of an <ext ensi onAct i vi t y> element MUST be asingle element that MUST
make available WS-BPEL 's standard-attributes and standard-elements.

<ext ensi onActi vity>
<anyEl enent QNane st andard-attri but es>
st andar d- el ement s
</ anyEl ement QNane>
</ ext ensi onActi vity>

The "standar d-attributes' referenced above are:

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 30 of 264

nane="NCNane" ? suppressJoi nFai | ure="yes| no"?
where the default values are as follows:

o nane: No default value (that is, the default is unnamed)

e suppressJoi nFai | ure: When this attribute is not specified for an activity, it inheritsits
value fromits closest enclosing activity or from the process if no enclosing activity
specifies this attribute.

The "standard-elements"' referenced above are:

<t ar get s>?
<j oi nCondi ti on expressi onLanguage="anyURI " ?>?
bool - expr
</ j oi nCondi ti on>
<target |inkName="NCNane" />+
</target s>
<sour ces>?
<sour ce |inkNane="NCNane" >+
<transitionCondition expressionLanguage="anyURI " ?>?
bool - expr
</transitionCondition>
</ sour ce>
</ sour ces>

5.3. Language Extensibility

WS-BPEL supports extensibility by allowing namespace-qualified attributes to appear on any
WS-BPEL element and by allowing elements from other namespaces to appear within WS-BPEL
defined elements. Thisis allowed in the XML Schema specifications for WS-BPEL.

Extensions are either mandatory or optional (see section 14. Extension Declarations). [SA00009]
In the case of mandatory extensions not supported by a WS-BPEL implementation, the process
definition MUST be rgjected. Optiona extensions not supported by a WS-BPEL implementation
MUST beignored.

In addition, WS-BPEL provides two explicit extension constructs:

<ext ensi onAssi gnQper at i on> and <ext ensi onAct i vi t y>. Specific rules for these constructs
are described in sections 8.4. Assignment and 10.9. Adding new Activity Types—
ExtensionActivity.

Extensions MUST NOT contradict the semantics of any element or attribute defined by the WS-
BPEL specification.

Extensions are allowed in WS-BPEL constructs used in WSDL definitions, such as

<par t ner Li nkType>, <r ol e>, <vpr op: property> and <vpr op: propertyAl i as>. The same
syntax pattern and semantic rules for extensions of WS-BPEL constructs are applied to these
extensions as well. For the WSDL definitions transitively referenced by a WS-BPEL process,
extension declaration directives of this WS-BPEL process are applied to all extensions used in
WS-BPEL constructsin these WSDL definitions (see section 14. Extension Declarations).

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 31 of 264

The optional <docunent at i on> construct is applicable to any WS-BPEL extensible construct.
Typicaly, the contents of <docunent at i on> are for human targeted annotation. Example types
for those content are: plain text, HTML and XHTML. Tool-implementation specific information
(e.0. the graphical layout details) should be added through elements and attributes of other
namespaces, using the general WS-BPEL extensibility mechanisms.

5.4. Document Linking

A WS-BPEL process definition relies on XML Schemaand WSDL 1.1 for the definition of
datatypes and service interfaces. Process definitions also rely on other constructs such as partner
link types, variable properties and property aliases (defined later in this specification) which are
defined within WSDL 1.1 documents using the WSDL 1.1 language extensibility feature.

<i mport nanmespace="anyURI " ?
| ocati on="anyURI " ?
i mport Type="anyURl " />*

The <i npor t > element is used within a WS-BPEL process to declare a dependency on external
XML Schema or WSDL definitions. Any number of <i nport > elements may appear as children
of the <pr ocess> element. Each <i npor t > element contains one mandatory and two optional
attributes.

e nanespace. Thenanmespace attribute specifies an absolute URI that identifies the
imported definitions. This attribute is optional. An import element without a namespace
attribute indicates that external definitions are in use which are not namespace qualified.
[SA00011] If anamespace is specified then the imported definitions MUST be in that
namespace. [SA00012] If no namespace is specified then the imported definitions MUST
NOT contain atargetNamespace specification. If either of these rules are not met then the
process definition MUST be rejected by a conforming WS-BPEL implementation. The
namespace http://www.w3.0rg/2001/X ML Schema is imported implicitly. Note, however,
that thereisno implicit XML Namespace prefix defined for
http://www.w3.0rg/2001/X M L Schema.

e location. Thel ocati on attribute contains a URI indicating the location of a document
that contains relevant definitions. Thel ocati on URI may be arelative URI, following
the usual rulesfor resolution of the URI base (XML Base and RFC 2396). Thel ocat i on
attribute is optional. An <i nport > element without al ocat i on attribute indicates that
external definitions are used by the process but makes no statement about where those
definitions may be found. Thel ocat i on attributeisa hint and aWS-BPEL processor is
not required to retrieve the document being imported from the specified location.

e inport Type. The mandatory i npor t Type attribute identifies the type of document being
imported by providing an absolute URI that identifies the encoding language used in the
document. [SA00013] The value of thei npor t Type attribute MUST be set to
"http://www.w3.0rg/2001/ XML Schema' when importing XML Schema 1.0 documents,
and to "http://schemas.xmlsoap.org/wsdl/* when importing WSDL 1.1 documents. Other
i nport Type URI values MAY be used here.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 32 of 264

Observe that according to theserules, it is permissible to have an <i npor t > element without
namespace and | ocat i on attributes, and only containing ani nport Type attribute. Such an

<i npor t > element indicates that external definitions of the indicated type are in use which are
not namespace qualified, and makes no statement about where those definitions may be found.

[SA00010] A WS-BPEL process definition MUST import all XML Schema and WSDL
definitionsit uses. Thisincludes al XML Schematype and element definitions, all WSDL port
types and message types as well as <vpr op: property> and <vpr op: propert yAl i as>
definitions used by the process. [SA00053], [SA00054] A WS-BPEL processor MUST verify
that all message parts referenced by a <vpr op: propertyAl i as>, <f r on®, <t 0>, <f r onPar t >,
and <t oPar t > are found in their respective WSDL message definitions. In order to support the
use of definitions from namespaces spanning multiple documents, a WS-BPEL process MAY
include more than one import declaration for the same namespace and i npor t Type, provided
that those declarations include different location values. <i npor t > elements are conceptually
unordered. [SA00014] A WS-BPEL process definition MUST be rejected if the imported
documents contain conflicting definitions of a component used by the importing process
definition (as could be caused, for example, when the XSD redefinition mechanism is used).

Schema definitions defined in the types section of aWSDL document which isimported by a
WS-BPEL process definition are considered to be effectively imported themselves and are
available to the process for the purpose of defining XML Schema variables. However,
documents (or namespaces) imported by an imported document (or namespace) MUST NOT be
transitively imported by the WS-BPEL processor. In particular, this meansthat if an external
item isused by a WS-BPEL process, then a document (or namespace) that defines that item
MUST be directly imported by the process; observe however that this requirement does not limit
the ability of the imported document itself to import other documents or namespaces. The
following example clarifies some of the issues related to the lack of trangitivity of imports.

Assume adocument D1 defines atype called d1: Type. However, d1: Type's definition could
depend on another type called d2: Type which is defined in document D2. D1 could include an
import for D2 thus making d2: Type's definition available for use within the definition of

d1: Type. If aWS-BPEL process refersto di1: Type it must import document D1. By importing
D1 the WS-BPEL process can legally refer to d1: Type. But the WS-BPEL process could not
refer to d2: Type even though D1 imports D2. Thisis because transitivity of import is not
supported by WS-BPEL . Note, however, that D1 can still import D2 and d1: Type can still use
d2: Type initsdefinition. In order to allow the WS-BPEL process to refer to d2: Type it would be
necessary for the WS-BPEL process to directly import document D2.

5.5. The Lifecycle of an Executable Business Process

As noted in the introduction, the interaction model that is directly supported by WSDL is
essentially a stateless client-server model of request-response or uncorrelated one-way
interactions. WS-BPEL, builds on WSDL by assuming that all external interactions of the
business process occur through Web Service operations. However, WS-BPEL business processes
represent stateful long-running interactions in which each interaction has a beginning, defined
behavior during itslifetime, and an end. For example, in asupply chain, a seller's business
process might offer a service that begins an interaction by accepting a purchase order through an

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 33 of 264

input message, and then returns an acknowledgement to the buyer if the order can be fulfilled. 1t
might later send further messages to the buyer, such as shipping notices and invoices. The seller's
business process remembers the state of each such purchase order interaction separately from
other similar interactions. Thisis necessary because a buyer might be carrying on many
simultaneous purchase processes with the same seller. In short, a WS-BPEL business process
definition can be thought of as atemplate for creating business process instances.

The creation of a processinstance in WS-BPEL is aways implicit; activities that receive
messages (that is, <r ecei ve> activities and <pi ck> activities) can be annotated to indicate that
the occurrence of that activity causes a new instance of the business process to be created. Thisis
done by setting the createl nstance attribute of such an activity to "yes'. When amessageis
received by such an activity, an instance of the business processis created if it does not already
exist (see sections 10.4. Providing Web Service Operations — Receive and Reply and

11.5. Selective Event Processing — Pick).

A start activity isa<r ecei ve> Or a<pi ck> activity annotated with acr eat el nst ance="yes"
attribute. [SA00015] Each executable business process MUST contain at |east one start activity
(see section 10.4. Providing Web Service Operations — Receive and Reply for more details on
start activities).

If more than one start activity existsin a process and these start activities contain
<correl ati ons> then al such activities MUST share at |east one common <cor r el ati on> (See
the example in section 9.2. Declaring and Using Correlation Sets).

If a process contains exactly one start activity then the use of <correl ati onSet s> is
unconstrained. Thisincludes a pick with multiple <onMessage> branches; each such branch can
use different <correl ati onSet s> Or N0 <correl ati onSet s>.

A business process instance ends either normally or abnormally. The process ends normally
when the main activity and all event handler instances of the process complete without
propagating any fault. The process ends abnormally if either:

e aprocesslevel (explicit or default) fault handler completes without propagating any fault
or

e the execution of aprocess level fault handler itself faults (the effect of this particular case
Issimilar to an <exi t > activity) or

e theprocessinstanceis explicitly ended by an <exi t > activity (see section 10.10.
Immediately Ending a Process — Exit).

5.6. Revisiting the Initial Example

In the pur chaseOr der Process examplein section 5.1. Initial Example, the structure of the main
activity of the processis defined by the outer <sequence> element, which states that the three
activities contained inside are performed in order. The customer request is received (<r ecei ve>
element), then processed (inside a <f | ow> section that enables concurrent behavior), and areply
message with the final approval status of the request is sent back to the customer (<r epl y>).

Note that the <r ecei ve> and <r epl y> elements are matched respectively to the <i nput > and

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 34 of 264

<out put > messages of the "sendPur chaseOr der " operation invoked by the customer, while the
activities performed by the process between these elements represent the actions taken in
response to the customer request, from the time the request is received to the time the response is
sent back (reply).

The processing taking place inside the <f | ow> element consists of three concurrent <sequence>
activities. The synchronization dependencies between activities in the three concurrent sequences
are expressed by using <l i nks> to connect them. The <I i nks> are defined inside the <f | ow>
and are used to connect a source activity to atarget activity. Note that each activity declaresitself
asthe source or target of a<l i nk> by using the nested <sour ce> and <t ar get > elements. In the
absence of <l i nks>, the activities nested directly inside a<f | ow> proceed concurrently. In the
example, however, the presence of two <1 i nk>s introduces control dependencies between the
activities performed inside each sequence. For example, while the price calculation can be
started immediately after the request is received, shipping price can only be added to the invoice
after the shipper information has been obtained; this dependency is represented by the <I i nk>
(named "shi p-t o-i nvoi ce") that connects the first call on the shipping provider

("request Shi ppi ng") with sending shipping information to the price calculation service
("sendshi ppi ngPri ce"). Likewise, shipping scheduling information can only be sent to the
manufacturing scheduling service after it has been received from the shipper service; thus the
need for the second <I i nk> ("shi p-t o- schedul i ng").

Datais shared between different activities through shared variables, for example, the two
<vari abl e>S"shi ppi ngl nf 0" and "shi ppi ngSchedul e".

Certain operations can return faults, as defined in their WSDL definitions. For simplicity, itis
assumed here that the two operations return the same fault ("cannot Conpl et eOr der). When a
fault occurs, normal processing isterminated and control is transferred to the corresponding fault
handler, as defined in the <f aul t Handl er s> section. In this example the fault handler uses a

<r epl y> element to return a fault to the customer (note the f aul t Nane attribute in the <r epl y>
element).

Finally, it isimportant to observe how an assignment activity is used to transfer information
between data variables. The simple assignments shown in this example transfer a message part
from a source variable to a message part in atarget variable, but more complex forms of
assignments are also possible.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 35 of 264

6. Partner Link Types, Partner Links, and
Endpoint References

An important use case for WS-BPEL is describing cross enterprise business interactionsin which
the business processes of each enterprise interact through Web Service interfaces. Therefore,
WS-BPEL provides the ability to model the required relationships between partner processes.
WSDL already describes the functionality of a service provided by a partner, at both the abstract
and concrete levels. The relationship of a business process to a partner istypically peer-to-peer,
requiring atwo-way dependency at the service level. In other words, a partner represents both a
consumer of a service provided by the business process and a provider of a service to the
business process. Thisis especially the case when the interactions are based on one-way
operations rather than on request-response operations. The notion of <par t ner Li nks> is used to
directly model peer-to-peer conversational partner relationships. <par t ner Li nks> define the
shape of arelationship with a partner by defining the por t Types used in the interactions in both
directions. However, the actual partner service may be dynamically determined within the
process. WS-BPEL uses a notion of endpoint reference, manifested as a service reference
container <sr ef : servi ce-r ef >, to represent the data required to describe a partner service
endpoint.

Introduction of service reference container <sr ef : ser vi ce- r ef > avoids inventing a private WS-
BPEL mechanism for web service endpoint references. It also provides pluggability of different
versions of service referencing or endpoint addressing schemes being used within WS-BPEL.

6.1. Partner Link Types

A <par t ner Li nkType> characterizes the conversational relationship between two services by
defining the roles played by each of the services in the conversation and specifying the por t Type
provided by each service to receive messages within the context of the conversation. Each

<r ol e> specifies exactly one WSDL port Type. The following example illustrates the basic
syntax of a<part ner Li nkType> declaration:

<pl nk: part ner Li nkType name="Buyer Sel | er Li nk" >
<pl nk: rol e name="Buyer" port Type="buy: Buyer Port Type" />
<pl nk:rol e name="Sel | er" port Type="sell: Sell er Port Type" />
</ pl nk: par t ner Li nkType>

The extensibility mechanism of WSDL 1.1 is used to define <par t ner Li nkType> asanew
definition type to be placed as an immediate child element of a<wsdl : def i ni ti ons> element.
This allows reuse of the WSDL target namespace specification and its import mechanism to
import por t Type definitions. The <par t ner Li nkType> definition can be a separate artifact
independent of either service's WSDL document. Alternatively, the <par t ner Li nkType>
definition can be placed within the WSDL document defining the por t Types from which the
different roles are defined.

The syntax for defining a<par t ner Li nkType> is:

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 36 of 264

<wsdl : definitions nane="NCNane" target Nanmespace="anyURl " ...>

<pl nk: part ner Li nkType nane="NCNane" >
<pl nk: rol e name="NCNanme" port Type="QNane" />
<pl nk: rol e name="NCNane" port Type="QNane" />?
</ pl nk: par t ner Li nkType>

</ wsdl : definitions>

This defines a<par t ner Li nkType> in the namespace indicated by the value of the
t ar get Namespace attribute of the WSDL document element. The por t Types identified within
<r ol e>s are referenced by using QNames according to the rulesin WSDL specifications.

Note that in some cases it can be meaningful to define a<par t ner Li nkType> containing exactly
one <r ol e> instead of two. That defines a partner linking scenario where one partner expresses a
capability to link with any other partner, without placing any requirements on the other partner.

Examples of <par t ner Li nkType> declarations are found in various business process examples
in this specification.

6.2. Partner Links

The services with which a business process interacts are modeled as partner linksin WS-BPEL.
Each <par t ner Li nk> is characterized by apart ner Li nkType. More than one <par t ner Li nk>
can be characterized by the same par t ner Li nkType. For example, a certain procurement process
might use more than one vendor for its transactions, but might use the same par t ner Li nkType
for al vendors.

<part ner Li nks>
<part ner Li nk nane="NCNane"
part ner Li nkType="QNang"
nyRol e=" NCNane" ?
part ner Rol e=" NCNane" ?
initializePartnerRol e="yes|no"? />+
</ part ner Li nks>

Each <par t ner Li nk> isnamed, and this name isused for all service interactions via that

<par t ner Li nk>. Thisiscritical, for example, in correlating responses to different

<par t ner Li nk>s for simultaneous requests of the same kind (see section 10.3. Invoking Web
Service Operations — Invoke and 10.4. Providing Web Service Operations — Receive and Reply).

Within a<par t ner Li nk>, therole of the business processitself isindicated by the attribute
nmyRol e and the role of the partner isindicated by the attribute par t ner Rol e. When a

part ner Li nkType has only one role, one of these attributes is omitted as appropriate. [SA00016]
Note that a<par t ner Li nk> MUST specify the nyRol e, or the par t ner Rol e, or both. This
syntactic constraint MUST be statically enforced.

The <par t ner Li nk> declarations specify the relationships that a WS-BPEL process will employ
in its behavior. In order to utilize operations viaa <par t ner Li nk>, the binding and

communication data, including endpoint references (EPR), for the <par t ner Li nk> must be
wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 37 of 264

available (see also section 10.3. Invoking Web Service Operations — Invoke). The relevant
information about a <par t ner Li nk> can be set as part of business process deployment. Thisis
outside the scope of the WS-BPEL specification. Partner link types establish a relationship
between WSDL port types of two Web services. The purpose of partner link typesisto keep this
relationship clear within the process, and make processes with more than one partner easier to
understand. No other syntactic or semantic relationships are implied by partner link typesin this
specification. It is aso possible to bind partner links dynamically. WS-BPEL provides the
mechanisms to do so via assignment of endpoint references (see section 8.4. Assignment). Since
the partners are likely to be stateful, the service endpoint information may need to be extended
with instance-specific information.

Theinitial i zePart ner Rol e attribute specifies whether the WS-BPEL processor is required to
initialize a<part ner Li nk>'Spart ner Rol e value. The attribute has no affect on the

part ner Rol e'svalue after itsinitialization. [SA00017] Thei ni ti al i zePart ner Rol e attribute
MUST NOT be used on a partner link that does not have a partner role; this restriction MUST be
statically enforced. If thei ni ti al i zePart ner Rol e attributeis set to "yes" then the WS-BPEL
processor MUST initialize the EPR of the par t ner Rol e before that EPR isfirst utilized by the
WS-BPEL process. An example would be when an EPR isused in an <i nvoke> activity. If the
initializePartnerRol e attributeisset to "no" then the WS-BPEL processor MUST NOT
initialize the EPR of the par t ner Rol e before that EPR isfirst utilized by the WS-BPEL process.
If theinitializePartnerRol e attribute is omitted then the partner role MAY be initialized by a
WS-BPEL processor.

WheninitializePartnerRol eissetto“yes”, the EPR value used in part ner Rol e
initialization is typically specified as a part of WS-BPEL process deployment or execution
environment configuration. Hence, thei ni ti al i zePar t ner Rol e attribute may be used as a part
of process deployment contract.

A <par t ner Li nk> can be declared within a <pr ocess> or <scope> element. [SA00018] The
name Of a<part ner Li nk> MUST be unique among the names of al partner links defined within
the same immediately enclosing scope. This requirement MUST be statically enforced. Access to
a<par t ner Li nk> follows common lexical scoping rules. The lifecycle of a<par t ner Li nk> is
the same as the lifecycle of the scope declaring the <par t ner Li nk>. Theinitial binding
information of a<par t ner Li nk> can be set as a part of business process deployment, regardless
of whether it is declared on the <pr ocess> or <scope> element level.

6.3. Endpoint References

WSDL makes an important distinction between port types and ports. Port types define abstract
functionality by using abstract messages. Ports provide actual access information, including
communication service endpoints and (by using extension elements) other deployment related
information such as public keys for encryption. Bindings provide the glue between the two.
While the user of a service must be statically dependent on the abstract interface defined by port
types, some of the information contained in port definitions can typically be discovered and used
dynamically.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 38 of 264

The fundamental use of endpoint referencesisto serve as the mechanism for dynamic
communication of port-specific datafor services. An endpoint reference makesit possible in
WS-BPEL to dynamically select a provider for a particular type of service and to invoke their
operations. WS-BPEL provides a general mechanism for correlating messages to stateful
instances of a service, and therefore endpoint references that carry instance-neutral port
information are often sufficient. However, in general it is necessary to carry additional instance-
identification tokens in the endpoint reference itself.

Endpoint references associated with par t ner Rol e and nyRol e of <par t ner Li nk>Sare
manifested as service reference containers (<sr ef : ser vi ce-r ef >). This container isused as an
envelope to wrap the actual endpoint reference value. The design pattern hereis similar to those
of expression language, also known as open-content models, for example:

<sref:service-ref reference-scheme="http://exanple.org">
<f 0o: bar EPR xm ns: f oo="http://exanpl e.org">...</foo: bar EPR>
</sref:service-ref>

The<sref : servi ce-ref > hasan optional attribute called r ef er ence- schenme to denote the
URI of the reference interpretation scheme of service endpoint, which is the child element of
<sref:service-ref>.

The URI of r ef er ence- schene and the namespace URI of the child element of

<sref : servi ce-ref > will not necessarily be the same. The optional r ef er ence- schene
attribute SHOULD be used when the child element of the <sr ef : ser vi ce- r ef > isambiguous
by itself. Thisoptional attribute supplies further information to disambiguate the usage of the
content. For example, if wsdl : ser vi ce IS used as the endpoint reference, different treatments of
thewsdl : servi ce element may occur.

If that attribute is not specified, the namespace URI of the content element within the wrapper
MUST be used to determine the reference scheme of service endpoint.

If the attribute is specified, the URI SHOULD be used as the reference scheme of service
endpoint and the content element within the wrapper is treated accordingly.

When a WS-BPEL implementation fails to interpret the combination of ther ef er ence- schene
attribute and the content element or just the content element alone, a standard fault
"unsupportedReference” MUST be thrown.

The<sref: servi ce-ref>element is not always exposed to WS-BPEL process definitions. For
example, it is not exposed in an assignment from the endpoint reference of nyRol e of
partnerLink-A to that of part ner Rol e of partnerLink-B. On the contrary, it is exposed in an
assignment from a messageType or element based variable through expression or from aliteral
<sref:service-ref>.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 39 of 264

7. Variable Properties

7.1. Motivation
7.1.1 Motivation for Message Properties

The data in a message consists conceptually of two parts: application data and protocol relevant
data, where the protocols can be business protocols or infrastructure protocols providing higher
quality of service. An example of business protocol datais the correlation tokens that are used in
<correl ati onSet s> (see section 9.2. Declaring and Using Correlation Sets). Examples of
infrastructure protocols are security, transaction, and reliable messaging protocols. The business
protocol datais usually found embedded in the application-visible message parts, whereas the
infrastructure protocols amost always add implicit extra parts to the message types to represent
protocol headers that are separate from application data. Such implicit parts are often called
message context because they relate to security context, transaction context, and other ssimilar
middleware context of the interaction. Business processes might need to gain access to and
manipulate both kinds of protocol-relevant data. The notion of message propertiesis defined as a
general way of naming and representing distinguished data elements within a message, whether
in application-visible data or in message context. For afull accounting of the service description
aspects of infrastructure protocols, it is necessary to define notions of service policies, endpoint
properties, and message context. Thiswork is outside the scope of WS-BPEL. Message
properties are defined here in a sufficiently general way to cover message context consisting of
implicit parts, but the use in this specification focuses on properties embedded in application-
visible data that is used in the definition of Abstract and Executable Business Processes.

7.1.2 Motivation for Variable Properties

M essage properties are an instance of a more generic mechanism, <vari abl e> properties. All
variablesin WS-BPEL can have properties defined on them. Properties are useful on non-
message variables as away to isolate the WS-BPEL process' s logic from the details of a
particular variable s definition. Using properties a WS-BPEL process can isolate its variable
initialization logic in one place and then set and get properties on that <var i abl e> in order to
manipulateit. If the <vari abl e>’sdefinition islater changed the rest of the WS-BPEL process
definition that manipulates that variable can remain unchanged.

7.2. Defining Properties

A <vpr op: proper t y> definition creates a unique name for aWS-BPEL process definition and
associates it with an XML Schematype. Theintent isto create anane that has semantic
significance beyond the type itself. For example, a sequence number can be an integer, but the
integer type does not convey this significance, whereas a named sequence-number property does.
Properties can refer to any parts of avariable.

A typical usefor a<vpr op: property>in WS-BPEL isto name atoken for correlation of service
instances with messages. For example, a social security number might be used to identify an

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 40 of 264

individual taxpayer in along-running multiparty business process regarding a tax matter. A
socia security number can appear in many different message types, but in the context of atax-
related process it has a specific significance as ataxpayer 1D. Therefore anameis given to this
use of the type by defining a<vpr op: propert y>, asin the following example:

<wsdl : definitions name="properties"
t ar get Nanmespace="htt p: // exanpl e. com properties. wsdl "
xm ns:tns="http://exanpl e.com properties.wsdl"
xm ns: txtyp="http://exanpl e.conltaxTypes. xsd"
xm ns: vprop="http://docs. oasi s- open. or g/ wsbpel / 2. 0/ var pr op"
xm ns: wsdl ="http://schenmas. xm soap. or g/ wsdl /" >

<l-- inmport schema taxTypes.xsd -->

<I-- define a correlation property -->
<vprop: property nanme="taxpayer Nunmber" type="txtyp: SSN' />

</ wsdl : definitions>

In correlation, the property name must have process-wide significance to be of any use.
Properties such as price, risk, response latency, and so on, which are used in conditional behavior
in a business process, have similar significance. It islikely that they will be mapped to multiple
messages, and therefore they need to be named asin the case of correlation properties.

Even in the general case of properties on XML typed WS-BPEL variables the property name
should maintain its generic nature. The name is intended to identify a certain kind of value, often
with an implied semantic. Any variable on which the property is available is therefore expected
to provide avalue that meets not just the syntax of the property definition but also its semantics.

The WSDL extensibility mechanism is used to define properties. The target namespace and other
useful aspects of WSDL are available to them.

The syntax for a property definition is anew kind of WSDL definition as follows:

<wsdl : defini ti ons name="NCName" >
<vprop: property name="NCNanme" type="QNanme"? el enent="QNane"? />

</ wsdl : definitions>

[SA00019] Either the type or element attributes MUST be present but not both. Properties used
in business protocols are typically embedded in application-visible message data.

7.3 Defining Property Aliases

The notion of aliasing isintroduced to map a property to afield in a specific message part or
variable value. The property name becomes an alias for the message part and/or location, and can
be used as such in expressions and assignments. As an example, consider the following WSDL
message definition:

<wsdl : definiti ons nane="messages"

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 41 of 264

t ar get Nanmespace="htt p: // exanpl e. com t axMessages. wsdl "
xm ns: txtyp="http://exanpl e.conl t axTypes. xsd"
xm ns: wsdl ="htt p://schemas. xm soap. or g/ wsdl /">

<I-- define a WSDL application nessage -->
<wsdl : mressage nanme="t axpayer | nf oMsg" >
<wsdl : part nanme="identification"
el ement ="t xt yp: t axPayer | nf oEl eni />
</ wsdl : nressage>

</ wsdl : definitions>

The definition of a property and itslocation in a particular field of the message are shown in the
next WSDL fragment:

<wsdl : definitions nanme="properties"
t ar get Nanmespace="htt p: // exanpl e. com properties. wsdl "
xm ns: tns="http://exanpl e. conf properties.wsdl"
xm ns: txtyp="http://exanpl e.conltaxTypes. xsd"
xm ns: txmsg="http://exanpl e. conl t axMessages. wsdl " ...>

<l-- define a correlation property -->
<vprop: property name="t axpayer Nunmber" type="txtyp: SSN' />

<vprop: propertyAlias propertyNane="tns:taxpayer Nunber "
nessageType="t xnsg: t axpayer | nf oMsg" part="identification">
<vprop: quer y>t xt yp: soci al secnunber </ vpr op: quer y>

</ vprop: propertyAl i as>

<vprop: propertyAlias propertyNane="tns:taxpayer Nunber "
el ement ="t xt yp: t axPayer | nf oEl ent' >
<vprop: quer y>t xt yp: soci al secnunber </ vpr op: quer y>

</ vprop: propertyAl i as>

</ wsdl : definitions>

Thefirst <vpr op: propert yAl i as> defines anamed property t ns: t axpayer Nunber asan alias
for alocation in the identification part of the message typet xmsg: t axpayer | nf oMsg.

The second <vpr op: propert yAl i as> provides a second definition for the same named property
t ns: t axpayer Nunber but thistime as an alias for alocation inside of the element
t xtyp: t axPayer | nf oEl em

The presence of both aliases meansthat it is possible to retrieve the social security number from
both a variable holding a message of nessageType t xnsg: t axpayer | nf o aswell as an element
defined using t xt yp: t axPayer | nf oEl em

The syntax for a<vpr op: propertyAl i as> definitioniis:

<wsdl : defi ni ti ons nane="NCNane" ...>
<vprop: propertyAlias propertyNanme="QNane"

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 42 of 264

messageType="Q\anme" ?
part =" NCNanme" ?
t ype="QNane" ?
el enent =" QNane" ?>
<vprop: query querylLanguage="anyURI " ?>?
quer yCont ent
</ vprop: query>
</ vprop: propertyAl i as>

</ wsdl : definitions>

The interpretation of the messageType and part attributes, as well asthe <quer y> element isthe
same as in the corresponding from-spec in copy assignments (see section 8.4. Assignment). The
one exception is that the default value of the quer yLanguage attribute for the <quer y> element
within a<vpr op: propertyAl i as>iSurn: oasi s: nanes: t ¢: wsbpel : 2. 0: subl ang: xpat h1. 0.

[SA00020] A <vprop: propertyAl i as> element MUST use one of the three following
combinations of attributes:

e nmessageType andpart,
e typeor
e celenent.

If a<vprop: propertyAl i as> isdefined with the nessageType/ part combination then the
property MUST be available on all WS-BPEL variables where the nessageType QName of the
vari abl e declaration isidentical to that of the <vpr op: propertyAl i as>. Thepart attribute and
<quer y> element are applied against the WS-BPEL nessageType variable to either set or get the
property variable in the same way that the par t attribute and <quer y> element are used in the
first from and to specsin <copy> assignments.

If a<vprop: propertyAlias>isdefined with atype attribute then the property MUST be
available on all WS-BPEL variables where the type QName of the variable declaration is
identical to that of the <vpr op: propert yAl i as>. The query is applied against the WS-BPEL
variable to either set or get the property variable in the same way that the query is used in the
first from and to specsin copy assignments when applied against WS-BPEL variables defined
using atype.

If a<vprop: propertyAl ias>isdefined with anel ement attribute then the property MUST be
available on all WS-BPEL variables where the element QName of the variable declaration is
identical to that of the <vpr op: propert yAl i as>. The query is applied against the WS-BPEL
variable to either set or get the property variable in the same way that the query isused in the
first from and to specsin copy assignments when applied against WS-BPEL variables defined
using an element definition.

Using the same “t ns: t axpayer Nunber ” example from above, for a message variable
“myTaxPayer | nf oMsg” Of messageTypet xnsg: t axpayer | nf oMsg:

<from vari abl e="nmyTaxPayer | nf oMsg" property="tns:taxpayer Nunber" />

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 43 of 264

and

<fronm$nyTaxPayer | nfoMsg. i denti fi cati on/txtyp: soci al secnunber </ frone
have the same output (see section 8.4. Assignment for details).

[SA00022] A WS-BPEL process definition MUST NOT be accepted for processing if it defines
two or more property aliases for the same property name and WS-BPEL variable type. For
example, it is not legal to define two property aliases for the property t ns: t axpayer Nunber and
the messageType t xmsg: t axpayer | nf oMsg. The same logic would prohibit having two property
aliases on the same el ement QName and property name value or two property aliases on the
samet ype QName and property name value.

[SA00021] Static analysis MUST detect property usages where property aliases for the
associated variable's type are not found in any WSDL definitions directly imported by the WS-
BPEL process. Asdescribed in 8. Data Handling and 9. Correlation, property usagesin WS-
BPEL include <correl ati onSet s>, get Vari abl ePr oper t y functions aswell as assign activity
copy <f r o and <t o> property formats.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 44 of 264

8. Data Handling

Business processes specify stateful interactions involving the exchange of messages between
partners. The state of a business process includes the messages that are exchanged as well as
intermediate data used in business logic and in composing messages sent to partners. The
maintenance of the state of a business process requires the use of variables. Furthermore, the data
from the state needs to be extracted and combined in interesting ways to control the behavior of
the process, which requires data expressions. Finaly, state update requires a notion of
assignment. WS-BPEL provides these features for XML data types and WSDL message types.
The XML family of standardsin these areasis till evolving, and using the process-level
attributes for query and expression languages alows for the incorporation of future standards.

Both Executable and Abstract Processes are permitted to use the full power of data selection and
assignment. Executable Processes are not permitted to use opagque expressions, while Abstract
Processes are permitted to use them to hide behavior. Detailed differences are specified in the
following sections.

8.1. Variables

Variables provide the means for holding messages that constitute a part of the state of a business
process. The messages held are often those that have been received from partners or are to be
sent to partners. Variables can aso hold data that are needed for holding state related to the
process and never exchanged with partners.

WS-BPEL uses three kinds of variable declarations: WSDL message type, XML Schematype
(ssmple or complex), and XML Schema element. The syntax of the <vari abl es> declarationiis:

<vari abl es>
<vari abl e name="BPELVari abl eNanme"
messageType="Q\ane" ?
type="QNane" ?
el ement =" QNane" ?>+
from spec?
</vari abl e>
</vari abl es>

An example of a<vari abl e> declaration using a message type declared in a WSDL document
with the targetNamespace "http://example.com/orders’:

<vari abl e xm ns: ORD="htt p:// exanpl e. com or ders"
name="or der Det ai | s"
nessageType="ORD: order Det ai | s" />

Each <vari abl e> is declared within a<scope> and is said to belong to that scope. Variables that
belong to the global process scope are called global variables. Variables may aso belong to other,
non-global scopes, and such variables are called local variables. Each variableisvisible only in
the scope in which it is defined and in all scopes nested within the scope to which it belongs.
Thus, global variables are visible throughout the process. It is possible to hide a variable declared

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 45 of 264

in an outer scope by declaring a variable with an identical name in an inner scope. These rules
are exactly analogous to those in programming languages with lexical scoping of variables.

[SA00023] The nane of a<vari abl e> MUST be unique among the names of all variables
defined within the same immediately enclosing scope. This requirement MUST be statically
enforced. [SA00024] Variable names are NCNames (as defined in XML Schema specification)
but in addition they MUST NOT contain the“.” character. Thisrestriction is necessary because
the“.” character is used as adelimiter in WS-BPEL's default binding to XPath 1.0 (i.e. the
binding identified by "urn:oasis.names:tc:wsbpel:2.0:sublang:xpath1.0"). The delimiter separates
the WS-BPEL message type variable name and the name of one of its WSDL message parts. The
concatenation of the WSDL message variable name, the delimiter and the WSDL part nameis
used as an X Path variable reference which manifests the XML Infoset of the corresponding
WSDL message part.

In this specification, the type BPELVar i abl eNane is used to describe the nane of a<vari abl e>.
It is derived from the XML Schema NCNane as described below. The type BPELVar i abl eNames
isused to describe alist of variable names.

<xsd: si npl eType nane="BPELVari abl eNane" >
<xsd:restriction base="xsd: NCNane" >
<xsd: pattern value="["\.]+" />
</xsd:restriction>
</ xsd: si npl eType>

<xsd: si npl eType nane="BPELVari abl eNanmes" >
<xsd:restriction>
<xsd: si npl eType>
<xsd:list itemlype="tns: BPELVari abl eNane" />
</ xsd: si npl eType>
<xsd: mi nLengt h val ue="1" />
</ xsd:restriction>
</ xsd: si npl eType>

Variable access follows common lexical scoping rules. A variable resolves to the nearest
enclosing scope, regardless of the type of the variable, except as described in 12.7. Event
Handlers. If alocal variable has the same name as a variable defined in an enclosing scope, the
local variable will be used in local assignments and/or the bpel : get Vari abl ePr oper t y function
(as defined below).

[SA00025] ThenessageType, t ype Or el enent attributes are used to specify the type of a
variable. Exactly one of these attributes MUST be used. Attribute messageType refersto a
WSDL message type definition. Attributet ype refersto an XML Schema type (simple or
complex). Attribute el ement refersto an XML Schema element.

Using [Infoset] terminology, the infoset for aWS-BPEL element variable consists of a
Document Information Item (DI1) that contains exactly one child, an Element Information Item
(EN) which is referenced by the document element property. The Ell is the value of the element
variable.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 46 of 264

If aWS-BPEL implementation chooses to manifest a simple type variable as an XML infoset,

the infoset SHOULD consist of a DIl that contains exactly one child, which isan Ell referenced
by the document element property. The properties of the document element, specifically the
namespace name and local name properties, are undefined by this specification. An
implementation MUST specify a namespace name/local name value. However the children of the
document element MUST exclusively consist of a series of Character Information Items (Cl1s)
that represent the simple type value. A WS-BPEL implementation MAY choose to map ssimple
type variables to non-XML-infoset data-models defined in the expression/query language being
used (e.g. Boolean in XPath 1.0).

The infoset for a complex type variable consists of a DIl that contains exactly one child, which is
an Ell referenced by the document element property. The properties of the document element,
specifically the namespace name and local name properties, are undefined by this specification.
An implementation MUST specify a namespace name/local name value. However the children of
the document element MUST exclusively consist of the complex type values assigned to the
variable.

In order to simplify data access, WSDL parts of WSDL message variables are manifested in WS-
BPEL asinfosets, one infoset per WSDL message part. WS-BPEL engines MUST use the
following agorithm when manifesting a WSDL message part as an infoset:

for each part in the WSDL message definition,

Step 1- Create asynthetic DIl which has no children other than those specified in step
2.

Step 2a— If the WSDL message part is defined using the type attribute then create an
Ell asachild of the document element. The local name and namespace name
of the newly created Ell are determined by the WS-BPEL processor and are
not specified by this document. The handling of this Ell is similar to how WS-
BPEL handles the containers for complex and simple type XML variables.
The contents of the new EIl are required to conform to the contents defined by
the referenced type definition.

Step 2b — If the WSDL message part is defined using the element attribute then create
an Ell asachild of the document element which manifests the element
defined by the referenced type definition.

The previous models are conceptual; they define how WS-BPEL submits and retrieves XML
variable values using infoset definitions. WS-BPEL processors are not required to implement an
infoset model. Regardless of how the variable binding is handled, the end result SHOULD
duplicate the behavior defined using the infoset model above. For example, a WS-BPEL
implementation may choose to bind a simple type WS-BPEL variable of type xsd:string directly
to astring object in XPath 1.0. The choice of mapping MUST be consistently applied to
variables and WSDL message part values of the same XML Schematype. For example, if a

xsd: st ri ng variable is manifested as a string object, axsd: st ri ng message part MUST be
manifested as a string object also. For detailed definition of manifestation of WS-BPEL variables
in XPath 1.0, see section 8.2.2 Binding WS-BPEL Variables In XPath 1.0.

In summary, aWS-BPEL variable is manifested as XML Infoset itemsin one of the following
ways:

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 47 of 264

(1) asingle XML infoset item: e.g. an element or complex type variable or aWSDL message
part

(2) asequence of CllIsfor simple type data: e.g. used to manifest a string (these items may be
manifested as anon XML infoset item when needed, e.g. Boolean)

A variable can optionally beinitialized by using an in-line from-spec. From-spec is defined in
section 8.4. Conceptually thein-line variable initializations are modeled as a virtual <sequence>
activity that contains a series of virtual <assi gn> activities, one for each variable being
initialized, in the order they are listed in the variable declarations. The virtual <assi gn>
activities each contain asingle virtual <copy> whose from-spec is as given in the variable
initialization and the to-spec points to the variable being created.

[SA00026] Variable initialization logic contained in scopes that contain or whose children
contain a start activity MUST only use idempotent functions in the from-spec. The use of
idempotent functions allows for al the values for such variables to be pre-computed and re-used
on each process instance.

A global variableisin an uninitialized state at the beginning of a process. A local variableisin
an uninitialized state at the start of the scope it belongs to. Note that non-global scopesin general
start and complete their behavior more than once in the lifetime of the process instance they
belong to. Variables can be initialized by a variety of means including assignment and receipt of
amessage. Variables can be partialy initialized with property assignment or when some but not
all partsin the message type of the variable are assigned values.

An attempt during process execution to read a variable or, in the case of a message type variable,
apart of avariable beforeitisinitialized MUST result in the standard

bpel : uni ni tial i zedVari abl e fault. Thisincludes the <i nvoke> and <r epl y> activity, where
the presence of an uninitialized part also resultsin the standard fault

bpel :uninitializedVari abl e.

Variable Validation

Values stored in variables can be mutated during the course of process execution. The

<val i dat e> activity can be used to ensure that values of variables are valid against their
associated XML data definition, including XML Schema simple type, complex type, element
definition and XML definitions of WSDL parts. The <val i dat e> activity hasavari abl es
attribute, listing the variables to validate. The attribute accepts one or more variable names
(BPELVariableName), separated by whitespaces. The syntax of theval i dat e activity is:

<val i date vari abl es="BPELVari abl eNanes" standard-attri butes>
st andar d- el enent s
</val i dat e>

When one or more variables are invalid against their corresponding XML definition, a standard
fault of bpel : i nval i dvari abl es fault MUST be thrown.

A WS-BPEL implementation MAY provide a mechanism to turn on/off any explicit validation,
for example, the <val i dat e> activity.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 48 of 264

A WS-BPEL implementation MAY validate incoming and outgoing messages during the
execution of message related activities, e.q., <r ecei ve>, <r epl y>, <pi ck>, <onEvent > and
<i nvoke> activities. If such Schemavalidation is enabled and messages are invalid,

"bpel :inval i dVari abl es" fault SHOULD be thrown during those message activities.

8.2 Usage of Query and Expression Languages

This section describes the relationship between Query/Expression languages and WS-BPEL from
two different perspectives. The first perspective is WS-BPEL's view of the query/expression
languages. That view is restricted to what information WS-BPEL will make available for use by
the Query/Expression language. The second perspective is the Query/Expression language's view
of WS-BPEL, specifically how XPath 1.0's execution context isinitialized by WS-BPEL.

WS-BPEL provides an extensible mechanism for the language used in queries and expressions.
The languages are specified by the quer yLanguage and expr essi onLanguage attributes of the
process element. WS-BPEL constructs that require or allow queries or expressions provide the
ability to override the default query/expression language for individual queries/expressions. WS-
BPEL implementations MUST support the use of [XPath 1.0] as the query and expression
language. XPath 1.0 isindicated by the default value of the quer yLanguage and

expr essi onLanguage attribute, whichis:

urn: oasi s: nanes:tc:wsbpel : 2. 0: subl ang: xpat hl1. 0

which represents the usage of XPath 1.0 within WS-BPEL 2.0.

If the execution of aquery or an expression yields an unhandled language fault, the WS-BPEL
standard fault bpel : subLanguageExecut i onFaul t MUST be thrown.

8.2.1 Enclosing Elements

In order to describe the view that WS-BPEL provides to Query/Expression languagesit is
necessary to introduce a new term - Enclosing Element.

Definition (Enclosing Element). An Enclosing Element is defined as the parent element in the
WS-BPEL process definition that contains the Query or Expression. In the following example,
the <f r om> element is the Enclosing Element.

<process>
<fron>$nyVar / abc/ def </ f r one
</ process>

The in-scope namespaces of the enclosing element are the namespaces visible to the
Query/Expression language. (Note: XPath 1.0 does not have default namespace concept.)

Thelinks, variables, partnerLinks, etc. that are visible to a Query/Expression language are
defined based on the entities' visibility to the activity that the Enclosing Element is contained

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 49 of 264

within. Query/Expression languages need not manifest all the different objects. Only the objects
in scope to the Enclosing Element’ s enclosing activity SHOULD be visible from within the
Query/Expression language.

Evaluation of a WS-BPEL expression or query will yield one of the following (here we use
XPath 1.0 expressions as examples):

e asingle XML infoset item: e.g. $myFooVar /| i nes/ | i ne[2]

e acollection of XML infoset items e.g. $myFooVar /| i nes/ *

e asequence of Cllsfor simple type data
€.g. $nyFooVar/lines/line[2]/text()
(Please note this sequence of items may be manifested as anon XML infoset item when
needed. e.g. as a Boolean)

e avariablereference: e.g. <f r on»$nyFooVar </ f r one

8.2.2 Binding WS-BPEL Variables In XPath 1.0

With the exception of link expressions whose variable access syntax and semantics are described
in section 8.2.4 Default use of XPath 1.0 for Expression Languages, WS-BPEL variables are
accessible in XPath expressions via X Path variable bindings. Specificaly, all WS-BPEL
variables visible from the Enclosing Element of an XPath expression MUST be made available
to the X Path processor by manifesting the WS-BPEL variable as an XPath variable binding
whose name is the same as the WS-BPEL variable's name, except in the case of variables
declared with a WSDL messageType, which requires some special handling (discussed below).

WS-BPEL variables declared using an element MUST be manifested as a node-set X Path
variable with a single member node. That node is a synthetic DI that contains a single child, the
document element, which is the value of the WS-BPEL variable. The XPath variable binding
will bind to the document element. For example, given the following Schema definition:

<xsd: el ement nane="St at usCont ai ner" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="st atusDescription" type="xsd:string"
form"qualified" />
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

And given the following variable declaration:

<vari abl e name="ASt at us" el enent ="e: St at usCont ai ner" />

Then aWS-BPEL XPath expression to access the value of the st at usDescri pt i on element,
assuming the Ast at us variableisin scope, would look like:

$ASt at us/ e: st at usDescri pti on

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 50 of 264

$ASt at us points at the variable's document element, St at usCont ai ner . SO to access
St at usCont ai ner 'schild st at usDescri pti on it isonly necessary to specify the child's element
name.

WS-BPEL variables declared using a complex type MUST be manifested as a node-set XPath
variable with one member node containing the anonymous document element that contains the
actual value of the WS-BPEL complex type variable. The XPath variable binds to the document
element. For example, given the following Schema definition:

<xsd: conpl exType name="Aucti onResults">
<xsd: sequence>
<xsd: el ement nanme="AuctionResult" nmaxCccurs="unbounded"
forme"qual ified" >
<xsd: conpl exType>
<xsd:attribute nane="Auctionl D' type="xsd:int" />
<xsd:attribute name="Result" type="xsd:string" />
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>

And given the following variable declaration:

<vari abl e nane="Resul ts" type="e: AuctionResults" />

Then aWS-BPEL XPath expression to access the value of the second AuctionlD attribute would
look like:

$Resul t s/ e: Auct i onResul t[2]/ @wucti onl D

$Resul t s points at the variable’ s document element, Auct i onResul t [2] points to the second
Auct i onResul t child of the document element, and @wuct i onl D pointsto the Aucti onl D
attribute on the selected Auct i onResul t element.

WS-BPEL nessageType variables MUST be manifested in X Path as a series of variables, one
variable per part in the messageType. Each variable is named by concatenating the message
variable's name, the "." character and the name of the part. The datain a WS-BPEL
messageType variable is not made available as one single XPath variable to general XPath
processing under the default query and expression language binding. For example, if a
messageType variable was named "nyMessageTypeVar " and it contained two parts, "nsgPart 1"
and "nsgPar t 2" then the XPath binding that had "nyMessageTypeVar " in scope would manifest
two XPath variables, $nyMessageTypeVar . msgPart 1 and $nyMessageTypeVar . msgPart 2.

WSDL message parts are always defined using either an XSD element, an XSD complex type or
aXSD simple type. As such the manifestation of these message parts in XPath can be handled in
the same manner as specified herein for element, complex type and simple type WS-BPEL
variables.

Below isafull example of how a WSDL message type is manifested in WS-BPEL XPath.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 51 of 264

<nessage nane="St at usMessage" >
<part nanme="StatusPartl1" el enent="e: St at usCont ai ner" />
<part name="StatusPart?2" el enent="e: StatusContai ner" />
</ nessage>

And given the following variable declaration:

<vari abl e nane="St at usVari abl e" nessageType="e: St at usMessage" />

Then aWS-BPEL XPath expression to access the second part’ s statusDescription element would
look like:

$St at usVari abl e. St at usPart 2/ e: st at usDescri pti on

It is possible to write X Path queries that can simultaneously query across multiple parts of a
WSDL message variable by applying a union operator to create one single nodeset. For example:

($StatusVariabl e. St at usPart 1
| $StatusVariable.StatusPart2)//e:statusDescription

WS-BPEL simple type variables MUST be manifested directly as either an XPath string,
Boolean or float object. If the XML Schematype of the WS-BPEL simple type variableis
xsd: bool ean or any typesthat are restrictions of xsd: bool ean then the WS-BPEL variable
MUST be manifested as an X Path Boolean object. If the XML Schematype of the WS-BPEL
simpletypevariableisxsd: fl oat, xsd:int, xsd:unsignedl nt orany restrictions of those
types then the WS-BPEL variable MUST be manifested as an XPath float object. Any other
XML Schematypes MUST be manifested as an X Path string object.

The precision of the float object in XPath 1.0 is not sufficient to capture the full value of some
XML Schema data types, such as xsd:decimal. XSD numeric values that cannot be expressed
without loss of accuracy as XPath float objects MUST be translated into X Path string objects by
aWS-BPEL processor.

8.2.3 XPath 1.0 Perspective and WS-BPEL

The XPath 1.0 specification [XPATH 1.0] defines five points that define the context in which an
XPath expression is evaluated. Those points are reproduced below:

anode (the context node)

apair of non-zero positive integers (the context position and the context size)
aset of variable bindings

afunction library

the set of namespace declarations in scope for the expression

The following sections define how these contexts are initialized in WS-BPEL for different types
of WS-BPEL Expression and Query Language contexts.

8.2.4 Default use of XPath 1.0 for Expression Languages

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 52 of 264

When XPath 1.0 is used for an Expression Language, except as specified in the sections 8.2.5
Use of XPath 1.0 for Expression Languages in Join Conditions, the X Path context isinitialized
asfollows:

| Context node | None
| Context position | None
| Context size | None

A set of variable bindings Variables visible to the Enclosing Element as defined by
the WS-BPEL scope rules

A function library WS-BPEL and core XPath 1.0 functions MUST be
available and processor-specific functions MAY be
available

| Namespace declaration | In-scope namespace declarations from Enclosing Element

It is worth emphasizing that as defined by the XPath 1.0 standard when resolving an X Path the
namespace prefixes used inside of the variable (e.g. WS-BPEL variables) are irrelevant. The only
prefixes that matter are the in-scope namespaces.

For example, imagine aWS-BPEL variable named “FooVvar ” of “f oo” element type with value:

<a:foo xm ns:a="http://exanple.coni>
<a: bar >23</ a: bar >
</ a:foo>

The following XPath would return the value 23:

<from xm ns: b="htt p: // exanpl e. coni >$FooVar/ b: bar/text () </fron>

Notice that in the previous example the bar element isreferred to use the 'b’ namespace prefix
rather than the 'a" namespace prefix that is used inside the actual value.

It is also worth emphasizing that XPath 1.0 explicitly requires that any element or attribute used
in an XPath expression that does not have a namespace prefix must be treated as being
namespace unqualified. That is, even if there is a default namespace defined on the enclosing
element, the default namespace will not be applied.

Using the same value for Foo as provided previously the following would return a
bpel:selectionFailure fault (in Executable WS-BPEL), because it fails to select any node in the
context of <copy> operation:

<from xm ns="htt p:// exanpl e. con >$FooVar/ bar/text () </fronr

The valuesinside of the XPath do not inherit the default namespace of the enclosing element. So
the 'bar ' element referenced in the X Path does not have any namespace value what so ever and

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 53 of 264

therefore does not match with the bar element in the Foovar variable which has a namespace
value of ht t p: / / exanpl e. com

Allowing WS-BPEL variables to manifest as X Path variable bindings enables WS-BPEL
programmers to create powerful XPath expressions involving multiple WS-BPEL variables. For
example:

<assi gn>
<copy>
<fronm>$po/ | i nel t en] @r odCode=$nyProd] /ant * $exchangeRate</fronr
<t o>$convert edPQ | i nel t en]f @r odCode=$nyPr od] / ant </ t 0>
</ copy>
</ assi gn>

[SA00027] When XPath 1.0 is used as an expression language in WS-BPEL there is no context
node available. Therefore the legal values of the XPath Expr (http://www.w3.0rg/TR/xpath#NT-
Expr) production must be restricted in order to prevent access to the context node.

Specifically, the "LocationPath" (http://www.w3.org/TR/xpath#NT-L ocationPath) production
rule of "PathExpr" (http://www.w3.org/ TR/xpath#NT-PathExpr) production rule MUST NOT be
used when XPath is used as an expression language. The previous restrictions on the X Path Expr
production for the use of XPath as an expression language MUST be statically enforced.

Theresult of thisrestriction isthat the "PathExpr" will always start with a"PrimaryExpr"
(http://www.w3.org/ TR/xpath#NT-PrimaryExpr) for WS-BPEL expression or query language
XPaths. It is worth remembering that PrimaryExprs are either variable references, expressions,
literals, numbers or function calls, none of which can access the context node.

Extrarestrictions are applied to X Path usage as an expression language within to-spec (see
section 8.4. Assignment).

8.2.5 Use of XPath 1.0 for Expression Languages in Join Conditions

When XPath 1.0 is used as an Expression Language in ajoin condition, the XPath context is
initialized asfollows:

| Context node | None
| Context position | None
| Context size | None
A set of variable bindings Links that target the activity that the
Enclosing Element is contained within
A function library Core XPath functions MUST be available,

[SA00028] WS-BPEL functions MUST
NOT be available, and processor-specific
functions MAY be available.

Namespace declaration I n-scope namespace declarations from
Enclosing Element

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 54 of 264

http://www.w3.org/TR/xpath#NT-Expr
http://www.w3.org/TR/xpath#NT-Expr
http://www.w3.org/TR/xpath#NT-LocationPath
http://www.w3.org/TR/xpath#NT-LocationPath
http://www.w3.org/TR/xpath#NT-PathExpr
http://www.w3.org/TR/xpath#NT-PathExpr
http://www.w3.org/TR/xpath#NT-PrimaryExpr
http://www.w3.org/TR/xpath#NT-PrimaryExpr

Asexplained in section 11.5.1 expressions in join conditions may only access the status of links
that target the join condition's enclosing activity. No other data may be made available. To this
end the only variable bindings made available to join conditions are ones that access link status.

<l i nk> statusis obtained via X Path variable bindings, manifesting <I i nk>s that target the
activity containing the Enclosing Element as X Path variable bindings of identical name. That is,
if thereisa<l i nk> called "ABC" that targets the activity then there must be an X Path variable
binding called "ABC". Link variables are manifested as X Path Boolean objects whose value will

be set to the link's value.

Below isan example of a<j oi nCondi ti on> inside of a <t ar get s> element:

<t ar get s>

<target |inkName="Iink1l" />
<target |inkNane="Ilink2" />
<j oi nCondi ti on>$l i nk1 and $link2</joi nCondition>

</target s>

8.2.6 Use of XPath 1.0 for Query Languages in Copy Operations and Property

Aliases

When XPath 1.0 is used as Query Language in the first variant of from-spec and to-spec in
<copy> assignments (also known as variable variant) or a<vpr op: propert yAl i as>, the XPath
context isinitialized as follows:

Variable variant from-
Spec or to-spec

<vprop: propertyAlias>

| Context node | See below | See below
| Context position 1 1
| Context size 1 1

A set of variable bindings

Variablesvisibleto the
Enclosing Element as
defined by the WS-
BPEL scoperules

There MUST NOT be any
variable bindings available
when XPath is used as the
guery languagein a
<vprop: propertyAlias>

A function library

WS-BPEL and core
XPath 1.0 functions
MUST be available
and processor-specific
functions MAY be
available

Core XPath functions MUST
be available, [SA00029] WS-
BPEL functions MUST NOT
be available, and processor-
specific functions MAY be
available.

Namespace declaration

I n-scope namespace
declarations from
Enclosing Element

I n-scope namespace
declarations from Enclosing
Element (note that the
Enclosing Element isin a

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007

Page 55 of 264

<vprop: propertyAlias>
defined inaWSDL definition)

The context node is determined as follows:
e When the from-spec or to-spec references a messageType variable or the
<vprop: propertyAl i as>'SnessageType/part attributes are used:
o If the message part is based on a complex type or an element, the context node MUST
point to a node-list containing a single node which isthe Ell for the referenced part
specified in section 8.2.2 Binding WS-BPEL Variables In XPath 1.0.
o If the message part is based on a simple type, the context node MUST point to the
XPath object specified in section 8.2.2 Binding WS-BPEL Variables In XPath 1.0.
e When the from-spec or to-spec references an XML Schematype variable or the
<vprop: propertyAl i as>'St ype attribute is used:
o |If thetypeisacomplex type, the context node MUST point to a node-list containing a
single node which isthe Ell for the referenced part specified in section 8.2.2 Binding
WS-BPEL Variables In XPath 1.0.
o If thetypeisasimple type, the context node MUST point to the X Path object
specified in section 8.2.2 Binding WS-BPEL Variables In XPath 1.0.
e When the from-spec or to-spec references an XML Schema element variable or the
<vprop: propertyAl i as>'Sel enent attribute is used, the context node MUST point to a
node-list containing a single node which isthe Ell for the referenced part specified in section
8.2.2 Binding WS-BPEL Variables In XPath 1.0.

None of the previoudly listed restrictions on the syntax of the X Path expression apply to a
<quer y> in from-spec/to-spec and <vpr op: propert yAl i as> because it has a defined context
node. Any legal XPath expression may be used. An absolute or relative path can be used in a
<vprop: propertyAl i as> as both resolve to the context node which is the root node.

This example shows a<vpr op: proper t yAl i as> using arelative X Path query. It returns an
Ivalue:

<vprop: propertyAlias propertyName="p: price"
messageType="ny: POVsg"
part ="poPart">
<vprop: query>price</vprop: query>

</ vprop: propertyAl i as>

In contrast, this example shows a<vpr op: propert yAl i as> using an absolute XPath query. It
does not return an Ivalue:

<vprop: propertyAlias propertyNane="p: gol dCust oner Pri ce"
messageType="ny: POVsg"
part ="poPart">
<vprop: query>(/p: po/ price * 0.9)</vprop: query>

</ vprop: propertyAlias>

There is no requirement that <quer y> return lvalues. When the <quer y> used in avariable
variant to-spec or the <quer y> of <vpr op: propert yAl i as> used in a property variant to-spec
does not return an lvalue, an attempt to assign to such ato-spec MUST fail with a

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 56 of 264

bpel : sel ecti onFai | ur e (as defined in section 8.4. Assignment). Multiple nodes may be
selected with this <vpr op: propert yAl i as> feature. However, those selections may be then
filtered in the rest of expression and result in one node returned.

8.3. Expressions

WS-BPEL uses several types of expressions, as follows (relevant usage contexts are listed in
parentheses):

« Boolean expressions (transition, join, while, and if conditions)

o Deadline expressions (until expression of <onAl ar n> and <wai t >)

e Duration expressions (for expression of <onAl ar m> and <wai t >, <r epeat Ever y>
expression of <onAl ar n»)

e Unsigned Integer expressions (<st ar t Count er Val ue>, <f i nal Count er Val ue>, and
<br anches> in <f or Each>)

o General expressions (<assi gn>)

When the above first four types of expressions are being used, the corresponding expressions
SHOULD return values which are valid according to the corresponding XML Schema types:

« Boolean expressions should return valid values of xsd: bool ean

o Deadline expressions should return valid values of xsd: dat e and xsd: dat eTi e
o Duration expressions should return valid values of xsd: dur at i on

e Unsigned Integer expressions should return valid values of xsd: unsi gnedl nt

Otherwise, abpel : i nval i dExpr essi onVal ue fault SHOULD be thrown. Implicit data
conversion or casting MAY be applied when computing returned values from expressions, based
on the data model or type conversion semantics established in the underlying expression
language.

The following values conversion and validity checking semantics MUST be applied when WS-
BPEL's default binding to XPath 1.0 is used as the expression language:

o For WS-BPEL Boolean expressions, XPath's bool ean(obj ect) function isused to
convert the expression result into a Boolean value if needed.

o For WS-BPEL Deadline expressions, XPath's st ri ng(obj ect) function is used to
convert the expression result into a string value if needed. The string value MUST be
valid values of xsd: dat e and xsd: dat eTi me. Otherwise, a
bpel : i nval i dExpr essi onVal ue fault MUST be thrown.

o For WS-BPEL Duration expressions, XPath's st ri ng(obj ect) functionisused to
convert the expression result into a string value if needed. The string value MUST be
valid values of xsd: dur at i on. Otherwise, abpel : i nval i dExpr essi onVal ue fault
MUST be thrown.

e For WS-BPEL Unsigned Integer expressions, X Path's nunber (obj ect) functionis used
to convert the expression result into a numeric value if needed. The numeric value MUST
be valid values of xsd: unsi gnedl nt (i.e. neither negative or NaN and it must be an
integer value). Otherwise, abpel : i nval i dExpr essi onVal ue fault MUST be thrown.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 57 of 264

The following XPath extension functions are defined by WS-BPEL and MUST be supported by
aWS-BPEL implementation:

e (get Vari abl eProperty, described below
e doXsl Transf or m described in section 8.4. Assignment

These extensions are defined in the standard WS-BPEL namespace (see section 5.3. Language
Extensibility for an overall discussion of WS-BPEL Language Extensibility) .

Any qualified names used within X Path expressions MUST be resolved by using namespace
declarations currently in scope in the WS-BPEL document at the location of the expression. Null
prefixes MUST be handled as specified in [XSLT 1.0] section 2.4 (i.e., anull prefix means that
the empty namespace is used).

The function signature of bpel : get Vari abl eProperty IS

obj ect bpel : get Vari abl eProperty(string, string)

This function extracts property values from variables. The first argument names the source
variable for the data and the second is the QName of the property to select from that variable (see
section 7. Variable Properties). [SA00031] The second argument MUST be a string literal
conforming to the definition of QName in section 3. Relationship with Other Specifications, and
these constraints MUST be enforced by static analysis.

The return value of thisfunction is calculated by applying the appropriate
<vpr op: propert yAl i as> for the requested property to the current value of the submitted
variable.

[SA00030] The argumentsto bpel : get Var i abl eProperty MUST be given as quoted strings.
The previous requirement MUST be statically enforced. It isthereforeillegal to passinto aWS-
BPEL XPath function any XPath variables, the output of XPath functions, a XPath location path
or any other value that is not a quoted string. This means, for example, that

bpel : get Vari abl eProperty("varA", "b: propB") meetsthe previous requirement while
bpel : get Vari abl eProperty($varA, string(bpel:getVariabl eProperty("varB",

"b: propB")) doesnot. Note that the previous requirement institutes a restriction which does
not exist in the XPath standard.
8.3.1. Boolean Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation
results in Boolean values.

8.3.2. Deadline Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation
resultsin values that are of the XML Schematypes dateTime or date.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 58 of 264

Note that XPath 1.0 isnot XML Schema aware. As such, none of the built-in functions of XPath
1.0 are capable of producing or manipulating dateTime or date values. However, it is possible to
write a constant (literal) that conformsto XML Schema definitions and use that as a deadline
value or to extract afield from avariable (part) of one of these types and use that as a deadline
value. XPath 1.0 will treat that literal asastring literal, but the result can be interpreted as a
lexical representation of a dateTime or date value.

8.3.3. Duration Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation
resultsin values that are of the XML Schema type duration. The preceding discussion about
XPath 1.0'slack of XML Schema awareness applies here as well.

8.3.4. Unsigned Integer Expressions

These are expressions that conform to the X Path 1.0 Expr production where the evaluation
results in number object values that are of the XML Schema type unsignedint.

8.3.5. General Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation
resultsin any X Path value type (string, number, or Boolean).

8.4. Assignment

The <assi gn> activity can be used to copy data from one variable to another, aswell asto
construct and insert new data using expressions. The use of expressionsis primarily motivated
by the need to perform simple computation (such as incrementing sequence numbers).
Expressions operate on variables, properties, and literal constants to produce a new value. The
<assi gn> activity can also be used to copy endpoint references to and from partnerLinks. It is
also possible to include extensible data manipul ation operations defined as extension elements
under namespaces different from the WS-BPEL namespace. If the element contained within the
extensionAssignOperation element is not recognized by the WS-BPEL processor and is not
subject to amustUnderstand="yes" requirement from an extension declaration then the
extensionAssignOperation operation MUST be ignored. (See section 14 Extension Declarations).

Finally, it is possible to include extensible data manipulation operations defined as extension
elements under namespaces different from the WS-BPEL namespace (see section 5.3. Language
Extensibility).

The <assi gn> activity contains one or more elementary operations.

<assign val i date="yes| no"? standard-attributes>
st andar d- el enent s
(
<copy keepSrcEl ement Nane="yes| no"? i gnoreM ssi ngFr onDat a="yes| no" ?>
from spec to-spec
</ copy>
|

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 59 of 264

<ext ensi onAssi gnOper at i on>
assi gn- el enent - of - ot her - nanespace
</ ext ensi onAssi gnOper at i on>
) +
</ assi gn>

The <assi gn> activity copies atype-compatible value from the source ("from-spec”) to the
destination ("to-spec"), using the <copy> element. [SA00032] Except in Abstract Processes, the
from-spec MUST be one of the following variants:

<from vari abl e="BPELVar i abl eNane" part="NCNanme" ?>

<query querylLanguage="anyURI " ?>?

quer yCont ent

</ query>
</fronp
<from part ner Li nk="NCNane" endpoi nt Ref er ence="nyRol e| partnerRol e" />
<from vari abl e="BPELVari abl eNane" property="Q\Nane" />
<from expr essi onLanguage="anyURI " ?>expr essi on</fron
<fromp<literal >literal value</literal ></fronp
<from >

In Abstract Processes, the from-spec MUST be either one of the above or the opague variant
described in section 13.1.3. Hiding Syntactic Elements

The to-spec MUST be one of the following variants:

<t o vari abl e="BPELVari abl eNane" part="NCNang" ?>
<query querylLanguage="anyURI " ?>?
quer yCont ent
</ query>
</to>
<t o part nerLi nk="NCNane" />
<t o vari abl e="BPELVari abl eNane" property="CQNane" />
<t 0 expressi onLanguage="anyURl " ?>expr essi on</t 0>
<t o/ >

A to-spec MUST return an Ivalue. If ato-spec does not return an lvalue then a

bpel : sel ecti onFai | ure MUST bethrown. An Ivalue, in the context of XPath, isanode-list
containing asingle node from avari abl e or apart ner Li nk identified by the to-spec. The
restrictionslisted in 8.2.4 Default use of XPath 1.0 for Expression Languages MUST apply to
XPath used as a query language. [SA00033] In addition, the XPath query MUST begin with an
XPath VariableReference. Thisrestriction MUST be statically enforced.

Variablevariant: in the first from-spec and to-spec variants the var i abl e attribute provides the
name of avariable. If the type of the variable is a WSDL messageType the optional par t
attribute may be used to provide the name of a part within that variable. [SA00034] When the
variable is defined using XML Schematypes (ssmple or complex) or element, the par t attribute
MUST NOT be used. An optional <quer y> element may be used to select a value from the
source or target variable or message part. The computed value of the query MUST be one of the
following:

e asingle XML information item other than a Cll, for example, Ell and All

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 60 of 264

e asequence of zero or more Clls: thisis mapped to a Text Node or a string in the XPath
1.0 data model

PartnerLink variant: the second from-spec and to-spec variants allow manipulation of the
endpoint references associated with partnerLinks. The value of the par t ner Li nk attributeisthe
name of apart ner Li nk that isin scope. In the case of from-specs, the role MUST be specified.
The value “nyRol e” means that the endpoint reference of the process with respect to that

part ner Li nk isthe source, while the value “par t ner Rol e” means that the partner’ s endpoint
reference for the partnerLink isthe source. [SA00035] [SA00036] If the value “nyRol e” or
“part ner Rol e” is used, the corresponding <par t ner Li nk> declaration MUST specify the
corresponding nyRol e or part ner Rol e attribute. Thisrestriction MUST be statically enforced.
For the to-spec, the assignment is only possible to the par t ner Rol e, hence there is no need to
specify the role. [SA00037] Therefore, the to-spec can only refer to a<par t ner Li nk> of which
the declaration specifies the par t ner Rol e attribute. This restriction MUST be statically enforced.
The type of the value referenced by partnerLink-style from/to-specsis always a

<sref : servi ce-r ef > element (see section 6. Partner Link Types, Partner Links, and Endpoint
References).

An attempt during process execution to read a partner link beforeitspart ner Rol e EPR is
initialized MUST result inthe bpel : uni niti al i zedPart ner Rol e standard fault. Partner roles
of partner links are read when they are referenced in an <i nvoke> or the <f r om> part of a<copy>
in an <assi gn> activity.

Property variant: the third from-spec and to-spec variants allow data manipulation using
properties (see section 7. Variable Properties). The pr oper t y value generated by the from-spec
is generated in the same manner as the value returned by the bpel : get Vari abl ePr opert y()
function. The property variants provide away to clearly define how distinguished data elements
in messages are being used.

Expression variant: in the fourth from-spec variant, an expression language, identified by the
optional expr essi onLanguage attribute, is used to return avalue. In the fourth to-spec variant,
an expression language, identified by the optional expr essi onLanguage attribute, is used to
select avalue. This computed value of the expression MUST be one of the followings:
e asingle XML information item other than a Cll, for example, Ell and All
e asequence of zero or more Clls: thisis mapped to a Text Node or a string in the XPath
1.0 data model

It is possible to use either the first form of from-spec/to-spec or the fourth form of from-spec/to-
spec to perform copy on non-message variables and parts of message variables, asthis
specification defines how to manifest non-message variables and parts of message variables as
XML Infoset information items. However, only the first form of from-spec/to-spec is able to
copy an entire message variable including all of its parts. Other from-spec and to-spec variants
areonly ableto refer to asingle part in aWSDL message type variable and so cannot copy all of
the parts at once.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 61 of 264

Literal variant: the fifth from-spec variant allows aliteral value to be given as the source value
to assign to adestination. The literal value to be assigned isincluded withina<l i teral >
element in order to prevent conflicts with standard extensibility elements under <f r on». The
<literal > element itself does not allow standard extensibility. The type of the literal value
MAY be optionally indicated inline with the value by using XML Schema's instance type
mechanism (xsi : t ype).

The fifth from-spec variant returns values as if it were a from-spec that selects the children of the
<li teral > element in the WS-BPEL source code. [SA00038] The return value MUST be a
single Ell or Text Information Item (TII) only. This constraint MUST be enforced during static
analysis.(see section 8.4.1. Selection Result of Copy Operations for the definition of Tlls). The
XML parsing context of the <l i t er al > element in the source code, such as XML Namespace, is
carried into the parsing of the children withinthe <l i t er al > element. An empty <l i teral / >
element returns an empty TII. Here are some examples for illustration:

<assi gn>
<C0py>
<frone
<literal xm ns:foo="http://exanple.com >
<f oo: bar />
</literal >
</fronp
<to vari abl e="nyFooBar El enVar" />
</ copy>
<copy>
<fronp
<literal >
<! [CDATA| <f oo: bar/>]] >
</literal >
</fronp
<to variabl e="nyStringvar" />
</ copy>
<copy>
<frone
<literal />
</fromp
<to variabl e="nyStringvar" />
</ copy>
</ assi gn>

Thefirst <copy> above copies a<f oo: bar/ > element with a“f oo” prefix associated to
“http://exanpl e. conf namespace into “ myFooBar El envar ” . The second <copy> copies a
string whose value is“ <f oo: bar/>" into“ nySt ri ngVvar”. The last <copy> copies an empty
string into “nySt ri ngVar ”.

The literal from-spec variant also allows aliteral <sr ef : servi ce-r ef > value to be assigned to a
partnerLink, when used with the partnerLink variant of the to-spec.

Empty variant: The sixth from-spec variant and fifth to-spec variant are included to explicitly
show that from-spec and to-spec are extensible. Note that if these variants are not extended, or
the extensions are not understood, they MUST behave asif they were an expression variant

returning zero nodes.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 62 of 264

In addition to <copy> specifications, other extensibility data manipulation elements MAY be
included in an assign activity, inside an <ext ensi onAssi gnQper at i on> element. The
extensibility data manipulation elements MUST belong to a namespace different from the WS-
BPEL namespace.

Attributes of Assign and Copy

The optional keepSr cEl ement Nane attribute of the <copy> construct is used to specify whether
the element name of the destination (as selected by the to-spec) will be replaced by the element
name of the source (as selected by the from-spec) during the copy operation (see section 8.4.2.
Replacement Logic of Copy Operations).

The optional i gnor eM ssi ngFr onDat a attribute of the <copy> construct is used to specify
whether abpel : sel ecti onFai | ur e standard fault is suppressed as specified in section 8.4.1.
Selection Result of Copy Operations. The default value of thei gnor eM ssi ngFr onDat a iS"no".

The optional val i dat e attribute can be used with the <assi gn> activity. Its default valueis "no".
Whenval i dat e isset to "yes", the <assi gn> activity validates al the variables being modified
by the activity. A WS-BPEL implementation MAY provide a mechanism to turn on/off any
explicit validation. E.g. val i dat e attribute at assi gn.

If the"val i dat e" part of the <assi gn> activity fails, that is, one of the variablesisinvalid
against its corresponding XML definition, a standard fault bpel : i nval i dvari abl es MUST be
thrown.

If thereisany fault during the execution of an assignment activity the destination variables
MUST be left unchanged, asthey were at the start of the activity (asif the assign activity were
atomic). This applies regardless of the number of assignment elements within the overall
assignment activity.

The assign activity MUST be executed asiif, for the duration of its execution, it was the only
activity in the process being executed.

The copy mechanism as described thus far, when combined with the default XPath 1.0
expression language, cannot perform complex XML transformations. To address this restriction
in a portable fashion, aWS-BPEL processor MUST support the bpel : doXsl Tr ansf or m() XPath
1.0 extension function. The function signature of bpel : doXsl Tr ansf or mis:

obj ect bpel : doXsl Transforn(string, node-set, (string, object)*)
where:

e Thefirst parameter is an XPath string providing a URI naming the style sheet to be used
by the WS-BPEL processor. [SA00039] This MUST take the form of astring literal. The
purpose of this constraint is to allow implementations to statically analyze the process
(and named style sheets) for variable dependencies; it MUST be enforced by static
analysis.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 63 of 264

The second parameter is an X Path node set providing the source document for the
transformation to be performed by the WS-BPEL processor. This set MUST contain a
single Ell (i.e. an element node in XPath 1.0 data model). If it does not, the WS-BPEL
processor MUST throw abpel : xsl t I nval i dSour ce fault. The single Ell as specified by
this parameter MUST be treated as the single child of the root node of the source tree for
XSLT processing.
The optional parameters that follow MUST appear in pairs. Each pair is defined as:

0 an XPath string parameter providing the qualified name of an XSLT parameter

0 an XPath object parameter providing the value for the named XSLT parameter. It

can be an XPath Expr.

[SA00040] The WS-BPEL processor MUST enforce the pairing of these parameters by
static analysis (i.e., an odd number of parameters must cause a static analysis error).

The function MUST return the result of the transformation. The result is one of the
following infoset items, depending on the XSLT output method employed by the selected
style sheet:
o0 A singleTIl (an XPath 1.0 text node), created by the XSLT "text" or "html"
output methods, or
o0 A singleEll (an XPath element node that is the single child of the root of the
result tree), which is created by the XSLT "xml" output method.

The WS-BPEL processor MUST execute the bpel : doXsl Tr ansf or mfunction such that al of the
following apply:

The first parameter, naming the style sheet to be used, MUST be used to find the style
sheet corresponding to the given URI. Thisis accomplished in an implementation-
dependent fashion. If the style sheet corresponding to the given URI cannot be found, the
WS-BPEL processor MUST throw abpel : xsl t St yl esheet Not Found fault.

The processor MUST perform an XSLT 1.0 transformation, as described in section 5.1
(Processing Model) of the XSLT 1.0 specification, using the named style sheet as
primary sheet, the provided source Ell as the source document, and the result tree as the
result of the transformation.

XSLT global parameters ([XSLT 1.0], section 11.4 of the XSLT 1.0 specification) are
used to pass additional values from the WS-BPEL process to the XSLT processor. The
optional parametersfor doxs! Tr ansf or mfunction come in the form of name-value pair
in the argument list, as described above. They are used to identify the XSLT global
parameters by QName, and to supply values for the named global parameters. [SA00041]
The global parameter names MUST be string literals conforming to the definition of
QName in section 3 of [Namespaces in XML], and these constraints MUST be enforced
by static analysis. The WS-BPEL processor MUST pass the given global parameter
names and values to the XSLT processor.

If any XSLT processing faults occur during the transformation, then a

bpel : subLanguageExecut i onFaul t MUST be thrown.

Since XSLT is aside effect-free language, execution of the transformation cannot by definition
cause any changes to WS-BPEL variables referred to in the style sheet.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 64 of 264

The first XPath function parameter, which names the style sheet, has similar semantics as the
location attribute of an <i npor t > element. Style sheets associated with a process (through its
doXs! Tr ansf or minvocations) SHOULD be considered part of the process definition, like
WSDL definitions and XML Schemas referenced by an <i npor t > element.

bpel:doX s Transform Examples

The following examples show complex document transformation and iterative document
construction.

Complex document transfor mation. A common pattern in WS-BPEL processes involves
receiving an XML document from one service, converting it to a different Schema to form a new
request message, and sending the new request to another service. Such documentation
conversion can be accomplished using XSLT viathebpel : doXsl Tr ansf or mfunction.

<vari abl es>
<vari abl e name="A" el ement ="f oo: AEl enent" />
<vari abl e name="B" el enent ="bar: BEl enrent" />
</vari abl es>

<sequence>
<invoke ... inputVariable="..." outputVariable="A" />
<assi gn>
<COpy>
<fronp
bpel : doXsl Transf or m("urn: styl esheet s: A2B. xsl ", $A)
</fronp
<to variable="B" />
</ copy>
</ assi gn>
<invoke ... inputVariable="B" ... />
</ sequence>

In the sequence, a serviceisinvoked, and the result (f oo: AEI ement) copied to variable A. The
<assi gn> activity is used to transform the contents of variable A to bar : BEl ement , and copy the
result of that transformation to variable B. Variable B is used to invoke another service.

The style sheet A2B. xsI would contain the XSL rules for converting documents of Schema
f 0o: AEl enent to Schemabar : BEl enent .

| terative document construction. Suppose that a document is constructed by repeatedly calling
aservice, and accumulating the result in an XML variable. The loop might look something like
this:

<vari abl es>

<vari abl e name="PO' el enent ="f oo: POCEl enent" />

<vari abl e name="Qut Var" el enent="foo:1tenEl enent” />
</vari abl es>

<l-- ... POis initialized ... -->
<l-- lteratively add nore itenms to PO until conplete -->
wsbpel-v2.0-0S 11 April 2007

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 65 of 264

<whi | e>
<condi tion>...</condition>
<sequence>
<I-- Fetch next chunk into CQutVar -->
<invoke ... inputVariable="..." outputVariable="QutVar" />
<assi gn>
<copy>
<frone
bpel : doXsl Transfornm("urn:styl esheets: AddToPO. xsl ",
$PO, "Newl teni, $CQut Var)
</fronp
<to vari abl e="PO" />
</ copy>
</ assi gn>
</ sequence>
</ whi | e>

The optional parameters given in the doXsl Tr ansf or mcall specify that the XSLT parameter
named "New t emi' is set with the value of the WS-BPEL variable aut var . To allow the XSLT
style sheet access to this value, it contains a global (top-level) parameter with a name matching
that given in the third parameter of the function call shown above.

<xsl : transform versi on="1. 0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Transfornm ...>
<I-- Newlitem variable set by W5-BPEL process;
defaults to enpty item-->
<xsl : par am name="Newl t eni' >
<foo:itenkEl ement />
</ xsl : par anp

</ xsl : transf or n>

The style sheet contains a template that appends the value of global parameter Newl t em(the
value of aut Var from the process instance) to the existing list of itemsin the PO variable.

<xsl:tenplate match="foo:itenEl erent"> <l-- line 1 -->
<xsl : copy-of select="." /> <l-- line 2 -->
<xsl:if test="position()=last()"> <l-- line 3 -->
<xsl : copy-of select="$Newitem /> <!-- |ine 4 -->
</xsl:if> <l-- line 5 -->

</ xsl:tenpl at e> <l-- line 6 -->

Thistemplate copies all existing itemsin the source document (lines 1 & 2) and appends the
contents of the XSLT parameter Newi t emto the list of items (lines 3 & 4). It teststo seeif the
current node is at the end of the item list (line 3) and copies the result-tree fragment from the
XSLT parameter Newi t emto follow the last item (line 4).

If PO has avalue of:

<f 00: poEl enent >
<foo:itenEl emrent>item 1</ foo:itenkEl enent >
</ f oo: poEl enent >

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 66 of 264

at the beginning of an iteration of the <whi | e> loop and the <i nvoke> activity returns a value of
<f 0o: i t enEl enent >i t em 2</ f 0o: i t enEl enent >, evaluation of the <f r om> expression will
result in avalue of:

<f 00: poEl enent >
<foo:itenkEl emrent > tem 1</ f oo: it enEl enent >
<foo:itenkEl emrent > tem 2</f oo: it enEl enent >
</ f oo: poEl enent >

which, when the <copy> operation completes, becomes the new value of the PO variable.
8.4.1. Selection Result of Copy Operations

The selection result of the from-spec or to-spec used within a<copy> operation MUST be one of
the following three Information Items: Element Information Item (EIl), Attribute Information
Item (All), or Text Information Item (TI1). Ell and All are defined in [Infoset], while Tl is
defined in this specification to bridge the gap between the XML Infoset Model and other
common XML data models, such as XPath 1.0.

A Text Information Item (TI1) is asequence of zero or more Character Information ltems,
according to document order; as such, a Tl is not manifested in and of itself directly in XML
serialization. When mapped to the XPath 1.0 model, it generalizes a string object (which has zero
or more characters) and text node (which has one or more characters). A Tl lvalue MUST NOT
be empty. A TIl rvalue MAY be mapped to atext node, a string/Boolean/Number object in
XPath 1.0, whilea Tl lvalue MUST be mapped to atext node.

If the selection result of afrom-spec or ato-spec belongs to Information Items other than EIl, All
or Tll, abpel:selectionFailure fault MUST be thrown. If any of the unsupported Information
Items are contained within the selection result, they MUST be preserved; the only restriction is
that they MUST NOT be directly selected by the from-spec or the to-spec as the top-level item.

The <copy> operation is a one-to-one replacement operation. If the optional

i gnor eM ssi ngFr onDat a attribute has the value of "yes" and the from-spec returns zero XML
information items then the <copy> MUST be a"no-op"; no bpel : sel ect i onFai | ur e isthrown.
In this case, the to-spec MUST not be evaluated. A bpel : sel ecti onFai | ure MUST still be
thrown in the following cases, even if thei gnor eM ssi ngFr onDat a attribute has the value of
"yes':

1. the from-spec selects multiple XML information items
2. thefrom-spec selects one XML information item and the to-spec does not select exactly
one XML information item

If thei gnor eM ssi ngFr onDat a attribute has the value of "no" this requires that both the from-
spec and to-spec MUST select exactly one of the three information items described above. If the
from-spec or to-spec do not select exactly one information item during execution, then the
standard fault bpel:selectionFailure MUST be thrown. The following table illustrates the
behavior of thei gnor eM ssi ngFr onDat a attribute in the <copy> operation:

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 67 of 264

returned nodes ignoreMissingFromData

—
o

from
0

no” “yes’
selectionFailure no-op
selectionFailure no-op
selectionFailure no-op
selectionFailure | selectionFailure
copy copy
selectionFailure | selectionFailure
selectionFailure | selectionFailure

R O 2 R, O 2 = O

selectionFailure | selectionFailure

Z Z2 2 + B r O O

N selectionFailure | selectionFailure
ignoreMissingFromData Logic Table

Literal values (the literal variant of from-spec) MUST contain either asingle Tl or asingle Ell
asitstop-level value. When the rvalue of afrom-specisan All, theto-specissettoaTIl
constructed from the normalized value property of the All as specified in section 8.4.2.
Replacement Logic of Copy Operations.

When using the partnerLink variants of from-spec and to-spec with a non-partnerLink variant of

the respective from-spec and to-spec in a<copy> operation, the par t ner Li nk variants should be
treated asif they produce an rvalue and Ivalue of an EIl whose [local name] is*“ service-ref” and

[namespace name] is "http://docs.oasi s-open.org/wsbpel/2.0/serviceref".

8.4.2. Replacement Logic of Copy Operations

This section provides rules for replacing data referenced by the to-spec in a<copy> operation.
Detailed examples are provided in Appendix Appendix D. Examples of Replacement Logic.

Replacement Logic for WSDL Message Variables

When the from-spec and to-spec of a <copy> operation both select WSDL message variables, the
value of the from-spec message variable MUST be copied, becoming the value of the to-spec
message variable. If the from-spec message variable is completely uninitialized then the standard
bpel : uni ni tial i zedVari abl e fault isthrown. If the from-spec message variableis partially
initialized then any uninitialized parts of the from-spec variable result in the same parts of the to-
spec variable becoming uninitialized. The original message parts of the to-spec message variable
will not be available after the <copy> operation.

Replacement Tablefor XML Data ltem

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 68 of 264

When the from-spec (Source) and to-spec (Destination) select one of three Information Items
types, aWS-BPEL processor MUST use the following replacement rulesidentified in the table
below:

Sour ce\Destination Ell All TII

Ell RE RC RC

All RC RC RC

Tl RC RC RC
Replacement Logic Table

¢ RE (Replace-Element-properties):
0 Replace the element at the destination with a copy of the entire element at the source,
including [children] and [attribute] properties.

An optional keepSr cEl enent Nane attribute is provided to further refine the behavior.
[SA00042] It is only applicable when the results of both from-spec and to-spec are
Ells, and MUST NOT be explicitly set in other cases. A WS-BPEL processor MAY
enforce this checking through static analysis of the expression/query language. If a
violation is detected during runtime, a bpel:selectionFailure fault MUST be thrown.
= WhenthekeepSr cEl enent Narre attributeis set to “no”, the name (i.e.
[namespace name] and [local name] properties) of the original destination
element is used as the name of the resulting element. Thisisthe default value.
= WhenthekeepSr cEl ement Narre attributeis set to “yes”, the source element
name is used as the name of the resulting destination element.

When the keepSr cEl enent Narre attributeis set to “yes” and the destination element
isthe Document EIl of an element-based variable or an element-based part of a
WSDL message-type-based variable, a WS-BPEL processor MUST make sure the
name of the source element belongs to the substitutionGroup of the destination
element used in the element variable declaration or WSDL part definition. The
substitutionGroup relation is determined by XML Schemas known to the WS-BPEL
processor. [SA00094] A WS-BPEL processor MAY enforce this checking through
static analysis of the expression/query language. If aviolation is detected during
runtime, abpel : mi smat chedAssi gnnent Fai | ure fault MUST be thrown.

¢ RC (Replace-Content):
0 To obtain the source content:

= Oncetheinformation item is returned from the source, a Tl will be computed
based upon it. This source content Tl is based on aseries of Clls, generally
based on the document order (unless a sorting specification is present in the
underlying expression or query), taken from the returned information item.
The CllIs are copied, concatenated together, and the resulting value is assigned
tothe Tll. Thisisanalogous to the XPath 1.0 st ri ng() function.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 69 of 264

= |f thesourceisan Ell withan xsi: ni | ="true", asel ecti onFai | ure fault
MUST be thrown. This check is performed during Ell-to-All or Ell-to-TII
copy.

0 To replace the destination content:

» |f thedestination isan Ell, all [children] properties (if any) are removed and
the source content Tl is added as the child of the EIl.

» |f thedestination isan All, the value of All is replaced with the TIl from the
source. The value MUST be normalized, in accordance with the XML 1.0
Recommendation (section 3.3.3 Attribute VValue Normalization:
http://www.w3.0rg/TR/1998/REC-xml-19980210#AV Normalize).

» |If thedestinationisaTll, the Tll in the destination is replaced with the Tl
from the source.

e |In addition, the following rules apply:

e Information items referenced by the to-spec MUST be an Ivalue. In the XPath 1.0
datamodel, aTIl lvalue MUST be atext node.

e A bpel : ni smat chedAssi gnment Fai | ur e fault MUST be thrown when the to-
spec selectsa Tl as an Ivalue, which does NOT belong to aWS-BPEL variable of
an XSD string type (or atype derived from X SD string), and one of the following
is computed as an rvalue from the from-spec:

o aTIll which haszero Clis

0 an All which has an empty string asits [normalized value]

o an Ell which has zero Clls asits descendants, that is, its [children] and
nested [children]. Note that applying XPath 1.0 string() function to this
kind of EIl would yield an empty string.

e Attribute values are not text nodes in XPath 1.0. Attribute nodes have a string
value that corresponds to the XML normalized attribute value, whichisaTII.

Using <copy> to initialize variables

When the destination selected by the to-spec in a<copy> operation is un-initialized, which is
either an entire WS-BPEL variable or a message part, that destination MUST first be initialized
before executing the replacement rules defined above, as if the following has been applied:

e For complex type and simple type variables or message parts, initialize to a skeleton
structure composed of a DIl and an anonymous Document Element EIl.

e For element based variables or message parts, initialize to a skeleton structure composed
of aDIll and an Document Element EIl with the name matching the element name used in
variable declaration.

Thisinitialization behavior is an integral part of an atomic <assi gn> activity.
Handling Non-XML Infoset Data Objectsin <copy>
Simple type variables and values MAY be allowed to manifest as non-XML infoset data objects,

such asbool ean, string, or fl oat , asdefined in XPath 1.0. Also expressions may return non-
XML infoset data objects, for example:

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 70 of 264

http://www.w3.org/TR/1998/REC-xml-19980210#AVNormalize

<fromenunber ($order/ant) * 0.8</fron>

To consistently apply the above replacement rules, such non-XML infoset data are handled as
TlIs. Thisis achieved through converting data to strings, as TIl resembles a string object. More
specifically, when the XPath 1.0 data model is used in WS-BPEL, "string(object)"
(http://www.w3.0rg/TR/1999/REC-xpath-19991116#f unction-string) coercion MUST be used to
convert boolean or number objects to strings. A WS-BPEL processor MAY skip the actual
conversion if the result of <copy> remains the same.

XML Namespace Preservation

In the <copy> operation, the [in-scope namespaces| properties from the source (similar to other
XML infoset item properties) MUST be preserved in the result at the destination. A WS-BPEL
processor may use a namespace-aware XML infrastructure to maintain the XML namespace
consistency.

In some XML Schema designs, QName may be used for attribute or element values. When a Tl|
or an All containing a QName value is selected via a Schema-unaware expression/query
language, its data model will fail to capture the namespace property of the QName value.
Therefore, the XML namespace may be lost. Note that XPath 1.0 is Schema unaware.

For example, where the value of at t r X isaQName (" nyPr ef i x: sonenane") and the value of

"f 0o: bar 3" isanother QName (" nyPr ef i x: sonenane2"). When " f oo: bar 2/ @t t r X" iscopied
as the source with XPath 1.0 data model, the namespace declaration for " nyPr ef i x* might be
missing in the destination.

<foo: barl xm ns: myPrefix="http://exanpl e. org"
xm ns: foo="http://exanpl e.com ">
<foo: bar2 attrX="nyPrefix: somenanme" />
<f 0o: bar 3>nmyPr ef i x: sonenane2</ f oo: bar 3>
</ f oo: bar 1>

8.4.3. Type Compatibility in Copy Operations

[SA00043] For acopy operation to be valid, the data referred to by the from-spec and the to-spec
MUST be of compatible types.

The following situations are considered type incompatible:

« the selection results of bot h the from-spec and the to-spec are variables of a WSDL
message type, and the two variables are not of the same WSDL message type (two
WSDL message types are the same if their QNames are equal).

o the selection result of the from-spec is avariable of aWSDL message type and that of the
to-spec is not, or vice versa (parts of variables, selections of variable parts, or endpoint
references cannot be assigned to/from variables of WSDL message types directly).

o the selection result of the from-spec is an Ell, that of the to-spec isa Document EIl of an
element-based variable or an element-based part of a WSDL message-type-based variable,
the keepSr cEl enent Nane attribute is set to “yes” and the name of the source element

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 71 of 264

http://www.w3.org/TR/1999/REC-xpath-19991116#function-string

does not belong to the substitutionGroup of the destination (see section 8.4.2.
Replacement L ogic of Copy Operations).

If any incompatible types are detected during assignment, the standard fault
bpel : ni smat chedAssi gnment Fai | ure MUST be thrown

8.4.4. Assignment Example

Assume the following complex type definition in the namespace
"http://example.org/bpel/example”:

<conpl exType nanme="t Address" >
<sequence>
<el enent name="nunber" type="xsd:int" />
<el enent nanme="street" type="xsd:string" />
<el enent name="city" type="xsd:string" />
<el enent name="phone" >
<conpl exType>
<sequence>
<el enent nanme="areacode" type="xsd:int" />
<el enent name="exchange" type="xsd:int" />
<el enent name="nunber" type="xsd:int" />
</ sequence>
</ conpl exType>
</ el ement >
</ sequence>
</ conpl exType>

<el enent nanme="address" type="t Address" />

Assume that the following WSDL message definition exists for the same target namespace:

<nessage name="person" xm ns:x="http://exanpl e.org/ bpel / exanpl e" >
<part name="full-name" type="xsd:string" />
<part name="address" el ement="x:address" />

</ nessage>

Also assume the following WS-BPEL variable declarations:

<vari abl e nanme="cl" nessageType="x: person” />
<vari abl e nane="c2" nessageType="Xx: person" />
<vari abl e nane="c3" el ement ="x: address" />

The example illustrates copying one variable to another as well as copying avariable part to a
variable of compatible element type:

<assi gn>
<copy>
<from vari abl e="c1" />
<to vari abl e="c2" />
</ copy>
<C0py>
<f ronP$cl. addr ess</fronp

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 72 of 264

<to variabl e="¢c3" />
</ copy>
</ assi gn>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 73 of 264

9. Correlation

The information provided so far suggests that the target for messages that are delivered to a
business process service is the WSDL port of the recipient service. Thisisan illusion because, by
their very nature, stateful business processes are instantiated to act in accordance with the history
of an extended interaction. Therefore, messages sent to such processes need to be delivered not
only to the correct destination port, but aso to the correct instance of the business process that
provides the port. Messages which create a new business process instance, are a special case, as
described in 5.5. The Lifecycle of an Executable Business Process.

In the object-oriented world, such stateful interactions are mediated by object references, which
intrinsically provide the ability to reach a specific object (instance) with the right state and
history for the interaction. This works reasonably well in tightly coupled implementations where
a dependency on the structure of the implementation is normal. In the loosely coupled world of
Web Services, the use of such references would create a fragile set of implementation
dependencies that would not survive the independent evolution of business process
implementation details at each business partner. In thisworld, the answer isto rely on the
business data and communication protocol headers that define the wire-level contract between
partners; and to avoid the use of implementation-specific tokens for instance routing whenever
possible.

Consider a supply-chain situation where a buyer sends a purchase order to a seller. Suppose the
buyer and seller have a stable business relationship and are statically configured to send
documents related to purchasing interactions to the URL s associated with the relevant WSDL
service ports. The seller needs to return an acknowledgement for the order, and the
acknowledgement must be routed to the correct business process instance at the buyer. The
obvious and standard mechanism to do thisisto carry a business token in the purchase order
message (such as a purchase order number) that is copied into the acknowledgement message for
correlation. The token can be in the message envelope, in a header, or in the business document
(purchase order) itself. In either case, the exact location and type of the token in the relevant
messages is fixed and instance independent. Only the value of the token is instance dependent.
Therefore, the structure and position of the correlation tokens in each message can be expressed
declaratively in the business process description. The WS-BPEL notion of a correlation set,
described below, provides this feature. The declarative information allows infrastructure which
conforms to WS-BPEL to use correlation tokens to provide instance routing automatically.

The declaration of correlation relies on declarative properties of messages. A property issimply
a"field" within amessage identified by aquery. Thisis only possible when the message

structure is well-defined (for example, described using an XML Schema). The use of correlation
tokensisrestricted to message parts described in this way. The actual wire format of such
messages can be non-XML, for example, EDI flat files, based on different bindings for port types.

9.1. Message Correlation

During its lifetime, a business process instance typically holds one or more conversations with

partnersinvolved in its work. Conversations may be based on sophisticated transport

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 74 of 264

infrastructure that correlates the messages involved in a conversation by using some form of
conversation identity and routes them automatically to the correct process instance without the
need to specify any correlation information within the business process. However, in many cases
conversations involve more than two parties or use lightweight transport infrastructure with
correlation tokens embedded directly in the application data being exchanged. In such cases, itis
often necessary to provide additional application-level mechanisms to match messages and
conversations with the business process instances for which they are intended.

Correlation patterns can become quite complex. The use of a particular set of correlation tokens
does not, in general, span the entire interaction between a process instance and a partner, but
gpans a part of the interaction. Correlated exchanges may nest and overlap, and messages may
carry several sets of correlation tokens. For example, a buyer might start a correlated exchange
with aseller by sending a purchase order (PO) message and using a PO number embedded in the
message as the correlation token. The PO number is used in the acknowledgement message by
the seller. The seller might later send an invoice message that carries the PO number, to correlate
it with the original PO, and also carries an invoice number so that future payment-related
messages need to carry only the invoice number as the correlation token. The invoice message
thus carries two separate correlation tokens and participates in two overlapping correl ated
message exchanges.

WS-BPEL addresses correlation scenarios by providing a declarative mechanism to specify
correlated groups of operations within a process instance. A set of correlation tokensis defined
as a set of properties shared by all messages in the correlated group. Such a set of propertiesis
called a correlation set.

<correl ati onSet s>?
<correl ati onSet nanme="NCNane" properties="QNanme-list" />+
</correl ati onSet s>

A <correl ati onSet > can be declared within a process or scope element in a manner that is
analogous to a variable declaration. [SA00044] The name of a<correl ati onSet > MUST be
unique among the names of all <corr el at i onSet > defined within the same immediately
enclosing scope. Thisrequirement MUST be statically enforced. Accessto a<correl ati onSet >
follows common lexical scoping rules.

A process <correl ati onSet > isin an uninitiated state at the beginning of a process. A scope's
<correl ati onSet > isin an uninitiated state at the start of the scope to which it belongs. Note
that scopes may start and complete their behavior more than once in the lifetime of the process
instance if they are contained in repeatable constructs or event handlers. In this case, the
<correl at i onSet > initiation semantics applies to each instance of the scope.

A <correl ati onSet > resembles alate-bound constant rather than a variable. The binding of
valuesto a<correl ati onSet > istriggered by a specially marked send or receive message
operation. A <corr el ati onSet > can be initiated only once during the lifetime of the scope to
which it belongs. Once initiated, the <cor r el ati onSet > MUST retain its values, regardless of
any variable updates. Thus, aprocess <corr el at i onSet > can be initiated at most once during
the lifetime of the process instance. Its values, once initiated, can be thought of as an identity of

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 75 of 264

the business process instance. A scope' s<corr el ati onSet > instance is available for binding
each time the corresponding scope starts.

In multiparty business conversations, each participant process in a correlated message exchange
acts either as the originator or as afollower of the exchange. The originator process sends the
first message (as part of an operation invocation) that starts the conversation, and therefore
defines the values of the propertiesin the <cor r el at i onSet > that tag the conversation. All other
participants are followers that bind their <cor r el at i onSet >’s in the conversation by receiving
an incoming message that provides the values of the propertiesin the <corr el at i onSet >. Both
originator and followers mark the first activity in their respective groups as the activity that
initiatesthe <correl at i onSet >.

9.2. Declaring and Using Correlation Sets

Correlation can be used on every messaging activity (<r ecei ve>, <r epl y>, <onMessage>,
<onEvent >, and <i nvoke>). WS-BPEL does not assume the use of any sophisticated
conversational transport protocols for messaging. In cases where such protocols are used, the
explicit use of correlation in WS-BPEL can be reduced to those activities that establish the
conversational connections. These protocol mechanisms MAY be used implicitly with or without
any explicit use of correlation.

[SA00045] Propertiesused ina<corr el ati onSet > MUST be defined using XML Schema
simple types. Thisrestriction MUST be statically enforced. Each <corr el ati onSet > isanamed
group of properties that, taken together, serve to identify a conversation. A given message can
carry information that matches or initiates one or more correlation sets.

The correlation set specifications are used in <i nvoke>, <r ecei ve>, and <r epl y> activities (see
sections 10.3. Invoking Web Service Operations and 10.4. Providing Web Service Operations —
Receive and Reply); in the <onMessage> branches of <pi ck> activities, and in the <onEvent >
variant of <event Handl er s> (see sections 11.5. Pick and 12.5.1. Message Events). These
<correl at i on> specifications identify the correlation sets by name and are used to indicate
which correlation sets (i.e., the corresponding property sets) occur in the messages being sent
and received. The initiate attribute on a<corr el at i on> specification is used to indicate whether
the correlation set is being initiated.

After acorrelation set isinitiated, the values of the properties for a correlation set must be
identical for al the messagesin all the operations that carry the correlation set and occur within
the corresponding scope until its completion. This correlation consistency constraint MUST be
observed in all casesof i ni ti at e values. Thelegal values of thei ni ti at e attribute are:
"yes","join","no". Thedefault value of thei ni ti at e attributeis"no".

e Whentheinitiate atributeissetto"yes", therelated activity MUST attempt to
initiate the correlation set.
o If the correlation set is aready initiated, the standard fault
bpel : correl ati onVi ol ati on MUST be thrown.
e Whentheinitiate atributeissetto"j oi n", the related activity MUST attempt to
initiate the correlation set, if the correlation set is not yet initiated.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 76 of 264

o If the correlation set is already initiated and the correlation consistency constraint

isviolated, the standard fault bpel : correl ati onVi ol ati on MUST be thrown.
e Whentheinitiate atributeisset to"no" orisnot explicitly set, the related activity
MUST NOT attempt to initiate the correlation set.

o If the correlation set has not been previoudly initiated, the standard fault
bpel : correl ationVi ol ati on MUST be thrown.

o If the correlation set is already initiated and the correlation consistency constraint
isviolated, the standard fault bpel : correl ati onVi ol ati on MUST be thrown.

The bullets above describe the correlation set Initiation Constraint. If multiple correlation sets
are used in an outbound message activity (e.g., <i nvoke>), both initiation constraint and
consistency constraints MUST be observed for all correlation sets used. If multiple correlation
sets are used in an inbound message activity (IMA) (e.g. <r ecei ve>), then theinitiation
constraint MUST be observed for al correlation sets used. If any one of the correlation sets does
not follow the constraints above, the standard fault bpel : correl ati onVi ol ati on MUST be
thrown.

When multiple correlation sets are used in an IMA withi ni ti at e="no", amessage MUST
match all such correlation sets for that message to be delivered to the activity in the given
process instance. When correlation set in a message does not match an already initiated
correlation set in the process instance or if the correlation set is not initiated, the message MUST
not be delivered to an IMA. Therefore, the correlation set consistency constraint checking is not
applicable for IMA.

If an inbound Web service request message arrives and both (1) no running process instance can
be identified by a message correlation set mechanism and (2) all inbound message activities
referencing the Web service operation have the cr eat el nst ance attribute set to "no" are true
then this scenario is out of scope of this specification because there is no process instance that
would be able to handleit.

When abpel : correl ationVi ol ati on iSthrown by an <i nvoke> activity because of aviolation
on the response of a request/response operation, the response MUST be received before the

bpel : correl ationVi ol ati on isthrown. Inal other cases of bpel : correl ati onVi ol ati on,
the message that causes the fault MUST NOT be sent or received.

Observe that in order to retrieve correlation values from a message, a processor MUST find a
matching <vpr op: propert yAl i as> and apply it to the message. A <vpr op: propertyAl i as> IS
considered matching with a message if:

1. the messageType attribute value used in <vpr op: pr oper t yAl i as> definition matches
the QName of the WSDL message type associated with the message;

or
2. the message is associated with a WSDL message type where the message contains a
single part defined by an element and the element attribute value used in
wsbpel-v2.0-0S 11 April 2007

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 77 of 264

<vpr op: propert yAl i as> definition matches the QName of the element used to
define the WSDL part.

This matching <vpr op: propert yAl i as> constraint MUST be statically enforced. If both a
messageType and element based <vpr op: pr opert yAl i as> match the message, then the
messageType based <vpr op: propert yAl i as> MUST take priority. A type based

<vpr op: propertyAl i as>ishever considered for retrieving correlation values. These matching
rules apply only to retrieving correlation values and have no effect on selecting a

<vpr op: propert yAl i as> for use in afrom-spec, to-spec, or bpel : get Vari abl eProperty.

In the case in which the application of the <vpr op: propertyAl i as> resultsin aresponse that
contains anything other than exactly one information item and/or a collection of Character
Information Itemsthen abpel : sel ecti onFai | ur e fault MUST be thrown.

In the case of <i nvoke>, when the operation invoked is a request/response operation, a pattern
attribute on the <cor r el at i on> specification is used to indicate whether the correlation applies
to the outbound message (“r equest "), the inbound message (“r esponse™), or both (“r equest -
response”). [SA00046] The pat t er n attribute used in <i nvoke> isrequired for request-
response operations, and disallowed when a one-way operation isinvoked. Any violation of this
rule MUST be detected during static analysis. In the case of <i nvoke>, when the operation
invoked is an one-way operation, or in the case of <r epl y>, the usage of correlation sets with

i nitiate="no" isfor message validation purposes only. With this, a business process can
ensure that the message to be sent carries the expected correlation tokens.

<correl ati ons>
<correl ati on set="NCNane"
initiate="yes|join|no"?
pattern="request | response| request -response"? />+
</correl ati ons>

Following is an extended example of correlation. It begins by defining four message properties:
custonmer | D, order Nunber, vendorlDandinvoi ceNunber . All of these properties are
defined as part of the" ht t p: / / exanpl e. com suppl yCorr el ati on" namespace defined by the
document:

<wsdl : definitions nanme="properties"
t ar get Nanespace="htt p: // exanpl e. com suppl yCorrel ati on"
xm ns: tns="http://exanpl e. conf suppl yCorrel ati on" ...>

<l-- define correlation properties -->

<vprop: property nane="custoner| D' type="xsd:string" />
<vprop: property name="order Nunber" type="xsd:int" />
<vprop: property name="vendor| D' type="xsd:string" />
<vprop: property name="invoi ceNunber" type="xsd:int" />

</ wsdl : definitions>

These properties are names with XML Schema simple types. They are abstract in the sense that
their occurrence in variables needs to be separately specified (see section 7. Variable Properties).
The example continues by defining purchase order and invoice messages and by using the

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 78 of 264

concept of aliasing to map the abstract properties to fields within the message data identified by
selection

<wsdl : definitions nane="correl at edMessages"
t ar get Namespace="htt p: / / exanpl e. com suppl yMessages"
xm ns:tns="http://exanpl e. com suppl yMessages"
xm ns: cor="http://exanpl e. conl suppl yCorrel ati on"

xm ns: po="http://exanpl e. conl po. xsd" ...>

<wsdl : i nport nanespace="http://exanpl e. coni suppl yCorrel ati on"
[ocation="..." />

<l-- define schema types for PO and invoice information -->

<wsdl : types>
<xsd: schena t arget Nanespace="http://exanpl e. conl po. xsd" >
<xsd: conpl exType name="Pur chaseO der" >
<xsd: el enent name="Cl D' type="xsd:string" />
<xsd: el enent nanme="order" type="xsd:int" />

</ xsd: conpl exType>

<xsd: conpl exType nanme="Pur chaseOr der Response" >
<xsd: el enent name="Cl D' type="xsd:string" />
<xsd: el enent nanme="order" type="xsd:int" />
<xsd: el enent name="VID"' type="xsd:string" />
<xsd: el emrent name="i nvNum' type="xsd:int" />

</ xsd: conpl exType>

<xsd: conpl exType name="Pur chaseO der Rej ect Type" >
<xsd: el enent name="Cl D' type="xsd:string" />
<xsd: el ement name="order" type="xsd:int" />
<xsd: el ement nane="reason" type="xsd:string" />

</ xsd: conpl exType>

<xsd: conpl exType nanme="Invoi ceType" >
<xsd: el emrent name="VID' type="xsd:string" />
<xsd: el ement nane="i nvNunm' type="xsd:int" />

</ xsd: conpl exType>

<xsd: el enent nane="Pur chaseO der Rej ect "
t ype="po: Pur chaseOr der Rej ect Type" />

<xsd: el ement nanme="I|nvoi ce" type="po:invoiceType" />

</ xsd: schema>
</ wsdl : t ypes>

<wsdl : nressage nane="POwvkssage" >
<wsdl : part name="PO' type="po: PurchaseOrder" />
</ wsdl : nressage>
<wsdl : mressage nanme="POResponse" >
<wsdl : part nanme="RSP" type="po: PurchaseO der Response" />
</ wsdl : nessage>
<wsdl : message name="PCRej ect" >
<wsdl : part name="RICT" el ement ="po: PurchaseOr der Rej ect" />
</ wsdl : nessage>
<wsdl : nessage nanme="I|nvMessage" >
<wsdl : part nanme="I1VC"' el enent =“po:lnvoice " />
</ wsdl : nressage>

<vprop: propertyAl i as propertyName="cor: custoner| D'
nessageType="t ns: POVessage" part="PO'>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 79 of 264

<vprop: quer y>Cl D</ vpr op: quer y>

</ vprop: propertyAl i as>

<vprop: propertyAlias propertyNanme="cor: order Nunber"
nmessageType="t ns: POVessage" part="PO'>
<vprop: quer y>Or der </ vpr op: query>

</ vprop: propertyAlias>

<vprop: propertyAlias propertyNanme="cor: custonerl| D"
messageType="t ns: POResponse" part ="RSP">
<vpr op: quer y>Cl D</ vpr op: quer y>

</ vprop: propertyAlias>

<vprop: propertyAlias propertyNanme="cor: order Nunber"
nessageType="t ns: POResponse" part ="RSP">
<vprop: quer y>Or der </ vpr op: quer y>

</ vprop: propertyAl i as>

<vprop: propertyAlias propertyNanme="cor:vendor| D'
nmessageType="t ns: POResponse" part="RSP">
<vprop: query>VI D</ vpr op: query>

</ vprop: propertyAl i as>

<vprop: propertyAlias propertyNanme="cor:invoi ceNunmber"
messageType="t ns: POResponse" part="RSP">
<vprop: quer y>l nvNunx/ vpr op: quer y>

</ vprop: propertyAl i as>

<vprop: propertyAlias propertyName="cor:vendor| D'
messageType="tns: | nvMessage" part="1VC'>
<vprop: quer y>VI D</ vpr op: quer y>

</ vprop: propertyAlias>

<vprop: propertyAlias propertyNanme="cor:invoi ceNunmber"
messageType="tns: | nvMessage" part="1VC'>
<vprop: quer y>l nvNunx/ vpr op: quer y>

</ vprop: propertyAlias>

</ wsdl : definitions>
Finally, the por t Type used is defined, in a separate WSDL document.

<wsdl : definitions nane="purchasi ngPort Type"
t ar get Namespace="ht t p: / / exanpl e. com pur chasi ng"
xm ns: smeg="htt p:// exanpl e. com suppl yMessages"
xm ns: wsdl ="htt p://schenmas. xm soap. or g/ wsdl /" >

<wsdl : i nport nanespace="http://exanpl e. conl suppl yMessages"
location="..." />

<wsdl : port Type nane="Pur chasi ngPT" >
<wsdl : operati on name="Purchase">
<wsdl : i nput nmessage="snsg: POVessage" />
<wsdl : out put nmessage="snsg: POResponse" />
<wsdl : fault nane="tns: Rej ect PO' nessage="snmsg: PORej ect "
</ wsdl : operati on>
<wsdl : operati on name="PurchaseRequest" >
<wsdl : i nput nmessage="snsg: POVessage" />
</ wsdl : oper ati on>
</ wsdl : port Type>
<wsdl : port Type nane="Buyer PT" >
<wsdl : operati on name="PurchaseResponse" >
<wsdl : i nput nmessage="snsg: POResponse" />
</ wsdl : oper ati on>
<wsdl : operati on name="PurchaseRej ect">

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

/>

11 April 2007
Page 80 of 264

<wsdl : i nput nessage="snsg: PORej ect" />
</ wsdl : operati on>
</ wsdl : port Type>

</ wsdl : definitions>

Both the properties and their mapping to purchase order and invoice messages will be used in the
following correlation examples.

<correl ationSets xm ns:cor="http://exanpl e.com suppl yCorrel ati on">

<l-- Order nunbers are particular to a custoner,
this set is carried in application data -->
<correl ati onSet name="PurchaseOrder"
properties="cor:custonerl D cor:order Nunber" />

<l-- lnvoice nunbers are particular to a vendor
this set is carried in application data -->

<correl ati onSet name="Invoi ce"
properties="cor:vendorl D cor:invoi ceNunber" />

</correl ati onSet s>

A message can carry the tokens of one or more correlation sets. The first example shows an
interaction in which a purchase order isreceived in a one-way inbound request and a
confirmation including an invoice is sent in the one-way response. The Pur chaseOr der

<correl ati onSet > isused in both activities so that the one-way response is validated against
the correlation set to correlate with the request at the buyer. The <r ecei ve> activity initiates the
Pur chaseOr der <correl ati onSet >. The buyer istherefore the leader and the receiving
business processis afollower for this<corr el at i onSet >. The <i nvoke> activity sending the
one-way response also initiatesanew <corr el ati onSet > called | nvoi ce. The business process
isthe leader of this correlated exchange and the buyer is afollower. The response message is
thus a part of two separate conversations, and forms the bridge between them.

In the following, the prefix SP: represents the namespace " ht t p: / / exanpl e. coml pur chasi ng".

<recei ve partnerLink="Buyer" portType="SP: Purchasi ngPT"
oper ati on="Pur chaseRequest" vari abl e="PO'>

<correl ati ons>
<correl ation set="PurchaseOrder" initiate="yes" />
</correl ati ons>
</receive>

<i nvoke partnerLi nk="Buyer" port Type="SP: Buyer PT"
oper ati on="Pur chaseResponse” i nput Vari abl e=" POResponse" >

<correl ati ons>
<correlation set="PurchaseOrder" initiate="no" />
<correl ation set="lnvoice" initiate="yes" />
</correl ati ons>
</ i nvoke>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 81 of 264

Alternatively, the response might have been aregection (such as an "out-of-stock™ message),
which in this case the conversation correlated by the <cor r el at i onSet > Pur chaseOr der does
not trigger a new conversation correlated with 1 nvoi ce. The pat t er n attribute is not used, since
the operation is one-way.

<i nvoke partnerLi nk="Buyer" port Type="SP: Buyer PT"
oper ati on="PurchaseRej ect" i nputVari abl e="PORej ect" >

<correl ati ons>
<correl ation set="PurchaseOrder" initiate="no" />
</correl ati ons>
</i nvoke>

From the perspective of the buyer's business process, the correlation sets are defined in an one-
way invoke activity used for sending the purchase order and in a pick activity used for receiving
the purchase order response or rejection message, respectively.

<i nvoke partnerLink="Seller" portType="SP: Purchasi ngPT"
oper ati on="Pur chaseRequest" vari abl e="PO'>

<correl ati ons>
<correl ation set="PurchaseOrder" initiate="yes" />
</correl ati ons>

</i nvoke>
<pi ck>
<onMessage partnerLink="Seller" portType="SP: Buyer PT"
oper ati on="Pur chaseResponse" vari abl e=" POResponse" >
<correl ati ons>
<correl ation set="PurchaseOrder" initiate="no" />
<correlation set="lnvoice" initiate="yes" />
</correl ati ons>
<l-- handl e the response nessage -->
</ onMessage>
<onMessage partnerLink="Seller" portType="SP: Buyer PT"
oper ati on="Pur chaseRej ect" vari abl e="PORej ect ">
<correl ati ons>
<correl ation set="PurchaseOrder" initiate="no" />
</correl ati ons>
<l-- handle the reject nessage -->
</ onMessage>
</ pi ck>

Alternatively, if the request-response purchasing operation is used in the buyer's business process,
the correlation sets are specified for the request and response messages of the invoke activity,
respectively. The PO regjection from the seller is sent via a fault message.

<i nvoke partnerLink="Seller" portType="SP: Purchasi ngPT"
oper ati on="Pur chase" i nputVari abl e="sendPO'
out put Vari abl e="get Response" >

<correl ati ons>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 82 of 264

<correl ation set="PurchaseOrder" initiate="yes"
pattern="request" />
<correlation set="lnvoice" initiate="yes" pattern="response" />
</correl ati ons>

<catch faul t Nane="SP: Rej ect PO' faultVari abl e="PORej ect "
faul t MessageType="snsg: PORej ect " >

<!-- handle the fault -->
</ cat ch>
</i nvoke>

An <i nvoke> can consist of two messages. an outgoing request message and an incoming reply
message. The <corr el at i onSet >S applicable to each message must be separately considered,
because they can be different. In this case the Pur chaseOr der correlation applies to the outgoing
request that initiatesit, whilethe | nvoi ce correlation applies to the incoming reply and is
initiated by the reply. Because the Pur chaseOr der correlation isinitiated by an outgoing
message, the buyer isthe leader of that correlation. However, the buyer is afollower of the

I nvoi ce correlation because the values of the correlation propertiesfor | nvoi ce areinitiated by
the reply message of the seller received by the buyer.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 83 of 264

10. Basic Activities

WS-BPEL activities perform the process logic. Activities are divided into 2 classes: basic and
structured. Basic activities are those which describe elemental steps of the process behavior.
Structured activities encode control-flow logic, and therefore can contain other basic and/or
structured activities recursively. Structured activities are described in section 11. Structured
Activities.

10.1. Standard Attributes for All Activities

Each activity has two optional standard attributes: the nane of the activity and

suppr essJoi nFai | ur e (see section 5.2. The Structure of a Business Process for the definition)
indicating whether ajoin fault should be suppressed if it occurs. WS-BPEL language
extensibility allows for other namespace-qualified attributes to be added. The nane attributeis
used to provide machine-processable names for activities. WS-BPEL only makes programmatic
use of the names of scope activities. See section 12.4.3. Invoking a Compensation Handler for
unigueness constraints of the name attribute. For afull discussion of the suppr essJoi nFai | ure
attribute, see section 11.6. Parallel and Control Dependencies Processing — Flow.

name=" NCNane" ?
suppr essJoi nFai | ure="yes| no"?

10.2. Standard Elements for All Activities

Each activity has optional containers <sour ces> and <t ar get s>, which contain standard
elements <sour ce> and <t ar get > respectively. WS-BPEL language extensibility allows these to
be extended by adding namespace-qualified elements. These, source and target, elements are
used to establish synchronization relationships through links (see section 11.6. Parallel and
Control Dependencies Processing — Flow).

<t ar get s>?
<j ol nCondi ti on expressi onLanguage="anyURI " ?>?
bool - expr
</j oi nCondi ti on>
<target |inkNane="NCNane" />+
</target s>

<sour ces>?
<sour ce | i nkName=" NCNane" >+
<transitionCondition expressi onLanguage="anyURI " ?>?
bool - expr
</transitionCondition>
</ sour ce>
</ sour ces>

10.3. Invoking Web Service Operations — Invoke

The <i nvoke> activity is used to call Web Services offered by service providers (see section
6. Partner Link Types, Partner Links, and Endpoint References). The typical use isinvoking an

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 84 of 264

operation on a service, which is considered a basic activity. The <i nvoke> activity can enclose
other activities, inlined in compensation handler and fault handlers, as detailed below.
Operations can be regquest-response or one-way operations, corresponding to WSDL 1.1
operation definitions. WS-BPEL uses the same basic syntax for both, with some additional
options for the request-response case.

The syntax of the <i nvoke> activity is summarized below.

<i nvoke part nerLi nk="NCNane"
port Type="(QNane" ?
oper at i on="NCNane"
i nput Vari abl e=" BPELVar i abl eNane" ?
out put Vari abl e="BPELVar i abl eNange" ?
standard-attri butes>
st andar d- el ement s
<correl ati ons>?
<correl ation set="NCNane" initiate="yes|join|no"?
pattern="request | response|request-response"? />+
</correl ati ons>
<catch faul t Name="Q\ane" ?
faul t Vari abl e="BPELVar i abl eNane" ?
faul t MessageType=" QNane" ?
faul t El enent =" QNane" ?2>*
activity
</ cat ch>
<cat chAl | >?
activity
</catchAl | >
<conpensat i onHandl er >?
activity
</ conpensat i onHandl er >
<t oPart s>?
<toPart part="NCNane" fronmVariabl e="BPELVari abl eNane" />+
</toPart s>
<fronParts>?
<fronPart part="NCNane" toVari abl e="BPELVari abl eNanme" / >+
</fronParts>
</ i nvoke>

One-way invocation requires only thei nput Vari abl e (or its equivalent <t oPar t > elements)
since aresponse is not expected as part of the operation (see section 10.4. Providing Web Service
Operations — Receive and Reply). Request-response invocation requires both ani nput Vari abl e
(or its equivalent <t oPar t > elements) and an out put Vari abl e (or its equivalent <f r onrPar t >
elements). If aWSDL message definition does not contain any parts, then the associated
attributes, i nput Vari abl e or out put Vari abl e, MAY be omitted, [SA00047] and the

<f ronPart s> Or <t oPar t s> construct MUST be omitted. Zero or morecorrel ati onSet s can
be specified to correlate the business process instance with a stateful service at the partner’s side
(see section 9. Correlation).

If an <i nvoke> activity isused on apart ner Li nk whose par t ner Rol e EPR is not initialized

then abpel : uni niti al i zedPart ner Rol e fault MUST be thrown.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 85 of 264

In the case of arequest-response invocation, the operation might return aWSDL fault message.
Thisresultsin afault identified in WS-BPEL by a QName formed by the target namespace of the
corresponding port type and the fault name. To ensure consistent fault identification, this
uniform naming mechanism MUST be followed even though it does not match the WSDL’s
fault-naming model. WSDL 1.1 does not require fault names to be unique within the namespace
where the service operation is defined. Therefore, in WSDL 1.1 it is necessary to specify a port
type name, an operation name, and the fault name to uniquely identify afault. Using WSDL 1.1's
scheme would limit the ability to use fault-identification and handling mechanisms to deal with
invocation faults. In WSDL it is possible to define an operation that declares more than one fault
using the same data type. Certain WSDL bindings do not provide enough information for the
WS-BPEL processor to determine which fault was intended. In this case, the WS-BPEL
processor MUST select the fault that:

e Matches the transmitted data and
e Occursfirstinlexical order in the operation definition.

A result of this requirement is that a process, which uses the <cat ch> construct based on
f aul t Nane and deals with such an operation definition, may have different behavior when
deployed against different bindings.

Faultsin WS-BPEL are defined only in terms of a fault name and optional fault data. This means,
for example, that if afault is generated from a messaging activity (as opposed to the <t hr ows>
activity (see section 10.6. Signaling Internal Faults) or a system fault), there is no need to keep
track of the port type or operation the message activity was using when the fault was received. In
consequence, al faults sharing acommon name, defined in the same namespace and sharing the
same data type (or lack thereof) are indistinguishable in WS-BPEL . Faults of a particular name
may be associated with multiple variable types. The <cat ch> construct in WS-BPEL facilitates
differentiation of faults with the same name, but with different message or variable types. For
details regarding fault handling and <cat ch>, see section 12.5. Fault Handlers.

An <i nvoke> activity can be associated with another activity that acts as its compensation action.
Thus, a<conpensat i onHandl er > can be invoked either explicitly, or by the default

<conpensat i onHandl er > of the enclosing scope (see sections 12. Scopes and 12.3. Error
Handling in Business Processes).

Semantically, the specification of local fault handlers and/or alocal compensation handler is
equivalent to the presence of an implicit <scope> activity immediately enclosing the <i nvoke>
providing these handlers. The implicit <scope> activity assumes the name of the <i nvoke>
activity it encloses, itssuppr essJoi nFai | ur e attribute, aswell asits <sour ces> and

<t ar get s>. For example, the following:

<i nvoke name="purchase"
suppr essJoi nFai | ure="yes"
partnerLi nk="Sel | er"
port Type="SP: Pur chasi ng"
oper at i on="Pur chase"
i nput Vari abl e="sendPCO'
out put Vari abl e="get Response" >
<t arget s>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 86 of 264

<target |inkName="IinkA" />
</target s>
<sour ces>
<source |inkName="IinkB" />
</ sour ces>
<catch faul t Nane="SP: rejectPO'>...</catch>
<conpensat i onHandl er >
<i nvoke partnerLink="Seller"
port Type="SP: Pur chasi ng"
oper ati on="Cancel Pur chase"
i nput Var i abl e="get Response"
out put Vari abl e="get Confi rnmati on" />
</ conpensat i onHandl er >
</i nvoke>

isequivalent to:

<scope nane="pur chase" suppressJoi nFail ure="yes">
<t arget s>
<target |inkName="IinkA" />
</target s>
<sour ces>
<sour ce |inkNane="IlinkB" />
</ sour ces>
<f aul t Handl er s>
<catch faul t Nane="SP: reject PO'>...</catch>
</ faul t Handl er s>
<conpensat i onHandl er >
<i nvoke partnerLink="Seller"
port Type="SP: Pur chasi ng"
oper at i on="Cancel Pur chase"
i nput Var i abl e="get Response"
out put Vari abl e="get Confi rmati on" />
</ conpensat i onHandl| er >

<i nvoke name="purchase"
par t ner Li nk="Sel | er"
port Type="SP: Pur chasi ng"
oper ati on="Pur chase"
i nput Var i abl e="sendPCO'
out put Vari abl e="get Response” />
</ scope>

In this example, the call to the Pur chase operation can be compensated, if necessary, by acall to
the Cancel Pur chase operation (see section 12.4. Compensation Handlers for details).

[SA00048] When the optional i nput Vari abl e and out put Var i abl e attributes are being used in
an <i nvoke> activity, the variables referenced by i nput Vari abl e and out put Var i abl e MUST
be messageType variables whose QName matches the QName of the input and output message
type used in the operation, respectively, except as follows: if the WSDL operation used in an

<i nvoke> activity uses a message containing exactly one part which itself is defined using an
element, then avariable of the same element type as used to define the part MAY be referenced
by thei nput Vari abl e and out put Vari abl e attributes respectively. The result of using a
variablein the previously defined circumstance MUST be the equivalent of declaring an

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 87 of 264

anonymous temporary WSDL message variable based on the associated WSDL message type.
The copying of the element data between the anonymous temporary WSDL message variable
and the element variable acts as asingle virtual <assi gn> with one <copy> operation whose
keepSr cEl enent Nane attributeis set to "yes" . The virtua <assi gn> MUST follow the same
semantics and use the same faults as area <assi gn>. Inthe case of ani nput Vari abl e, the
value of the variable referenced by the attribute will be used to set the value of the part in the
anonymous temporary WSDL message variable. In the case of an out put Vari abl e, the value of
the received part in the temporary WSDL message variable will be used to set the value of the
variable referenced by the attribute.

10.3.1. Mapping WSDL Message Parts

The <t oPar t s> element provides an alternative to explicitly creating multi-part WSDL messages
from the contents of WS-BPEL variables. By using the <t oPar t s> element, an anonymous
temporary WSDL variable is declared based on the type specified by the relevant WSDL
operation's input message. The <t oPar t > elements, as a group, act as the single virtual <assi gn>,
with each <t oPar t > acting as a <copy>. At most one <t oPar t > exists for each part in the WSDL
message definition. Each <copy> operation copies data from the variable indicated in the
fronvari abl e attribute into the part of the anonymous temporary WSDL variable referenced in
the par t attribute of the <t oPar t > element (see section 8.4. Assignment). If the <copy>
operation is copying an element variable to an element part then the keepSr cEl enent Narre
option for the operation is set to "yes" . The virtual <assi gn> MUST follow the same semantics
and use the same faults as areal <assi gn>. [SA00050] When <t oPar t s> is present, it isrequired
to have a <t oPar t > for every part in the WSDL message definition; the order in which parts are
specified isirrelevant. Parts not explicitly represented by <t oPar t > elements would result in
uninitialized parts in the target anonymous WSDL variable used by the <i nvoke> or <r epl y>
activity. Such processes with missing <t oPar t > elements MUST be rejected during static
anaysis. [SA00051] Thei nput Vari abl e attribute MUST NOT be used on an <i nvoke> activity
that contains <t oPar t > elements.

The <fronPart > element issimilar to the <t oPar t > element. The <f r onPar t > element is used
to retrieve data from an incoming multi-part WSDL message and place it into individual WS-
BPEL variables. When aWSDL message is received on an <i nvoke> activity that uses

<f r onPar t > elements, the message is placed in an anonymous temporary WSDL variable of the
type specified by the relevant WSDL operation’s output message. The <f r onPar t > elements, as
agroup, act asasingle virtual <assi gn>, with each <fronPart > acting asa <copy>. Each
<copy> operation copies the data at the part of the anonymous temporary WSDL variable
referenced in the par t attribute of the <f r onPar t > into the variable indicated in thet ovari abl e
attribute. If the <copy> operation is copying an element part to an element variable then the
keepSr cEl ement Narre option for the operation isset to "yes" . Thevirtual <assi gn> MUST
follow the same semantics and generate the same faults as areal <assi gn> (See section

8.4. Assignment). When a <f r onPar t > is present in an <i nvoke>, it isnot required to have a

<f ronPar t > for every part in the WSDL message definition, nor is the order in which parts are
specified relevant. Parts not explicitly represented by <f r onPar t > elements are not copied from
the anonymous WSDL variableto the variable. [SA00052] The out put Vari abl e attribute
MUST NOT be used on an <i nvoke> activity that contains a<f r onPar t s> element.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 88 of 264

The choiceto usethei nput Vari abl e form instead of the <t oPar t s> form, or vice versa, creates
no restriction on which out put Vari abl e or <f r onPar t s> formisused. Similarly, the choice to
use the out put Vari abl e form instead of the <f r onPar t s> form, or vice versa, creates no
restriction on which i nput Vari abl e or <t oPar t s> form is used.

The virtual <assi gn> created as a consequence of the <f r onPar t > oOr <t oPar t > elements occurs
as part of the scope of the <i nvoke> activity and therefore any fault that is thrown are caught by
an <i nvoke>'sinline fault handler when defined. The <t oPart > or <f r onPar t > elements MAY
be used with WSDL messages that only have a single part.

See section 9. Correlation for an explanation of the correlation semantics.

10.4. Providing Web Service Operations — Receive and Reply

A business process provides services to its partners through inbound message activities (IMA -
<r ecei ve>, <pi ck> and <onEvent >) and corresponding <r epl y> activities. This section
describes the details of <r ecei ve> and <r epl y> activities (see sections 11.5. Selective Event
Processing — Pick and 12.7.1. Message Eventsfor <onEvent >).

A <recei ve> activity specifiesthe par t ner Li nk that contains the nyRol e used to receive
messages, the por t Type (optional) and oper at i on that it expects the partner to invoke. The
value of the par t ner Rol e in the par t ner Li nk iSnot used when processing a<r ecei ve> activity.
In addition, <r ecei ve> specifiesavariable, using thevari abl e attribute, that isto be used to
receive the message data. An aternative to thevari abl e attribute is the use of <f r onrPar t >
elements. The syntax and semantics of the <f r onPar t > elements as used on the <r ecei ve>
activity are the same as specified for the <i nvoke> activity in section 10.3.1. Mapping WSDL
Message Parts. [SA00055] Including the restriction that if <f r onPar t > elements are used on a
<recei ve> activity thenthevari abl e attribute MUST NOT be used on the same activity. If a
WSDL message definition does not contain any parts, then the associated var i abl e attribute
MAY be omitted, [SA00047] and the <f r onPar t s> construct MUST be omitted. The syntax of
the <r ecei ve> activity is summarized below:

<recei ve partnerLi nk="NCNang"
port Type=" QNane" ?
oper at i on="NCNane"
vari abl e="BPELVar i abl eNane" ?
creat el nst ance="yes| no"?
nessageExchange="NCNane" ?
standard-attri butes>
st andar d- el ement s
<correl ati ons>?
<correlation set="NCNane" initiate="yes|join|no"? />+
</correl ati ons>
<fronmPart s>?
<fronPart part="NCNane" toVari abl e="BPELVari abl eNanme" / >+
</fronParts>
</receive>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 89 of 264

The <r ecei ve> activity playsarole in the lifecycle of abusiness process. The only way to
instantiate a business process in WS-BPEL isto annotate a <r ecei ve> activity (or a<pi ck>
activity) with the cr eat el nst ance attribute set to "yes" (see section 11.5. Selective Event
Processing — Pick for avariant). The default value of this attributeis"no". A start activity isa

<r ecei ve> Or <pi ck> activity that is annotated with acr eat el nst ance="yes" attribute, or an
<ext ensi onAct i vi t y> child element. In order for the <ext ensi onActi vi t y> child element to
qualify as a start activity, it MUST exhibit the behavior of receiving an inbound message.
[SA00056] Non-start activities except <scope>, <f | ow>, <sequence> Of <ext ensi onAct i vi ty>
activities MUST have a control dependency on a start activity (see section 12.5.2. Default
Compensation Order for the definition of a control dependency). If an <ext ensi onActi vity>
does not have a control dependency on a start activity then the <ext ensi onAct i vi t y> child
element MUST be a structured activity containing the start activity. This structured activity
MUST be consistent with the WS-BPEL process instantiation model, that is, it MUST not be a
repeatable activity. If an <ext ensi onAct i vi t y> child element isitself astart activity or contains
astart activity then the namespace of the <ext ensi onAct i vi t y> child element MUST be
declared with nust Under st and="yes" . For other semantic constraints, see section

5.3. Language Extensibility. The logical order of performing activitiesis determined by static
analysis. For an explanation of the messageExchange attribute, see the <r epl y> activity
description in section 10.4.1. Message Exchanges.

It is permissible to have multiple start activities. Aninitial start activity isthe start activity that
caused a particular process instance to be instantiated. As specified in section 12. Scopes, the
initial start activity MUST complete execution before any other start activities are allowed to
execute. This allows any inbound message used in start activities to create the process instance
since the order in which these messages arrive is unpredictable. [SA00057] If a process has
multiple start activities with correlation sets then all such activities MUST share at |east one
common correlation set and all common correlation sets defined on all the activities MUST have
the value of thei ni ti at e attribute be set to "j oi n" (see section 9. Correlation). Conforming
implementations MUST ensure that only one of the inbound messages that match a single
process instance actually instantiate the business process. (It will usually be the first one to
arrive, but thisisimplementation dependent) Other incoming messages in the concurrent initial
set MUST be delivered to the corresponding <r ecei ve> activitiesin the already created instance.

The following example is not allowed, since the <assi gn> activity is not a start activity:

<f | ow>
<l-- this exanple is illegal -->
<receive ... createlnstance="yes" />
<assign ... />

</fl ow>

The following exampleis allowed, since the <assi gn> activity will not be performed prior to or
simultaneously with the <r ecei ve> activity:

<f | ow>
<l i nks>
<l i nk name="RecvToAssi gn" />
</links>
<receive ... createlnstance="yes">
wsbpel-v2.0-0S 11 April 2007

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 90 of 264

<sour ces>
<source |inkNanme="RecvToAssign" />
</ sour ces>
</receive>
<assi gn>
<t ar get s>
<target |inkName="RecvToAssign" />
</target s>

</ assi gn>
</fl ow>

[SA00058] Ina<recei ve> or <r epl y> activity, the variable referenced by thevari abl e
attribute MUST be a messageType variable whose QName matches the QName of the input (for
<r ecei ve>) or output (for <r epl y>) message type used in the operation, except as follows: if the
WSDL operation uses a message containing exactly one part which itself is defined using an
element, then aWS-BPEL variable of the same element type as used to define the part MAY be
referenced by the vari abl e attribute of the <r ecei ve> or <r epl y> activity. The result of using a
WS-BPEL variable in the previously defined circumstance MUST be equivalent to declaring an
anonymous temporary WSDL message variable based on the associated WSDL message type.
The copying of the element data between the anonymous temporary WSDL message variable
and the element variable acts as asingle virtual <assi gn> with one <copy> operation whose
keepSr cEl enent Nane attributeis set to "yes". The virtua <assi gn> MUST follow the same
semantics and use the same faults as areal <assi gn>. In the case of a<r ecei ve> activity, the
incoming part’s value will be used to set the value of the variable referenced by thevari abl e
attribute. In the case of a <r epl y> activity the value of the variable referenced by thevari abl e
attribute will be used to set the value of the part in the anonymous temporary WSDL message
variable that is sent out. In the case of a<r epl y> sending afault, the same logic applies.

The <f ronPar t s> element in a<r ecei ve> activity is used as an aternative to indicate that the
data from areceived message isto be directly copied to WS-BPEL variables from a
corresponding anonymous WSDL message variable. Similarly, the <t oPar t s> element is used as
an alternative to have data from WS-BPEL variables directly copied into an anonymous WSDL
message used by the <r epl y> activity (see section 10.3.1. Mapping WSDL Message Parts for
rules on the use of these two elements).

A <recei ve> isablocking activity in that it will not complete until a matching message is
received by the processinstance. A business process instance MUST NOT simultaneously
enable two or more <r ecei ve> activities for the same par t ner Li nk, port Type, oper ati on and
correl ationSet () (including WS-BPEL processor-specific correlation). If during the
execution of a business process instance, two or more receive activity instances for the same
part ner Li nk, oper ati on and corr el ati onSet (S) are sSimultaneously enabled, then the standard
fault bpel : conflictingRecei ve MUST be thrown (note bpel : conf I i cti ngRecei ve differs
from bpel : confli cti ngRequest, see section 10.4.1. Message Exchanges). There may be
receive activity instances on an operation where the partnerLink and correlationSet(s) are
different, yet indistinguishable to a WS-BPEL processor at runtime. In these cases, a WS-BPEL
processor SHOULD throw abpel : conf i cti ngRecei ve fault. If abusiness process instance
simultaneously enables two or more IMAs for the same par t ner Li nk, port Type, oper at i on but
different corr el at i onSet (S), and the correlations of multiple of these activities match an

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 91 of 264

incoming request message, then the bpel : anbi guousRecei ve standard fault MUST be thrown
by all IMAswhose correlation set(s) match the incoming message. For the purpose of these
constraints, an <onMessage> clausein a<pi ck> and an <onEvent > event handler are equivalent
to a<recei ve> (see sections 11.5. Selective Event Processing — Pick and 12.7.1. Message
Events).

Race conditions may occur in a business process execution. Messages that target a particular
process instance may arrive before the corresponding <r ecei ve> activity is started. For
example, consider a process that receives a series of messagesin aloop where all the messages
use the same correlation. At runtime, the messages will arrive independent of the iterations of the
loop. The fact that the correlation is aready initiated, however, should enable the runtime engine
and messaging platform to recognize that these messages are correlated to the process instance,
and handle those messages appropriately. Another example is a process that may invoke a
remote service then initiate a correlation set for an expected callback message. For avariety of
reasons, the callback message may arrive before the corresponding <r ecei ve> activity is started.
The correlation data in the arriving message should enabl e the engine to recognize that the
message is targeted for this process instance. Process engines MAY employ different
mechanisms to handle such race conditions. This specification does not mandate any specific
mechanism. Details of message delivery mechanisms are outside of the scope of this
specification. However, aWS-BPEL processor should deliver messages to the process instance
according to the quality of service of the underlying message delivery and transport mechanisms.
For the purposes of handling race conditions, an <onMessage> clause in a<pi ck> and an
<onEvent > event handler are equivalent to areceive (see sections 11.5. Selective Event
Processing — Pick and 12.7.1. Message Events).

The <r epl y> activity is used to send a response to a request previously accepted through an
inbound message activity such asthe <r ecei ve> activity. These responses are only meaningful
for request-response interactions. A one-way “response” can be sent by invoking the
corresponding one-way operation on the partnerLink. A <r epl y> activity may specify a

vari abl e attribute that references the variable that contains the message data to be sent. If a
WSDL message definition does not contain any parts, then the associated var i abl e attribute
MAY be omitted, [SA00047] and the <t oPar t s> construct MUST be omitted. The syntax and
semantics of the <t oPar t > elements as used on the <r epl y> activity are the same as specified in
section 10.3.1. Mapping WSDL Message Parts for the <i nvoke> activity, [SA00059] including
the restriction that if <t oPar t > elements are used on a <r epl y> activity then thevari abl e
attribute MUST NOT be used on the same activity.

<reply partnerLink="NCNane"
port Type="QNane" ? oper ati on="NCNane"
vari abl e="BPELVar i abl eNane" ?
f aul t Name=" QNane" ?
nmessageExchange="NCNane" ?
standard-attri butes>
st andar d- el ement s
<correl ati ons>?
<correlation set="NCNane" initiate="yes|join|no"? />+
</correl ati ons>
<t oPart s>?
<toPart part="NCNane" fronVari abl e="BPELVari abl eNane" / >+
</toPart s>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 92 of 264

</reply>

The <r epl y> activity has two potential forms. First, in anormal response, the f aul t Nane
attribute is not used and the var i abl e attribute (or its equivalent <t oPar t > elements), when
present, will indicate a variable with the response message. Second, when the response indicates
afault, thef aul t Nane attribute is used and the var i abl e attribute (or its equivalent <t oPar t >
elements), when present, will indicate a variable for the corresponding fault. The f aul t Nane
attribute SHOULD refer to afault defined in the operation used in the <r epl y> activity and the
variable SHOUL D match the message type associated with the referenced fault as well (note: the
matching semantics here refer to points #1 and #2 in <cat ch> related matching rulesin section
12.5. Fault Handlers). WS-BPEL treats faults based on abstract WSDL 1.1 operation definitions.
Thislimits the ability of a WS-BPEL process to determine the information transmitted when
faults are returned over a SOAP binding (see section 10.3. Invoking Web Service Operations —
Invoke).

10.4.1. Message Exchanges

The optional nessageExchange attribute is used to disambiguate the relationship between
inbound message activities (IMA) and <r epl y> activities. The explicit use of nessageExchange
is needed only where the execution can result in multiple IMA-<r epl y> pairs (e.g. <r ecei ve>-
<r epl y> pair) on the same par t ner Li nk and oper at i on being executed simultaneously.
[SA00060] In these cases, the process definition MUST explicitly mark the pairing-up
relationship.

A <repl y> activity is associated with an IMA, such as, <r ecei ve>, <onMessage> and
<onEvent > based on the tuple par t ner Li nk, oper at i on, and mnessageExchange. [SA00061]
The name used in the optional messageExchange attribute MUST resolveto a
messageExchange declared in a scope (where the process is considered the root scope) which
enclosesthe <r epl y> activity and its corresponding IMA. This resolution follows the same
scoping rules as correlation set resolution.

An open IMA describes the state of a Web Service operation from the point that a request-
response IMA starts execution until an associated <r epl y> activity completes successfully. If a
<r epl y> activity faults, the IMA is still open and another <r epl y> activity MAY be attempted,
for example from afault handler. It isillegal to have multiple simultaneous open IMAS, with the
same par t ner Li nk, oper at i on and messageExchange tuple. A WS-BPEL processor MUST
throw abpel : conflicti ngRequest fault when aconflicting IMA begins execution. Itislegal
to use the same messageExchange in multiple simultaneously open IMAs as long as the
combination of part ner Li nk and oper at i on on the IMAs are all different from each other.
Note that bpel : confl i cti ngRequest issemanticaly different from

bpel : conflictingRecei ve, becauseit is possible to create the conf | i cti ngRequest by
consecutively receiving the same request on a specific par t ner Li nk, oper at i on and
messageExchange tuple, whileconf li cti ngRecei ve fault is not triggered (see section

10.4. Providing Web Service Operations — Receive and Reply abovefor confli cti ngRecei ve
semantics).

If a<repl y> activity cannot be associated with an open IMA by matching the tuple
part ner Li nk, oper at i on, and messageExchange then aWS-BPEL processor MUST throw a

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 93 of 264

bpel : mi ssi ngRequest fault on the <r epl y> activity. Since conflicting requests are rejected at
the time the IMA begins execution there cannot be more than one corresponding IMA at the time
a<repl y> activity is executed.

When the primary activity and the event handlers of a<scope> complete then all Web service
interactions dependent on partner links or message exchanges declared inside of the <scope>
need to be completed. An open IMA using a partner link or message exchange declared in a
completing or completed <scope> istermed as an orphaned IMA. Detection of orphaned IMAS
will cause abpel : i ssi ngRepl y fault to be thrown. Orphaned IMAs are defined and discussed
in further detail in section 12.2. Message Exchange Handling. Accordingly, if a process instance
completes with one or more open IMAs then abpel : i ssi ngRepl y fault MUST be thrown as
well.

If the nessageExchange attribute is not specified on an IMA or <r epl y> then the activity's
messageExchange is automatically associated with a default messageExchange with no name.
Default messageExchange's are implicitly declared by the <pr ocess> and the immediate child
scopes of <onEvent > and the parallel form of <f or Each>. Other occurrences of <scope>
activities do not provide a default messageExchange. Default messageExchange instances, just
like non-default messageExchange elements, are created each time the scope declaring the
default messageExchange is executed. For example each time an <onEvent > is executed (i.e.
when a new message arrives for processing) it creates a new default messageExchange instance
associated with each <onEvent > instance. This allows a request-response <onEvent > event
handler to receive messages in parallel without faulting or explicitly specifying a
messageExchange. Similarly it allows the use of <r ecei ve>-<r epl y> Or <onMessage>-<r epl y>

pairsin the parallel form of <f or Each> without the need to explicitly specify a
nmessageExchange.

10.5. Updating Variables and Partner Links — Assign

Variable update occurs through the <assi gn> activity, which is described in section
8.4. Assignment.

10.6. Signaling Internal Faults — Throw

The <t hr ow> activity is used when a business process needs to signal an internal fault explicitly.
A fault MUST be identified with a QName (see section 10.3. Invoking Web Service Operations).
The <t hr ow> activity provides the name for the fault, and can optionally provide data with
further information about the fault. A fault handler can use such data to handle the fault and to
populate any fault messages that need to be sent to other services.

WS-BPEL does not require fault names to be defined prior to their use in a<t hr ows> activity.
This provides alightweight mechanism to introduce business-process faults. A fault name
defined in a business process, a WSDL definition or aWS-BPEL standard fault can be directly
used, by using an appropriate QName, as the value of the f aul t Nane attribute and providing a
vari abl e with the fault data if required.

<t hrow faul t Name="QN\ane" faultVari abl e="BPELVari abl eNane" ?

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 94 of 264

standard-attri butes>
st andar d- el enent s
</ t hr ow>

A simple example of athrow activity that does not provide fault datais:

<t hrow xm ns: FLT="htt p: // exanpl e. coni f aul t s"
faul t Name="FLT: Qut O St ock" />

10.7. Delayed Execution — Wait

The <wai t > activity specifies adelay for a certain period of time or until a certain deadlineis
reached (see section 8.3. Expressions for the grammar of duration expressions and deadline
expressions). If the specified duration value in <f or > is zero or negative, or a specified deadline
in<unti| > has aready been reached or passed, then the <wai t > activity completes immediately.

<wai t standard-attributes>
st andar d- el enent s

(

<f or expressi onLanguage="anyURl " ?>dur ati on- expr</for>

<unti| expressionLanguage="anyURI " ?>deadl i ne- expr</until >

)

</ wai t >

A typical use of this activity isto invoke an operation at a certain time (in this example a
constant, but more typically an expression dependent on process state):

<sequence>
<wai t >
<unti | >'2002-12-24T18: 00+01: 00" </ unti| >
</ wai t >
<i nvoke partnerLi nk="Cal | Server" port Type="Aut onati cPhoneCal | "
oper ati on="Text ToSpeech" i nput Vari abl e="seasonal G eeti ng" />
</ sequence>

10.8. Doing Nothing — Empty

Thereis often aneed to use an activity that does nothing, for example when afault needs to be
caught and suppressed. The <enpt y> activity is used for this purpose. Another use of <enpt y> is
to provide a synchronization point in a<f | ows.

<enpty standard-attributes>
st andar d- el enent s

</ enpty>
10.9. Adding new Activity Types — ExtensionActivity

A WS-BPEL process definition can include new activities, which are not defined by this
specification, by placing them inside the <ext ensi onAct i vi t y> element. These activities are
known as extension activities. The contents of an <ext ensi onActi vi t y> element MUST be a

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 95 of 264

single element qualified with a namespace different from WS-BPEL namespace. That single
element MUST make available WS-BPEL 'sst andar d- att ri but es and st andar d- el enent s. If
the element contained within the <ext ensi onAct i vi t y> element is not recognized by the WS-
BPEL processor and is not subject to amust Under st and="yes" requirement from an extension
declaration then the unknown activity MUST be treated asiif it were an <enpt y> activity that has
the st andar d- at t ri but es and st andar d- el enent s of the unrecognized element; all its other
attributes and child elements are ignored. The st andar d- at t ri but es and st andar d- el enent s
MUST be treated as defined by this specification, whether the extension is understood or not.

Static analysisis performed by a WS-BPEL processor after it ignores the non-standard-attributes
and non-standard-elements of an unrecognized extension activity not subject to

must Under st and="yes" . It may detect violations of some WS-BPEL required semantics. For
example:

e Atleast one start activity MUST be present — if an <ext ensi onAct i vi t y> has a nested
start activity, then arequirement could be broken if non-standard child constructs of the
<ext ensi onAct i vi t y> areignored.

e Links MUST have exactly one source and target — if an <ext ensi onActi vi ty> hasa
nested activity that isthe source or target of alink that crossesthe
<ext ensi onAct i vi t y> boundary, then a requirement would be broken if non-standard
child constructs of the <ext ensi onAct i vi t y> are ignored.

An <ext ensi onActi vi ty> MAY be also a structured activity, that means it contains other
activities. If an <ext ensi onActi vi t y> allows anested activity, its corresponding extension
declaration SHOULD be subject to must Under st and="yes" .

<ext ensi onActi vity>
<anyEl enent QNane standard-attri but es>
st andar d- el ement s
</ anyEl ement QName>
</ ext ensi onActi vity>

10.10. Immediately Ending a Process — EXxit

The <exi t > activity is used to immediately end the business process instance. All currently
running activities MUST be ended immediately without involving any termination handling,
fault handling, or compensation behavior.

<exit standard-attributes>
st andar d- el enent s
</exit>

10.11. Propagating Faults — Rethrow

The <r et hr ow> activity is used in fault handlers to rethrow the fault they caught, i.e. the fault
name and, where present, the fault data of the original fault. It can be used only within afault
handler (<cat ch> and <cat chAl | >). Modifications to the fault data MUST be ignored by

<r et hr ow>. For example, if the logic in afault handler modifies the fault data and then call

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 96 of 264

<r et hr ow>, the original fault data would be rethrown and not the modified fault data. Similarly
if afault is caught using the shortcut that allows message type faults with one part defined using
an element to be caught by fault handlers looking for the same element type, then a <r et hr ow>
would rethrow the original message type data (see section 12.5. Fault Handlers).

<ret hrow standard-attri but es>
st andar d- el enent s
</ ret hr ow>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 97 of 264

11. Structured Activities

Structured activities prescribe the order in which a collection of activitiesis executed. They
describe how a business process is created; by composing the basic activities (see section

10. Basic Activities) it performsinto structures that express the control patterns, handling of
faults and external events, and coordination of message exchanges between process instances
involved in a business protocol.

WS-BPEL defines structured activities for various control-flow patterns:

e Sequentia control between activitiesis provided by <sequence>, <if>, <whil e>,
<r epeat Unt i | >, and the seria variant of <f or Each>.

e Concurrency and synchronization between activitiesis provided by <f I ow> and the
parallel variant of <f or Each>.

« Deferred choice controlled by external and internal eventsis provided by <pi ck>.

The set of structured activitiesin WS-BPEL is not intended to be minimal. There are cases where
the semantics of one activity can be represented using another activity. For example, sequential
processing may be modeled using either the <sequence> activity, or by a <f | ow> with properly
defined links.

Structured activities can be nested and combined in arbitrary ways. This provides a blending of
graph-structured and block-structured modeling styles that have traditionally been seen as
alternatives rather than orthogonal composable features. A simple example of such blended
usage isfound in section 5.1. Initial Example.

The word activity is used throughout the following to include both basic and structured activities.

11.1. Sequential Processing — Sequence

A <sequence> activity contains one or more activities that are performed sequentially, in the
lexical order in which they appear within the <sequence> element. The <sequence> activity
completes when the last activity in the sequence has compl eted.

<sequence standard-attri butes>
st andar d- el ement s
activity+

</ sequence>

Example:

<sequence>
<flow>...</fl ow>
<scope>... </ scope>
<pi ck>. .. </ pi ck>
</ sequence>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 98 of 264

11.2. Conditional Behavior — If

The <i f > activity provides conditional behavior. The activity consists of an ordered list of one or
more conditional branches defined by the <i f > and optional <el sei f > elements, followed by an
optional <el se> element. The<i f > and <el sei f > branches are considered in the order in which
they appear. The first branch whose <condi t i on> holds true is taken, and its contained activity
is performed. If no branch with a condition is taken, then the <el se> branch istaken if present.
The <i f > activity is complete when the contained activity of the selected branch completes, or
immediately when no <condi t i on> evaluates to true and no <el se> branch is specified.

<if standard-attributes>
st andar d- el enent s
<condi ti on expressi onLanguage="anyURI " ?>bool - expr </ condi ti on>
activity
<el sei f>*
<condi ti on expressi onLanguage="anyURI " ?>bool - expr </ condi ti on>
activity
</ el sei f>
<el se>?
activity
</ el se>
</if>

Example:

<if xmns:inventory="http://supply-chain.org/inventory"
xm ns: FLT="htt p: // exanpl e. conf faul t s" >
<condi ti on>

bpel : get Vari abl eProperty(' stockResult','inventory:level') > 100
</ condi tion>
<f| ow>

<l-- performfulfillnment work -->
</fl ow>
<el sei f>

<condi ti on>

bpel : get Vari abl eProperty(' stockResult','inventory:level') >= 0

</ condi tion>
<t hrow faul t Nane="FLT: Qut Of St ock" vari abl e="Rest ockEsti mate" />
</ el seif>
<el se>
<t hrow faul t Name="FLT: | tenDi sconti nued" />
</ el se>
</[if>

11.3. Repetitive Execution — While

The <whi | e> activity provides for repeated execution of a contained activity. The contained
activity is executed as long as the Boolean <condi t i on> evaluatesto true at the beginning of
each iteration.

<whi | e standard-attri butes>
st andar d- el enent s
<condi ti on expressi onLanguage="anyURI " ?>bool - expr </ condi ti on>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 99 of 264

activity
</ whi | e>

Example:

<whi | e>
<condi ti on>$orderDetails > 100</conditi on>
<scope>. .. </ scope>

</ whi | e>

11.4. Repetitive Execution — RepeatUntil

The <r epeat Unt i | > activity provides for repeated execution of a contained activity. The
contained activity is executed until the given Boolean <condi ti on> becomestrue. The
condition is tested after each execution of the body of the loop. In contrast to the <whi | e>
activity, the <r epeat Unt i | > loop executes the contained activity at |east once.

<repeatUnti| standard-attributes>

st andar d- el enent s

activity

<condi ti on expressi onLanguage="anyURI " ?>bool - expr </ condi ti on>
</repeat Until >

11.5. Selective Event Processing — Pick

The <pi ck> activity waits for the occurrence of exactly one event from a set of events, then
executes the activity associated with that event. After an event has been selected, the other events
are no longer accepted by that <pi ck>. If arace condition occurs between multiple events, the
choice of the event isimplementation dependent (see the race condition description in section
10.4. Providing Web Service Operations — Receive and Reply).

The <pi ck> activity iscomprised of a set of branches, each containing an event-activity pair.
The <pi ck> activity completes when the selected activity completes. The <pi ck> activity's
events come in two forms:

e The<onMessage> issimilar to a<recei ve> activity, in that it waits for the receipt of an
inbound message.

e The<onAl ar m> corresponds to atimer-based alarm. If the specified duration value in
<f or > iszero or negative, or aspecified deadlinein <unt i | > has already been reached or
passed, then the <onAl ar m> event is executed immediately. Again, the handling of race
conditions is implementation dependent.

Each pick activity MUST include at |east one <onMessage>.

A special form of <pi ck> is used when a new instance of a business processisto be created
upon the receipt of an <onMessage> event. Thisform of <pi ck> hasacr eat el nst ance
attribute with avalue of yes (the default value of the attribute isno). [SA00062] In such a case,
the eventsin the <pi ck> MUST all be <onMessage> events. This requirement MUST be

statically enforced.
wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 100 of 264

[SA00063] The semantics of the <onMessage> event are identical to a<r ecei ve> activity
regarding the optional nature of thevari abl e attribute or <f r onPar t > elements (see also
[SA00047]), the handling of race conditions, the handling of correlation sets, the single element-
based part message short cut and the constraint regarding simultaneous enablement of conflicting
receive actions. For the last case, if two or morer ecei ve actions for the same par t ner Li nk,
port Type, oper at i on and corr el ati onSet () are simultaneously enabled during execution,
then the standard fault bpel : conf I i cti ngRecei ve MUST be thrown (see section

10.4. Providing Web Service Operations — Receive and Reply). Enablement of an <onMessage>
event is equivalent to enablement of the corresponding <r ecei ve> activity for the purposes of
this constraint.

The optional messageExchange attribute is used to associate an <onMessage> construct with a
<r epl y> activity (for details, see section 10.4.1. Message Exchanges).

<pi ck createl nstance="yes| no"? standard-attri butes>
st andar d- el ement s

<onMessage partnerLi nk="NCNane"
port Type="QNane" ?
oper at i on="NCNane"
var i abl e="BPELVari abl eNane" ?
nmessageExchange=" NCNane" ?>+
<correl ati ons>?
<correlation set="NCNane" initiate="yes|join|no"? />+
</correl ati ons>
<fronPart s>?
<fronPart part="NCNane" toVari abl e="BPELVari abl eNane" / >+
</fronPart s>
activity
</ onMessage>
<onAl ar np*

(

<f or expressi onLanguage="anyURl " ?>dur ati on- expr</for>
|
<unti | expressi onLanguage="anyURl " ?>deadl i ne- expr </ until >
)
activity
</ onAl ar n>
</ pi ck>

The following example shows atypical usage of <pi ck>. The <pi ck> activity occursin aloop
that is accepting line items for alarge order An order completion timeout is enabled by the
<onAl ar nr event.

<pi ck>
<onMessage partnerLi nk="buyer"
port Type="order Entry"
oper ati on="i nput Li nel t ent
vari abl e="1inel teni>
<l-- activity to add line itemto order -->
</ onMessage>
<onMessage partnerLi nk="buyer"
port Type="order Entry"
oper ati on="or der Conpl et e"

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 101 of 264

vari abl e="conpl eti onDetai | ">

<l-- activity to perform order conpletion -->
</ onMessage>
<l-- set an alarmto go off

3 days and 10 hours after the last order line -->

<onAl ar n»

<f or>' P3DT10H </ f or >

<l-- handle tinmeout for order conpletion -->
</ onAl ar n»

</ pi ck>

11.6. Parallel and Control Dependencies Processing — Flow

The <f | ow> activity provides concurrency and synchronization. The syntax for <f | ow> is:

<f| ow standard-attributes>
st andar d- el enent s
<l i nks>?
<l i nk nanme=" NCNane" >+
</links>
activity+
</ fl ow>

A fundamental semantic effect of grouping a set of activitiesin a<f | ow> isto enable
concurrency. A <f | ow> completes when all of the activities enclosed by the <f | ow> have
completed. If its enabling condition evaluates to false then an activity is skipped and also
considered completed (see section 11.6.3. Dead-Path-Elimination).

In the following example, the two <i nvoke> activities are enabled to start concurrently when the
<f | ow> starts. Assuming the <i nvoke> operations are request-response operations, the
completion of the <f | ow> occurs after both the seller and the shipper respond. The
“transferMoney” activity is executed after the <f | ow> completes.

<sequence>
<fl ow>
<i nvoke partnerLink="Seller" ... />
<i nvoke partnerLi nk="Shi pper" ... />
</fl ow>
<i nvoke partnerLi nk="Bank" nane="transfer Money" ... />

</ sequence>

A <f | ow> activity creates a set of concurrent activities directly nested within it. It enables
synchronization dependencies between activities that are nested within it to any depth. The

<l i nk> construct is used to express these synchronization dependencies. Declaration of <I i nk>'s
are enclosed by a<f 1 ow> activity. [SA00064] A <I i nk> has amandatory name attribute, which
MUST be unique among all <l i nk> nane's defined within the same immediately enclosing

<f | ow>. Thisrequirement MUST be statically enforced.

11.6.1. Flow-related Standard Attributes and Elements

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 102 of 264

The st andar d-at t ri but es and st andar d-el enent s for activities nested within a<f | ow> are
significant because the standard attributes and elements exist to provide link semantics to the
activities. Each WS-BPEL activity has the optional containers <sour ces> and <t ar get s>, which
contain collections of <sour ce> and <t ar get > elements respectively. These elements are used
to establish synchronization relationships through a <l i nk>.

<t ar get s>?
<j oi nCondi ti on expressi onLanguage="anyURI " ?>?
bool - expr
</j oi nCondi ti on>
<target |inkNanme="NCNane" />+
</target s>

<sour ces>?
<sour ce | i nkName=" NCNane" >+
<transitionCondition expressionLanguage="anyURI " ?>?
bool - expr
</transitionCondition>
</ sour ce>
</ sour ces>

[SA00065] The value of thel i nkNane attribute of the <sour ce> or <t ar get > MUST be the
name Of a<l i nk> declared in an enclosing <f | ow> activity. [SA00068] An activity can declare
itself to be the source of one or more links by including one or more <sour ce> elements. Each
<sour ce> element associated with a given activity MUST use al i nkNane distinct from all other
<sour ce> elements of that activity. Similarly, [SA00069] an activity can declare itself to be the
target of one or more links by including one or more <t ar get > elements. Each <t ar get >
element associated with an activity MUST use al i nkNamre distinct from all other <t ar get >
elements of that activity. [SA00067] Two different [inks MUST NOT share the same source and
target activities; that is, at most one link may be used to connect two activities. [SA00066]
Every link declared within a<f | ows activity MUST have exactly one activity within the <f | ows>
asits source and exactly one activity within the <f | ow> asitstarget. The source and target of a
link can be nested arbitrarily deeply within structured activities nested in the <f | ow>, except for
the boundary-crossing restrictions described below. All of the requirements specified in this
paragraph MUST be statically enforced.

The <t ar get s>, asawhole, can specify an optional <j oi nCondi ti on>. The value of the

<j oi nCondi t i on> element is a Boolean expression in the expression language indicated by the
expr essi onLanguage attribute, or in the default expression language for this process (see
section 8.3. Expressions). If no <j oi nCondi ti on> is specified, the <j oi nCondi ti on> isthe
digunction (i.e. alogical OR operation) of the link status of all incoming links of this activity.

Each <sour ce> element can specify an optional <t r ansi ti onCondi ti on> asaguard for
following the specified link. If the <t r ansi ti onCondi ti on> is omitted, it is assumed to evaluate
to true.

One of the optional st andar d- att ri but es on every activity, suppr essJoi nFai | ur e, isrelated
to links. This attribute indicates whether ajoin fault (bpel : j oi nFai | ur e) should be suppressed
if it occurs (see section 11.6.3. Dead-Path-Elimination). When the suppr essJoi nFai | ure

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 103 of 264

attribute is not specified for an activity, it inherits its value from its closest enclosing construct
(i.e. activity or the process itself).

The semantics of <j oi nCondi ti on>, <t ransi ti onCondi ti on>, and suppr essJoi nFai | ure are
discussed below in section 11.6.2. Link Semantics.

Consider alink whose source is nested inside a syntactic construct, at any level, and thelink is
not declared inside that construct at any level. We say such alink isleaving that construct. Also
consider alink whose target is nested inside a syntactic construct at any level, but the link is not
declared inside that construct at any level. We say that such alink is entering that construct. A
link which either enters or leaves a construct is said to cross the boundary of the construct. When
both the source and target activities for the link are nested within the construct X, while the link
is declared outside the construct X, the link is said to both enter and |eave the construct.

The following example shows links crossing the boundaries of structured activities. The <l i nk>
named Ct oD starts at activity Cin <sequence> Y and ends at activity D, which is directly enclosed
by the <f | ow> activity. The example further illustrates that <sequence> X must be performed
prior to <sequence> Y because X is the source of the <I i nk> named Xt oY that is targeted at
<sequence> Y. Thelink Xt oY crosses the boundaries of both <sequence> X and <sequence> Y.

<fl ow>
<l i nks>
<li nk name="XtoY" />
<li nk nanme="CtoD" />
</links>
<sequence name="X">
<sour ces>
<source |inkNane="XtoY" />
</ sour ces>
<i nvoke name="A" ... />
<i nvoke name="B" ... />
</ sequence>
<sequence nanme="Y">
<t ar get s>
<target |inkNanme="XtoY" />
</target s>
<recei ve name="C' ...>
<sour ces>
<source |inkName="CtoD" />
</ sour ces>
</receive>

<i nvoke name="E" ... />
</ sequence>
<i nvoke nanme="D' ...>

<t ar get s>

<target |inkNanme="CtoD" />
</targets>
</i nvoke>
</fl ow>

A link used within a repeatable construct (<whi | e>, <r epeat Unti | >, <f or Each>,
<event Handl er s>) Or a<conpensat i onHandl er > MUST be declared in a<f | ow> that isitself
nested inside the repeatabl e construct or <conpensat i onHandl er >. [SA00070] A link MUST

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 104 of 264

NOT cross the boundary of arepeatable construct or the <conpensat i onHandl er > element.
[SA00071] A link that crosses a<cat ch>, <cat chAl | > Or <t er mi nat i onHandl er > element
boundary MUST be outbound only, that is, it MUST have its source activity within the

<f aul t Handl er s> Or <t er mi nat i onHandl er >, and its target activity outside of the scope
associated with the handler (see section 12. Scopes for the specification of the <event Handl er s>,
<f aul t Handl er s>, <t erm nati onHandl er >, and <conpensat i onHandl er>) .

[SA00072] A <l i nk> declared in a<f | ow> MUST NOT create a control cycle, that is, the source
activity must not have the target activity as alogicaly preceding activity. Thisimplies that such
directed graphs are always acyclic. Activity Aissaid to logically precede activity B if the
initiation of B semantically requires the completion of A. In particular, alink MUST NOT have
an activity as atarget if the source activity encloses the target activity or vice versa. These
requirements MUST be statically enforced.

To illustrate the above, the following example shows an invalid use of links, because it violates
the restriction that alink must not have atarget activity enclosed in the source activity:

<sequence>
<sour ces>
<source |inkName="L1">
</ sour ces>

<i nvoke ...>
<t ar get s>
<target |inkNanme="L1" />
</targets>
</invoke>

</sédﬁence>
11.6.2. Link Semantics

In the rest of this section, the links for which activity A is the source will be referred to as A's
outgoing links, and the links for which activity A isthe target will be referred to as A'sincoming
links. If activity X isthe target of alink that has activity Y as the source, we say that X hasa
synchronization dependency on Y.

Every activity that is the target of alink has an implicit or explicit join condition associated with
it. This applies even when an activity has just one incoming link. Explicit join conditions are
provided by the <j oi nCondi t i on> element under the <t ar get s> element. If the explicit join
condition is missing, the implicit condition requires the status of at |east one incoming link to be
t rue (see below for an explanation of link status). A join condition is a Boolean expression (see
section 8.3.1. Boolean Expressions). [SA00073] The expression for ajoin condition MUST be
constructed using only Boolean operators and the activity's incoming links' status values.

Ignoring links, the semantics of the business processes, <scopes>, and structured activities
determine when a given activity isready to start. For example, the second activity in a
<sequence> isready to start as soon as the first activity completes. The activity contained in a

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 105 of 264

branch of an <i f > isready to start when that branch is selected. Similarly, an activity nested
directly within a<f | ow> isready to start when the <f | ow> itself starts.

If an activity that isready to start in this sense has incoming links, then it MUST NOT start until
the status of al itsincoming links has been determined and the, implicit or explicit, join
condition has been evaluated. In order to avoid violating control dependencies, evaluation of the
join condition is performed only after the status of all incoming links has been determined.

Thelink status is atri-state flag associated with each declared link. This flag may bein the
following three states: t r ue, f al se, or unset . The lifetime of the status of a <l i nk> is exactly
the lifetime of the <f | ow> activity within which it is declared. Eachtimea<fl ow> activity is
activated, the status of all the links declared in that activity isunset .

The semantics of link status evaluation are described in the following paragraphs.

When activity A completes without propagating any fault, the following steps MUST be
performed to determine the effect of the links on other activities:

o Determine the status of all outgoing links for A. The status will be either t r ue or f al se.
To determine the status for each link its <t r ansi t i onCondi ti on> isevaluated. If some
of the variables referenced by the <t r ansi ti onCondi t i on> are modified in a concurrent
path, the result of the transition condition evaluation may depend non-deterministically
on the timing of behavior among concurrent activities.

« For each activity B that has a synchronization dependency on A, check whether:

o Bisready to start (except for its dependency on incoming links) in the sense
described above.

o Thestatusof all incoming links for B has been determined. Note that if the
incoming link isleaving an isolated scope, then the final status of the link cannot
be known until the isolated scope has completed (see section 12.8. Isolated
Scopes).

If both of the above conditions are true, then evaluate the <j oi nCondi ti on> for B, if it
evaluatestot r ue, activity Bis started. Otherwise a standard bpel : j oi nFai | ur e fault
MUST be thrown, unless the value of suppr essJoi nFai | ur e iSyes in which case
bpel : j oi nFai | ur e isnot thrown (see section 11.6.3. Dead-Path-Elimination).

When an activity has multiple outgoing links, the order in which the status of the links and the
associated transition conditions are evaluated is defined to be sequential, according to the order
the links are declared in the <sour ce> element.

The associated source activity MUST complete before the <t ransi ti onCondi ti on> of alink is
evaluated. In the case of source activitiesthat are themselves <scope>'s, successful completion is
not required. That is, a<scope> may suffer an internal fault and yet complete (unsuccessfully) if
there is a corresponding fault handler associated with the <scope> and that fault handler
completes without throwing afault. If an error occurs while evaluating the

<transi tionCondi ti on>, that error does not affect the completion status of the activity and is
handled by the source activity's enclosing scope. If the target of the link is outside the source

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 106 of 264

activity's enclosing scope then the status of thelink isf al se. Thereis no difference in the status
of the link that faults on transition condition evaluation and one whose transition condition has
not been evaluated. If the target is within the enclosing scope the status is irrelevant since the
scope has faulted (see section 11.6.3. Dead-Path-Elimination below). In the case of alink L with
a<scope> X asits source activity, afault resulting from an error in evaluating the transition
condition for L would be propagated to the enclosing <scope> for <scope> X.

If an error occurs while evaluating the transition condition of one of an activity's outgoing links,
then all remaining outgoing links with targets within the source activity's enclosing scope MUST
NOT have their transition conditions evaluated and remain in the unset state. However, if the
target of aremaining outgoing link is outside the source activity's enclosing scope then the status
of thelink MUST be set to false.

If, during the performance of structured activity A, the semantics of A dictate that activity B
nested within A will not be performed as part of the execution of A, then the status of all outgoing
links from B MUST be set to f al se. However, in order to avoid violating control dependencies,
thisrule MUST only be applied after the status of al of B'sincoming links, as well as all
incoming links of any activity, upon which B has a control dependency, has been determined. An
example of wherethisrule appliesisthat of an activity within an <i f > activity's branch whose
<condi ti on>isf al se. Another exampleis seen in activities that were not completed because of
afaulted <scope> (see sections 12. Scopes and 12.4. Compensation Handlers). Therule on
control dependencies also holds for links which are outgoing from <f aul t Handl er s> and

<t er ni nat i onHandl er >'s: If it is determined that one of these handlers will not run, then the
status of all outgoing links are set tof al se.

In the following example, thet oSki pped link creates a control dependency from the <r ecei ve>
activity to the <enpt y> activity inthe<i f>. Thefronski pped link creates a dependency from
the <enpt y> activity to the <r epl y> activity. These two links create a transitive dependency
from the <r ecei ve> activity to the <r epl y> activity. Even though the <i f > condition evaluates
tof al se, thus skipping the <enpt y> activity, the transitive dependency is retained, and therefore
the status of f r onBSki pped isnot set to f al se until after the status of t oSki pped is known.

<fl ow>
<l i nks>
<li nk name="t oSki pped” />
<l i nk name="fr ontki pped" />
</links>

<receive ...>

<sour ces>
<source |inkNanme="t oSki pped" />

</ sour ces>

</recei ve>

<if>
<condi ti on>
<l-- evaluates to false -->
</ condi ti on>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 107 of 264

<enpty nane="ski pped" >
<t ar get s>
<target |inkNane="t oSki pped">
</target s>
<sour ces>
<source |inkNanme="fronski pped">
</ sour ces>

</ enpt y>
</[if>

<reply ...>
<t arget s>
<target |inkName="fronski pped" />
</target s>
</reply>
</fl ow>

The <onEvent > and <onAl ar m» handlers, as well as parallel <f or Each> activities can have
simultaneously active instances. Data and resources declared within the child scopes of these
constructs, including links, MUST be processed independently in each instance.

When a<f | ow> activity is nested within another <f | ow> activity, the inner <f | ows> activity may
define a<l i nk> with the same nane asin the enclosing <f | ow> activity. A source or target
reference to such a<l i nk> from an activity matches the innermost <l i nk> visible to the activity.

11.6.3. Dead-Path-Elimination

When the control flow is defined by links and the value of the suppr essJoi nFai | ur e attribute
isyes, theinterpretation of ajoin condition for activity A that evaluatestof al se isthat AMUST
NOT be executed. In this case, the fault bpel : j oi nFai | ure MUST NOT be generated. The
value of this attribute is inherited by all nested activities, except where overridden by another
suppr essJoi nFai | ur e attribute setting.

When atarget activity is not performed due to the value of the <j oi nCondi t i on> (implicit or
explicit) being f al se, itsoutgoing links MUST be assigned af al se status according to the rules
of section 11.6.2. Link Semantics. This has the effect of propagating f al se link status
transitively along entire paths formed by successive links until ajoin condition is reached that
evaluatestot r ue. This approach is called Dead-Path Elimination (DPE).

The default value of the suppr essJoi nFai | ur e attribute of the <pr ocess> element isno. This
avoids suppressing a well-defined fault by a default setting. Consider the interpretation of the
examplein section 5.1. Initial Example with the suppr essJoi nFai | ur e attribute set toyes.
Suppose further that the invocations of the shipping provider are enclosed in a scope that
provides afault handler (see sections 12. Scopes and 12.5. Fault Handlers). If one of these
invocations were to fault, the status of the outgoing link from the invocation would bef al se,
and the (implicit) <j oi nCondi ti on> at the target of the link would bef al se, but the resulting
bpel : j oi nFai | ur e would be implicitly suppressed and the target activity would be silently
skipped within the sequence instead of causing the expected fault.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 108 of 264

If universal suppression of the bpel : j oi nFai | ur e fault isdesired, it can be achieved by setting
the suppr essJoi nFai | ur e attribute to yes in the <pr ocess> element.

11.6.4. Flow Graph Example

In the following example, the activities with the namesr ecei veBuyer | nf or mat i on,
recei veSel | er I nformati on, settl eTrade, confirnBuyer, and confirnsel | er are nodes of

agraph defined within a<f | ow> activity.

receiveBuyerinformation receiveSellerInformation

buyToSettle sellToSettle

settleTrade

toBuyConfirm toSellConfirm

confirmBuyer confirmSeller

Figure2: Flow Graph
Thefollowing <I i nk>'s are defined as:

e DbuyToSettle startsat recei veBuyer | nf or mat i on (Specified in the corresponding
<sour ce> element nested inr ecei veBuyer | nfor mati on) and ends at set t | eTr ade
(specified in the corresponding <t ar get > element nested inset t | eTr ade).

e sellToSettle Startsatrecei veSel | erI nformation andendsat settl eTrade.

e toBuyConfirmstartsat settl eTrade and ends at conf i r rBuyer .

e toSell Confirmstartsat settl eTrade and endsat confi rnel | er.

Based on the graph structure defined by the <f | ows>, the activitiesr ecei veBuyer | nf or mat i on
and recei veSel | er | nf or mat i on can run concurrently. Theset t | eTr ade activity is performed
only after both of these activities are completed. After sett | eTr ade completes the two activities,
confirnmBuyer and confirnsel | er are performed concurrently again.

<f| ow suppressJoi nFai | ure="yes" >
<l i nks>
<l i nk name="buyToSettle" />
<link name="sel | ToSettle" />
<l i nk nanme="t oBuyConfirni />
<link name="toSel | Confirm' />
</links>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 109 of 264

<recei ve nanme="recei veBuyer|nformtion" ...>
<sour ces>
<source |inkName="buyToSettle" />
</ sour ces>
</receive>
<recei ve nane="receiveSellerlnformtion" ...>
<sour ces>
<source |inkName="sel | ToSettle" />
</ sour ces>
</receive>
<i nvoke nane="settl| eTrade" ...>
<t arget s>
<j oi nCondi ti on>$buyToSettl e and $sel | ToSett!l e</joi nConditi on>
<target |inkName="buyToSettle" />
<target |inkNane="sell ToSettle" />
</targets>
<sour ces>
<source |inkName="t oBuyConfirm />
<source |inkNanme="toSel | Confirni />
</ sour ces>
</i nvoke>
<reply nanme="confirnmBuyer" ...>
<t arget s>
<target |inkName="toBuyConfirm />
</targets>
</reply>
<reply nane="confirnteller" ...>
<t ar get s>
<target |inkNane="toSell Confirnt />
</targets>
</reply>
</fl ow>

11.6.5. Links and Structured Activities

Links can cross the boundaries of structured activities (see section 11.6.1. Flow-related Standard
Attributes and Elements). The following example illustrates the behavior when links target
activities within structured constructs.

The <f | ow> isintended to perform the sequence of activities A, B, and C. Activity B hasa
synchronization dependency on the two activities X and Y outside of the sequence. That is, Bisa
target of links from X and Y. The <j oi nCondi ti on> at B is not specified, and so the digunction
(i.e. alogical OR) of the linkstargeted to B will be used. The conditionist r ue if at least one of
the incoming links has at rue status. In this case, that condition reduces to the Boolean
condition (P: funcXB() or P:funcYB()).

In the <f | ow>, the <sequence> named S and the two <r ecei ve> activitiesX and Y are dll
concurrently enabled to start when the <f | ow> starts. Within s, after activity A is completed, B
cannot start until the status of itsincoming links from X and Y is determined and the implicit join
condition is evaluated. When activities X and Y complete, the join condition for B is eval uated.

Suppose that both transition conditions P: f uncXB() and P: f uncYB() evaluatetof al se, thenthe
standard fault bpel : j oi nFai | ur e will be thrown, because the attribute suppr essJoi nFai | ure

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 110 of 264

of the enclosing <f | ow> activity is set to no. Thus the behavior of the <f | ows> isinterrupted and
neither B nor C will be performed.

If the attribute suppr essJoi nFai | ur e of the enclosing <f | ow> activity is set to yes, then B will
be skipped but c will be executed because the bpel : j oi nFai | ur e will be suppressed.

<f | ow suppr essJoi nFai |l ur e="no" >
<l i nks>
<l i nk name="XtoB" />
<l i nk nanme="YtoB" />
</links>
<recei ve name="X"' ...>
<sour ces>
<source |inkNane="XtoB">
<transitionCondition>P; funcXB()</transitionCondition>
</ sour ce>
</ sour ces>

</receive>
<recei ve name="Y" ...>
<sour ces>
<sour ce |inkNane="Yt oB">
<transitionCondition>P: funcYB()</transitionCondition>
</ sour ce>
</ sour ces>

</receive>
<sequence nane="S">

<receive name="A" ...>. ..</receive>
<recei ve name="B" ...>
<t ar get s>

<target |inkNanme="XtoB" />
<target |inkNane="YtoB" />
</targets>
</receive>
<receive name="C' ... />
</ sequence>
</fl ow>

Finally, assume that the preceding <f | ow> is dlightly rewritten by linking A, B, and C through
links (with default <t r ansi ti onCondi t i on> elements with constant value of t r ue), instead of
putting them into a<sequence>. Since the default join condition is a digunction and the
<transi ti onCondi ti on> of link At oB isthe constant t r ue, the join condition will always
evaluatetot r ue, independent from the values of P: f uncXxB() and P: f uncYB() . Now, B and
subsequently c will always be executed.

<f | ow suppressJoi nFai | ure="no" >
<l i nks>
<l'i nk name="XtoB" />
<link nanme="YtoB" />
<link nanme="AtoB" />
<l i nk name="BtoC' />
</links>
<recei ve nanme="X">
<sour ces>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 111 of 264

<source | i nkName="Xt oB" >
<transitionCondition>P: funcXB()</transitionCondition>
</ sour ce>
</ sour ces>
</recei ve>
<recei ve name="Y">
<sour ces>
<sour ce |inkNane="YtoB">
<transitionCondition>P: funcYB()</transitionCondition>
</ sour ce>
</ sour ces>
</receive>
<recei ve name="A">
<sour ces>
<source |inkNanme="AtoB" />
</ sour ces>
</receive>
<recei ve nanme="B">
<t arget s>
<target |inkNane="AtoB" />
<target |inkNanme="XtoB" />
<target |inkName="YtoB" />
</targets>
<sour ces>
<source |inkName="Bt oC" />
</ sour ces>
</receive>
<recei ve name="C'>
<t ar get s>
<target |inkNane="BtoC' />
</targets>
</receive>
</fl ow>

11.7. Processing Multiple Branches — ForEach

The <f or Each> activity will execute its contained <scope> activity exactly N+1 timeswhere N

equalsthe <f i nal Count er Val ue> minusthe <st ar t Count er Val ue>.

<f or Each count er Nanme="BPELVar i abl eNane" paral | el ="yes| no"
standard-attri butes>
st andar d- el ement s
<st art Count er Val ue expr essi onLanguage="anyURI " ?>
unsi gned- i nt eger - expr essi on
</ st art Count er Val ue>
<fi nal Count er Val ue expressi onLanguage="anyURI " ?>
unsi gned- i nt eger - expr essi on
</ fi nal Count er Val ue>
<conpl eti onCondi ti on>?
<branches expressi onLanguage="anyURI " ?
successful BranchesOnl y="yes| no" ?>?
unsi gned- i nt eger - expr essi on
</ branches>
</ conpl eti onCondi ti on>
<scope ...>...</scope>
</ f or Each>

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 112 of 264

When the <f or Each> activity is started, the expressionsin <st ar t Count er Val ue> and

<f i nal Count er Val ue> are evaluated. Once the two values are returned they remain constant for
the lifespan of the activity. [SA00074] Both expressions MUST return a Tll (meaning they
contain at least one character) that can be validated as axsd: unsi gnedl nt . If these expressions
do not return valid values, abpel : i nval i dExpr essi onVal ue fault will be thrown (see section
8.3. Expressions). If the <st ar t Count er Val ue> is greater than the <f i nal Count er Val ue>, then
the child <scope> activity MUST NOT be performed and the <f or Each> activity is complete.

The child activity of a<f or Each> MUST be a<scope> activity. The <f or Each> construct
introduces an implicit counter variable, and also introduces dynamic parallelism (i.e. having
parallel branches of which number isnot known ahead of time). The <scope> activity provides a
well-defined scope snapshot semantic and away to name the dynamic parallel work for
compensation purposes (see scope snapshot description in section 12.4.2. Process State Usage in
Compensation Handlers).

If the value of the par al | el attributeisno then the activity isa serial <f or Each>. The enclosed
<scope> activity MUST be executed N+1 times, each instance starting only after the previous
repetition is complete. If premature termination occurs such as due to a fault, or the completion
condition evaluatesto t r ue, then this N+1 requirement does not apply. During each repetition, a
variable of type xsd: unsi gnedl nt isimplicitly declared in the <f or Each> activity's child
<scope>. Thisimplicit variable has the name specified in the count er Nane attribute. The first
iteration of the scope will see the counter variable initialized to the <st ar t Count er Val ue>. The
next iteration will cause the counter variable to beinitialized to the <st ar t Count er Val ue> plus
one. Each subsequent iteration will increment the previoudly initialized counter variable value by
one until the final iteration where the counter will be set to the <f i nal Count er Val ue>. The
counter variable islocal to the enclosed <scope> and athough its value can be changed during
an iteration, that value will be lost at the end of each iteration. Therefore, the counter variable
value will not affect the value of the next iteration's counter.

If the value of thepar al | el attributeisyes then the activity isaparallel <f or Each>. The
enclosed <scope> activity MUST be concurrently executed N+1 times. In essence an implicit

<f | ow> isdynamically created with N+1 copies of the <f or Each>'s enclosed <scope> activity as
children. Each copy of the <scope> activity will have the same counter variable declared in the
same manner as specified for serial <f or Each>. Each instance's counter variable MUST be
uniquely initialized in parallel to one of the integer values starting with <st ar t Count er Val ue>
up to and including <f i nal Count er Val ue>, asapart of <scope> instantiation.

[SA00076] If avariable of the same name as the value of the count er Nane attribute is declared
explicitly in the enclosed scope, it would be considered a case of duplicate variable declaration
and MUST be reported as an error during static analysis.

The <f or Each> activity without a<conpl et i onCondi t i on> completes when all of its child
<scope>'s have completed. The <conpl et i onCondi ti on> element is optionally specified to
prevent some of the children from executing (in the serial case), or to force early termination of
some of the children (in the parallel case).

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 113 of 264

The <br anches> element represents an unsigned-integer expression (see section 8.3.4. Unsigned
Integer Expressions) used to define a completion condition of the “at least N out of M” form.
The actual value B of the expression is calculated once, at the beginning of the <f or Each>
activity. It will not change as the result of the <f or Each> activity's execution. At the end of
execution of each directly enclosed <scope> activity, the number of completed childrenis
compared to B, the value of the <br anches> expression. If at least B children have completed, the
<conpl et i onCondi ti on> istriggered: No further children will be started, and currently running
children will be terminated (see section 12.6 Termination Handlers). Note that enforcing the
semantic of “exactly N out of M” in parallel <f or Each> would involve arace condition, and is
therefore not specified.

When the completion condition B is calculated, if its valueis larger than the number of directly
enclosed activities N+1, then the standard bpel : i nval i dBr anchCondi ti on fault MUST be
thrown. [SA00075] Both B and N+1 may be constant expressions, and in such cases, static
analysis SHOULD reject processes where it can be detected that B is greater than N+1.

The <br anches> element has an optional successf ul BranchesOnl y attribute with the default
value of no. If the value of successf ul BranchesOnly iSno, al <scope>'swhich have
completed (successfully or unsuccessfully) MUST be counted. If successf ul BranchesOnly is
yes, only <scope>'s which have completed successfully MUST be counted.

The <conpl et i onCondi ti on> isevaluated each time adirectly enclosed <scope> activity
completes. If the <conpl et i onCondi ti on> evaluatesto t r ue, the <f or Each> activity completes:

e When the <conpl et i onCondi ti on> isfulfilled for aparallel <f or Each> activity, all
still running directly enclosed <scope> activities MUST be terminated (See section
12.6 Termination Handlers).

e When the <conpl et i onCondi ti on> isfulfilled for aserial <f or Each> activity,
further child <scope>'s MUST NOT be instantiated, and the <f or Each> activity
completes.

If upon completion of adirectly enclosed <scope> activity, it can be determined that the
<conpl et i onCondi ti on> can never bet r ue, the standard
bpel : conpl eti onCondi ti onFai | ur e fault MUST be thrown.

When a <conpl et i onCondi ti on> does nhot have any sub-elements or attributes understood by
the WS-BPEL processor, it MUST betreated as if the <conpl et i onCondi t i on> does not exist.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 114 of 264

12. Scopes

A <scope> provides the context which influences the execution behavior of its enclosed
activities. This behavioral context includes variables, partner links, message exchanges,
correlation sets, event handlers, fault handlers, a compensation handler, and a termination
handler. Contexts provided by <scope> activities can be nested hierarchically, while the “root”
context is provided by the <pr ocess> construct (see also sections 8.1. Variables,

12.4. Compensation Handlers and 12.5. Fault Handlers).

The <pr ocess> and <scope> elements share syntax constructs, which have the same semantics.
However, they do have the following differences:

e The<process> construct is not an activity; hence, standard attributes and elements are
not applicable to the <pr ocess> construct

e A compensation handler and a termination handler can not be attached to the <pr ocess>
construct

e Thei sol at ed attribute is not applicable to the <pr ocess> construct (see section
12.8. Isolated Scopes)

Each <scope> has arequired primary activity that defines its normal behavior. The primary
activity can be acomplex structured activity, with many nested activities to arbitrary depth. All
other syntactic constructs of a<scope> activity are optional, and some of them have default
semantics. The context provided by a<scope> is shared by al its nested activities.

The syntax for scopeis:

<scope isol at ed="yes| no"? exit OnSt andar dFaul t ="yes| no" ?
standard-attri but es>
st andar d- el enent s
<vari abl es>?

</vari abl es>
<part ner Li nks>?

</ part ner Li nks>
<nessageExchanges>?

</ messageExchanges>
<correl ati onSet s>?

</correl ati onSet s>
<event Handl| er s>?

</ event Handl er s>
<f aul t Handl er s>?

</ faul t Handl er s>
<conpensat i onHandl er >?

</ conpensat i onHandl er >
<t er m nati onHandl er >?

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 115 of 264

</term nati onHandl er >
activity
</ scope>

All handlers on a<scope> arelexically subordinate to the <scope> and can access all variables,
partner links, message exchanges and correlation sets defined on the <scope> and its linear
ancestors. Thisis subject to any restrictions, unique to the handler type, specified elsewhere in
this document.

A <scope> can declare variables, partner links, message exchanges and correlation sets that are
visible only within the <scope>. For further information, see sections 6.2. Partner Links,

8.1. Variables, 9. Correlation and 10.4. Providing Web Service Operations — Receive and Reply ,
respectively.

12.1. Scope Initialization

Scope initialization occurs when a <pr ocess> or <scope> is entered. Scope initialization
consists of instantiating and initializing the scope's variables and partner links; instantiating the
correlation sets; and installing fault handlers, termination handler and event handlers. Any
partner links defined in the <scope> MUST be set before variables defined in the same <scope>
whose initialization logic refers to those partner links. Scope initialization is an al-or-nothing
behavior: either it all occurs successfully or abpel : scopel niti al i zati onFai | ur e fault MUST
be thrown to the parent scope of the failed <scope>. In the case of afailure at the process level
the entire process is treated as faulted. Once scope initialization completes, the primary activity
of the <scope> is executed and the event handlers are installed in parallel with each other. An
exception to the previous rule applies to <scope>'s that contain a process initial start activity. An
initial start activity isthe start activity that caused a particular process instance to be instantiated.
If ascope contains aninitial start activity then the start activity MUST compl ete before the event
handlers are installed.

In the following example, the <scope> has a primary <f | ows> activity, which contains two
concurrent <i nvoke> activities. Either of the <i nvoke> activities can receive fault responses.
The <f aul t Handl er s> for the <scope> are shared by both <i nvoke> activities and can be used
to catch the faults caused by the possible fault responses.

<scope>
<faul t Handl ers>. .. </faul t Handl er s>
<f | ow>
<i nvoke partnerLink="Seller"
port Type="Sel | : Pur chasi ng"
oper ati on="Pur chase"
i nput Vari abl e="sendPCO"'
out put Vari abl e="get Response" />
<i nvoke part nerLi nk="Shi pper"
port Type="Shi p: Tr ansport Or der s"
oper ati on="Or der Shi pnent "
i nput Var i abl e="sendShi pOr der "
out put Vari abl e="shi pAck" />
</fl ow>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 116 of 264

</ scope>
12.2. Message Exchange Handling

When the primary activity and the event handlers of a<scope> complete then all Web service
interactions dependent on partner links or message exchanges declared inside of the <scope>
need to be completed. An orphaned IMA occurs when an IMA using a partner link or message
exchange, declared in the completing <scope> or its descendants, remains open. In this case, the
standard fault bpel : nmi ssi ngRepl y MUST be thrown. The definition of orphaned IMA
situations and how they can be detected are:

e |f the contained primary activity and the event handlers of the scope have completed
without any unhandled fault then a check for orphaned IMA’s MUST be made. If one
or more orphaned IMA’s are detected then abpel : ni ssi ngRepl y fault isthrown to
the completing <scope> itself. When the bpel : ni ssi ngRepl y fault isthrown, al the
orphaned IMA's are encompassed by the fault and are no longer considered orphaned.

e |f afault handler has completed without any unhandled fault then a check for
orphaned IMA’s MUST be made. If any orphaned IMA is detected then a new
bpel : mi ssi ngRepl y isthrown to the parent scope (similar to throwing or rethrowing
other faults from afault handler). The newly thrown bpel : ni ssi ngRepl y fault
MUST encompass al orphaned IMA's, and they are no longer considered orphaned.

e If afault handler itself throws or rethrows a fault different from bpel : mi ssi ngRepl y
to the parent scope then no check for orphaned IMA's is made, and the checking is
deferred to the parent <scope>. The orphaned IMA's remain as such.

e The same behavior asin the previous bullet applies when atermination handler is
executed.

e The same checking of orphaned IMA'sis performed, after the activity of a
compensation handler has completed without any unhandled fault. If any orphaned
IMA's are detected, abpel : ni ssi ngRepl y fault MUST be propagated to the
invoking FCT-handler and those IMA's are no longer considered orphaned.

If an unhandled fault different from bpel : m ssi ngRepl y occurs during the execution
of the compensation handler, that fault is propagated to the invoking FCT-handler.
The checking for orphaned IMA's is deferred to the invoking FCT-handler. If any
orphaned IMA's resulted from the execution of the compensation handler, they
remain orphaned.

12.3. Error Handling in Business Processes

Business processes are often of long duration. They can manipulate business data in back-end
databases and line-of-business applications. Error handling in this environment is both difficult
and business critical. The use of ACID transactionsis usually limited to local updates because of
trust issues and because locks and isolation cannot be maintained for the long periods during
which fault conditions and technical and business errors can occur in a business process instance.
As aresult, the overall business transaction can fail or be cancelled after many ACID
transactions have been committed. The partial work done must be undone as best as possible.
Error handling in WS-BPEL processes therefore |everages the concept of compensation, that is,

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 117 of 264

application-specific activities that attempt to reverse the effects of a previous activity that was
carried out as part of alarger unit of work that is being abandoned. There is a history of work in
this area regarding the use of Sagas [Sagas] and open nested transactions [Trends]. WS-BPEL
provides a variant of such a compensation mechanism by providing the ability for flexible
control of the reversal. WS-BPEL achieves this by providing the ability to define fault handling
and compensation in an application-specific manner, in support of Long-Running Transactions
(LRT’s).

The notion of LRT described hereis purely local and occurs within a single business process
instance. Thereis no distributed coordination necessary regarding an agreed-upon outcome
among multiple-participant services. The achievement of distributed agreement is an orthogonal
problem outside the scope of this specification.

As an example, consider the planning and fulfillment of atravel itinerary. This can be viewed as
an LRT inwhich individual service reservations can use nested transactions within the scope of
the overal LRT. If theitinerary is cancelled, the reservation transactions must be compensated
for by cancellation transactions, and the corresponding payment transactions must be
compensated accordingly. For ACID transactions in databases the transaction coordinator(s) and
the resources that they control know all of the uncommitted updates and the order in which they
must be reversed, and they arein full control of such reversal. In business transactions, the
compensation behavior isitself apart of the business logic and protocol, and must be explicitly
specified. In this example, there might be penalties or fees applied for cancellation of an airline
reservation depending on the class of ticket and the timing of the cancellation. If a payroll
advance has been given to pay for the travel, the reservation must be successfully cancelled
before the payroll advance for it can be reversed in the form of a payroll deduction. This means
the compensation actions might need to run in the same order as the original transactions, which
is not the standard or default in most ACID transaction systems. Using <scope> activities as the
definition of logical units of work, WS-BPEL addresses these requirements of LRT.

12.4. Compensation Handlers

The ability to declare compensation logic alongside forward-working logic is the underpinning
of the application-controlled error-handling framework of WS-BPEL . WS-BPEL allows scopes
to delineate that part of the behavior that is meant to be reversible in an application-defined way
by specifying a compensation handler. Scopes with compensation and fault handlers can be
nested without constraint to arbitrary depth.

12.4.1. Defining a Compensation Handler

Syntactically, a<conpensat i onHandl er > issimply awrapper for an activity that performs
compensation as shown below.

<conpensat i onHandl er >
activity
</ conpensat i onHandl er >

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 118 of 264

Asexplained in section 10.3. Invoking Web Service Operations — Invoke, thereis a specia
shortcut for the <i nvoke> activity to inline a<conpensat i onHandl er > rather than explicitly
using an immediately enclosing <scope>. For example:

<i nvoke partnerLink="Seller"
port Type="SP: Pur chasi ng"
oper at i on="Pur chase"
i nput Var i abl e="sendPCO'
out put Vari abl e="get Response" >
<correl ati ons>
<correl ation set="PurchaseOrder" initiate="yes"
pattern="request" />
</correl ati ons>
<conpensat i onHandl er >
<i nvoke partnerLink="Sel |l er"
port Type="SP: Pur chasi ng"
oper at i on="Cancel Pur chase"
i nput Var i abl e="get Response"
out put Vari abl e="get Confi rmati on" >
<correl ati ons>
<correl ation set="PurchaseOrder" pattern="request" />
</correl ati ons>
</i nvoke>
</ conpensat i onHandl er >
</i nvoke>

In this example, the original <i nvoke> activity makes a purchase and in case that purchase needs
to be compensated, the <conpensat i onHandl er > invokes a cancellation operation on the same
port of the same partner link, using the response to the purchase request as the input.

Without the <i nvoke> shortcut this example would be expressed as follows:

<scope>
<conpensat i onHandl er >
<i nvoke partnerLink="Seller"
port Type="SP: Pur chasi ng"
oper ati on="Cancel Pur chase"
i nput Var i abl e="get Response"
out put Vari abl e="get Confi rmati on" >
<correl ati ons>
<correl ation set="PurchaseOrder" pattern="request" />
</correl ati ons>
</i nvoke>
</ conpensat i onHandl er >
<i nvoke partnerLink="Seller"
port Type="SP: Pur chasi ng"
oper ati on="Pur chase"
i nput Var i abl e="sendPCO'
out put Vari abl e="get Response" >
<correl ati ons>
<correlation set="PurchaseOrder" initiate="yes"
pattern="request" />
</correl ati ons>
</i nvoke>
</ scope>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 119 of 264

Note that the variable get Response is not local to the <scope> to which the

<conpensat i onHandl er > is attached and can be reused later for other purposes before
compensation for this <scope> isinvoked. The current state of non-local variablesis available
in compensation handlers as explained more fully below. Assuming the compensation handler
needs the specific response to the <i nvoke> operation that is being reversed, that response would
most conveniently be stored in avariable that islocal to the <scope>, i.e., by making

get Response local to the <scope>. In this case, an explicit <scope> is needed for the variable
declaration.

If the <conpensat i onHandl er > for a scope is not specified, default compensation handling for
the scope is provided (see section 12.5.2. Default Compensation Order for more details).

12.4.2. Process State Usage in Compensation Handlers

A compensation handler always uses the current state of the process at the time the compensation
handler is executed. This state comes from its associated scope and all enclosing scopes, and
includes the state of variables, partner links and correlation sets. Compensation handlers are able
to both read and write the values of all such data. Other parts of the process will see the changes
made to shared data by compensation handlers, and conversely, compensation handlers will see
changes made to shared data by other parts of the process. In cases where a compensation
handler runs concurrently with other parts of the process, compensation handlers may need to
use isolated scopes when they touch state in enclosing <scope>'sto avoid interference (see
section 12.8. Isolated Scopes).

The process state consists of the current state of all scopes that have been started. Thisincludes
scopes that have completed successfully but for which the associated compensation handler has
not been invoked. For successfully completed (but uncompensated) scopes, their state is kept at
the time of completion. Such scopes are not running, yet they are still reachable. Thisis because
their compensation handlers are still available, and therefore the execution of such scopes may
continue during the execution of their compensation handlers, which can be thought of as an
optional continuation of the behavior of the associated scope. A scope may have been executed
several times (e.g. in a<whi | e> or in a<f or Each>), so the state of the process includes the state
of all successfully completed (and uncompensated) iteration instances of the scope. We refer to
the preserved state of a successfully completed uncompensated scope as a scope snapshot.

The behavior of acompensation handler can use the state of the associated scope as it has been
left. Thisincludes variables, partner links, message exchanges, and correlation sets in both the
associated scope and all scopes that enclose it. For the variables in the associated scope, the
compensation handler starts executing with the scope snapshot. The compensation handler also
has access to the current state of each enclosing scope. This state is shared with any concurrent
units of logic. The compensation handler may itself have been called from the compensation
handler of the parent scope. It will then share the continuation of the state of the enclosing scope
that its caller isusing.

The picture below shows three nested scopes P, S2 and S3, afault handler FH(P) of the process
and compensation handlers CH(S2) and CH(S3).

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 120 of 264

The picture is based on the XML below. When executing the process, the first scope P (the
process itself) declaresavariable V1 and initializesit to the value of 0. Scopes S2 and S3 are
executed. At successful completion of S2 and S3, all variable values are set to 1 and are frozen
into snapshots (in the timeline shown by dotted lines). Subsequently, afault occurs within the
process P (indicated by event “1” in the picture), which gets caught by the fault handler FH(P) of
the process P. When the fault handler of the process calls the compensation handler CH(S2) of
scope S2 (indicated by event “2” in the picture), the snapshot of S2’'s state is retrieved and used
while compensating. The same applies when compensating scope S3 (indicated by event “3” in

the picture).

P |
Fault

@)

<

Snapshot(S2) (j

3]

Snapshot(S3)

Process P |
Scope 52 y2=0 vast | (vazl
Scope S3 =0 e, W %ﬁ{
Time >
P S2 S3 S2 CH S3CH

Figure 3: Variable Accessin Compensation Handlers

<process name="P">
<vari abl es>
<vari abl e nane="V1" type="xsd:int">
<fronr0</frone
</vari abl e>
</vari abl es>
<f aul t Handl er s>
<catch faul t Nane="prefi x: soneFaul t">
<conpensate />
</ catch>
</ faul t Handl er s>
<scope nanme="S2">

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 121 of 264

<vari abl es>
<vari abl e nane="V2" type="xsd:int">
<fromp0</ fronp
</vari abl e>
</vari abl es>
<conpensat i onHandl er >. . . </ conpensat i onHandl er >
<sequence>
<scope nanme="S3">
<vari abl es>
<vari abl e nane="V3" type="xsd:int">
<fron»0</frone
</vari abl e>
</vari abl es>
<conpensat i onHandl er >

<l-- V1, V2, and V3 ALL have the value 1
when this logic is reached -->

</ conpensat i onHandl er >
<assi gn>
<copy>
<fronel</frone
<to variabl e="V3" />
</ copy>
</ assi gn>
</scope> <!-- end of scope S3 -->
<assi gn>
<copy>
<fronel</frone
<to variabl e="V1" />
</ copy>
<copy>
<fronel</frone
<to variabl e="V2" />
</ copy>
</ assi gn>
<t hrow faul t Nane="prefi x: soneFaul t" />
</ sequence>
</scope> <!-- end of scope S2 -->
</ process>

12.4.3. Invoking a Compensation Handler

A compensation handler can be invoked by using the <conpensat eScope> Or <conpensat e>
(together referred to as the "compensation activities'). A compensation handler for a scope
MUST be made available for invocation only when the scope completes successfully. Any
attempt to compensate a scope, for which the compensation handler either has not been installed
or has been installed and executed, MUST be treated as executing an <enpt y> activity. Therefore,
handlers do not rely on state to determine which nested scopes have completed successfully.

<conpensat eScope target="NCNane" standard-attributes>
st andar d- el ement s
</ conpensat eScope>

<conpensat e standard-attri butes>
st andar d- el ement s

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 122 of 264

</ conpensat e>

The <conpensat eScope> and <conpensat e> activities MUST only be used within <cat ch>,
<cat chAl | >, <conpensat i onHandl er >, and <t er mi nat i onHandl er >.

Fault handlers, compensation handlers, and termination handlers are referred to as FCT-handlers.
For the purpose of specifying the semantics of <conpensat e> and <conpensat eScope>, a scope
A isconsidered to immediately enclose another scope B, if B isenclosed in A and B is not
enclosed in any other scope or FCT-handler that isitself enclosed in the outer scope A. Other
structured activities (e.g. <sequence> or <f or Each>) and event handlers enclosed in A do not
affect the concept of immediate enclosure. This definition includes scopes that result from the

<i nvoke> shorthand notation for fault handlers and compensation handlers.

[SA00092]Within a scope, the name of all named immediately enclosed scopes MUST be unique.
Thisrequirement MUST be statically enforced.

A <conpensat eScope> Or <conpensat e> activity in an FCT-handler is used to compensate the
behavior of a successfully completed scope immediately enclosed inside the scope associated
with the FCT-handler. [SA00077] The value of thet ar get attribute on a<conpensat eScope>
activity MUST refer to the name of an immediately enclosed scope. This includes immediately
enclosed scopes of an event handler (<onEvent > or <onAl ar n») associated with the same scope
(see section 12.7. Event Handlers). Thisrule MUST be statically enforced.

FCT-handlers may themselves contain scopes. The invocation of a compensation activity is
interpreted based on the immediately enclosing FCT-handler and is used to compensate the
behavior of a successfully completed scope immediately enclosed inside the scope associated
with that FCT-handler. There is therefore no way to use a compensation activity to compensate
the scopes immediately enclosed inside an FCT-handler.

12.4.3.1. Compensation of a Specific Scope

The <conpensat eScope> activity causes one specified child scope to be compensated. For
example:

<conpensat eScope tar get ="RecordPaynent"/ >

The names of all named activitiesimmediately enclosed in a scope must be unique (see section
10.1. Standard Attributes for All Activities). [SA00078] Thet ar get attribute of a

<conpensat eScope> activity MUST refer to a scope or an invoke activity with afault handler or
compensation handler. The referenced activity MUST be immediately enclosed by the scope
containing the FCT-handler with the <conpensat eScope> activity. If these requirements are not
met then the WS-BPEL process MUST be regjected. These requirements MUST be statically
enforced.

12.4.3.2. Invoking Default Compensation Behavior

The <conpensat e> activity causes all immediately enclosed scopes to be compensated in default
order (see section 12.5.2. Default Compensation Order).

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 123 of 264

This activity is used when an FCT-handler needs to perform additional work, such as updating
variables, in addition to performing default compensation for the targeted immediately enclosed
SCopes.

User-defined FCT-handlers may use <conpensat eScope> activities to compensate specific
immediately enclosed scopes and/or <conpensat e> to compensate al immediately enclosed
scopes in default order. Any repeated attempt to compensate immediately enclosed scopesis
treated as executing an <enpt y> activity (see section 12.4.3. Invoking a Compensation Handler).

When user-defined FCT-handlers are executed, a WS-BPEL processor MUST NOT compensate
immediately enclosed scopes unless the <conpensat e> or <conpensat eScope> activities are
used.

12.4.4. Compensation within Repeatable Constructs or Handlers

12.4.4.1. Compensation Handler Instance Groups

Placing a scope inside a repeatabl e construct, such asloop or an event handler usually resultsin
multiple instances of that scope. One scope instance is created for each repetition or event
handler instantiation, respectively.

When a<conpensat e> Or <conpensat eScope> activity is used to invoke the compensation
handler of a scope contained in a repeatable construct, the compensation activity runs a set of
installed compensation handler instances and causes the corresponding set of child scope
instances to be compensated. The set of al such installed compensation handler instantiations is
called a Compensation Handler Instance Group.

In the case of scope specific compensation (<conpensat eScope>), the Compensation Handler
Instance Group contains the installed compensation handler instances of a particular target scope
that is executed within arepeatable construct. For the case of default compensation

(<conpensat e>), the Compensation Handler Instance Group contains the compensation handler
instances of all immediately enclosed scopes that completed successfully. The compensation
handler instances of immediately enclosed scopes, are treated as a single group.

If an uncaught fault occurs while executing any compensation handler instance of the group, or if
compensation activities are terminated, then al running instances MUST be terminated
following standard WS-BPEL activity termination semantics. All compensation handler
instances of the group and compensation handler instance groups of immediately enclosed
scopes are uninstalled. Completed compensation handler instances within a Compensation
Handler Instance Group are not subject to further compensation.

12.4.4.2. Compensation within Repeatable Constructs

If a scope being compensated by name is nested in a <whi | e>, <r epeat Unt i | >, or non-parallel
<f or Each> loop, the invocation of the installed instances of the compensation handlersin the
successive iterations MUST be in reverse order.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 124 of 264

In the case of parallel <f or Each> and event handlers, no ordering requirement isimposed on the
compensation of the associated scope.

12.4.4.3. Compensation within FCT-Handlers

If ascopeisenclosed inside an FCT-handler, then the enclosed scope’ s compensation handler is
available only for the lifetime of the enclosing handler. Once the handler completes, any installed
compensation handlers within it are uninstalled. [SA00079] A root scope enclosed inside a
handler of the above three kinds cannot have a compensation handler associated because it is not
reachable at all from anywhere within the process. Therefore, the root scope inside a handler of
the above three kinds MUST NOT have a compensation handler. Thisrule MUST be statically
enforced. Note that the root scope of an event handler (<onEvent > or <onAl ar) can have a
compensation handler.

Figure 4: Compensation within Fault Handlers shows a fault handler FH(S1) that contains a
scope S2. Scope S2 cannot have a compensation handler CH(S2) as this compensation handler
would be unreachable, but it may have afault handler FH(S2) that is allowed to compensate an
inner scope S3.

FH(S1)

S1

Figure 4. Compensation within Fault Handlers

Compensation within Fault Handlers

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 125 of 264

A fault in afault handler MUST cause all running contained activities to be terminated (see
section 12.6 Termination Handlers). All compensation handlers contained in the fault handler
MUST be uninstalled. The fault is propagated to the enclosing scope.

Compensation within Compensation Handlers

A root scope enclosed by a compensation handler can be used to ensure “al or nothing”
semantics, but not for reversing the work of a successfully completed compensation handler. If
the compensation handler compl etes successfully then any installed compensation handlers for
scopes nested within it are uninstalled. The successfully completed compensation cannot be
reversed, because the root scope inside a compensation handler cannot have aits own
compensation handler associated because it is not reachable at all from anywhere within the
process.

A compensation handler that faults (“internal fault”) will undo its partial work by compensating
all scopesimmediately enclosed by the root scope according to the fault handler of the root scope.
If such afault handler is not specified explicitly, partial work will be compensated in the default
order (see section 12.5.2. Default Compensation Order). This approach can be used to provide all
or nothing semantics for compensation handlers. After the partial work is undone, the
compensation handler MUST be uninstalled. The fault MUST be propagated to the caller of the
compensation handler. This caller is adefault FCT-handler of the enclosing scope or a
compensation activity contained within a user-defined handler.

Figure 5: Compensation within Compensation Handlers shows a compensation handler CH(S1)
that contains a scope S2. As in the preceding figure, S2 cannot have a compensation handler
CH(S2) itself but may have afault handler FH(S2) that is allowed to compensate an inner scope
S3.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 126 of 264

S1

Figure5: Compensation within Compensation Handlers
Compensation within Termination Handlers

A fault inside atermination handler MUST NOT be not propagated to the enclosing scope (see
section 12.6 Termination Handlers). Other than that, all of the statements about fault handlers
apply to termination handlers as well.

12.5. Fault Handlers

Fault handling in a business process can be thought of as a mode switch from the normal
processing in a scope. Fault handling in WS-BPEL is designed to be treated as "reverse work," in
that itsaim is to undo the partial and unsuccessful work of a scope in which afault has occurred.
The completion of the activity of a fault handler, even when it does not rethrow the handled fault,
is not considered successful completion of the attached scope. Compensation is not enabled for a
scope that has had an associated fault handler invoked.

Explicit fault handlers, if used, attached to a scope provide away to define a set of custom fault-
handling activities, defined by <cat ch> and <cat chAl | > constructs. Each <cat ch> construct is
defined to intercept a specific kind of fault, defined by a fault QName. An optional variable can
be provided to hold the data associated with the fault. If the fault name is missing, then the catch
will intercept all faults with the same type of fault data. The fault variable is specified using the
faul t Vari abl e attribute in a<cat ch> fault handler. The variable is deemed to be implicitly
declared by virtue of being used as the value of this attribute and islocal to the fault handler. It is

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 127 of 264

not visible or usable outside the fault handler in which it is declared. A <cat chAl | > clause can
be added to catch any fault not caught by a more specific fault handler.

There are various sources of faultsin WS-BPEL. A fault response to an <i nvoke> activity isone
source of faults, where the fault name and data are based on the definition of the fault in the
WSDL operation. A <t hr ow> activity is another source, with explicitly given name and/or data.
WS-BPEL defines several standard faults with their names, and there may be other platform-
specific faults such as communication failures.

A fault name may be used in aWS-BPEL process without being defined el sewhere, for example
inaWSDL operation; or the fault name may be missing.

<f aul t Handl| er s>
<cat ch faul t Name=" QNane" ?
faul t Vari abl e="BPELVari abl eNane" ?
(faul t MessageType="Q\ane" | faultEl ement="QNane")? >*
activity
</ cat ch>
<cat chAl | >?
activity
</ catchAl | >
</ faul t Handl er s>

[SA00080] There MUST be at least one <cat ch> or <cat chAl | > element within a
<f aul t Handl er s> element. This requirement MUST be statically enforced.

Data thrown with afault can be aWSDL message type or a XML Schema element. Each

<cat ch>, which specifiesa QName asitsf aul t Name attribute value, can only catch afault with
amatching QName (see section 10.3. Invoking Web Service Operations — Invoke for the
description of how to construct this QName from afault defined in WSDL). Faults with the same
name defined in multiple WSDL operations within the same WSDL namespace can be caught by
the same <cat ch> fault handler. If the data to be caught isa WSDL message then the

f aul t MessageType attribute is used to specify the message type' s QName. If the datato be
caught isa XML element then thef aul t El enent attribute is used to specify the element
definition’s QName.

[SA00081] To have a defined type associated with the fault variable, thef aul t Vari abl e
attribute MUST only be used if either the f aul t MessageType or f aul t El enent attributes, but
not both, accompany it. Thef aul t MessageType and f aul t El ement attributes MUST NOT be
used unless accompanied by f aul t Var i abl e attribute.

Because of the flexibility allowed in expressing the faults that a<cat ch> construct can handle, it
ispossible for afault to match more than one fault handler. [SA00093] While multiple fault
handlers may match afault, the <f aul t Handl er s> element MUST NOT contain identical

<cat ch> constructs. The <cat ch> constructs are considered identical in this context, when they
haveidentical valuesin their f aul t Nane, f aul t El ement and f aul t MessageType attributes. If
an attribute is not present in a<cat ch>, itsvalue is considered absent and isidentical only to an
absent attribute of another <cat ch>. A process definition that violates this condition MUST be
detected by static analysis and MUST be rejected by a conformant implementation.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 128 of 264

When faults are thrown without associated data the fault MUST be caught as follows:

1. If thereisa<cat ch> construct with amatching f aul t Name value that does not specify a
faul t Vari abl e attribute then the fault is passed to the identified catch activity.

2. Otherwiseif thereisa<cat chAl | > fault handler then the fault is passed to the
<cat chAl | > fault handler.

3. Otherwise, the fault will be handled by the default fault handler (see section
12.5.1. Default Fault, Compensation, and Termination Handlers).

In the case of faults thrown with associated data the fault MUST be caught as follows:

1. If thereisa<cat ch> construct with amatching f aul t Name value that has a
faul t Vari abl e whose type matches the type of the runtime fault data then the fault is
passed to the identified <cat ch> construct (see the matching criteria definition below).

2. Otherwiseif thefault datais a WSDL message type where the message contains asingle
part defined by an element and there exists a<cat ch> construct with a matching
f aul t Name value that hasaf aul t Var i abl e whose associated f aul t El enent 's QName
matches the QName of the runtime element data of the single WSDL message part, then
the fault is passed to the identified <cat ch> construct with the f aul t Vari abl e initialized
to the value in the single part’ s element (see the matching criteria definition below).

3. Otherwiseif thereisa<cat ch> construct with a matching f aul t Name value that does not
specify af aul t Vari abl e attribute then the fault is passed to the identified <cat ch>
construct. Note that in this case the fault value will not be available from within the fault
handler but will be available to the <r et hr ow> activity.

4. Otherwiseif thereisa<cat ch> construct without af aul t Name attribute that has a
faul t Vari abl e whose type matches the type of the runtime fault data then the fault is
passed to the identified <cat ch> construct (see the matching criteria definition below).

5. Otherwiseif the fault datais a WSDL message type where the message contains asingle
part defined by an element and there exists a<cat ch> construct without af aul t Nane
attribute that has af aul t Var i abl e whose associated f aul t El enent 'S QName matches
the QName of the runtime element data of the single WSDL message part, then the fault
is passed to the identified <cat ch> construct with thef aul t Vari abl e initialized to the
value in the single part’ s element (see the matching criteria definition below).

6. Otherwiseif thereisa<cat chAl | > fault handler then the fault is passed to the
<cat chAl | > fault handler.

7. Otherwise, the fault will be handled by the default fault handler (see section
12.5.1. Default Fault, Compensation, and Termination Handlers).

Matching the type of af aul t Vari abl e to the runtime fault data as mentioned in points #1 and
#4 above is more restrictive than in points #2 and #5. In the case of #1 and #4, aWSDL message
type variable can only match a WSDL message type fault data, while an element variable can
only match element-based fault data. For the case of WSDL message-based fault, they match
only when their QNames are identical. For points #1 and #4, wheref aul t El ement is used, and
point #2 and #5, matching is done by comparing the runtime element-based data and the

faul t El enent’s QName.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 129 of 264

The runtime element-based data, which originates from throwing a fault with an XSD element-
based variable, an XSD type-based variable or a single-part WSDL message based on an XSD
element, is considered to be compatible with the globally declared element referenced by
faultElement, when:

o the QName of the element-based data exactly matches the QName of the referenced
element, or

e the element-based data is a member of the substitutionGroup headed by the referenced
element (note: this membership relation is transitive but not symmetric).

If multiplef aul t El ement -based <cat ch> constructs are compatible with element-based fault
data then their matching priority is asfollows:

e A <cat ch> construct with an exact QName match takes precedence.

e |f no exact match exists then the matching precedence is given to a<cat ch> witha
faul t El ement which hasthe fewest level of substitutionGroup relation in XML element
declaration (see example below).

For example, f oo: El ent, f oo: El en®, f oo: El en8, f oo: El em#, f oo: El enb are al globally
declared elements. El en? isdeclared with its substitutionGroup attribute referring to El ent.. The
same relationship is declared between El en8 and El en2, and between El em# and El en8, and
between El ens and El em#. Consider a scope with the following fault handlers:

<scope>
<f aul t Handl er s>
<catch faul t Nane="f oo: Bar Faul t Nane" faul t El enent ="f oo: El enR" >
catch-logic-A ...
</ cat ch>
<cat ch faul t Nane="f oo: Bar Faul t Nane" f aul t El ement ="f oo: El emd" >
catch-logic-B ...
</ cat ch>
<catch faul t Nane="f oo: Bar Faul t Nane" >
catch-logic-C ...
</ cat ch>
</ faul t Handl er s>
</ scope>

If the fault data element is“f oo: El ent”, the <cat ch>-logic-B based on “f oo: El emd” will be
matched. If fault data element is“f oo: El enB8”, the <cat ch>-logic-A based on “f oo: El en2” will
be matched. If fault data element is“f oo: El enl”, the <cat ch>-logic-C will be matched.

Consider the following example:

<f aul t Handl er s>
<cat ch faul t Nane="x:f oo">

<enpty />
</ catch>
<catch faultVariabl e="bar" faultMssageType="tns: bar Type" >
<enpty />
</ catch>
<cat ch faul t Name="x: f 00"
wsbpel-v2.0-0S 11 April 2007

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 130 of 264

faul t Vari abl e="bar"
faul t MessageType="t ns: bar Type" >

<enpty />
</ cat ch>
<cat chAl | >

<enpty />
</ cat chAl | >
</ faul t Handl er s>

Assume that afault named ”x:foo” is thrown from within the scope to which this

<f aul t Handl er s> construct is attached. The first <cat ch> will be selected if the fault carries no
fault data. If there isfault data associated with the fault, the third <cat ch> will be selected if and
only if the type of the fault’s data matches the type of variable “bar”, otherwise the <cat chAl | >
fault handler will be selected. Finally, afault with afault variable whose type matches the type
of “bar” and whose nameis not “x:foo” will be processed by the second catch. All other faults
will be processed by the <cat chAl | > fault handler.

A WS-BPEL processis allowed to rethrow the original fault caught by the nearest enclosing
fault handler with a<r et hr ow> activity. A <r et hr ows> activity is allowed to be used within any
fault handler and only within afault handler. Regardless of how afault is caught and whether a
fault handler modifies the fault data, a<r et hr ow> activity always throws the original fault data
and preserves itstype.

Although the use of compensation can be a key aspect of the behavior of fault handlers, the
activity within afault handler is arbitrary, and can even be the <enpt y> activity. When afault
handler is present, it isin charge of handling the fault. It might rethrow the same fault or a
different one, or it might handle the fault by performing cleanup and allowing normal processing
to continue in the enclosing scope.

A process or scope in which afault occurred is considered to have ended abnormally (i.e.
completed unsuccessfully), whether or not the fault was caught and handled without rethrowing
the original fault or throwing a new fault. A compensation handler is never installed for a scope
which is reached by afault.

When afault handler for a scope completes handling a fault that occurred in that scope without
throwing afault itself, links that have that scope as the source MUST be subject to evaluation of
their status.

Asexplained in section 10.3. Invoking Web Service Operations — Invoke, thereis a specia
shortcut for the invoke activity to inline fault handlers rather than explicitly using an
immediately enclosing scope.

The compensation handler for scope C becomes available for invocation by the FCT-handlers for
itsimmediately enclosing scope exactly when scope C completes normally. A fault handler for
scope C is available for invocation exactly when C has commenced but has not been compl eted.
If the scope faults before completion, then the appropriate fault handler gets control and all other
fault handlers and termination handlers are uninstalled. A WS-BPEL processor MUST NOT run
more than one explicit or default FCT-handler for the same scope under any circumstances.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 131 of 264

The behavior of fault handling for scope C MUST begin by terminating all activitiesthat are
currently active and directly enclosed within C (see section 12.6 Termination Handlers). The
termination of these activities MUST occur before the specific behavior of afault handler is
started. This also appliesto the default fault handlers described below. The activity of afault
handler is deemed to occur in the scope to which the fault handler is attached.

12.5.1. Default Fault, Compensation, and Termination Handlers

The visibility of scope names and therefore of compensation handlersis limited to the
immediately enclosing scope. Therefore, the ability to compensate a scope would be lost if the
immediately enclosing scope did not have an FCT-handler. Also many faults are not
programmatic or the result of operation invocation, so it is not reasonable to expect an explicit
fault handler for every fault in every scope. WS-BPEL therefore provides default fault handlers,
when they are missing. Similar convenience features are applied to compensation handlers and
termination handlers.

Whenever a<cat chAl | > fault handler (for any fault), <conpensat i onHandl er >, or
<t er m nat i onHandl er > ismissing for any given <scope>, they MUST be implicitly created as
follows.

Default fault handler:

<cat chAl'| >
<sequence>
<conpensate />
<ret hrow />
</ sequence>
</ cat chAl | >

Default compensation handler:

<conpensat i onHandl er >
<conpensate />
</ conpensat i onHandl er >

Default termination handler:

<t er m nat i onHandl| er >
<conpensate />
</term nati onHandl er >

12.5.2. Default Compensation Order

There are two rules for default compensation order that address different aspects of the order
relation. Note that they are cumulative, i.e., they MUST both be obeyed in every casein
performing default compensation.

Informally, Rule 1 states that default compensation must respect the forward order of execution
for the scopes being compensated, but only in so far as that order is mandated by the process

definition. In cases where concurrency is permitted as aresult of the use of <f | ows>, parallel
wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 132 of 264

<f or each>, oOr <event Handl er s>, and not otherwise constrained by links, any actual logical
temporal order during execution is not a part of the constraint defined by the first rule. More
formally, we state the rule based on a precise notion of control dependency.

Definition (Control Dependency). If an activity A must complete before activity B begins, asa
result of the existence of a control path from A to B in the process definition, then we say that B
has a control dependency on A. Note that control dependencies may occur due to control linksin
a<f1 ow> aswell asdueto constructs like <sequence>. Control flow due to explicit <t hr ow> is
not considered a control dependency.

Rule 1: Consider scopes A and B such that B has a control dependency on A. Assuming both A
and B completed successfully and both must be compensated as part of a single default
compensation behavior, the compensation handler of B MUST run to compl etion before the
compensation handler of A is started.

In some situations, asingle fault signal can trigger multiple default compensation behaviors.
Rule 1 above applies to each compensation behavior individually.

Rule 1 permits scopes that executed concurrently on the forward path to also be compensated
concurrently in the reverse path. The rule imposes a constraint on the order in which
compensation handlers run during compensation in any default handlers of the enclosing scope,
and is not meant to be fully prescriptive about the exact order and concurrency.

Of course, if one follows the strict reverse order of completion, then that necessarily respects
control dependencies and is also consistent with thisrule.

Informally, the second rule is needed as aresult of the fact that all scopes are not isolated (see
section 12.8. Isolated Scopes). It is syntactically possible for two scopes to have links crossing
from activities within one to activities within the other, and moreover such links may crossin
both directions (see section 11.6.2. Link Semantics). Thiswould beillegal if both such scopes
were isolated. The semantics of links crossing isolated scope boundaries imply that such
bidirectional links constitute acycle. Theintent of Rule 2 isto treat all scopes asif they were
isolated, only for purposes of cycle detection regarding links crossing scope boundaries. This
allows usto apply Rule 1 to any pair of scopes to decide unambiguously if there is a control
dependency between them, and if so, in which direction. Formally, we need three definitions to
state the rule precisdly.

Definition (Peer-Scopes). Two scopes S1 and S2 are said to be peer scopesif they are both
immediately enclosed within the same scope (including process scope).

Definition (Scope-Controlled Set). An activity A iswithin the scope-controlled set of activities
of scope Sif either A isSitself, or A isenclosed within S, at any depth.

Definition (Peer-Scope Dependency). If S1 and S2 are peer scopes then S2 issaid to have a
direct peer-scope dependency on Sl if thereis an activity B within the scope-controlled set of S2,
and an activity A within the scope-controlled set of S1, such that B has a control dependency on
A. The peer-scope dependency relation is the transitive closure of the direct peer-scope

dependency relation.
wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 133 of 264

Rule 2: [SA00082] The peer-scope dependency relation MUST NOT include cycles. In other
words, WS-BPEL forbids a processin which there are peer scopes S1 and S2 such that S1 has a
peer-scope dependency on S2 and S2 has a peer-scope dependency on S1. A process definition
containing a cyclic peer-scope dependency relation MUST be rejected. This MUST be enforced

by static analysis.

In the following example, scope “SC1” and “SC2" are peer-scopes with respect to the process
scope “P1” astheir enclosing scope. Activities“InvA” and “RcvB” are within the scope-
controlled set of activities of scope “SC1”, while “InvB” and “RcvA” are within the scope-
controlled set of activities of scope “SC2”. Scope “ SC1” is said to have a peer-scope dependency
on scope “ SC2” because of control link “LinkA”. Because of control link “LinkB”, thereisa
peer-scope dependency in the opposite direction. Hence, this process definition is not accepted
by aWS-BPEL processor because of this cyclic dependency.

<pr ocess nane="Pl">
<fl ow name="F1">

<scope nane="SC1" >
<f | ow name="F2">

<i nvoke nanme="I|nvA" ...

<t arget s>
<t ar get
</target s>

</ i nvoke>

<recel ve name="RcvB" ..

<sour ces>

>

[i nkName=""Li nkA" />

>

<sour ce |inkNane="LinkB" />

</ sour ces>
</recei ve>
</ fl ow>
</ scope>

<scope nanme="SC2">
<fl ow name="F3">

<i nvoke nane="|nvB" ..

<t ar get s>
<t ar get
</targets>
</ i nvoke>

<receil ve name="RcvA" ...

<sour ces>

>

| i nkNanme="Li nkB" />

>

<source | i nkName="Li nkA" />

</ sour ces>
</receive>

</ 1 o>
</ scope>
</fl ow>

</ process>

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 134 of 264

An effect of Rule 2 isto permit a depth-first traversal of the lexical scope tree for default
compensation, respecting the control dependency relation among peer scopes as dictated by Rule
1. Default compensation order of a scope resulting from these rules is dependent only on the
compensation of its nested scopes. The default compensation order mandated by the rules here is
consistent with strict reverse order of completion. Strict reverse order of completion applied to
compensation of all scopes might not be in depth-first order, and could require interleaving of
nested compensations across peer scopes. Processes that require interleaving of nested
compensations across peer scopes are disallowed by the rules above.

12.5.3. Relation between Compensation Handlers and Isolated Scopes

Compensation handlers may run concurrently with other activities including other compensation
handlers, therefore it is necessary to allow compensation handlers to use isolation scope
semantics (see section 12.8. Isolated Scopes). Compensation handlers do not run within the
isolation domain of their associated scopes, but fault handlers do. This creates difficultiesin the
isolation semantics of compensation handlers for scopes nested inside an isolated scope. Such
compensation handlers MUST NOT use isolated scopes themselves because i solated scopes
cannot be nested. However, their isolation environment would be uncertain because they may be
invoked from either a fault handler within the isolation domain of their enclosing scope or within
the compensation handler of the same enclosing scope which is not in that isolation domain.

In order to ensure consistency of behavior, WS-BPEL mandates that the compensation handler of
an isolated scope will itself have isolated behavior implicitly, although it will create a separate
isolation domain from that of its associated scope.

12.5.4. Handling WS-BPEL Standard Faults

If the value of the exi t OnSt andar dFaul t attribute on ascopeisset to"yes", then the process
MUST exit immediately, asif an <exi t > activity has been reached, when any WS-BPEL
standard fault other than bpel : j oi nFai | ur e reaches the scope. If the value of this attribute is set
to " no", then the process can handle a WS-BPEL standard fault using a fault handler. The default
value for this attribute is" no" . When this attribute is not specified on a<scope> it inheritsits
value from its enclosing <scope> Or <pr ocess>.

12.6 Termination Handlers

The behavior of afault handler for a scope C begins by disabling the scope's event handlers and
implicitly terminating all activities enclosed within C that are currently active (including all
running event handler instances). Note that the completion condition in <f or Each> may also
trigger termination of enclosed scopes. The following paragraphs define the rules that MUST be
followed for all WS-BPEL activity types.

The <assi gn> activities are sufficiently short-lived that they MAY be allowed to compl ete rather
than being interrupted when termination is forced. The evaluation of expressions when aready
started is also allowed to complete. An enforced termination MAY also be allowed as WS-BPEL
does not mandate a particular behavior for assignments and expression evaluations.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 135 of 264

Each <wai t >, <r ecei ve>, <r epl y> and <i nvoke> activity MUST be interrupted and terminated
prematurely. When a request-response <i nvoke> isinterrupted and terminated prematurely, the
response (if received) for such aterminated activity MUST be ignored.

The <enpt y>, <t hr ow> and <r et hr ow> activitiesMAY be allowed to complete. The <exi t >
activity, once started, MUST NOT be terminated.

All structured activity behavior isinterrupted. The iteration of <whi | e>, <r epeat Unt i | >, and
seria <f or Each> MUST be interrupted and termination MUST be applied to the loop body
activity. For aparalel <f or Each>, termination MUST be applied to al parallel executing
branches. If an <i f > or <pi ck> activity has already selected a branch, then the termination
MUST be applied to the activity of the selected branch. If either of these activities has not yet
selected a branch, then the <i f > or <pi ck> activity itself MUST be terminated immediately. The
<sequence> and <f | ow> constructs MUST be terminated by terminating their behavior and
applying termination to all nested activities currently active within them.

The <conpensat eScope> and <conpensat e> activity MUST be terminated by propagating the
termination to the invoked compensation handler instances and applying termination to the
activities of the compensation handlers.

Termination handlers provide the ability for scopes to control the semantics of forced
termination to some degree. The syntax is as follows:

<t er m nat i onHandl| er >
activity
</term nati onHandl er >

The forced termination of a scope begins by disabling the scope's event handlers and terminating
its primary activity and all running event handler instances. Following this, the custom

<t er m nat i onHandl er > for the scope, if present, is run. Otherwise, the default termination
handler isrun.

Forced termination for a scope applies only if the scopeisin normal processing mode. If the
scope has already invoked fault handling behavior, then the termination handler is uninstalled,
and the forced termination has no effect. The already active fault handling is allowed to
complete. If the fault handler itself throws afault, thisfault is propagated to the next enclosing
scope.

The termination handler for a scope is permitted to use the same range of activities as a fault
handler, including the <conpensat eScope> Or <conpensat e> activity. However, atermination
handler cannot throw any fault. Even if an uncaught fault occurs during its behavior, it is not
rethrown to the next enclosing scope. Thisis because: () the enclosing scope has already either
faulted or isin the process of being terminated, which iswhat is causing the forced termination
of the nested scope or (b) the scope being terminated is a branch of aparalel <f or Each> and the
early completion mechanism has triggered the termination, as the <conpl et i onCondi t i on> of
<f or Each> was fulfilled.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 136 of 264

A fault in atermination handler MUST cause all running contained activities to be terminated
(see also section 12.4.4.3. Compensation within FCT-Handlers).

Forced termination of nested scopes occurs in innermost-first order as aresult of the rule (stated
above) that the termination handler is run after terminating its primary activity.

12.7. Event Handlers

Each scope, including the process scope, can have a set of event handlers. These event handlers
can run concurrently and are invoked when the corresponding event occurs. The child activity
within an event handler MUST be a <scope> activity. There are two types of events. First,
events can be inbound messages that correspond to a WSDL operation. Second, events can be
alarms, that go off after user-set times. The grammar for the set of event handlers associated with
ascope Or processis:

<event Handl er s>?
<onEvent partnerLi nk="NCNanme"
port Type="QNane" ?
oper at i on="NCNane"
(nessageType="QNane" | el enent="CQNanme")?
vari abl e="BPELVar i abl eNane" ?
nmessageExchange=" NCNange" ?>*
<correl ati ons>?
<correlation set="NCNane" initiate="yes|join|no"? />+
</correl ati ons>
<fronmPart s>?
<fronPart part="NCNanme" toVariabl e="BPELVari abl eNane" />+
</fronParts>
<scope ...>...</scope>
</ onEvent >
<onAl ar np*

(

<f or expressi onLanguage="anyURl " ?>dur ati on- expr </ f or >

|
<unti| expressionLanguage="anyURI " ?>deadl i ne- expr</until >
)?
<repeat Every expressi onLanguage="anyURI " ?>?
dur at i on- expr
</repeat Every>
<scope ...>...</scope>
</ onAl ar n»
</ event Handl er s>

[SA00083] An event handler MUST contain at least one <onEvent > or <onAl ar m» element. This
MUST be statically enforced.

The port Type attribute on <onEvent > isoptional. If the por t Type attribute isincluded, the
value of the por t Type attribute MUST match the por t Type value implied by the value of the
partnerLink’'s myRole attribute. All instances of <onEvent > MUST use exactly one of
nessageType, el enent, Or <fr onPart s>.

Event handlers are considered a part of the normal behavior of the scope, unlike FCT-handlers.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 137 of 264

The activity enclosed within <onEvent > and <onAl ar m» MUST be a<scope>.
When discussing event handlers, the following two terms are used to explain semantics:

e associated scope: the scope directly defined within <onEvent > or <onAl ar

e ancestor scopes: the chain of enclosing <scope> or <pr ocess> elements of the event
handler

12.7.1. Message Events

The <onEvent > element indicates that the specified event waits for amessage to arrive. The
interpretation of this element and its attributesis very similar to a<r ecei ve> activity. The

part ner Li nk attribute references the partner link that contains the myRole endpoint reference on
which the message is expected to arrive. [SA00084] The par t ner Li nk reference MUST resolve
to a partner link declared in the process in the following order: the associated scope first and then
the ancestor scopes. This requirement MUST be enforced during static analysis. Aswith

<r ecei ve> the par t ner Rol e endpoint reference isignored for purposes of executing the receive
semantics of an event handler. The por t Type and oper at i on attributes define the port type and
operation that isinvoked by the partner in order to cause the event.

Thevari abl e attribute, if it exists, identifies avariable local to the event handler that will
contain the message received from the partner. [SA00087] The nessageType attribute specifies
the type of the variable by referencing a message type definition using its QName. The type of
the variable (as specified by the messageType attribute) MUST be the same as the type of the
input message defined by operation referenced by the oper at i on attribute. Optionally the
messageType attribute may be omitted and instead the el enent attribute substituted if the
message to be received has a single part and that part is defined with an element type. That
element type MUST be an exact match of the element type referenced by the element attribute.
Thevari abl e and nessageType/el enent attributes constitute the implicit declaration of a
variable of that name and type within the associated scope associated of the event handler. If an
el ement attribute is used then the binding of the incoming message to the variable declared in
the <onEvent > event handler occurs as specified for the receive activity in section

10.4. Providing Web Service Operations — Receive and Reply .

An dternative to the use of thevari abl e attribute is the use of a collection of <f r onPart >
elements. The syntax and semantics of the <f r onPar t > elements as used on the <onEvent >
element are the same as specified in section 10.4. Providing Web Service Operations — Receive
and Reply for ther ecei ve activity. [SA00085] Thisincludesthe restriction that if <f r onPar t >
elements are used on an <onEvent > element then thevari abl e, el enent and messageType
attributes MUST NOT be used on the same element, and [SA00047] the rules regarding the
optional nature of thevari abl e attribute or <f r onPar t > elements. When using the <f r onPar t >
elements, each <f r onPar t > element constitutes an implicit declaration of avariable of that name
within the associated scope of the event handler. The variable type is derived from the type of the
corresponding message part. The message type of the WSDL operation can be deduced without
any ambiguity, as WS-BPEL does not support WSDL with overloaded operations (see section

3. Relationship with Other Specifications).

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 138 of 264

Variables referenced by thevari abl e attribute of <f r onPar t > elements or thevari abl e
attribute of an <onEvent > element are implicitly declared in the associated scope of the event
handler. [SA00086] Variables of the same names MUST NOT be explicitly declared in the
associated scope. This requirement MUST be enforced by static analysis.

[SA00090] If thevari abl e attribute is used in the <onEvent > element, either the messageType
or theel enment attribute MUST be provided in the <onEvent > element. This requirement MUST
be enforced during static anaysis.

Upon receipt of the inbound message the event handler assigns the inbound message to the
variable(s) before proceeding to perform the the <scope> activity enclosed by the event handler.
Since the variable(s) are declared within a scope associated with the event handler, each instance
of the event handler (whether executed serially or concurrently relative to other instances)
contains a private copy of the variable(s), which is not shared with other instances.
[SA00095] The variable references are resolved to the associated scope only and MUST NOT be
resolved to the ancestor scopes.

The operation specified in the <onEvent > event handler may be either a one-way or a request-
response operation. In the latter case, the event handler is expected to use a <r epl y> activity to
send the response.

The usage of <corr el at i on> isexactly the same asfor <r ecei ve> activities, with the following
addition: it is possible, from an event handler's inbound message operation, to use correlation
sets that are declared within the associated scope. [SA00088] The resolution order of the
correlation set(s) referenced by <corr el ati on> MUST be first the associated scope and then the
ancestor scopes.

<scope nane="S1">
<conpensat i onHandl er >
<sequence>
<conpensat eScope target="S82" />
</ sequence>
</ conpensat i onHandl er >
<event Handl er s>
<onEvent partnerLink="travel Agency"
port Type="ns: agent "
operation="travel Updat e"
nmessageType="ns:travel St at sUpdat e"
vari abl e="travel Updat e" >
<correl ati ons>
<correl ation set="travel Code" initialize="no" />
<correl ation set="updateCode" initialize="yes" />
</correl ati ons>
<scope name="S2">

<correl ati onSet s>
<correl ati onSet nanme="updat eCode"
properties="ns: updat eCode" />
</correl ati onSet s>
</ scope>
</ onEvent >

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 139 of 264

</ event Handl| er s>
</ scope>

In this example a process is managing travel reservations for a customer and needs to handle
reservation updates from the travel booking system. The <onEvent > construct is used to receive
the update messages which are correlated using the t r avel Code correlation set, which is defined
and initialized elsewhere in the process. However, sometimes the event handler needs to contact
the travel booking system to follow up on an update message. To do that the outgoing message
needs not only the valuein thet r avel Code correlation set, but also the value in an update code
included in the travel update message. Thisis where the updat eCode correlation set, declared
locally to the <onEvent > construct comes in. When the update message is received the

updat eCode correlation set isinitialized and its value made available only to the <onEvent >
event handler instance.

Scope S2 isan immediately enclosed scope of S1. The compensation handler on scope S1
invokes the compensation handler on scope S2, which is associated with the <onEvent > event
handler. If S2's compensation handler were invoked, the variable used to receive the message for
the <onEvent > event handler aswell as any correlation sets declared in the associated scope
would be visible to the compensation handler, and as parts of the scope snapshot.

The semantics of <onEvent > are identical to those of areceive activity regarding the optional
nature of thevari abl e attribute or <f r onPar t > elements, the handling of race conditions, and
the constraint regarding simultaneous enablement of conflicting receive actions. For the last case,
seethebpel : confl i ctingRecei ve fault and its related semantics in section 10.4. Providing
Web Service Operations — Receive and Reply .

When the operation specified in the <onEvent > element is a request-response operation, a
message exchange is used to associate the response from a<r epl y> activity with the inbound
message operation specified in the <onEvent > element. A message exchange is always used to
pair up request and response messages. Thisis true even when the messageExchange attributeis
not specified explicitly on the <onEvent > element, since omission of the attribute signifies use of
a default message exchange (see section 10.4.1. Message Exchanges). [SA00089] When the
messageExchange attribute is explicitly specified, the resolution order of the message exchange
referenced by messageExchange attribute MUST be first the associated scope and then the
ancestor scopes.

Event handlers do not carry the cr eat el nst ance attribute, since the event handler cannot be
enabled until the instance is created.

When the message constituting an event arrives, the <scope> activity specified in the
corresponding event handler is executed. Business processes are enabled to receive such
messages concurrently with the normal activity of the scope to which the event handler is
attached, as well as concurrently with other event handler instances. This allows such events to
occur at arbitrary times and an arbitrary number of times while the corresponding scope (which
may be the entire business process instance) is active.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 140 of 264

The following example shows the usage of an event handler to halt a process instance
immediately through an external message. This event handler is attached to the <pr ocess> scope
and is therefore available during the lifetime of the entire business process instance.

<process nane="order Car" >

<event Handl er s>

<onEvent partnerLi nk="buyer"
port Type="ns: car"
oper ati on="hal t O der"
nessageType="ns: hal t O der MsgType"
vari abl e="hal t Det ai | s">
<scope>

<exit />

</ scope>

</ onEvent >

</ event Handl er s>
</ process>

In this example, if the buyer invokesthe hal t Or der operation, the <exi t > activity is executed,
which results in immediate termination of the process instance without the ongoing work being
compensated. Alternatively, the event handler could throw afault to cause the ongoing work to
be undone and compensated.

12.7.2. Alarm events

The <onAl ar m> element marks a time-driven event. In an <onAl ar n» element, the <f or > and
<unti | > expressions are mutually exclusive. There MUST be at |least one <f or >, <unti | >, or
<r epeat Ever y> expression. The <f or > expression specifies the duration after which the event
will be signaled. The clock for the duration starts at the point in time when the parent scope (the
scope which directly encloses the event handler) starts. The alternative <unt i | > expression
specifies the specific point in time when the alarm will be fired. Only one of these two
expressions may occur in any <onAl ar m»> event. If the specified duration value in <f or > is zero
or negative, or a specified deadlinein <unt i | > has already been reached or passed, then the
<onAl ar m> event is executed immediately. The optional <r epeat Ever y> expression also
specifies aduration. When the <r epeat Ever y> expression is specified, the alarm will be fired
repeatedly each time the duration period expires, while the parent scope is active. The

<r epeat Ever y> expression may be specified on its own or with either the <f or > or the <unti | >
expression. If the <r epeat Ever y> expression is specified alone, the clock for the very first
duration starts at the point in time when the parent scope starts. If the <r epeat Ever y> expression
is specified with either the <f or > or the <unt i | > expression, the first alarm is not fired until the
time specified in the <f or > or <unt i | > expression expires, thereafter it isfired repeatedly at the
interval specified by the <r epeat Ever y> expression. The duration for the <r epeat Every> is
calculated when the parent scope starts. If the specified duration value for <r epeat Every> is
zero or negative then the standard fault bpel : i nval i dExpr essi onVal ue MUST be thrown.

12.7.3. Enablement of Events

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 141 of 264

The event handlers associated with a scope are enabled when the parent scope starts. If the event
handler is enclosed by the <pr ocess> scope, the event handler is enabled as soon as the process
instance is created. This allows the alarm time for aglobal alarm event to be specified using the
data provided within the message that creates a process instance, as shown in the following
example:

<wsdl : definitions
t ar get Namespace="htt p: / / ww. exanpl e. conf wsdl / exanpl e" ...>
<wsdl : mressage nane="orderDetail s">
<wsdl : part nanme="processDuration" type="xsd:duration" />
</ wsdl : nessage>
</wsdl : definitions>

The message type aboveisused in

<process nane="or der Car"
xm ns: def ="htt p: // ww. exanpl e. conl wsdl / exanpl e" ...>

<event Handl er s>
<onAl ar n»
<f or >$or der Det ai | s. processDur ati on</ f or >

</ onAl ar n>
</ event Handl er s>
<vari abl es>

<vari abl e nane="orderDet ai | s" nessageType="def:orderDetails" />
</vari abl es>

<recei ve name="get Order"
par t ner Li nk="buyer"
oper ati on="order"
vari abl e="orderDet ai | s"
creat el nst ance="yes" />

</ process>

The <onAl ar m> element specifies atimer event that is fired when the duration specified in the
processDur ati on part of the or der Det ai | s variableis exceeded. The value of the part is
provided viathe get Or der activity that receives message containing the order details and causes
the creation of a process instance for that order.

12.7.4. Processing of Events

The following subsections provide rules that MUST be adhered to during processing of alarm or
message events.

12.7.4.1. Alarm Events

The clock for the duration starts at the point in time when the parent scope starts. An alarm event
goes off when the specified time or duration has been reached. Except for the <r epeat Ever y>

alarm, an alarm event is executed at most once while the containing scopeis active; the event is

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 142 of 264

disabled for the rest of the lifespan of the parent scope after it has occurred and the specified
processing has been executed. While the parent scope is active, the <r epeat Ever y> alarm event
is created repeatedly each time the duration expires. If the specified duration value for

<r epeat Ever y> iS zero or negative then the standard fault bpel : i nval i dExpr essi onVal ue
MUST be thrown.

12.7.4.2. Message Events

A message event occurs when the appropriate message is received. When such an event occurs,
the associated <scope> activity is executed. However, the event handler remains enabled, even
for concurrent use. While the parent scope is active, a particular message event can occur
multiple times (see section 12.7.7. Concurrency Considerations below for concurrency
considerations).

12.7.5. Disablement of Events

When the primary activity of a scope is complete, al its contained event handlers are disabled.
The already running instances of the event handlers MUST be allowed to complete, and the
completion of the scope as awhole is delayed until they complete.

12.7.6. Fault Handling Considerations

When a fault occurs within the inbound message operation specified in <onEvent > itself (e.g.
bpel :inval i dVari abl es Or bpel : conf | i cti ngRecei ve) Or its associated scope, the fault
MUST be propagated to the associated scope first. If unhandled, the fault will be propagated to
the ancestor scopes chain.

12.7.7. Concurrency Considerations

Multiple <onEvent > and <onAl ar m» events can occur concurrently and they are treated as
concurrent activities even if they correspond to a request-response operation from the same
partner link. The constraint that there can be at most one outstanding request for a request-
response operation on a given partner link also applies (see bpel : confli cti ngRequest related
semanticsin section 10.4. Providing Web Service Operations — Receive and Reply).

When considering concurrent invocation of event handlers, including both <onEvent > and
<onAl ar m» With a <r epeat Ever y> expression, isolated scopes can be used to control accessto
shared variables (see section 12.8. Isolated Scopes).

12.8. Isolated Scopes

The isolated attribute of a scope, when set to "yes", provides control of concurrent access to
shared resources: variables, partner links, and control dependency links. Such a scopeis called
an isolated scope. The default value of the isolated attributeis "no".

Suppose two concurrent isolated scopes, S1 and S2, access acommon set of variables and
partner links (external to them) for read or write operations. The semantics of isolated scopes

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 143 of 264

ensure that the results would be no different if all conflicting activities (read/write and
write/write activities) on all shared variables and partner links were conceptually reordered so
that either all such activities within S1 are completed before any in S2 or vice versa. The same
isolation semantics apply to properties also. Properties are merely projections of variables and
thus are always coupled with them. Access to propertiesisidentical to access to variables,
controlled by the enclosing isolated scope. It is useful to note that the semantics of isolated
scopes are very similar to the standard isolation level "serializable" used in database transactions.
The actual mechanisms used to ensure this are implementation dependent.

[SA00091] Isolated scopes MUST NOT contain other isolated scopes, but MAY contain scopes
that are not marked asisolated. In the latter case, access to shared variables from within such
enclosed scopes is controlled by the enclosing isolated scope.

Any message exchange referenced in a scope serves only to provide a handle to access a facet of
the state of its associated partner link and isintrinsically stateless. Hence, the control exerted by
the enclosing isolated scope does not apply to message exchange.

Any partner links referenced within an isolated scope have their access protected by that
enclosing scope. The protection applies specifically to the endpoi nt Ref er ence part, and not the
message exchange parts of the partnerLink state. The same conflict isolation semantics for
shared variable access are applied to the endpoi nt Ref er ence part of a shared partner link state.

By definition, correlation sets are only mutable at initiation and are immutabl e throughout the
remainder of their lifecycle. Hence any correlation sets referenced within an isolated scope do
not have their access controlled by the enclosing scope. However, the initiation of a correlation
set is performed in an atomic fashion — in the same sense as that of an <assi gn> operation —
ensuring that the correlation set will not be partially initiated.

The used handlers in an isolated scope MUST follow these rules:

e Theevent handlersfor an isolated scope share the isolation domain of the associated
scope. The rule that isolated scopes must not be nested applies to the associated scope of
an event handler as well.

e Thefault handlersfor an isolated scope share the isolation domain of the associated scope.
In case afault occursin an isolated scope, the behavior of the fault handler is considered
part of the isolated behavior.

e Thetermination handler for an isolated scope shares the isolation domain of the
associated scope. When the termination handler of an isolated scope isinvoked, its
behavior is considered part of the isolated behavior.

e The compensation handler for an isolated scope does not share the isolation domain of
the associated scope. The isolation domain ends and the scope snapshot is created when
the normal processing of that isolated scope completes. Afterwards, the compensation
handler isinstalled. If the invoker of the compensation handler (i.e. <conpensat e> or
<conpensat eScope> activities or implicit invoking invoking FCT-handler of the
immediately enclosing scope) is not within an isolation domain, the execution of the
compensation handler associated with an isolated scope will be implicitly isolated. Such

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 144 of 264

an implicit isolation domain ends when the execution of such a compensation handler
ends (see scope "FH_P" and scope "Q" in the example below). If the invoker of the
compensation handler is already within an isolation domain and the invoked
compensation handler is associated with an isolated scope, such a scope definitionisa
case of nested isolated scopes and MUST be disallowed by static analysis (if scope
"FH_P" below isisolated, then such a scope definition is disallowed). (See also
[SA00091)).

<scope nanme="P">
<f aul t Handl er >
<cat chAl' | >
<scope nanme="FH P">
<sequence>

<conpensat e/ >

</ sequence>
</ scope>
</ cat chAl | >
</ faul t Handl er >
<sequence>

<scope nane="Q' isol ated="true">
<conpensat i onHandl er >
<sequence nane="undoQ Seq">...</sequence>
</ conpensat i onHandl| er >
<sequence nane="doQ Seq">...</sequence>
</ scope>

</ sequence>
</ scope>

In the above example, the <conpensat e/ > activity isNOT already within an isolation domain
(assuming scope "P" is the root scope of the process). The execution of the compensation handler
of scope "Q" will be isolated automatically. Thisisolation domain ends when the execution of
the compensation handler of scope"Q" ends.

The compensation handler associated with a non-isolated scope actually shares the isolation
domain of the invoker of the compensation handler, when the invoker is aready within an
isolation domain (see scope "FH_X" in the following example).

<scope nanme="X">
<f aul t Handl er >
<cat chAl | >
<scope nanme="FH X" isol ated="true">
<sequence>

<conpensate />

</ sequence>
</ scope>
</ catchAl | >
</ faul t Handl er >
<sequence>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 145 of 264

<scope nanme="Y">
<conpensat i onHandl er >
<sequence nane="undoY_Seq">...</sequence>
</ conpensat i onHandl er >
<sequence nane="doY_Seq" ></ sequence>
</ scope>

</ sequence>
</ scope>

In the above example, the <conpensat e/ > activity will invoke the compensation handler of
scope"Y" (which performs sequence "undoY _seq") in the isolation domain of scope"FH_X".

The status of links leaving an isolated scope (see aso section 11.6.2. Link Semantics) will not be
visible at the target until the scope completes, whether successfully or unsuccessfully. If the
scope completes unsuccessfully, the status of links leaving the scope is false regardless of what it
was at the time the source activity completed. There are no special rules for links which enter
isolated scopes.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 146 of 264

13. WS-BPEL Abstract Processes

Abstract processes have multiple use cases. Consequently, an approach is provided for defining
Abstract Processes that uses a common base, with profiles to refineit for separate use cases. The
common base, defined in section 13.1. The Common Base, specifies the features that define the
syntactic universe of Abstract Processes. However, the common base does not have well-defined
semantics. Given this common base, a usage profile defines the necessary syntactic constraints
and the semantics based on Executable WS-BPEL Processes for a particular use case for
Abstract Processes. Every Abstract Process MUST identify the usage profile that definesits
meaning. A profileisidentified using a URI. This approach is extensible; new profiles can be
defined as different areas are identified. These profiles can be defined elsewhere, outside of this
specification.

Profiles are created from the common base and their characteristics are defined in section 13.2.
Abstract Process Profiles and the Semantics of Abstract Processes. Two profiles are provided in
this specification.

13.1. The Common Base

The common base is the “syntactic form” to which all WS-BPEL Abstract Processes MUST
conform. The syntactic characteristics of the common base are:

1. TheabstractProcessProfil e attribute MUST exist. Its value refers to an existing
profile definition.

2. All the constructs of Executable Processes are permitted. Thus, there is no fundamental
expressive power distinction between Abstract and Executable Processes.

3. Certain syntactic constructsin WS-BPEL Executable Processes may be hidden, explicitly
through the inclusion of opaque language extensions, and implicitly through omission, as
detailed below in section 13.1.3. Hiding Syntactic Elements. Four types of opague tokens
are enabled: activities, expressions, attributes and from-specs.

4. An Abstract Process MUST comply with the syntactic validity constraint defined in
section 13.1.4. Syntactic Validity Constraints.

5. An Abstract Process MAY omit thecr eat el nst ance activity (<r ecei ve> or <pi ck>)
that is mandatory for Executable WS-BPEL Processes.

13.1.1. URI

The Abstract Process syntax is denoted under the following namespace:
htt p: //docs. oasi s- open. or g/ wsbpel / 2. 0/ process/ abstr act
13.1.2. Structure of an Abstract Process

The structure of an Abstract Process differs from that of an Executable Process only in the
attributes that are permitted, as shown below:

<process name="NCNanme"

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 147 of 264

t ar get Nanespace="anyURl "

abstract ProcessProfil e="anyURl "

quer yLanguage="anyURI " ?

expr essi onLanguage="anyURI " ?

suppr essJoi nFai | ure="yes| no"?

exi t OnSt andar dFaul t ="yes| no" ?

xm ns="http://docs. oasi s- open. or g/ wsbpel / 2. O/ pr ocess/ abstract" >

</p;66ess>
The additional top-level attribute for Abstract Processesis as follows:

e abstractProcessProfile. Thismandatory attribute for Abstract Processes provides the
URI that identifies the profile of an Abstract Process.

13.1.3. Hiding Syntactic Elements

The hiding of syntactic elements mentioned in 13.1. The Common Base, clause [3], is detailed
below.

Opaque Language Extensions

L anguage extensions consisting of opaque tokens are used as explicit placeholders for missing
details. Note that opaque tokens are not new semantically meaningful constructs but syntactic
devices for indicating incompleteness. As such, opague entities have no semantics of their own.

There are four opague placeholders. expressions, activities, attributes and from-specs. A usage
profile MAY restrict the kinds of opaque tokens allowed at its discretion. For example, a profile
could specify that it allows only opague activities, but not other kinds of opague tokens, or a
profile could specify that it allows all attributes to be opaque except the par t ner Li nk attribute.
However, a usage profile MUST NOT expand allowable opacity above what is allowed by the
"common base". For example, a profile cannot specify that it allows a fault handler element to be

opague.

Each opague token is a placeholder for a corresponding Executable WS-BPEL construct, as will
be described below. That construct can be different in each Executable Completion (see section
13.1.4. Syntactic Validity Constraints) of an Abstract Process. For example, an opague activity in
an Abstract Process could represent an <assi gn> in one Executable Process and an <enpt y> in
another Executable Process that are both valid completions of the Abstract Process.

The common base alows the following uses of opacity in Abstract Processes:

Opague activities are allowed.

All WS-BPEL expressions are allowed to be opaque.

All WS-BPEL attributes are allowed to be opague in the common base.
The from-spec (e.g. in <assi gn>) is allowed to be opaque.

The function of the four types of opague tokens allowed in Abstract Processes (activities,
expressions, attributes and from-specs) are described below, with examples:

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 148 of 264

Opague activities

An opague activity is an explicit placeholder for exactly one Executable WS-BPEL activity, and
any activities that could be nested within that activity. The Executable WS-BPEL activity uses
all non-opaque elements/attributes defined by the opague activity it replaces. It also replaces any
opaque attributes or expressions that are part of that opaque activity.

An opague activity has the same standard elements and attributes common to all WS-BPEL
activities (see sections 10.1. Standard Attributes for All Activitiesand 10.2. Standard Elements
for All Activities). An opaque activity has the following form:

<opaqueActivity standard-attributes>
st andar d- el ement s
</ opaqueActi vity>

One example of using opagque activitiesisin the creation of a process template that marks the
points of extension in a process. Another is hiding an activity that isajoin point for several links
when creating an Abstract Process from a known Executable Process. If that activity, on the
other hand, were an activity in a<sequence> with no links to or fromit, it could be omitted from
the resulting Abstract Process. This could not be done using the <enpt y> activity, because

<enpt y> explicitly means "nothing happens here". Whereas <opaqueAct i vi t y> means
"something happens here, but it's hidden on purpose”.

The reason for making an opaque activity a placeholder for one activity (and not zero or more) is
that in the case of one activity there is no ambiguity regarding carrying over any attributes or
elements defined on the opaque activity, or initsrelation to its parent and sibling activities.

Opague expressions

An opague expression is a placeholder for a corresponding Executable WS-BPEL expression.

An example usage of an opagque expression is that of copying a hidden value into a known
variable. Opague expressions can be used for non-determinism: the obvious case being a process
that needs to show a decision point with alternative outcomes without specifying how the
decision isreached. In this case the expressions that constrain each branch may need to be | ft
unspecified. However, it may also be convenient to make a specific value or quantity such asa
price threshold unspecified, so that explicitly specified conditions relative to the threshold
become non-deterministic as aresult of the threshold value being unknown.

All expressionsin WS-BPEL, and their corresponding opague representations are listed below:
1. Boolean valued expressions.

e <transitionCondition>element of <source>:

<transitionCondition expressi onLanguage="anyURl "? opaque="yes"/>

e <joi nCondi ti on> element of <t ar get s>:

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 149 of 264

<j ol nCondi ti on expressi onLanguage="anyURlI "? opaque="yes"/>
e <condition> element of <whi | e>, <repeat Unti |l >, <i f>, and <el sei f >:
<condi ti on expressi onLanguage="anyURI "? opaque="yes"/>

2. Deadline valued expressions.

e <until>eementof <onAl arme and <wai t >:
<until expressi onLanguage="anyURlI "? opaque="yes"/>

3. Duration valued expressions:

e <for>eement of <onAl ar m» and <wai t >:

<f or expressi onLanguage="anyURlI "? opaque="yes"/>

e <repeat Every> element of <onAl ar np:

<repeat Every expressi onLanguage="anyURI "? opaque="yes"/ >

4. unsignedint valued expressions:

e <start CounterVal ue>, <fi nal Count er Val ue>, and <br anches> elements of
<f or Each>:

<start Count er Val ue expressi onLanguage="anyURI "? opaque="yes"/>
<fi nal Count er Val ue expressi onLanguage="anyURI "? opaque="yes"/>
<branches ... expressi onLanguage="anyURI "? opaque="yes"/>

5. Opaque expressions and queries in from-spec and to-spec, respectively:

e <fromr element incorporating an expression:

<from expr essi onLanguage="anyURI "? opaque="yes"/>

e <fromr element incorporating a query:

<from vari abl e="BPELVar i abl eNane" part="NCNanme" ?>
<query querylLanguage="anyURI "? opaque="yes"/>?
</fronp

e <t o> element incorporating an expression:

<t o expressi onLanguage="anyURl "? opaque="yes"/>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 150 of 264

e <t o> element incorporating a query:
<t o vari abl e="BPELVari abl eNane" part="NCNang" ?>

<query querylLanguage="anyURI "? opaque="yes"/>?
</to>

Opague from-spec

A special case for generic opaque assignment is allowed. It represents hiding any of the forms of
the from-spec (see section 8.4. Assignment). The new <opaqueFr on» construct is used for this:

<opaqueFr ont >

Opague attributes

An Executable WS-BPEL attribute used in an Abstract Process can have an opague value,
thereby hiding the attribute's value. We refer to these as opaque attributes.

For example, an opaque var i abl e attribute in a<r ecei ve> activity hideswhere the datais
stored once the corresponding message is received.

The value ##opaque MUST be reserved and can be used as the value of any WS-BPEL attributes
that can be opague in an Abstract Process.

Omission

Omission may be used as a shortcut to opacity, from hereon referred to as omission shortcut. The
omission shortcut is exactly equivalent to representing the omitted artifact with an opaque value
at the omitted location. Tokens MUST only be omitted where the location can be detected
deterministically. To enforce this requirement, omittable tokens are restricted to all attributes,
activities, expressions and from-specs which are both (1) syntactically required by the
Executable WS-BPEL XML Schema, and (2) have no default value. Note that it is allowed to
omit the start activity in an Abstract Process as well (see section 13.1.3. Hiding Syntactic
Elements, [9]). If the omitted token is an activity, the implied opaque activity MUST have the
exact form <opaqueAct i vi t y/ > (i.e.: no standard-elements or standard-attributes). Notice that
(1) deliberately excludes any non-Schema requirements of Executable WS-BPEL.

Therefore, an Abstract Process P1 that uses the omission shortcut is always equivalent to an
Abstract Process P2 that is the same as P1 but injects opagque tokens anywhere they have been
omitted and does not use the omission shortcut. To illustrate, consider a process that omits the
variable attribute in al invoke activities. Thisis equivalent to another process which isidentical
to P1 except that it includesthe vari abl e attribute on all itsinvokes but with the value
##opaque, and vice versa.

13.1.4. Syntactic Validity Constraints

Definition (Executable Completion). An Executable Completion of an Abstract Processis
defined as an Executable Process that

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 151 of 264

1. isderived only by:

a) Changing the namespace to that of Executable WS-BPEL and removing the
profile URI.
b) Using some combination of the following syntactic transformations:

i. Opague Token Replacement: Replacing every opaque token (including those
omitted using the omission-shortcut) with a corresponding Executabl e token.
For example, replacing an opaque activity with an <enpt y>.

ii. Addition of WS-BPEL constructs: Adding new WS-BPEL XML elements
anywhere in the process.

2. isavalid Executable WS-BPEL process that satisfies all static validation rules mandated
by this specification including both Schema-based and non-Schema-based rules.

A clarification is provided here regarding the completion rules and their application to constructs
with default valuesin the Abstract Process, such as “ createlnstance” at <receive>, “validate” at
<assign> and <joinCondition> within <targets>. The completion rules above do not allow
changing non-opaque constructs when creating an executable completion (whether through
omission-shortcut or explicitly). Asstated in section "13.1.3. Hiding Syntactic Elements’, a
construct, which is not explicitly present in the abstract process and has a default value, is not
allowed to be made opaque through omission-shortcut. Its value will be that of the default in all
executable completions (e.g.: “no” for an omitted “suppressJoinFailure”’ attribute). Therefore,
specifying its value in an executable completion is not covered by “ Addition of WS-BPEL
constructs.” In order to allow Execution Completion to specify the value of such constructs,
explicit opague tokens should be used in the Abstract Process. Completions can then specify the
values specified using “ Opaque Token Replacement”.

Thisis especialy relevant to the addition of links. New links cannot be added as targets to
existing activities with at least one link if such an addition changes an existing, non-opaque join
condition (including the default join condition). The default join condition isincluded in this
consideration because adding a new link to an activity using the default join condition effectively
changes the condition to include the new link’s status. Examples where new links can be added
include adding them to: 1) an activity with no existing incoming links, 2) an activity with
incoming link(s) and an opague join condition, or 3) an activity with incoming link(s) and an
explicitly specified, non-opague join condition (whose value cannot be changed in any
executable completion).

Definition (Basic Executable Completion). A Basic Executable Completion of an Abstract
Processis defined as an Executable Completion whose allowed syntactic transformations MUST
be limited to:

e Opaqgue Token Replacement (1. (b) i. above),

e theaddition of astart activity if none are present in the Abstract Process (per
clause [5] of section 13.1.3. Hiding Syntactic Elements), and

e theaddition of <i nport >, <part ner Li nks>, <part ner Li nk>, <vari abl es>,
<vari abl e> elements at the <pr ocess> level, as long as the declarations of any

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 152 of 264

such newly added elements are not referenced by existing constructs in the AP
(before opaque token replacement).

An Abstract Process MUST be considered valid if and only if it meets the following criteria, as
referred to in 13.1. The Common Base, clause [4] :

e It conformsto the WS-BPEL XML Schema for the common base, as defined in
Appendix E. XML Schemas. Thisis purely an XML Schema check and does not enforce
any non-Schema validation rules, such as requiring that every link that has a source must
also have atarget.

e Any extension construct, including the extension attribute, elements, extension activity
and extension assign operations, is declared properly with the "namespace" and
"mustUnderstand” not being opaque (including omission-shortcuts). See more detailsin
sections 5.3. Language Extensibility and 14. Extension Declarations.

e Thereexists at |east one Basic Executable Completion of the Abstract Process.

The purpose of the last bullet above is to improve the static validation of an Abstract Process
beyond the XML Schema check. Thislimits the creation of ill-defined constructs in the Abstract
Processes that the Schema would otherwise alow. On the other hand, the semantics of an
Abstract Process comes from the range of Executable Processes that can be created from the
Executable Completions (not limited to Basic Executable Completions) alowed by its profile.

There is no fundamental expressive power distinction between Abstract and Executable
Processes. To accommodate the syntactic flexibility introduced by allowing opacity and
omission in the syntax of Abstract Processes, the XML Schema for the Common Base of
Abstract Processes does not reuse any definitions from XML Schemafor the Executable
Processes. The two have distinct namespaces: one for Abstract WS-BPEL Processes and one for
Executable WS-BPEL Processes.

At the same time, an Abstract Process Profile may be required to extend the level of syntactic
validation from that of the common base to support the inclusion of additional information
necessary to it. Therefore an Abstract Profile MAY provide:

e extension constructsin its own namespace to be added to the Abstract Process,
e additional XML grammar to support its own specific syntax validation.

Abstract Processes defined using any profile MUST validate according to the grammar of the
common base.

13.1.5. Interpretation of the Common Base

The common base, being extremely flexible, does not have well-defined semantics. On the other
hand, Executable WS-BPEL Processes have well-defined semantics and prescribed behavior.
The semantics of an Abstract Process are provided by the set of Executable WS-BPEL Processes
that the particular Abstract Process represents. This set is provided in usage profiles, and varies
from one profile to another. In other words, the semantics of an Abstract Process depend on its
associated profile.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 153 of 264

In addition to semantics, the consistency constraints of Executable WS-BPEL are clearly defined.
The semantics of each language construct in an Abstract Process MUST be derived from that of
the same construct in Executable WS-BPEL . For example, an <i nvoke> in an Abstract Process
always represents invoking a Web service operation as used in Executable Processes. The
differenceis strictly a consequence of the opacity used in that construct (missing information)

and other parts of the process affected by it (for example, opacity in alink source element may
affect the link target element). Any required clarifications depending on allowed opacity will be
specified in the relevant usage profile.

In the common base definition, there are no requirements how Executable realizations of agiven
Abstract Process should be implemented (i.e. language, platform, etc.); nor are specific
relationships with such realizations implied. Again, a concrete usage profile might provide such
information based on its use case.

13.2. Abstract Process Profiles and the Semantics of Abstract
Processes

The common base for Abstract Processes specifies the syntactic universe within which Abstract
Processes are defined. The common base does not provide any semantics for Abstract Processes
since the semantics must express a specific intent for the interpretation of an Abstract Process
and the common base provides no mechanism to express such intent.

It isaprofile that defines a class of Abstract Processes with a shared semantic interpretation.
Abstract Processes are incomplete and by definition not Executable, whether or not they contain
opague entities. The semantics of the non-opague constructs they contain cannot be understood
inisolation. Their semantics are bound by the Executable Completions that are permitted by the
profile referenced by the Abstract Process. The semantics of those constructs can be realized
only in the possible Executable Completions. As an edge case, a permitted completion may
sometimes be virtually identical to the Abstract Process syntactically, but this is the exception
rather than the rule.

A WS-BPEL Abstract Process and a WS-BPEL Executable Process are said to be compatible if
the Executable Processis one of the Executable Completionsin the set of permitted completions
specified by the Abstract Process’ Profile. Compatibility for Executable Processes that are not
WS-BPEL processes is outside the scope of this specification. Clearly, an Executable Process
can exist independently from an Abstract Process.

A profile MUST NOT violate the common base. A profile MUST define

(i) A URI that identifies the profile and is used as the value of the
abstract ProcessProfi | e attribute by all Abstract Processes belonging to this profile.

(i) Theset of syntactically valid Abstract Processes that belong to this profile, as a subset of
the common base. Note that the subset does not have to be proper, i.e., it may include the
entire common base. Example profiles include those that disallow control links or certain
types of opaque tokens. Note further that the subset must be consistent with respect to the
use of the omission-shortcut. Specifically, if aprofile limits the use of opaque tokensin
the set of Abstract Processes it covers, then it can only permit those omissions that

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 154 of 264

correspond to permitted usage of opague tokens. For instance, if a profile does not allow
attributes to be opague, then Abstract Processes belonging to that profile cannot omit
attributes using the omission-shortcut.

(iii) The set of permitted Executable Completions for Abstract Processes that belong to the set
in (ii). The set of permitted Executable Completions MUST be non-empty for each
Abstract Process in the set in (ii).

Any Abstract Process that belongs to a given profile MUST follow the restrictions defined in that
profile.

If the allowed level of opacity in aprofile leads to the inability to relate constructs in the abstract
process, the profile MUST provide additional syntactic constraints to ensure that a user can
match the constructs. Examples include a receive/reply pair with opagque operation attributes, or
alink sourceftarget pair with an opague name attribute.

Another exampleis aprofile that allows “ Opague Token Replacement” and the addition of only
WS-BPEL constructs that create |eaf-nodes or sub-trees. By disallowing arbitrary additions, such
aprofile would not allow Executable Completions to do such things as wrap an existing activity
with a<whi | e>, or add a<sequence> around activitiesin a<f | ow>. On the other hand, it would
allow the creation of new leaf activitiesinside an existing <f | ow>.

13.3. Abstract Process Profile for Observable Behavior

The objective of the Abstract Process Profile for Observable Behavior is to provide precise and
predictabl e descriptions of observable service behavior. The main application of this profileis
the definition of business process contracts; that is, the behavior followed by one business
partner in the context of Web services exchanges. Business process contracts are particularly
relevant in automated cross enterprise interactions but have general applicability in the extension
of service contracts with precise, machine processable behavioral descriptions.

There are several key differences between processes intended to represent business process
contracts and Executable Processes. Foremost among them is the different way in which data are
handled in each case; the rich data manipulation that occurs in Executable Processes need not be
described in public process contracts. Instead, public process contracts use non-deterministic
data values to hide the private aspects of executable behavior. For example, using opague
assignment supports modeling the non-deterministic effects that private computation has on
external behavior.

In this profile, the use of opacity is concentrated in those features associated with data handling.
Non-deterministic data values are not allowed in Executable Processes; Abstract Processes, on
the other hand, use non-deterministic values to reflect the consequences of actual behavior while
maintaining the details of that behavior to remain private.

13.3.1. Profile URI

The URI identifying this Abstract Process Profileis:

http://docs. oasi s- open. or g/ wsbpel / 2. 0/ process/ abstract/apl1l/ 2006/ 08
wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 155 of 264

13.3.2. Subset of the Processes Allowed in the Common Base

This profile is concerned with hiding internal processing of a business partner’s process while
capturing all the information required to describe how the process interacts with its partners. The
set of usage restrictions associated with the use of Abstract Processesin general wasin fact
derived from this original requirement, which was captured by the Abstract Process definition
incorporated in the previous version of this specification ([BPEL4WS 1.1]).

This profile applies opacity in WS-BPEL constructs that handle data. In addition, the omission-
shortcut described in 13.1.3. Hiding Syntactic Elements can be used as an aternative to
explicitly specifying opaque tokens. The profile described here allows the use of opaque
activities specifically for supporting the two cases where an activity is syntactically required. The
first ishiding internal processing that needs to be the source or target of links in the Abstract
Process, while maintaining the same flow of control in the abstract representation. The second is
the use of opacity (and consequently the omission shortcut) in places where an activity is
required by the WS-BPEL semantics and Schema. For example, Executable Processes are
required to have an activity in afault handler. Using an opague activity avoids the need to use an
<enpt y> activity. The use of opaque activities where an activity isnot syntactically required is
superfluous, because this profile’ s completion rules are flexible about where one can add an
activity in an Executable Completion. The full completion rules are presented in the next section.

This profile restricts the use of the Abstract Process Common Base in the following manner:

e EXpressions. <j oi nCondi ti on> isnot allowed to be opague. The <j oi nCondi ti on> has
adefault value, and is based only on of the status of the incoming links, and not on data
handled by the process. Therefore, it isnot appropriate to hideit. All other expressions
may be opague, as defined in section 13.1.3. Hiding Syntactic Elements.

e Activities: The use of <exi t > isnot allowed.

e Attributes. Only the attributes used for identification of variables and message parts of
message related constructs representing partner interactions are alowed to be opague.
The full list of the attributes allowed to be opague is shown below. The following isthe
complete list of attributes, belonging to the <r ecei ve>, <i nvoke>, <r epl y>,
<onMessage>, Or <onEvent > constructs, that are allowed to be opaque in this profile:

O variabl e, inputVari abl e, out put Vari abl e attributes.
0 part andtoVari abl e attributes of the <f r onPar t > el ement.
0 part andfronVvari abl e atributes of <t oPar t > element.

e From-specs. Opague from-specs are alowed.

The level of abstraction appropriate in the description of business process contracts makes it
often unnecessary to use message variables in Web service message activities, particularly when
the intent isto simply constrain the sequencing of such activities and the actual message datais
not relevant.

13.3.3. The Use of Opaque Variable References

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 156 of 264

Unlike Executable Processes, variables in Abstract Processes defined using this profile do not
need to be initialized before being referenced since additional computation may be implicitly
assumed.

Executable Processes are expected to follow constraints such as initializing variables before they
areused. Clearly, Executable Completions of Abstract Processes that hide variable references
and data manipulation are expected to abide by the constraints and requirements of executable
processes.

13.3.4. Subset of the Executable Completions Allowed in the Base

With respect to executable BPEL completions of an abstract process that uses this profile, the
intent of the profile requires avalid completion to follow the same interactions as the abstract
process, with the partners that are specified by the abstract process. The executable process may,
however, perform additional interaction steps relating to other partners. This section uses the
term ‘existing’ to refer to constructs present in an abstract process, and the term ‘new’ to refer
to those added to an abstract process while creating an executable completion.

In order to achieve the intent of the profile, acompletion MUST NOT change the presence or
order of interactions already in the abstract process, and it MUST NOT perform additional
interactions with the partner links defined in the abstract process. The completion rules provided
below aim to enforce this restriction.

Data writing may cause changes in interaction order. Changes caused by data writing are not
enforced by the completion rules, but are highlighted here as an advisory note. One exampleis
changing the value of avariable used in a condition that affects branching, in such away that the
new effective branching behavior isin direct conflict with what is specified by the abstract
process. Conditions that affect the flow of control such astransition conditions, “if” or “while”
expressions, among others, can have such an effect on the order of interactions. For example,
adding anew <whi | e> loop with a“true’ condition as a child of an existing <sequence> would
hang the process.

When creating an executable completion of an abstract process belonging to this profile, the
possible locations for adding new activities are not explicitly defined: Activities may be added
anywhere that the Executable Completions definition in section [see 13.1.4. Syntactic Validity
Constraints] allows with the restrictions below.

In this profile, the valid executable completions of an abstract process are obtained through both
‘opaque token replacement’ and "addition of BPEL constructs, with the following restrictions.

New activities (including those created to replace opaque activities) MUST NOT interact with
partnerLinks already declared in the abstract process. This rule does not affect adding
interactions with new partnerLinks present in the executable completion but not in the abstract
process.

e The endpoint reference of any partnerLink defined in the abstract process MUST NOT be
modified (whether using an <assi gn> activity or otherwise). Additionally, an endpoint

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 157 of 264

reference of any partnerLink defined in the abstract process MUST NOT be copied into
the reference of anewly created partnerLink. The reason is that the former would
effectively prevent subsequent interactions with that partner and the latter would add new
ones. Remember that ‘'opaque token replacement’ al so replaces opaque tokens omitted
through the omission-shortcut.

e Thelexical parent of an existing BPEL construct (including activitiesin particular)
present in the abstract process MUST NOT be changed in an executable compl etion.
Hence, the nesting structure of composite activities around any activity in an abstract
process remains unchanged in any legal completion. Some examples to illustrate this
restriction are provided below. The word ‘existing’ is used in the examplesto refer to
constructs defined in the abstract process from which the executable completions are
being created:

0 Examplesof legal additions:

= Adding avariable or apartner link to an existing scope S, even though that
scope is the parent of existing activity A, except as disallowed above.

= Adding anew link definition to an existing flow, except as disallowed
above.

0 Examplesof illegal additions:

= Adding a<whi | e> activity around an existing activity.
= Adding anew scope around an existing variable definition.

e A valid executable completion MUST NOT add:

0 New branchesto an existing “if-else” activity, unlessit has no “else” branch, and
the new branch is added after all existing branches.

0 New branchesto an existing pick activity.

o New fault, compensation, or termination handlersto an existing scope. However,
they may be added at the process level.

0 <exit> activities.

o0 New links whose targets are existing activities. The Executable Completions
definition in the Base already disallows adding new links to existing activities that
have existing links and use the default join condition. This profile restricts this
further by disallowing the addition of new links to any existing activity. However,
one may freely add links targeting new activities as long as those activities are not
areplacement of one of the abstract process s opaque activities.

o0 Declarations of variables, partner links, and correlation sets in existing scopes if
they hide existing declarations that are used by existing constructsin the scope.

e Activitiesthat throw non-standard faults (e.g. web service activities whose operations
define faults, <t hr ow>) MAY be added only if the exception will not be propagated to
any activity existing in the Abstract Process. For example, consider adding an activity A
asachild of an existing sequence S. Then, one may only add a <t hr ow> within A if the
fault it throws does not reach the scope of the existing sequence S. In other words, the
fault must be caught and fully handled by A or its descendants, and not be re-thrown by
them.

Recall from the definition of Executable Completion in the Base that if a construct is optional
and has a default value, then the construct needs to be explicitly opaque, in order to allow
Executable Compl etion to specify its value. One example that highlights that is an Abstract
Process with a<r ecei ve> activity or other IMA that does not have the createl nstance attribute.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 158 of 264

Such an activity is always treated as a non-start activity, an Execution Completion cannot add
creat el nst ance="yes" toit. If onewantsto make a<recei ve> activity or other IMA
optionally become a start activity, the createl nstance attribute has to be made explicitly opaque.

13.4. Abstract Process Profile for Templates

A high-level design-time representation may be used by atechnical analyst to describe abusiness
process in an organization. The representation may have several inputs, which may be provided
in various forms including non- WS-BPEL process modeling languages as well as forms of
natural languages. In support of these design-time representations, WS-BPEL defines an
Abstract Process profile called the Template Profile that allows the definition of Abstract
Processes which hide amost any arbitrary execution details and have explicit opaque extension
points for adding behavior. These Abstract Processes allow process devel opers to complete
execution details at alater stage — for example, adding conditions and defining endpoints for an
Executable Compl etion.

For the remainder of section 13.4. Abstract Process Profile for Templates, the prefix associated
with the Template Profile namespace URI is"t enpl ate".

13.4.1. Profile URI

http://docs. oasi s- open. or g/ wsbpel / 2. 0/ process/ abstract/ si npl e-
t enpl at e/ 2006/ 08

13.4.2. Opaque Start Activities

The Template Profile introduces anew t enpl at e: cr eat el nst ance extension attribute to mark
an opaque activity as a start activity. Thist enpl at e: cr eat el nst ance attribute carries similar
semanticsto the cr eat el nst ance attribute of an IMA which are defined in both executable
processes, and the common base of abstract processes. Please refer to the section below for the
detailed usage of this attribute.

13.4.3. Subset of the Processes Allowed in the Common Base

All constructs allowed in the common base, such asthe <exi t > activity, are allowed in the
Template Profile. All explicit opague tokens MAY be used anywhere as allowed in the common
base of Abstract Processes.

This profile restricts the common base in the following manner:

e Explicit opague tokens — opaque activity, opague attributes, opaque expression, and
opagque from-spec — MUST be used in order to denote where WS-BPEL constructs will
be added to produce an Executable Completion in all cases other than those listed under
“ Adding constructs without explicit opacity”.

e Omission shortcuts (see section 13.1.3. Hiding Syntactic Elements) MUST NOT be used
in the Template Profile. For example, variable related attributes used in message related

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 159 of 264

constructs can not be omitted. They need to be specified with either opaque attribute
values or the actual variable names.

e All start activities MUST be defined in a process of this Template Profile. That is, every
IMA with acreat el nst ance="yes" attribute that is added during Executable
Completion MUST replace an opaque activity witht enpl at e: cr eat el nst ance="yes" .
No new start activity is alowed to be added during Executable Completion.

13.4.4. Adding Constructs without explicit opacity

For the following cases, constructs MAY be added to the process definition during Execution
Completion without any explicit opacity in the Abstract Process:

e Message Correlation: One or more <corr el at i on> elements MAY be added to a
message activity and <onEvent >, where no <correl ati on> Or <correl ati ons> IS
used.

e Process/Scope Declarations:

0 New data and resource declarations at a scope or process. These declarations

are partner links, variables, message exchange and/or correlation sets at a
scope or the process.

o A fault handler declaration at a scope or the process. Note that compensation
handlers cannot be added during Executable Completion of an Abstract
Process of this profile.

Termination handler declaration at a scope.

An event handler declaration at a scope or the process.

Import declaration at the process

Extension declaration at the process

O O O0OOo

e Extensions
0 New general extension elements and attributes.

A tool, which generates Abstract Processes of Template Profile based on user inputs, is expected
to use explicit opague tokens to denote the constructs with default values (e.g. validate attribute
at <assign>) in the generated WS-BPEL Abstract Processes, when users of the tool do not
specify any values for those constructs. Inthe WS-BPEL Abstract Process itself, omitting such a
construct is, as usual, equivalent to specifying it using the default value.

13.4.5. Extensions and Document Usage

This Template profile concentrates on the use of extension attributes and elements that are
generaly allowed in WS-BPEL. Information can be added in extensions or by natural language
documentation. Thisinformation may signal the intention of the designer or provide extra
semantics where needed. Thisis used to clarify cases where using opacity for specifying hidden
syntactic links may cause ambiguity in other related parts of the process, such as those
mentioned in section 13. WS-BPEL Abstract Processes.

Examples are:

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 160 of 264

e A unique identifier attribute that may be added by a designer tool to uniquely identify
aWS-BPEL fragment that spans the lifetime of a business processin Abstract and
Execution completion stages - as such, the activity that replaces the
<opaqueAct i vi t y> retainsthat unique identifier.

e WS-BPEL template designer may add natural language as documentation or
extension constructs to denote extra template information.

<process nanme="t enpl at eExanpl el- HonmeAppr ai sal "
xm ns="http://docs. oasi s- open. or g/ wsbpel / 2. 0/ pr ocess/ abstract"
t ar get Namespace="htt p: / / exanpl e. or g/ t enpl at e- exanpl e- 1"
xm ns:tns="http://exanpl e. org/tenpl at e- exanpl e- 1"
suppr essJoi nFai | ure="yes"
xm ns: xsd="htt p: //ww. w3. or g/ 2001/ XM_Schenma"
xm ns: ext="http://exanpl e. com bpel / sone/ ext ensi on"
xm ns: tenpl ate="http://docs. oasi s-
open. or g/ wsbpel / 2. 0/ pr ocess/ abst ract/ si npl e-t enpl at e/ 2006/ 08"
abstract ProcessProfile="http://docs. oasi s-
open. or g/ wshpel / 2. 0/ process/ abstract/ si npl e-t enpl at e/ 2006/ 08" >

<ext ensi ons>
<ext ensi on
nanespace="htt p:// exanpl e. com bpel / sone/ ext ensi on"
nust Under st and="yes" />
</ ext ensi ons>

<part ner Li nks>
<I-- exanpl e explanatory note: none of the 3
ref erenced partnerLinks have been declared -->
<partner Li nk name="honel nfoVerifier"
part ner Li nkType="##opaque"
nmyRol e=" ##opaque"
part ner Rol e=" ##opaque" >

<docunent ati on>
We have not confirmed our hone information verification
partner yet.

</ docunent ati on>

</ part ner Li nk>
</ part ner Li nks>

<vari abl es>
<vari abl e nane="commonRequest Var" el enent =" ##opaque" />
</vari abl es>

<sequence>

<opaqueActivity tenpl ate: creat el nstance="yes" >
<docunent ati on>
Pi ck an apprai sal request fromone of 3 custoner referra
channel s.
</ docunent at i on>
</ opaqueActi vi ty>

<assi gn>
<docunent at i on>
Transform one of these 3 appraisal request into our own

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 161 of 264

format .
</ docunent ati on>
<copy>
<opaqueFrom >
<to vari abl e="commonRequest Var" />
</ copy>
</ assi gn>

<scope>
<f aul t Handl er s>
<I-- exanpl e explanatory note: One can add a new <catch>
faul t Handl er for a fault fromthe "honel nfoVerifier"
partnerLi nk of unspecified portType yet -->
<cat chAl | >
<exit />
</ cat chAl | >
</ faul t Handl er s>
<sequence>
<opaqueActi vity>
<docunent ati on>
Extract custoner and housing info from our appraisa
request into a nessage understood by our home info
verification partner.
</ docunent at i on>
</ opaqueActi vi ty>

<i nvoke partnerLi nk="honel nfoVerifier"
oper at i on="##opaque" i nput Vari abl e="##opaque"
ext : uni queUser Fri endl yName="r equest verification" />

<recei ve partnerLink="honel nfoVerifier"
oper at i on="##opaque" vari abl e="##opaque"
ext : uni queUser Fri endl yName="r ecei ve verification
result" />

<reply partnerLink="honel nfoVerifier" operation="##opaque"
vari abl e=" ##opaque"
ext : uni queUser Fri endl yName="confirm recei pt of
verification result">
<docunent at i on>
This step confirnms whet her we have received the
verification result. It is intended to match the
"receive verification result" step.
</ docunent at i on>
</reply>

</ sequence>
</ scope>

<opaqueActi vity>

<docunent at i on>
Rel ay the appraisal request and horme info verification to
an appraiser, who is responsible for on-site inspection.
The apprai ser may request further verification info from
the partner through this business process. W will also
receive the results of the appraisal fromthis step.

</ docunent at i on>

<I-- exanpl e explanatory note: An unspecified

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 162 of 264

referral channel may trigger nore than one unexpected

fault in this process. -->
</ opaqueActi vi ty>

<opaqueActi vity>
<docunent ati on>

Send the appraisal result back to the correspondi ng

referral channel.
</ docunent at i on>
<I-- exanpl e explanatory note: An unspecified

referral channel may trigger nore than one unexpected

fault in this process. -->
</ opaqueActi vi ty>

</ sequence>

</ process>

13.4.6. Syntactic Validity

The Process Template Profile provides an XML grammar to support syntax validation beyond

that provided by the common base Schema.

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 163 of 264

14. Extension Declarations

WS-BPEL is designed to be extensible. Extensions to WS-BPEL could include anything ranging
from new attributes to new elements, to extended assign operations and activities, to enable
restrictions or extensions of run time behavior and so on.

<process ...>

<ext ensi ons>?
<ext ensi on namespace="anyURl " nust Under st and="yes| no" />+
</ ext ensi ons>

</ process>

The <ext ensi on> child e ement under <ext ensi ons> element of the <pr ocess> element is used
to declare namespaces of WS-BPEL extension attributes/elements and indicate whether they
carry semantics that must be understood by a WS-BPEL processor.

If aWS-BPEL processor does not support one or more of the extensions with
must Under st and="yes" , then the process definition MUST be rejected.

Optional extensions are extensions which the WS-BPEL process MAY ignore. Thereisno
requirement to declare any optional extensions. Optional extension can be declared using the
extensions element with nust Under st and="no" . The purpose of allowing optional extensionsto
be declared using the extensions element is to provide awell defined location where additional
information about the optional extension can be found.

The <ext ensi on> declaration element under <ext ensi ons> isitsalf extensible.

The same extension URI MAY be declared multiple timesin the <ext ensi ons> element. If an
extension URI isidentified as mandatory in one <ext ensi on> element and optional in another,
then the mandatory semantics have precedence and MUST be enforced. The extension
declarationsin an <ext ensi ons> element MUST be treated as an unordered set. That is, WS-
BPEL does not provide any way to establish precedence between extension declarations based
on ordering.

An extension declared through the <ext ensi on> element MUST NOT, in and of itself, cause any
change to the semantics of a WS-BPEL process. Rather, the extension declaration defines
whether the extensions identified by the denoted namespace must be supported or can safely be
ignored.

In order to apply extension semantics to aWS-BPEL process, an extension syntax token, in the
form of an element or attribute qualified by the URI value of ananespace attributein an

<ext ensi on> element that is used outside of an <ext ensi on> element, MUST appear in the
WS-BPEL process definition or its directly referenced WSDL <port Type> definitions,

<vpr op: propert yAl i as> definitions or <vpr op: propert y> definitions. It is this extension
syntax token, rather than the extension declaration, that indicates the new semantics apply.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 164 of 264

An extension syntax token can only affect WS-BPEL constructs within the syntax sub-tree of the
parent element of the token. In other words, extension syntax token MUST NOT affect the
semantics outside the subtree. Here are two examples to illustrate this concept further:

<process>

<scope>

<sequence>
<i nvoke operati on="operationl"
foo: i nvokeProperty="soneNature" ... />
<i nvoke operation="operation2" ... />
<i nvoke operati on="operation3"
foo: i nvokeProperty="soneNature2" ... />
</ sequence>
</ scope>

</ process>

The"f oo: i nvokePr operty" extension attribute are applied to <i nvoke> activities for

"oper ati on1" and "oper at i on3". The <i nvoke> activity for "oper at i on2" must not be
affected.

<process>
<scope>
<f 0o: i nvokePr opert y>SonmeNat ur e</ f oo: i nvokePr operty>
<sequence>
<i nvoke operation="operationl" ... />
<i nvoke operation="operation2" ... />
<i nvoke operation="operation3" ... />
</ sequence>
</ scope>

</ process>

The"f oo: i nvokeProperty" extension element can be applied to all <i nvoke> activities within
the <scope> activity where the extension element are attached to.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 165 of 264

15. Examples

The examplesin this section are not completely specified. For instance, the shipping service
example imports XML Schema elements from the namespace
“http://example.com/shipping/ship.xsd”, which is not fully specified in this document.

15.1. Shipping Service

This example presents aWS-BPEL Abstract Process for a rudimentary shipping service. This
service handles the shipment of orders, and orders are composed of a number of items. The
shipping service offers two options, one for shipments where the items are shipped all together,
and one for partia shipments where the items are shipped in groups until the order is fulfilled.

15.1.1. Service Description

The context for the shipping service is an interaction between a customer and the service. Thisis
modeled with apart ner Li nkType definition (shippingL T.wsdl):

<wsdl : definitions
t ar get Nanmespace="htt p: / / exanpl e. com shi ppi ng/ part ner Li nkTypes/"
xm ns: pl nk="htt p://docs. oasi s- open. or g/ wshpel / 2. 0/ pl nkt ype"
xm ns: sif="http://exanpl e. cont shi ppi ng/interfaces/"
xm ns: wsdl ="htt p://schemas. xm soap. or g/ wsdl /">

<wsdl : i nport | ocation="shi ppi ngPT. wsdl "
nanespace="htt p://exanpl e. conl shi ppi ng/i nterfaces/" />

<pl nk: part ner Li nkType name="shi ppi ngLT" >
<pl nk: rol e name="shi ppi ngSer vi ce"
por t Type="si f: shi ppi ngServi cePT" />
<pl nk: rol e nanme="shi ppi ngSer vi ceCust oner"
port Type="si f: shi ppi ngServi ceCust oner PT" />
</ pl nk: part ner Li nkType>

</ wsdl : definitions>

The corresponding message and por t Type definitions are as follows (shippingPT.wsdl):

<wsdl : definitions
t ar get Nanespace="htt p: // exanpl e. com shi ppi ng/i nterfaces/"
xm ns: shi p="http://exanpl e. com shi ppi ng/ shi p. xsd"
xm ns:tns="http://exanpl e. com shi ppi ng/interfaces/"
xm ns: wsdl ="htt p://schemas. xm soap. or g/ wsdl /"
xm ns: xsd="ht t p: // ww. w3. or g/ 2001/ XM_Schenma" >

<wsdl : types>
<xsd: schema>
<I-- inport ship schema -->
</ xsd: schema>
</ wsdl : t ypes>

<wsdl : mressage name="shi ppi ngRequest Msg" >

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 166 of 264

<wsdl : part nanme="shi pOrder" type="shi p:shipOder" />
</ wsdl : nessage>

<wsdl : message name="shi ppi ngNoti ceMsg" >
<wsdl : part name="shi pNotice" type="ship:shi pNotice" />
</ wsdl : nessage>

<wsdl : port Type nane="shi ppi ngServi cePT">
<wsdl : operati on name="shi ppi ngRequest " >
<wsdl : i nput nessage="tns: shi ppi ngRequest Msg" />
</ wsdl : operati on>
</ wsdl : port Type>

<wsdl : port Type nane="shi ppi ngServi ceCust oner PT" >
<wsdl : operati on nane="shi ppi ngNoti ce">
<wsdl : i nput nessage="tns: shi ppi ngNoti ceMsg" />
</ wsdl : operati on>
</ wsdl : port Type>

</ wsdl : definitions>

15.1.2. Properties

The properties relevant to the service are:

e Theshipping order ID (shi pOr der | D) is used to correlate the shipping notice(s) with the

shipping order.
e Whether the order is to be shipped complete or not (shi pConpl et e).
e Thetotal number of itemsin the order (i t ensTot al).

e The number of itemsin aship notice (i t ems Count). When partial shipments are
acceptable, i t emsCount andi tensTot al are used to track the fulfillment of the order.

The definitions for the properties and their aliases are (shippingProperties.wsdl):

<wsdl : definitions

t ar get Nanmespace="htt p: / / exanpl e. com shi ppi ng/ properties/"

xm ns: bpel ="htt p: // docs. oasi s- open. or g/ wsbpel / 2. 0/ pr ocess/ execut abl e"

xm ns: vprop="http://docs. oasi s- open. or g/ wsbpel / 2. O/ var pr op"
xm ns: shi p="http://exanpl e. com shi ppi ng/ shi p. xsd"

xm ns: si f="http://exanpl e. cont shi ppi ng/interfaces/"

xm ns: tns="http://exanpl e. cont shi ppi ng/ properties/"

xm ns: wsdl ="htt p://schemas. xm soap. or g/ wsdl /"

xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" >

<wsdl : i nport | ocati on="shi ppi ngPT. wsdl "
nanespace="htt p://exanpl e. coml shi ppi ng/interfaces/" />

<I-- types used in Abstract Processes are required to be finite

domai ns. The itemCount Type is restricted by range -->

<wsdl : types>
<xsd: schenmn

t ar get Namespace="ht t p: / / exanpl e. com shi ppi ng/ shi p. xsd" >

<xsd: si npl eType nane="it enCount Type" >
<xsd:restriction base="xsd:int">

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

Page 167 of 264

<xsd: m nl ncl usi ve val ue="1" />
<xsd: max| ncl usi ve val ue="50" />
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: schema>
</ wsdl : t ypes>

<vprop: property name="shi pOrderl D' type="xsd:int" />

<vprop: property name="shi pConpl et e" type="xsd: bool ean" />
<vprop: property nane="itensTotal " type="ship:itenCount Type" />
<vprop: property nanme="itensCount" type="ship:itenCountType" />

<vprop: propertyAlias propertyNanme="tns: shi pOrderl D'
messageType="si f: shi ppi ngRequest Msg" part="shi pO der" >
<vprop: query>

shi p: Shi pOr der Request Header / shi p: shi pOrder| D
</ vprop: query>

</ vprop: propertyAl i as>

<vprop: propertyAlias propertyNane="tns: shi pO derl| D'
nmessageType="si f: shi ppi ngNoti ceMsg" part="shi pNotice">
<vprop: quer y>shi p: Shi pNot i ceHeader/ shi p: shi pOrder | D</ vprop: query>
</ vprop: propertyAl i as>

<vprop: propertyAlias propertyNanme="tns: shi pConpl et e"
nmessageType="si f: shi ppi ngRequest Msg" part="shi pO der" >
<vprop: query>

shi p: Shi pOr der Request Header / shi p: shi pConpl et e
</ vprop: query>

</ vprop: propertyAlias>

<vprop: propertyAlias propertyName="tns:itensTotal"
messageType="si f: shi ppi ngRequest Msg" part="shi pO der" >
<vprop: query>
shi p: Shi pOr der Request Header / shi p: it ensTot a
</ vprop: query>
</ vprop: propertyAl i as>

<vprop: propertyAlias propertyName="tns:itenmsCount"
nmessageType="si f : shi ppi ngRequest Msg" part="shi pO der" >
<vprop: query>
shi p: Shi pOr der Request Header / shi p: i t ensCount
</ vprop: query>
</ vprop: propertyAl i as>

<vprop: propertyAlias propertyName="tns:itensCount"
nessageType="si f: shi ppi ngNoti ceMsg" part="shi pNotice">
<vprop: quer y>shi p: Shi pNot i ceHeader/ shi p:itensCount </ vpr op: query>
</ vprop: propertyAlias>

</ wsdl : definitions>

15.1.3. Process

For brevity, the Abstract Process definition does not include detail s such as the handling of error
conditions that a complete process description would likely provide. The outline of the processis
asfollows:

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 168 of 264

recei ve shi pOrder

i f

condi ti on shi pConpl et e
send shi pNoti ce
el se
i temsShi pped := 0

whi | e itensShi pped < itensTot al
i temsCount : = opaque // non-determ nistic assignment
/1 corresponding e.g. to
[l internal interaction with
/'l back-end system
send shi pNoti ce
i tensShi pped = itensShi pped + itensCount

The WS-BPEL processis as follows:

<process nane="shi ppi ngServi ce"

t ar get Nanespace="htt p: // exanpl e. com shi ppi ng/ "

xm ns="http://docs. oasi s- open. or g/ wshpel / 2. 0/ pr ocess/ abstract"
xm ns: plt="http://exanpl e. com shi ppi ng/ partnerLi nkTypes/"

xm ns: props="http://exanpl e. conl shi ppi ng/ properties/"

xm ns: shi p="http://exanpl e. com shi ppi ng/ shi p. xsd"

xm ns: sif="http://exanpl e. cont shi ppi ng/interfaces/"

abstract ProcessProfile="http://docs. oasi s-

open. or g/ wshpel / 2. 0/ pr ocess/ abstract/apll/ 2006/ 08" >

<i nport inportType="http://schemas. xnl soap. or g/ wsdl /"
| ocati on="shi ppi ngLT. wsdl "
nanespace="htt p:// exanpl e. com shi ppi ng/ part ner Li nkTypes/" />
<i nport inportType="http://schemas. xnl soap. or g/ wsdl /"
| ocat i on="shi ppi ngPT. wsdl "
nanespace="htt p://exanpl e. conl shi ppi ng/interfaces/" />
<i nport inportType="http://schemas. xnl soap. or g/ wsdl /"
| ocati on="shi ppi ngProperties. wsdl"
nanespace="htt p:// exanpl e. conl shi ppi ng/ properties/" />

<part ner Li nks>
<partnerLi nk nane="custoner" partnerLi nkType="plt: shi ppi ngLT"
part ner Rol e="shi ppi ngSer vi ceCust oner "
nmyRol e="shi ppi ngServi ce" />
</ part ner Li nks>

<vari abl es>
<vari abl e nane="shi pRequest"
nmessageType="si f: shi ppi ngRequest Msg" />
<vari abl e nane="shi pNoti ce"
nmessageType="si f: shi ppi ngNoti ceMsg" />
<vari abl e nane="it ensShi pped"
type="shi p: it enCount Type" />
</vari abl es>

<correl ati onSet s>
<correl ati onSet name="shi pOr der"

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 169 of 264

properties="props: shi pOrderl D' />
</correl ati onSet s>

<sequence>

<recei ve partnerLink="custoner"
oper ati on="shi ppi ngRequest "
vari abl e="shi pRequest " >
<correl ati ons>
<correlation set="shipOrder" initiate="yes" />
</correl ati ons>
</receive>

<if>
<condi ti on>
bpel : get Vari abl eProperty(' shi pRequest',
' props: shi pConpl ete')
</ condi ti on>
<sequence>
<assi gn>
<copy>
<from vari abl e="shi pRequest "
property="props: shi pOrderl D" />
<to vari abl e="shi pNoti ce"
property="props: shi pOrderl D" />
</ copy>
<COpy>
<from vari abl e="shi pRequest "
property="props:itemsCount" />
<to vari abl e="shi pNoti ce"
property="props:itenmsCount" />
</ copy>
</ assi gn>
<i nvoke partnerLi nk="cust omer"
oper ati on="shi ppi ngNoti ce"
i nput Var i abl e="shi pNoti ce">
<correl ati ons>

<correl ation set="shi pOrder" pattern="request" />

</correl ati ons>
</i nvoke>
</ sequence>
<el se>
<sequence>
<assi gn>
<C0py>
<fr on»0</ f r one
<t 0>$i t ens Shi pped</t 0>
</ copy>
</ assi gn>
<whi | e>
<condi ti on>
$i t ensShi pped
&t
bpel : get Vari abl eProperty(' shi pRequest',
"props:itensTotal ')
</conditi on>
<sequence>
<assi gn>

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 170 of 264

<copy>
<opaqueFr ont >
<to vari abl e="shi pNoti ce"
property="props: shi pOrderl D" />
</ copy>
<copy>
<opaqueFr ont >
<to vari abl e="shi pNoti ce"
property="props:itenmsCount" />
</ copy>
</ assi gn>
<i nvoke partnerLi nk="cust oner"
oper ati on="shi ppi ngNoti ce"
i nput Var i abl e="shi pNoti ce">
<correl ati ons>
<correl ati on set="shi pOrder"
pattern="request" />
</correl ati ons>
</i nvoke>
<assi gn>
<copy>
<frone
$i t ensShi pped
+

bpel : get Vari abl eProperty(' shi pNotice',
"props:itenmsCount')
</fronp
<t 0>$i t ens Shi pped</t 0>
</ copy>
</ assi gn>
</ sequence>
</ whi | e>
</ sequence>
</ el se>
</[if>

</ sequence>

</ process>

15.2. Ordering Service

This example expands on the shipping service to illustrate the use of an Abstract Process using
the template profile. This Abstract Process describes a set of services to request, track, and
confirm orders and their shipments, invoicing, and payment. The ordering service receives orders
from an order processor, sends a shipping request to the shipping service, and acknowledges
shipment, pickup, invoicing, and payment as each is performed.

15.2.1. Service Description

The context for the ordering serviceis an interaction between a consumer and the service. Thisis
modeled in the following par t ner Li nkType definition (orderingL T.wsdl):

<wsdl : definitions
t ar get Nanmespace="htt p: // exanpl e. com or deri ng/ part ner Li nkTypes/"

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 171 of 264

xm ns: oi f="http://exanpl e.conf ordering/interfaces/"
xm ns: pl nk="htt p://docs. oasi s- open. or g/ wsbhpel / 2. 0/ pl nkt ype"
xm ns: wsdl ="htt p://schemas. xm soap. or g/ wsdl /">

<wsdl : i nport | ocation="orderingPT.wsdl"
nanespace="http://exanpl e.conf ordering/interfaces/" />

<pl nk: part ner Li nkType name="or deri ngServi ceLT">
<pl nk: rol e name="or deri ngServi ce"
port Type="oi f: orderi ngPT" />
<pl nk: rol e nanme="orderi ngServi ceResponse"
port Type="oi f: orderi ngResponsePT" />
</ pl nk: part ner Li nkType>

<pl nk: part ner Li nkType nane="shi pper LT">
<pl nk: rol e name="shi ppi ngServi ce"
port Type="oi f: shi ppi ngServi cePT" />
<pl nk: rol e name="shi ppi ngSer vi ceResponse”
port Type="oi f: shi ppi ngSer vi ceResponsePT" />
</ pl nk: par t ner Li nkType>

<pl nk: part ner Li nkType nanme="conpl eti onConfirmati onLT">
<pl nk:rol e name="or deri ngServi ceConfirnmation"
port Type="oi f: orderi ngConfirmtionPT" />
</ pl nk: par t ner Li nkType>

</ wsdl : definitions>

The corresponding message and por t Type definitions are as follows (orderingPT.wsdl):

<wsdl : definitions
t ar get Namespace="htt p: // exanpl e. com orderi ng/interfaces/"
xm ns: order="http://exanpl e.conl ordering/order. xsd"
xm ns:tns="http://exanpl e. conf ordering/interfaces/"
xm ns: wsdl ="htt p://schenmas. xm soap. or g/ wsdl /"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schenma" >

<wsdl : t ypes>
<xsd: schema>
<I-- inport ordering schema -->
</ xsd: schema>
</ wsdl : t ypes>

<wsdl : nessage nanme="Or der MessageType" >
<wsdl : part name="Order MessagePart" el enent ="order: O der Message"/ >
</ wsdl : nessage>

<wsdl : mressage name="Or der AckMessageType" >
<wsdl : part name="O der AckMessagePart "
el ement =" or der : Or der AckMessage" />
</ wsdl : nessage>

<wsdl : message nanme="Shi pRequest MessageType" >
<wsdl : part nanme="Shi pRequest MessagePart"
el ement =" or der : Shi pRequest Message" />
</ wsdl : nessage>

<wsdl : message name="Shi pNoti ceMessageType" >
wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 172 of 264

<wsdl : part nanme="Shi pNoti ceMessagePart"
el ement =" or der : Shi pNot i ceMessage" />
</ wsdl : nessage>

<wsdl : mressage name="Shi pHi st or yMessageType" >
<wsdl : part nanme="Shi pH st oryMessagePart"
el ement =" or der : Shi pHi st or yMessage" />
</ wsdl : nessage>

<wsdl : message name="I|nvoi ceAckMessageType" >
<wsdl| : part name="I| nvoi ceAckMessagePart"
el ement ="order: | nvoi ceAckMessage" />
</ wsdl : nessage>

<wsdl : port Type name="orderi ngPT">
<wsdl : operati on nane="pl aceO der" >
<wsdl : i nput nessage="tns: Or der MessageType" />
</ wsdl : operati on>
</ wsdl : port Type>

<wsdl : port Type nane="orderi ngResponsePT" >
<wsdl : oper ati on nanme="get O der Ack" >
<wsdl : i nput nessage="tns: Or der AckMessageType" />
</ wsdl : operati on>
</ wsdl : port Type>

<wsdl : port Type nane="orderi ngConfirmati onPT">
<wsdl : operation nanme="get Or der Confirmati on">
<wsdl : i nput nessage="tns: Or der AckMessageType" />
</ wsdl : operati on>
</ wsdl : port Type>

<wsdl : port Type nane="shi ppi ngServi cePT">
<wsdl : operati on name="shi ppi ngRequest " >

<wsdl : i nput nessage="t ns: Shi pRequest MessageType" />

</ wsdl : operati on>
</ wsdl : port Type>

<wsdl : port Type nane="shi ppi ngSer vi ceCust oner PT" >
<wsdl : operati on nane="shi ppi ngNoti ce">

<wsdl : i nput nessage="t ns: Shi pNoti ceMessageType" />

</ wsdl : operati on>
</ wsdl : port Type>
</ wsdl : definitions>

Although there are more interactions between consumer and service, not al have been modeled

in this example. Un-model ed interactions are opaque.

15.2.2. Properties

The properties relevant to the service are:

e Theorder ID (order I D) isused to correlate the order placement with the shipping
reguest, shipping notice, invoice confirmation, pickup confirmation and final order
confirmation. For this example, only the shipping request, shipping notice and final

confirmation are defined
wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 173 of 264

The order ID and aliases are defined as follows (orderingProperties.wsdl):

<wsdl : definitions
t ar get Nanespace="htt p: // exanpl e. com or deri ng/ properties/"
xm ns: bpel ="htt p: // docs. oasi s- open. or g/ wsbpel / 2. 0/ pr ocess/ execut abl e"
xm ns: vprop="http://docs. oasi s- open. or g/ wsbpel / 2. O/ var pr op"
xm ns:oi f="http://exanpl e.com ordering/interfaces/"
xm ns: order="http://exanpl e.conl ordering/order. xsd"
xm ns:tns="http://exanpl e. conf orderi ng/ properties/"
xm ns: wsdl ="htt p://schemas. xn soap. or g/ wsdl /"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" >

<wsdl : i nport | ocation="orderingPT.wsdl"
nanespace="http://exanpl e.conl ordering/interfaces/" />

<vprop: property name="order| D' type="xsd:string" />

<vprop: propertyAlias propertyNane="tns: orderl| D"
nmessageType="oi f: Order MessageType" part="O der MessagePart" >
<vprop: query>

or der: Or der MessageHeader / or der : order |1 D
</ vprop: query>

</ vprop: propertyAlias>

<vprop: propertyAlias propertyNane="tns: orderl| D"
messageType="oi f : Shi pNot i ceMessageType"
part =" Shi pNoti ceMessagePart" >
<vprop: query>
or der : Shi pNot i ceMessageHeader/ or der: order| D
</ vprop: query>
</ vprop: propertyAl i as>

</ wsdl : definitions>

Although there are more messages between the consumer and the service, not all have been
modeled. Un-modeled messages are opague.

15.2.3. Process

This Abstract Process uses the template profile. The outline is as follows:

recei ve placeOrder
send shi pOrder
i f
condi ti on shi pConpl et ed
send orderNotice (indicating shipConpl et ed)
el se
send orderNotice (indicating !shipConpl eted)

recei ve pi ckupNotification
updat e shi pHi story

recei ve invoice
send i nvoi ceResponse

recei ve paynent Confirmation

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 174 of 264

send order Confirmation

The WS-BPEL processis as follows:

<process name="Or deri ngServi ceProcess"
t ar get Namespace="htt p: // exanpl e. com orderi ng/"

xm ns="http://docs. oasi s- open. or g/ wsbpel / 2. 0/ pr ocess/ abstract"

xm ns: ext="http://exanpl e. cont bpel / sone/ ext ensi on"
xm ns: oi f="http://exanpl e.conf ordering/interfaces/"
xm ns: order="http://exanpl e. conl orderi ng/ order. xsd"
xm ns: plt="http://exanpl e. com ordering/ partnerLinkTypes/"
xm ns: props="http://exanpl e.conl ordering/properties/"
xm ns:tns="http://exanpl e.conf ordering/"
xm ns: xsd="htt p: //ww. w3. or g/ 2001/ XM_Schenma"
abstract ProcessProfile="http://docs. oasi s-
open. or g/ wsbhpel / 2. 0/ pr ocess/ abst ract/ si npl e-t enpl at e/ 2006/ 08"
suppr essJoi nFai | ure="yes" >

<i nport inportType="http://schemas. xnl soap. or g/ wsdl /"
| ocati on="orderingLT. wsdl "

nanespace="htt p://exanpl e. com orderi ng/ part nerLi nkTypes/" />

<i nport inportType="http://schemas. xnl soap. or g/ wsdl /"
| ocati on="orderi ngPT. wsdl "
nanespace=" http://exanpl e.con ordering/interfaces/" />
<inport inportType="http://schemas. xnl soap. or g/ wsdl /"
| ocati on="orderingProperties.wsdl"
nanespace="htt p://exanpl e. conl orderi ng/ properties/" />

<ext ensi ons>

<ext ensi on namespace="http://exanpl e. conl bpel / some/ ext ensi on"

nmust Under st and="no" />
</ ext ensi ons>

<part ner Li nks>
<part ner Li nk name="or deri ng"
part ner Li nkType="pl t: orderingServiceLT"
nyRol e="or deri ngServi ce"
part ner Rol e="or deri ngServi ceResponse" />

<part ner Li nk nane="shi pper"
part ner Li nkType="pl t: shi pperLT"
nyRol e="shi ppi ngSer vi ceResponse”
part ner Rol e="shi ppi ngServi ce" />

<part ner Li nk nanme="shi ppi ngRequest er"
part ner Li nkType="##opaque"
nmyRol e="##opaque" />

<par t ner Li nk nanme="i nvoi ceProcessor"
part ner Li nkType="##opaque"
nyRol e=" ##opaque"
part ner Rol e="##opaque" />

<par t ner Li nk nane="orderi ngConfirnmation"
part ner Li nkType="pl t: conpl eti onConfirmati onLT"
part ner Rol e="or deri ngServi ceConfirmation" />
</ part ner Li nks>

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 175 of 264

<vari abl es>
<lI-- Reference to the nessage passed as input during
initiation -->

<vari abl e nane="order" nessageType="oif: O der MessageType" />
<vari abl e nane="or der AckMsg"
nessageType="oi f: Order AckMessageType" />
<vari abl e nane="or der Shi ppedVsg"
el ement =" or der : Or der AckMessage" />
<vari abl e nane="shi ppi ngRequest Msg"
el ement =" or der : Shi pRequest Message" />
<vari abl e nane="shi ppi ngNoti ceMsg"
el ement =" or der : Shi pNot i ceMessage” />
<vari abl e nane="shi pHi st or yMsg"
nessageType="oi f : Shi ppi ngHi st or yMessageType" />
<vari abl e nane="i nvoi ceAckMsg"
nessageType="oi f: | nvoi ceAckMessageType" />
</vari abl es>

<correl ati onSet s>
<correl ati onSet name="order CS" properties="props:orderl D" />
</correl ati onSet s>

<sequence>
<recei ve partnerLink="ordering" operation="placeCO der"
vari abl e="order" createlnstance="yes">
<correl ati ons>
<correl ation set="orderCS" initiate="yes" />
</correl ati ons>
</receive>

<assi gn>
<copy>
<frone
$or der . Or der MessagePart / or der : Or der MessageHeader /
order:orderlD
</fronp
<t 0>
$shi ppi ngRequest Msg/ or der : Shi pRequest MessageHeader /
order:orderlD
</to>
</ copy>
<copy>
<fronm>$or der. Or der MessagePar t / or der : Shi ppi ngl nf o</ f r on>
<t 0>$shi ppi ngRequest Msg/ or der : Shi ppi ngl nf o</ t 0>
</ copy>
</ assi gn>

<i nvoke partnerLi nk="shi pper" operati on="shi ppi ngRequest"
i nput Var i abl e="shi ppi ngRequest Msg"
ext : uni queUser Fri endl yNanme="send shi ppi ng request to
shi pper"/ >

<recei ve partnerLink="shi pper"
port Type="oi f: shi ppi ngSer vi ceCust oner PT"
oper ati on="shi ppi ngNoti ce"
var i abl e="shi ppi ngNot i ceMsg"
ext : uni queUser Fri endl yNanme="r ecei ve response from shi pper">

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 176 of 264

<correl ati ons>
<correl ati on set="orderCS" />
</correl ati ons>
</receive>

<assi gn>
<copy>
<fronp
$or der. Or der MessagePart/ or der : Or der MessageHeader /
order:orderl| D
</fronp
<t o>
$or der AckMsg. Or der AckMessagePart /
or der: Or der AckMessageHeader / or der : order | D

</to>
</ copy>
</ assi gn>
<if>
<condi ti on opaque="yes" />
<I--
the first case woul d package the order
acknow edgenent for a conpl eted shi pnent
-->
<assi gn>
<copy>
<opaqueFrom >
<t o>$or der AckMsg. Or der AckMessagePart / or der: Ack</t 0>
</ copy>
</ assi gn>
<el se>
&l ==
t he second case woul d package the order
acknow edgenent for an unconpl eted shi pnent
-->
<assi gn>
<Copy>
<opaqueFr ont >
<t o>$or der AckMsg. O der AckMessagePart / or der: Ack</t 0>
</ copy>
</ assi gn>
</ el se>
</if>

<i nvoke partnerLi nk="ordering"
oper ati on="get O der Ack"
i nput Var i abl e="or der AckMsg" />

<recei ve partnerLink="shi ppi ngRequest er"
oper at i on="##opaque"
vari abl e=" ##opaque"
ext : uni queUser Fri endl yNane="recei ve the pickup notification">
<correl ati ons>
<correl ation set="orderCS" />
</correl ati ons>
</recei ve>

<assi gn>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 177 of 264

<Copy>
<opaqueFrom >
<t 0>
$shi pHi st or yMsg. Shi pHi st or yMessagePart/ or der : Event
</to>
</ copy>
</ assi gn>

<opaqueActi vity>
<docunent ati on>
If we receive notice that the ship has conpl eted, update
our ship history accordingly
</ docunent at i on>
</ opaqueActi vity>

<recei ve partnerLink="invoi ceProcessor" operation="##opaque"
vari abl e=" ##opaque"
ext : uni queUser Fri endl yNanme="r ecei ve invoi ce for processing">
<correl ati ons>
<correl ation set="orderCS" />
</correl ati ons>
</receive>

<assi gn>
<copy>
<opaqueFr ont >
<t 0>$i nvoi ceAckMsg. | nvoi ceAckMessagePart </t 0>
</ copy>
</ assi gn>

<i nvoke partnerLi nk="i nvoi ceProcessor" operation="##opaque"
i nput Var i abl e=" ##opaque"
ext : uni queUser Fri endl yNanme="send response for the invoice" />

<recei ve partnerLink="shi ppi ngRequester" operati on="##opaque"
vari abl e=" ##opaque"
ext : uni queUser Fri endl yNanme="r ecei ve paynent confirmation">
<correl ati ons>
<correl ation set="orderCS" />
</correl ati ons>
</recei ve>

<assi gn>
<Ccopy=>
<opaqueFr ont >
<t o>$or der Shi ppedMsg/ or der : Ack</t 0>
</ copy>
<Ccopy=>
<fronmp
$or der . Or der MessagePart / or der : Or der MessageHeader /
order:orderlD
</fronp
<t 0>
$or der Shi ppedMsg/ or der : Or der AckMessageHeader /
order:orderl D
</to>
</ copy>
</ assi gn>

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007

Page 178 of 264

<i nvoke partnerLi nk="orderi ngConfirmation"
oper ati on="get O der Confi r mati on"
i nput Var i abl e="or der Shi ppedMsg" />

</ sequence>
</ process>

15.3. Loan Approval Service

This example consists of asimple loan approval service. Customers of the service send loan
requests, including personal information and amount being requested. Using this information, the
loan service executes a simple process resulting in either a"loan approved” message or a"loan
rgjected” message. The decision is based on the amount requested and the risk associated with
the customer. For low amounts of less than $10,000 a streamlined processis used. In the
streamlined process low-risk customers are approved automatically. For higher amounts, or
medium and high-risk customers, the credit request requires further processing. For each request,
the loan service uses the functionality provided by two other services. In the streamlined process,
used for low amount loans, arisk assessment service is used to obtain a quick evaluation of the
risk associated with the customer. A full loan approval service (possibly requiring direct
involvement of aloan expert) is used to obtain assessments when the streamlined approval
process is not applicable.

15.3.1. Service Description

The WSDL port Type (I oanSer vi cePT) used by this service is shown below. This example
assumes that an independent "loan.org" consortium has provided definitions of the loan service
port Type aswell asthe risk assessment and full loan approval service, so al the required WSDL
definitions appear in the same WSDL document. In particular, the port Typesfor the Web
Services providing the risk assessment and approval functions, and all the required

par t ner Li nkTypesSthat relate to the use of these por t Types, are defined in the WSDL
(loanServicePT.wsdl).

<wsdl : definitions
t ar get Namespace="htt p: / / exanpl e. com | oan- appr oval / wsdl /"
xm ns: ens="http://exanpl e. conl | oan- appr oval / xsd/ error - nessages/ "
xm ns: pl nk="htt p://docs. oasi s- open. or g/ wsbpel / 2. 0/ pl nkt ype"
xm ns:tns="http://exanpl e. cont | oan- appr oval / wsdl /"
xm ns: wsdl ="htt p://schemas. xn soap. or g/ wsdl /"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema/ " >

<wsdl : types>
<xsd: schema>
<l-- inport schemas -->
</ xsd: schema>
</ wsdl : t ypes>

<wsdl : nessage nanme="credit|nformati onMessage" >
<wsdl : part name="first Nanme" type="xsd:string" />
<wsdl : part name="nanme" type="xsd:string" />
<wsdl : part name="anount" type="xsd:integer" />
</ wsdl : nessage>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 179 of 264

<wsdl| : nessage nanme="approval Message" >
<wsdl : part name="accept" type="xsd:string" />
</ wsdl : nressage>

<wsdl : nessage nanme="ri skAssessnent Message" >
<wsdl : part name="level " type="xsd:string" />
</ wsdl : nressage>

<wsdl : message name="error Message" >
<wsdl : part name="error Code" el enent="ens:integer" />
</ wsdl : nessage>

<wsdl : port Type nanme="| oanServi cePT">
<wsdl : operati on nane="request">
<wsdl : i nput nessage="tns: creditlnformati onMessage" />
<wsdl : out put nmessage="tns: approval Message" />
<wsdl : faul t nane="unabl eToHandl eRequest "
nessage="t ns: error Message" />
</ wsdl : oper ati on>
</ wsdl : port Type>

<wsdl : port Type name="ri skAssessnent PT" >
<wsdl : oper ati on nane="check" >
<wsdl : i nput nessage="tns: creditlnformati onMessage" />
<wsdl : out put nessage="tns: ri skAssessnent Message" />
<wsdl : faul t nanme="I| oanProcessFaul t"
nessage="t ns: error Message" />
</ wsdl : oper ati on>
</ wsdl : port Type>

<wsdl : port Type nanme="| oanAppr oval PT" >
<wsdl| : operati on nane="approve">
<wsdl : i nput nmessage="tns: creditlnformti onMessage" />
<wsdl : out put nmessage="t ns: approval Message" />
<wsdl : faul t nane="I| oanProcessFaul t"
nmessage="t ns: error Message” />
</ wsdl : oper ati on>
</ wsdl : port Type>

<pl nk: part ner Li nkType nanme="| oanPart ner LT" >
<pl nk: rol e name="| oanServi ce" portType="tns:| oanServi cePT" />

</ pl nk: part ner Li nkType>

<pl nk: part ner Li nkType name="| oanApproval LT">
<pl nk: rol e name="approver" portType="tns: | oanApproval PT" />

</ pl nk: par t ner Li nkType>

<pl nk: part ner Li nkType name="ri skAssessnent LT">
<pl nk: rol e nanme="assessor" portType="tns:ri skAssessnent PT" />

</ pl nk: par t ner Li nkType>

</ wsdl : definitions>

15.3.2. Process

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 180 of 264

In the process, the interaction with the customer is represented by theinitial <r ecei ve> and the
matching <r epl y> activities. The use of risk assessment and loan approval servicesis
represented by <i nvoke> elements. All these activities are contained within a<f | ow>, and their
(potentially concurrent) behavior is executed according to the dependencies expressed by the

<l i nk> elements. Note that the transition conditions attached to the <sour ce> elements of the
links determine which links get activated. Dead path elimination is enabled by setting the
suppr essJoi nFai | ur e atributeto yes on the <pr ocess> element (See section 11.6.3. Dead-
Path Elimination).

The operations invoked can return afault of type | oanPr ocessFaul t , therefore afault handler is
provided. When afault occurs, control istransferred to the fault handler where a<r epl y>
element is used to return a fault response of type unabl eToHandl eRequest to the loan requester.

<process nanme="I| oanApproval Process"
t ar get Nanespace="htt p: // exanpl e. com | oan- appr oval /"
xm ns="http://docs. oasi s- open. or g/ wshpel / 2. 0/ pr ocess/ execut abl e"
xm ns: | ns="http://exanpl e. cont | oan- approval / wsdl /"
suppr essJoi nFai | ure="yes" >

<i nport inportType="http://schemas. xnl soap. or g/ wsdl /"
| ocati on="1 oanSer vi cePT. wsdl "
nanespace="htt p://exanpl e. con | oan- approval /wsdl /" />

<part ner Li nks>
<part ner Li nk name="cust oner"
partner Li nkType="1 ns: | oanPartner LT"
nyRol e="| oanServi ce" />
<part ner Li nk name="approver"
part ner Li nkType="1ns: | oanApproval LT"
part ner Rol e="approver" />
<part ner Li nk name="assessor"
partner Li nkType="Ins: ri skAssessnent LT"
part ner Rol e="assessor" />
</ part ner Li nks>

<vari abl es>
<vari abl e nane="request"
nmessageType="I ns: credi t| nf ormti onMessage” />
<vari abl e nane="ri sk"
nessageType="I ns: ri skAssessnent Message" />
<vari abl e nane="approval "
nessageType="I| ns: appr oval Message" />
</vari abl es>

<faul t Handl er s>
<cat ch faul t Nane="I ns: | oanProcessFaul t"
faul t Vari abl e="error"
faul t MessageType="1ns: error Message" >
<reply partnerLink="custoner"
port Type="I ns: | oanSer vi cePT"
operation="request" variable="error"
f aul t Name="unabl eToHandl eRequest" />
</ catch>
</ faul t Handl er s>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 181 of 264

<f | ow>

<l i nks>
<l i nk name="recei ve-to-assess" />
<l i nk name="receive-to-approval" />
<link name="approval -to-reply" />
<l i nk nanme="assess-to-set Message" />
<l i nk nanme="set Message-to-reply" />
<l i nk name="assess-to-approval " />

</links>

<recei ve partnerLink="custoner"
port Type="I ns: | oanSer vi cePT"
oper ati on="request"
vari abl e="request"
creat el nst ance="yes" >
<sour ces>
<sour ce |inkNane="recei ve-to-assess">
<transitionCondition>
$request . anount & t; 10000
</transitionCondition>
</ sour ce>
<source |inkNanme="recei ve-to-approval ">
<transitionCondition>
$r equest . amobunt >= 10000
</transitionCondition>
</ sour ce>
</ sour ces>

</receive>

<i nvoke partnerLi nk="assessor"
port Type="I ns: ri skAssessnent PT"
oper ati on="check"
i nput Var i abl e="request "
out put Vari abl e="ri sk" >
<t arget s>
<target |inkNanme="receive-to-assess" />
</targets>
<sour ces>
<source |inkNanme="assess-to-set Message" >
<transitionCondition>
$risk. |l evel =" | ow
</transitionCondition>
</ sour ce>
<sour ce |inkNane="assess-to-approval ">
<transiti onCondition>

$risk.level!="1|ow
</transitionCondition>
</ sour ce>
</ sour ces>
</i nvoke>
<assi gn>
<t ar get s>

<target |inkNane="assess-to-setMessage" />
</targets>
<sour ces>

<source |inkName="set Message-to-reply" />

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 182 of 264

</ sour ces>

<copy>
<frone
<literal >yes</literal >
</fronp
<to vari abl e="approval " part="accept" />
</ copy>
</ assi gn>

<i nvoke partnerLi nk="approver"
port Type="I ns: | oanAppr oval PT"
oper ati on="appr ove"
i nput Vari abl e="request "
out put Vari abl e="approval ">
<t arget s>
<target |inkName="receive-to-approval" />
<target |inkName="assess-to-approval" />
</target s>
<sour ces>
<source |inkNanme="approval -to-reply" />
</ sour ces>
</i nvoke>

<reply partnerLink="custoner"
port Type="I ns: | oanSer vi cePT"
operati on="request"”
vari abl e="approval ">
<t ar get s>
<target |inkName="set Message-to-reply" />
<target |inkNanme="approval-to-reply" />
</target s>
</reply>
</fl ow>
</ process>

15.4. Auction Service

A process may have multiple activities capable of creating an instance of the process. An
example can be a simplified auction house process. The process collects information from the
buyer and the seller of a particular auction, report the appropriate auction results to an auction
registration service, and then send the registration result back to the seller and the buyer. The
process may start either by receiving the seller information, or by receiving the buyer
information. Because a particular auction is uniquely identified by an auction 1D, the seller and
the buyer need to provide this information when sending their data. The sequence in which the
seller and buyer requests arrive at the auction house is random. When arequest comesin, it
needs to check whether a process instance exists already or not. If no process instance aready
exists then oneis created. When both requests have been received, the auction registration
service isinvoked. Because the invocation is done one-way, the auction house passes the auction
ID to the auction registration service. The auction registration service returnsthisauction ID in
its answer for the auction house to locate the proper process instance. Each buyer or seller
provides an endpoint reference for the auction service to respond properly. In addition, the
auction house provides its own endpoint reference to the auction registration service for the
auction registration service to send the response back to the auction house.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 183 of 264

15.4.1. Service Description

The auction service offerstwo port Types, called sel | er PT and buyer PT, with appropriate
operations for accepting the data provided by the seller and the buyer. The auction service
responds to the seller and buyer through appropriate por t Types, sel | er Answer PT and

buyer Answer PT. These por t Types are properly combined into two par t ner Li nkTypes, one for
the seller called sel | er Auct i onHouseLT and one for the buyer called buyer Auct i onHouseLT.

The auction service needs two por t Types, called auct i onRegi st rat i onPT and

auct i onRegi st rati onAnswer PT, for the invocation of the auction registration service. The
port Types are part of the par t ner Li nkType auct i onHouseAuct i onRegi strati onServi ceLT
(auctionServicel nterface.wsdl).

<wsdl : definitions
t ar get Nanmespace="htt p: // exanpl e. com auct i on/ wsdl / aucti onSer vi ce/ "
xm ns: bpel ="htt p: // docs. oasi s- open. or g/ wsbpel / 2. 0/ pr ocess/ execut abl e"
xm ns: vprop="http://docs. oasi s- open. or g/ wsbpel / 2. O/ var pr op"
xm ns: pl nk="htt p://docs. oasi s- open. or g/ wsbpel / 2. 0/ pl nkt ype"
xm ns: sref="http://docs. oasi s-open. or g/ wsbpel / 2. 0/ servi ceref"
xm ns:tns="http://exanpl e. conf aucti on/ wsdl / aucti onServi ce/"
xm ns: wsdl ="htt p://schenmas. xm soap. or g/ wsdl /"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" >

<I'-- Messages for conmunication with the seller -->

<wsdl : mressage nane="sel |l er Dat a" >
<wsdl : part name="credit Car dNunber" type="xsd:string" />
<wsdl : part name="shi ppi ngCosts" type="xsd:integer" />
<wsdl : part name="auctionld" type="xsd:integer" />
<wsdl : part nanme="endpoi nt Ref erence" type="sref: Servi ceRef Type" />
</ wsdl : nessage>

<wsdl : nessage name="sel | er Answer Dat a" >
<wsdl : part name="t hankYouText" type="xsd:string" />
</ wsdl : nessage>

<I-- Messages for conmunication with the buyer -->

<wsdl : nessage name="buyer Dat a" >
<wsdl : part nanme="credit CardNunber" type="xsd:string" />
<wsdl : part nanme="phoneNunber" type="xsd:string" />
<wsdl : part name="I1D" type="xsd:integer" />
<wsdl : part name="endpoi nt Ref erence" type="sref: Servi ceRef Type" />
</ wsdl : nessage>

<wsdl : message nanme="buyer Answer Dat a" >
<wsdl : part name="t hankYouText" type="xsd:string" />
</ wsdl : nessage>

<I-- Messages for conmmunication with the
auction registration service -->

<wsdl : nessage name="aucti onDat a" >
<wsdl : part name="auctionld" type="xsd:integer" />
<wsdl : part nanme="amount" type="xsd:integer" />

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 184 of 264

<wsdl : part nanme="aucti onHouseEndpoi nt Ref er ence"
type="sref: Servi ceRef Type" />
</ wsdl : nressage>

<wsdl : message nanme="aucti onAnswer Dat a" >
<wsdl : part name="registrationld" type="xsd:integer" />
<wsdl| : part name="auctionld" type="xsd:integer" />

</ wsdl : nressage>

<l-- PortTypes for interacting with the seller -->

<wsdl : port Type nane="sel | er PT" >
<wsdl| : operati on nane="submt">
<wsdl : i nput nessage="tns:sellerData" />
</ wsdl : operati on>
</ wsdl : port Type>

<wsdl : port Type nanme="sel | er Answer PT" >
<wsdl| : operati on nane="answer" >
<wsdl : i nput nessage="tns: sel | er Answer Dat a" />
</ wsdl : operati on>
</ wsdl : port Type>

<I-- PortTypes for interacting with the buyer -->

<wsdl : port Type nane="buyer PT" >
<wsdl : operati on name="subnmit">
<wsdl : i nput nmessage="tns: buyer Data" />
</ wsdl : oper ati on>
</ wsdl : port Type>

<wsdl : port Type nanme="buyer Answer PT" >
<wsdl| : oper ati on nane="answer" >
<wsdl : i nput nessage="tns: buyer Answer Dat a" />
</ wsdl : oper ati on>
</ wsdl : port Type>

<I-- PortTypes for interacting with the
auction registration service -->

<wsdl : port Type nane="aucti onRegi strationPT">
<wsdl| : operati on name="process" >
<wsdl : i nput nmessage="tns: auctionData" />
</ wsdl : oper ati on>
</ wsdl : port Type>

<wsdl| : port Type name="aucti onRegi strati onAnswer PT" >
<wsdl| : operati on nane="answer" >
<wsdl : i nput nessage="tns: aucti onAnswer Dat a" />
</ wsdl : oper ati on>
</ wsdl : port Type>

<I-- Context type used for |ocating business process
via auction Id -->

<vprop: property name="auctionld" type="xsd:integer" />
<vprop: propertyAlias propertyNanme="tns: aucti onld"
nessageType="tns: sel | erData" part="auctionld" />

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 185 of 264

<vprop: propertyAlias propertyNanme="tns: auctionld"
nessageType="t ns: buyer Data" part="1D" />

<vprop: propertyAlias propertyName="tns: auctionld"
nmessageType="t ns: aucti onDat a" part="auctionld" />

<vprop: propertyAlias propertyNanme="tns: auctionld"
nmessageType="t ns: aucti onAnswer Dat a" part="auctionld" />

<l-- PartnerLi nkType for seller/auctionHouse -->

<pl nk: part ner Li nkType name="sel | er Aucti onHouseLT" >
<pl nk: rol e nanme="aucti onHouse" port Type="tns: sell er PT" />
<pl nk:rol e nane="sel l er" port Type="tns: sel | er Answer PT" />
</ pl nk: part ner Li nkType>

<l-- PartnerLi nkType for buyer/auctionHouse -->

<pl nk: par t ner Li nkType nanme="buyer Aucti onHouseLT" >
<pl nk: rol e name="aucti onHouse" port Type="t ns: buyer PT" />
<pl nk:rol e name="buyer" port Type="t ns: buyer Answer PT" />
</ pl nk: par t ner Li nkType>

<l-- Partner link type for auction house/auction
regi stration service -->

<pl nk: part ner Li nkType
nane="auct i onHouseAuct i onRegi strati onServi ceLT">
<pl nk: rol e nane="aucti onRegi strati onServi ce"
port Type="tns: aucti onRegi strati onPT" />
<pl nk: rol e name="auct i onHouse"
port Type="t ns: auct i onRegi st rati onAnswer PT" />
</ pl nk: par t ner Li nkType>

</ wsdl : definitions>
15.4.2. Process

The WS-BPEL process for the auction house is as follows:

<process name="auctionServi ce"
t ar get Nanmespace="htt p: // exanpl e. com aucti on"
xm ns="htt p://docs. oasi s- open. or g/ wshpel / 2. 0/ pr ocess/ execut abl e"
xm ns: sref=" http://docs. oasi s-open. or g/ wshpel / 2. 0/ servi ceref"
xm ns: addr ="htt p://exanpl e. com addr essi ng"
xm ns:as="http://exanpl e. conf aucti on/ wsdl / aucti onServi ce/">

<i nport inportType="http://schemas. xnl soap. or g/ wsdl /"
| ocati on="aucti onServi cel nterface. wsdl "
nanespace="htt p://exanpl e. conl aucti on/ wsdl / aucti onServi ce/" />

<part ner Li nks>

<partnerLi nk nane="sell er"
part ner Li nkType="as: sel | er Aucti onHouseLT"
nmyRol e="auct i onHouse"
part ner Rol e="sel ler" />

<part ner Li nk nane="buyer"
part ner Li nkType="as: buyer Auct i onHouseLT"
nyRol e="auct i onHouse"

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 186 of 264

part ner Rol e="buyer" />
<partner Li nk nane="aucti onRegi strati onService"

part ner Li nkType="as: auct i onHouseAuct i onRegi strati onServi ceLT"

nmyRol e="auct i onHouse"
par t ner Rol e="auct i onRegi strati onService" />
</ part ner Li nks>

<vari abl es>
<vari abl e nane="sel | er Dat a"
nessageType="as: sel |l erData" />
<vari abl e name="sel | er Answer Dat a"
nmessageType="as: sel | er Answer Dat a" />
<vari abl e nane="buyer Dat a"
nmessageType="as: buyer Data" />
<vari abl e nane="buyer Answer Dat a"
nessageType="as: buyer Answer Dat a" />
<vari abl e name="aucti onDat a"
nmessageType="as: aucti onData" />
<vari abl e nane="aucti onAnswer Dat a"
nmessageType="as: aucti onAnswer Dat a" />
</vari abl es>

<correl ati onSet s>
<correl ati onSet nanme="aucti onldentification"
properties="as:auctionld" />
</correl ati onSet s>

<sequence>

<l-- Process buyer and seller request concurrently
Either one can create a process instance -->

<fl ow>

<l-- Process seller request -->
<recei ve name="accept Sel |l er | nformati on"
partnerLi nk="sel | er"
port Type="as: sel | er PT"
operation="submt"
vari abl e="sel | er Dat a"
creat el nstance="yes" >
<correl ati ons>
<correl ation set="auctionldentification"
initiate="join" />
</correl ati ons>
</recei ve>

<l-- Process buyer request -->

<recei ve name="accept Buyer | nformati on"
part ner Li nk="buyer"
port Type="as: buyer PT"
operation="submt"
vari abl e="buyer Dat a"
creat el nst ance="yes" >
<correl ati ons>
<correlation set="auctionldentification"
initiate="join" />

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 187 of 264

</correl ati ons>
</receive>

</fl ow>

<l-- Invoke auction registration service by setting the target
endpoi nt reference and setting nmy own endpoi nt reference
for call back and receiving the answer Correl ation of
request and answer is via auction Id -->

<assi gn>
<copy>
<frone
<literal >
<sref:service-ref>
<addr : Endpoi nt Ref er ence>
<addr : Addr ess>
http://exanpl e. comf aucti on/
Regi strati onServi ce/
</ addr : Addr ess>
<addr: Servi ceNane>
as: Regi strationServi ce
</ addr : Ser vi ceNanme>
</ addr : Endpoi nt Ref er ence>
</sref:service-ref>
</literal >
</fronp
<t o partnerLink="aucti onRegi strationService" />
</ copy>
<C0py>

<from partnerLi nk="auct i onRegi strati onServi ce"
endpoi nt Ref erence="nyRol e" />
<t o>$auct i onDat a. auct i onHouseEndpoi nt Ref er ence</t 0>
</ copy>
<copy>
<frone$sel | er Dat a. aucti onl d</fronw
<t o>$%auct i onDat a. auct i onl d</ t 0>
</ copy>
<copy>
<fronel</frone
<t o>$auct i onDat a. anount </ t 0>
</ copy>
</ assi gn>

<i nvoke nanme="regi st er Aucti onResul t s"
part ner Li nk="aucti onRegi strati onService"
port Type="as: aucti onRegi strati onPT"
oper ati on="process"
i nput Vari abl e="aucti onbData" />

<recei ve name="recei veAucti onRegi strati onl nf or nati on"
part ner Li nk="aucti onRegi strati onService"
port Type="as: aucti onRegi strati onAnswer PT"
oper ati on="answer "
vari abl e="auct i onAnswer Dat a" >
<correl ati ons>
<correlation set="auctionldentification" />
</correl ati ons>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 188 of 264

</receive>
<I-- Send responses back to seller and buyer -->

<fl ow>

<l-- Process seller response by setting the seller to

t he endpoi nt reference provided by the seller
and i nvoki ng the response -->

<sequence>
<assi gn>
<copy>
<fronme$sel | er Dat a. endpoi nt Ref erence</fron
<to partnerlLink="seller" />
</ copy>
<copy>
<fronp
<literal >Thank you!</literal >
</fronp
<t 0>%$sel | er Answer Dat a. t hankYouText </ t 0>
</ copy>
</ assi gn>

<i nvoke name="respondToSel | er"
partnerLi nk="sel | er"
port Type="as: sel | er Answer PT"
oper ati on="answer"
i nput Var i abl e="sel | er Answer Dat a" />

</ sequence>

<I-- Process buyer response by setting the buyer to
t he endpoi nt reference provided by the buyer
and i nvoking the response -->

<sequence>
<assi gn>
<copy>
<f r om>$buyer Dat a. endpoi nt Ref er ence</ f r on»
<t o part nerLi nk="buyer" />
</ copy>
<copy>
<frone
<literal >Thank you!</literal >
</fromp
<t 0>$buyer Answer Dat a. t hankYouText </ t 0>
</ copy>
</ assi gn>

<i nvoke name="respondToBuyer"
part ner Li nk="buyer"
port Type="as: buyer Answer PT"
oper ati on="answer "
i nput Var i abl e="buyer Answer Dat a" />

</ sequence>

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 189 of 264

</fl ow>
</ sequence>

</ process>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 190 of 264

16. Security Considerations

Although WS-BPEL isinherently binding neutral it is strongly recommended that business
process implementations use WS-Security when using a binding where messages may be
modified or forged. WS-Security provides mechanisms to ensure messages have not been
modified or forged whilein transit or while residing at destinations. Similarly, there are
mechanisms to prevent invalid or expired messages from being re-used or message headers not
specifically associated with the specific message being referenced. Consequently, when using
WS-Security, signatures should include the semantically significant headers and the message
body (aswell as any other relevant data) so that they cannot be independently separated and re-
used.

Messaging protocols used to communicate among business processes are subject to various
forms of replay attacks. In addition to the mechanisms listed above, messages should include a
message timestamp (as described in WS-Security) within the signature. Recipients can use the
timestamp information to cache the most recent messages for a business process and detect
duplicate transmissions and prevent potential replay attacks.

It should also be noted that business process implementations are subject to various forms of
denial-of-service attacks. Implementers of business process execution systems compliant with
this specification should take this into account.

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 191 of 264

Appendix A. Standard Faults

The following list specifies the standard faults defined within the WS-BPEL specification. All
standard fault names are qualified with the standard WS-BPEL namespace.

Table A.1. Standard Faults

IFault name

|Description

anbi guousRecei ve

Thrown when a business process instance simultaneously
enables two or more IMAs for the same partnerLink,
portType, operation but different correlationSets, and the
correlations of multiple of these activities match an incoming

request message.

conpl eti onCondi ti onFai l ure

Thrown if upon completion of adirectly enclosed <scope>
activity within <f or Each> activity it can be determined that
the compl etion condition can never be true.

conflictingReceive

Thrown when more than one inbound message activity is
enabled ssimultaneously for the same partner link, port type,
operation and correlation set(s).

conflictingRequest

Thrown when more than one inbound message activity is open
for the same partner link, operation and message exchange.

correl ationViol ati on

Thrown when the contents of the messages that are processed
in an <i nvoke>, <recei ve>, <r epl y>, <onMessage>, Or
<onEvent > do not match specified correlation information.

i nval i dBr anchCondi ti on

Thrown if the integer value used in the <br anches>
completion condition of <f or Each> islarger than the number
of directly enclosed <scope> activities.

i nval i dExpr essi onVal ue

Thrown when an expression used within aWS-BPEL
construct (except <assi gn>) returns an invalid value with
respect to the expected XML Schematype.

i nval i dVari abl es

Thrown when an XML Schema validation (implicit or
explicit) of avariable valuefails.

j oi nFail ure

Thrown when the join condition of an activity evaluates to
f al se and the value of the suppr essJoi nFai | ur e attributeis
yes.

m smat chedAssi gnent Fai | ure

Thrown when incompatible types or incompatible XML
infoset structure are encountered in an <assi gn> activity.

m ssi ngRepl y

Thrown when an inbound message activity has been executed,
and the process instance or scope instance reaches the end of
its execution without a corresponding <r epl y> activity having

been executed.

nm ssi ngRequest

Thrown when a<r epl y> activity cannot be associated with an

wsbpel-v2.0-0S

11 April 2007

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 192 of 264

Fault name

|Description

open inbound message activity by matching the partner link,
operation and message exchange tuple.

scopelnitializationFailure

Thrown if there is any problem creating any of the objects
defined as part of scopeinitiaization. Thisfault isaways
caught by the parent scope of the faulted scope.

sel ectionFailure

Thrown when a selection operation performed either in a
function such asbpel : get Vari abl eProperty, Or inan
assignment, encounters an error.

subLanguageExecut i onFaul t

Thrown when the execution of an expression resultsin an
unhandled fault in an expression language or query language.

uninitializedPartnerRol e

Thrown when an <i nvoke> or <assi gn> activity references a
partner link whose par t ner Rol e endpoint reference is not
initialized.

uninitializedVari abl e

Thrown when there is an attempt to access the value of an
uninitialized variable or in the case of a message type variable
one of itsuninitialized parts.

unsupport edRef erence

Thrown when a WS-BPEL implementation fails to interpret
the combination of ther ef er ence- schene attribute and the
content element OR just the content element aone.

xsl tl nval i dSour ce

Thrown when the transformation source provided in a
bpel : doXsl Tr ansf or mfunction call was not legal (i.e., not an
Ell).

xsl t St yl esheet Not Found

Thrown when the named style sheet in a
bpel : doXsl Tr ansf or mfunction call was not found.

wsbpel-v2.0-0S

11 April 2007

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 193 of 264

Appendix B. Static Analysis requirement

summary (Non-Normative)

The purpose of static analysisis to detect any undefined semantics or invalid semantics within a
process definition that was not detected during the schema validation against the X SD found in
Appendix E. XML Schemas Any process definition that fails one or more of these checks must

be rejected by the WS-BPEL processor.

This appendix summarizes the requirements for static analysis specified in the main body of the
specification and is provided for convenience.

Static Static analysis Description Section

Analysis Fault Reference

Code

SA00001 A WS-BPEL processor MUST reject aWS-BPEL that refers | Section 3
to solicit-response or notification operations portTypes.

SA00002 A WS-BPEL processor MUST reject any WSDL portType Section 3
definition that includes overloaded operation names.

SA00003 If the value of exitOnStandardFault of a <scope> or Section 5.2
<process> is set to “yes’, then afault handler that explicitly
targets the WS-BPEL standard faults MUST NOT be used in
that scope.

SA00004 If any referenced quer yLanguage Or expr essi onLanguage is | Section 5.2
unsupported by the WS-BPEL processor then the processor
MUST reject the submitted WS-BPEL process definition.

SA 00005 If the por t Type attribute isincluded for readability, in a Section 5.2
<receive>, <reply>, <invoke>, <onEvent > Or <onMessage>
element, the value of the por t Type attribute MUST match the
por t Type value implied by the combination of the specified
par t ner Li nk and the roleimplicitly specified by the activity.

SA00006 The <r et hr ow> activity MUST only be used within a Section 5.2
faultHandler (i.e. <cat ch> and <cat chAl | > elements).

SA00007 The <conpensat eScope> activity MUST only be used from Section 5.2
within af aul t Handl er , another conpensat i onHandl er, Or a
t er mi nati onHandl er.

SA00008 The <conpensat e> activity MUST only be used from within | Section 5.2
af aul t Handl er , another conpensat i onHandl er, or a
t er mi nati onHandl er.

SA00009 In the case of mandatory extensions declared in the Section 5.3

<ext ensi ons> element not supported by a WS-BPEL
implementation, the process definition MUST be rejected.

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 194 of 264

Static Static analysis Description Section
Analysis Fault Reference
Code
SA00010 A WS-BPEL process definition MUST import all XML Section 5.4
Schema and WSDL definitions it uses. Thisincludesal XML
Schematype and element definitions, all WSDL port types
and message types as well as property and property alias
definitions used by the process.
SA00011 If ananmespace attribute is specified on an <i npor t > then the | Section 5.4
imported definitions MUST be in that namespace.
SA00012 If no namespace is specified then the imported definitions Section 5.4
MUST NOT contain at ar get Nanmespace specification.
SA00013 The value of thei npor t Type attribute of element <i nport > Section 5.4
MUST beset tohtt p: // www. w3. or g/ 2001/ XM.Schenma
when importing XML Schema 1.0 documents, and to
http://schemas. xm soap. or g/ wsdl / when importing
WSDL 1.1 documents.
SA00014 A WS-BPEL process definition MUST be rejected if the Section 5.4
imported documents contain conflicting definitions of a
component used by the importing process definition (as could
be caused, for example, when the XSD redefinition
mechanism is used).
SA00015 To be instantiated, an executable business process MUST Section 5.5
contain at least one <r ecei ve> or <pi ck> activity annotated
with acreat el nst ance="yes" attribute.
SA00016 A par t ner Li nk MUST specify the nyRol e or the Section 6.2
par t ner Rol e, or both.
SA00017 TheinitializePartnerRol e attribute MUST NOT beused | Section 6.2
on apart ner Li nk that does not have a partner role.
SA00018 The name of apart ner Li nk MUST be unique among the Section 6.2
names of all partnerLinks defined within the same
immediately enclosing scope.
SA00019 Either thet ype or el enent attributes MUST bepresentina | Section 7.2
<vprop: proper t y> element but not both.
SA00020 A <vprop: propert yAl i as> element MUST use one of the Section 7.3
three following combinations of attributes:
e nessageType and part,
e typeor
e el enent
wsbpel-v2.0-0S 11 April 2007

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

Page 195 of 264

Static

Analysis Fault

Code

Static analysis Description

Section
Reference

SA00021

Static analysis MUST detect property usages where
propertyAliases for the associated variabl€'s type are not
found in any WSDL definitions directly imported by the WS-
BPEL process.

Section 7.3

SA00022

A WS-BPEL process definition MUST NOT be accepted for
processing if it defines two or more propertyAliases for the
same property name and WS-BPEL variable type.

Section 7.3

SA00023

The name of avariable MUST be unique among the names of
all variables defined within the same immediately enclosing
scope.

Section 8.1

SA00024

Variable names are BPELVar i abl eNanes, that is, NCNames
(as defined in XML Schema specification) but in addition
they MUST NOT contain the“.” character.

Section 8.1

SA00025

ThemessageType, t ype Or el enent attributes are used to
specify the type of avariable. Exactly one of these attributes
MUST be used.

Section 8.1

SA 00026

Variable initialization logic contained in scopes that contain
or whose children contain a start activity MUST only use
idempotent functions in the from-spec.

Section 8.1

SA00027

When XPath 1.0 is used as an expression language in WS-
BPEL thereis no context node available. Therefore the legal
values of the XPath Expr (http://www.w3.0rg/TR/xpath#NT-
Expr) production must be restricted in order to prevent access
to the context node.

Specifically, the "LocationPath"
(http://www.w3.org/TR/xpath#NT-L ocationPath) production
rule of "PathExpr" (http://www.w3.0rg/TR/Xpath#NT-
PathExpr) production rule MUST NOT be used when XPath
is used as an expression language.

Section 8.2.4

SA00028

WS-BPEL functions MUST NOT be used in joinConditions.

Section 8.2.5

SA00029

WS-BPEL variables and WS-BPEL functions MUST NOT be
used in query expressions of propertyAlias definitions.

Section 8.2.6

SA00030

The arguments to bpel : get Vari abl eProperty MUST be
given as quoted strings. It istherefore illegal to passinto a
WS-BPEL XPath function any XPath variables, the output of
XPath functions, a X Path location path or any other value that
IS not a quoted string.

Section 8.3

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 196 of 264

http://www.w3.org/TR/xpath#NT-Expr
http://www.w3.org/TR/xpath#NT-Expr
http://www.w3.org/TR/xpath#NT-LocationPath
http://www.w3.org/TR/xpath#NT-LocationPath
http://www.w3.org/TR/xpath#NT-PathExpr
http://www.w3.org/TR/xpath#NT-PathExpr
http://www.w3.org/TR/xpath#NT-PathExpr

Static Static analysis Description Section
Analysis Fault Reference
Code
SA00031 The second argument of the XPath 1.0 extension function Section 8.3
bpel : get Vari abl eProperty(string, string) MUST bea
string literal conforming to the definition of QName in [XML
Namespaces| section 3.
SA00032 For <assign>, the <from> and <to> element MUST be one of | Section 8.4
the specified variants.
The <assi gn> activity copies atype-compatible value from
the source ("from-spec") to the destination ("to-spec"), using
the <copy> element. Except in Abstract Processes, the from-
spec MUST be one of the following variants:
<from vari abl e="BPELVari abl eNane" part="NCNane" ?>
<query querylLanguage="anyURI " ?>?
guer yCont ent
</ query>
</fronp
<from part ner Li nk=" NCNane"
endpoi nt Ref erence="nyRol e| part ner Rol e" />
<from vari abl e="BPELVari abl eNane"
property="QNane" />
<from expr essi onLanguage="anyURI " ?>
expr essi on
</fronp
<frone
<literal>literal value</literal >
</fronp
<from >
In Abstract Processes, the from-spec MUST be either one of
the above or the opaque variant described in section 13.1.3.
Hiding Syntactic Elements
The to-spec MUST be one of the following variants:
<t o vari abl e="BPELVari abl eNane" part="NCNang" ?>
<query querylLanguage="anyURI " ?>?
quer yCont ent
</ query>
</to>
<t o part nerLi nk="NCNane" />
<t o vari abl e="BPELVari abl eNane"
property="QNane" />
<t 0o expressi onLanguage="anyURI " ?>
expr essi on
</to>
<to/ >
wsbpel-v2.0-0S 11 April 2007

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

Page 197 of 264

Static
Analysis Fault
Code

Static analysis Description

Section
Reference

SA00033

The XPath expression in <t o> MUST begin with an XPath
VariableReference.

Section 8.4

SA00034

When the variable used in <f r on» or <t 0> is defined using
XML Schematypes (ssmple or complex) or element, the par t
attribute MUST NOT be used.

Section 8.4

SA00035

In the from-spec of the partnerLink variant of <assi gn> the
value "nyRol e" for attribute endpoi nt Ref er ence isonly
permitted when the partnerLink specifies the attribute myRol e.

Section 8.4

SA00036

In the from-spec of the partnerLink variant of <assi gn> the
value "par t ner Rol e" for attribute endpoi nt Ref er ence iS
only permitted when the partnerLink specifies the attribute
part ner Rol e.

Section 8.4

SA00037

In the to-spec of the partnerLink variant of assign only
partnerLinks are permitted which specify the attribute
partnerRole.

Section 8.4

SA00038

The literal from-spec variant returns values asif it were a
from-spec that selects the children of the <l i t er al > element
in the WS-BPEL source code. The return value MUST be a
single Ell or Text Information Item (TI1I) only.

Section 8.4

SA00039

The first parameter of the XPath 1.0 extension function
bpel : doXsl Transforn{string, node-set, (string,

obj ect) *) isan XPath string providing a URI nhaming the
style sheet to be used by the WS-BPEL processor. This
MUST take the form of astring literal.

Section 8.4

SA00040

In the XPath 1.0 extension function
bpel : doXsl Transforn{string, node-set, (string,

obj ect) *) the optional parameters after the second parameter
MUST appear in pairs. An odd number of parametersis not
valid.

Section 8.4

SA00041

For the third and subsequent parameters of the XPath 1.0
extension function bpel : doXsl Transf or m(stri ng, node-
set, (string, object)*) theglobal parameter names
MUST be string literals conforming to the definition of
QName in section 3 of [Namespacesin XML].

Section 8.4

SA00042

For <copy> the optional keepSr cEl ement Nane attribute is
provided to further refine the behavior. It isonly applicable
when the results of both from-spec and to-spec are Ells, and
MUST NOT be explicitly set in other cases.

Section 8.4.2

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 198 of 264

http://www.w3.org/TR/REC-xml-names/QName_

Static
Analysis Fault
Code

Static analysis Description

Section
Reference

SA00043

For a copy operation to be valid, the data referred to by the
from-spec and the to-spec MUST be of compatible types.

The following situations are considered type incompatible:

o the selection results of both the from-spec and the to-
spec are variables of a WSDL message type, and the
two variables are not of the same WSDL message type
(two WSDL message types are the same if their
QNames are equal).

o theselection result of the from-spec isavariable of a
WSDL message type and that of the to-spec is not, or
vice versa (parts of variables, selections of variable
parts, or endpoint references cannot be assigned
to/from variables of WSDL message types directly).

Section 8.4.3

SA00044

Thename of a<correl ati onSet > MUST be unique among
the names of all <corr el at i onSet > defined within the same
immediately enclosing scope.

Section 9.1

SA00045

Propertiesused in a<correl ati onSet > MUST be defined
using XML Schema simple types.

Section 9.2

SA00046

Thepat t er n attribute used in <cor r el at i on> within
<i nvoke> isrequired for request-response operations, and
disallowed when a one-way operation is invoked.

Section 9.2

SA00047

One-way invocation requires only thei nput Vari abl e (or its
equivalent <t oPar t > elements) since aresponse is not
expected as part of the operation (see section 10.4. Providing
Web Service Operations — Receive and Reply). Request-
response invocation requires both ani nput Vari abl e (or its
equivalent <t oPar t > elements) and an out put Vari abl e (or
its equivalent <f r onPar t > elements). If aWSDL message
definition does not contain any parts, then the associated
attributesvari abl e, i nput Vari abl e Or out put Vari abl e,
MAY be omitted,and the <f r onPar t s> or <t oPar t s>
construct MUST be omitted.

Section 10.3
Section 10.4
Section 10.4
Section 11.5
Section 12.7

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 199 of 264

Static
Analysis Fault
Code

Static analysis Description

Section
Reference

SA00048

When the optional i nput Vari abl e and out put Vari abl e
attributes are being used in an <i nvoke> activity, the
variables referenced by i nput Vari abl e and

out put Vari abl e MUST be messageType variables whose
QName matches the QName of the input and output message
type used in the operation, respectively, except asfollows: if
the WSDL operation used in an <i nvoke> activity usesa
message containing exactly one part which itself is defined
using an element, then avariable of the same element type as
used to define the part MAY be referenced by the

i nput Vari abl e and out put Var i abl e attributes respectively.

Section 10.3

SA00050

When <t oPart s> is, it isrequired to have a<t oPar t > for
every part in the WSDL message definition; the order in
which parts are specified isirrelevant. Parts not explicitly
represented by <t oPar t > elements would result in
uninitialized parts in the target anonymous WSDL variable
used by the <i nvoke> or <r epl y> activity. Such processes
with missing <t oPar t > elements MUST be rejected during
static analysis.

Section 10.3.1

SA00051

Thei nput Vari abl e attribute MUST NOT be used on an
| nvoke activity that contains <t oPar t > elements.

Section 10.3.1

SA00052

The out put Vari abl e attribute MUST NOT be used on an
<i nvoke> activity that contains a <f r onPar t > element.

Section 10.3.1

SA00053

For all <fromPart> elements the part attribute MUST
reference a valid message part in the WSDL message for the
operation.

Section 5.4

SA00054

For all <toPart> elements the part attribute MUST reference a
valid message part in the WSDL message for the operation.

Section 5.4

SA00055

For <receive>, if <f r onPar t > elements are used on a
<recei ve> activity thenthevari abl e attribute MUST NOT
be used on the same activity.

Section 10.4

SA00056

A "start activity" isa<r ecei ve> or <pi ck> activity that is
annotated with acr eat el nst ance="yes" attribute. Activities
other than the following: start activities, <scope>, <f | ow>
and <sequence> MUST NOT be performed prior to or
simultaneously with start activities.

Section 10.4

SA00057

If aprocess has multiple start activities with correlation sets
then all such activities MUST share at least one common
correlationSet and all common correl ationSets defined on all
the activities MUST have the value of thei ni ti at e attribute
besetto"j oi n".

Section 10.4

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 200 of 264

Static
Analysis Fault
Code

Static analysis Description

Section
Reference

SA00058

Ina<recei ve> or <r epl y> activity, the variable referenced
by thevari abl e attribute MUST be a messageType variable
whose QName matches the QName of the input (for

<r ecei ve>) or output (for <r epl y>) message type used in the

operation, except asfollows: if the WSDL operation uses a
message containing exactly one part which itself is defined
using an element, then aWS-BPEL variable of the same

element type as used to define the part MAY be referenced by

thevari abl e attribute of the <r ecei ve> or <r epl y>activity.

Section 10.4

SA00059

For <reply>, if <t oPar t > elements are used on a<r epl y>
activity then thevari abl e attribute MUST NOT be used on
the same activity.

Section 10.4

SA00060

The explicit use of messageExchange is needed only where
the execution can result in multiple IMA-<r epl y> pairs (e.g.
<r ecei ve>-<r epl y> pair) on the same par t ner Li nk and
oper at i on being executed simultaneously. In these cases,
the process definition MUST explicitly mark the pairing-up
relationship.

Section 10.4.1

SA00061

The name used in the optional messageExchange attribute
MUST resolveto anessageExchange declared in a scope
(where the process is considered the root scope) which
encloses the <r epl y> activity and its corresponding IMA.

Section 10.4.1

SA00062

If <pi ck> hasacr eat el nst ance attribute with a value of
yes, the eventsin the <pi ck> MUST all be <onMessage>
events.

Section 11.5

SA00063

The semantics of the <onMessage> event are identical to a
<r ecei ve> activity regarding the optional nature of the
vari abl e attribute or <f r onPar t > elements, if <f r onPart >
elements on an activity then thevari abl e attribute MUST
NOT be used on the same activity (see SA00055).

Section 11.5

SA 00064

For <f | ow>, adeclared link’s name MUST be unigue among
al <l i nk> names defined within the same immediately
enclosing <f | ow>.

Section 11.6

SA00065

The vaue of thel i nkNarre attribute of <sour ce> or
<t ar get > MUST bethe nare of a<l i nk> declared in an
enclosing <f | ow> activity.

Section 11.6.1

SA00066

Every link declared within a<f I ow> activity MUST have
exactly one activity within the <f | ow> asits source and
exactly one activity within the <f | ow> asits target.

Section 11.6.1

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 201 of 264

Static
Analysis Fault
Code

Static analysis Description

Section
Reference

SA00067

Two different links MUST NOT share the same source and
target activities; that is, at most one link may be used to
connect two activities.

Section 11.6.1

SA00068

An activity MAY declare itself to be the source of one or
more links by including one or more <sour ce> elements.
Each <sour ce> element MUST use adistinct link name.

Section 11.6.1

SA00069

An activity MAY declare itself to be the target of one or more
links by including one or more <t ar get > elements. Each

<t ar get > element associated with a given activity MUST use
alink name distinct from al other <t ar get > elements at that
activity.

Section 11.6.1

SA00070

A link MUST NOT cross the boundary of arepeatable
construct or the <conpensat i onHandl er > element. This
means, a link used within a repeatable construct (<whi | e>,
<r epeat Unt i | >, <f or Each>, <event Handl er s>) or a
<conpensat i onHandl er > MUST be declared in a<f | ow>
that isitself nested inside the repeatabl e construct or
<conpensat i onHandl er >.

Section 11.6.1

SA00071

A link that crossesa<cat ch>, <cat chAl | > or

<t er m nat i onHandl er > element boundary MUST be
outbound only, that is, it MUST have its source activity
within the <f aul t Handl er s> Or <t er mi nat i onHandl er >,
and its target activity outside of the scope associated with the
handler.

Section 11.6.1

SA00072

A <li nk> declared in a<f | ow> MUST NOT create a control
cycle, that is, the source activity must not have the target
activity asalogically preceding activity.

Section 11.6.1

SA00073

The expression for ajoin condition MUST be constructed
using only Boolean operators and the activity's incoming
links' status values.

Section 11.6.2

SA00074

The expressionsin <st ar t Count er Val ue> and

<f i nal Count er Val ue> MUST return a Tll (meaning they
contain at least one character) that can be validated as a

xsd: unsi gned! nt . Static analysisMAY be used to detect this
erroneous situation at design time when possible (for
example, when the expression is a constant).

Section 11.7

SA00075

For the <f or Each> activity, <br anches> isan integer value
expression. Static analysis MAY be used to detect if the
integer value is larger than the number of directly enclosed
activities of <f or Each> at design time when possible (for
example, when the branches expression is a constant).

Section 11.7

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 202 of 264

Static
Analysis Fault
Code

Static analysis Description

Section
Reference

SA00076

For <f or Each> the enclosed scope MUST NOT declare a
variable with the same name as specified in the count er Narre
attribute of <f or Each>.

Section 11.7

SA00077

Thevaue of thet ar get attribute on a<conpensat eScope>
activity MUST refer to the name of an immediately enclosed
scope Of the scope containing the FCT-handler with the
<conpensat eScope> activity. Thisincludes immediately
enclosed scopes of an event handler (<onEvent > or

<onAl ar n») associated with the same scope.

Section 12.4.3.1

SA00078

Thet ar get attribute of a<conpensat eScope> activity
MUST refer to ascope or ani nvoke activity with afault
handler or compensation handler.

Section 12.4.3.1

SA00079

Theroot scope inside a FCT-handler MUST not have a
compensation handler.

Section 12.4.4.3

SA00080

There MUST be at least one <cat ch> or <cat chAl | > element
within a<f aul t Handl er s> element.

Section 12.5

SA00081

For the <cat ch> construct; to have a defined type associated
with the fault variable, thef aul t Vari abl e attribute MUST
only be used if either the f aul t MessageType or

faul t El ement attributes, but not both, accompany it. The
faul t MessageType and f aul t El enent attributes MUST
NOT be used unless accompanied by f aul t Vari abl e
attribute.

Section 12.5

SA00082

The peer-scope dependency relation MUST NOT include
cycles. In other words, WS-BPEL forbids a processin which
there are peer scopes S1 and S2 such that S1 has a peer-scope
dependency on S2 and S2 has a peer-scope dependency on
Sl

SA00083

An event handler MUST contain at least one <onEvent > or
<onAl ar n» element.

Section 12.7

SA00084

The par t ner Li nk reference of <onEvent > MUST resolveto a
partner link declared in the processin the following order: the
associated scope first and then the ancestor scopes.

Section 12.7.1

SA 00085

The syntax and semantics of the <f r onPar t > elements as
used on the <onEvent > element are the same as specified for
ther ecei ve activity. Thisincludes the restriction that if

<f r onPar t > elements are used on an onEvent element then
thevari abl e, el ement and nessageType attributes MUST
NOT be used on the same element.

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 203 of 264

Static
Analysis Fault
Code

Static analysis Description

Section
Reference

SA00086

For <onEvent >, variables referenced by thevari abl e
attribute of <f r onPar t > elements or thevar i abl e attribute of
an <onEvent > element are implicitly declared in the
associated scope of the event handler. Variables of the same
names MUST NOT be explicitly declared in the associated
scope..

Section 12.7.1

SA00087

For <onEvent >, the type of the variable (as specified by the
messageType attribute) MUST be the same as the type of the
input message defined by operation referenced by the
operation attribute. Optionally the messageType attribute may
be omitted and instead the element attribute substituted if the
message to be received has asingle part and that part is
defined with an element type. That element type MUST be an
exact match of the element type referenced by the element
attribute.

SA00088

For <onEvent >, the resolution order of thecorrel ati on
set (S) referenced by <corr el ati on> MUST befirst the
associated scope and then the ancestor scopes.

SA00089

For <onEvent >, when the messageExchange attributeis
explicitly specified, the resolution order of the message
exchange referenced by messageExchange attribute MUST
be first the associated scope and then the ancestor scopes.

Section 12.7.1

SA00090

If thevari abl e attribute is used in the <onEvent > element,
either the nessageType or theel enent attribute MUST be
provided in the <onEvent > element.

SA00091

A scope with thei sol at ed attribute set to "yes" iscalled an
isolated scope. | solated scopes MUST NOT contain other
isolated scopes.

Section 12.8

SA00092

Within a scope, the name of all named immediately enclosed
scopes MUST be unique.

Section 12.4.3

SA00093

Identical <cat ch> constructs MUST NOT exist within a
<f aul t Handl er s> element.

Section 12.5

SA00094

For <copy>, when the keepSr cEl enent Nane attribute is set to
“yes” and the destination element is the Document Ell of an
element-based variable or an element-based part of aWSDL
message-type-based variable, the name of the source element
MUST belong to the substitutionGroup of the destination
element. This checking MAY be enforced through static
analysis of the expression/query language.

Section 8.4.2

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 204 of 264

Static Static analysis Description Section
Analysis Fault Reference
Code
SA00095 For <onEvent >, the variable references are resolved to the Section 12.7.1
associated scope only and MUST NOT be resolved to the
ancestor scopes.
wsbpel-v2.0-0S 11 April 2007

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

Page 205 of 264

Appendix C. Attributes and Defaults

The following list summarizes all standard attributes for which a default value is defined.

Table C.1. Attributes and Defaults

|Attribute |Defau|t
cr eat el nst ance
on_elements no
<pi ck>
<r ecei ve>
exi t OnSt andar dFaul t
on el ement no
<process>
exi t OnSt andar dFaul t When this attribute is not specified on a<scope>, it
on element inheritsits value from itsimmediately enclosing <scope>
<scope=> (where the top-level scopeisthe <pr ocess> itsalf).

expr essi onLanguage

on element
<process>

urn:oasi s: nanmes: tc: wshpel : 2. 0: subl ang: xpat hl. 0

expr essi onLanguage

on elements

<br anches>
<condi ti on>

<fi nal Count er Val ue>
<for>

<fronp

<j oi nCondi ti on>

<r epeat Every>

<st art Count er Val ue>
<t o>
<transitionCondition>
<until >

When this attribute is not specified for one of these

elements, the attribute inheritsits value from <pr ocess>.

initializePartnerRol e

on element no
<part ner Li nk>
initiate
on element no
<correl ati on>
i sol at ed
on element no
<scope>
keepSr cEl enent Nane
on element no
<copy>=>
| ocati on An <i npor t > element without al ocat i on attribute
on element indicates that external definitions are used by the process

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 206 of 264

Attribute Default

<i nport > but makes no statement about where those definitions may
be found.

nessageExchange .) o
on elements If not specified on an mbound message act|V|ty or
<recei ve> <r epl y> then the activity's mnessageExchange is
<reply> automatically associated with a default messageExchange
<onhessage> with no name.
<onEvent >

nanespace An <i npor t > element without ananespace attribute
on element indicates that external definitions are in use which are not
<I mport > namespace qualified.

quer yLanguage
on e ement urn: oasi s: nanes: tc: wsbpel : 2. 0: subl ang: xpat hl. 0
<process>

quer yLanguage
on element
<query>

When this attribute is not specified for a<query> that is
part of afrom-spec or to-spec then the attribute inherits its
value from <pr ocess>. If the <quer y> is part of a

<vpr op: propert yAl i as> and the attribute is not specified
its default valueis:

urn: oasi s: nanes: tc: wsbpel : 2. 0: subl ang: xpat hl1. 0

r ef erence- schene

on element
<sref:service-ref>

If not specified, the namespace URI of the content element
within the wrapper MUST be used to determine the
reference scheme of service endpoint.

successful BranchesOnly

<process>

on element no
<br anches>

suppr essJoi nFai l ure
on element no

suppressJoi nFai l ure
on each activity
(standard-attribute)

When this attribute is not specified for an activity, it
inheritsits value from its directly enclosing activity (or
from the <pr ocess> itsalf, if it isthe primary activity of
the process).

val i dat e

on element
<assi gn>

no

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 207 of 264

Appendix D. Examples of Replacement Logic

The following provides detailed examples illustrative of copy operations as described in section

8.4.2. Replacement Logic of Copy Operations.
(a) Ell-to-Ell copy

XML Schema Context

<xsd: el enent name="poHeader" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: choi ce>

<xsd: el enent nanme="shi ppi ngAddr" type="tns: Addr essType"

<xsd: el enent nane="USshi ppi ngAddr"
type="t ns: USAddr essType" />
</ xsd: choi ce>
<xsd: el ement nanme="billingAddr" type="tns: AddressType" />
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

"t ns: USAddr essType" isatype extended from "t ns: Addr essType".

e Examplel:

<assi gn>
<C0py>
<f r on>$poHeader Var 1/ t ns: shi ppi ngAddr </ f r on>
<t o>$poHeader Var 2/ t ns: bi | | i ngAddr </t 0>
</ copy>
</ assi gn>

This <copy> replaces the attributes and elements of the billing addressin
"poHeader Var 2" with those of shipping addressin "poHeader Var 1".

Value of poHeader Var 1

<t ns: poHeader >

<t ns: shi ppi ngAddr verified="true">
<tns:street>123 Main Street</tns:street>
<tns:city>SonmeWhere City</tns:city>
<t ns: country>UK</tns: country>

</ tns: shi ppi ngAddr >

</t ns: poHeader >

Value of poHeader Var 2: (prior to <copy>)

<t ns: poHeader >

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

/>

11 April 2007
Page 208 of 264

<tns: bi | i ngAddr pobox="true" />

</t ns: poHeader >

Value of poHeader Var 2: (subsequent to <copy>)

<t ns: poHeader >

<tns:billingAddr verified="true">
<tns:street>123 Main Street</tns:street>
<tns:city>SonmeWhere City</tns:city>
<tns: country>UK</tns: country>
</tns:billingAddr>

</t ns: poHeader >

« Example2:

<assi gn>
<copy keepSrcEl ement Nane="yes" >
<f r on>$poHeader Var 3/t ns: USshi ppi ngAddr </ f r on®
<t o>$poHeader Var 2/ t ns: shi ppi ngAddr </ t 0>
</ copy>
</ assi gn>

This <copy> replaces the attributes and elements of the shipping addressin

"poHeader Var 2" with those of the US shipping addressin "poHeader Var 3".

Vaue of poHeader Var 3:

<t ns: poHeader >
<t ns: USshi ppi ngAddr verified="true">
<tns:street>123 Main Street</tns:street>
<tns:city>SomeWere Cty</tns:city>
<t ns: count ry>USA</t ns: country>
<tns: zi pcode>98765</t ns: zi pcode>
</ tns: USshi ppi ngAddr >

</t ns: poHeader >

Value of poHeader Var 2: (prior to <copy>)

<t ns: poHeader >
<t hs: shi ppi ngAddr pobox="true" />

</t ns poHeader >
Vaue of poHeader Var 2: (subsequent to <copy>)
<t ns: poHeader >

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 209 of 264

<t ns: USshi ppi ngAddr verified="true">
<tns:street>123 Main Street</tns:street>
<tns:city>SonmeWhere City</tns:city>
<t ns: count ry>USA</t ns: country>
<t ns: zi pcode>98765</t ns: zi pcode>

</ tns: USshi ppi ngAddr >

</t ns poHeader >
(b) EIl-to-All copy
XML Data Context

Vaueof credit Approval Var:

<tns:creditApplication appld="123-456">
<t ns: approvedLi mt code="AXR'>4500</t ns: approvedLi m t >
</tns:creditApplication>

e Examplel:

<assi gn>
<copy>
<from>$cr edi t Approval Var/tns: approvedLi mit</fronp
<t o>$%appr oval Not i ce2Var/ @nt </ t 0>
</ copy>
</ assi gn>

This <copy> replaces the content of the amount attribute in "appr oval Not i ce2Var'
with that of the approved limitin "cr edi t Appr oval Var".

Value of appr oval Not i ce2Var : (prior to <copy>)
<t ns2: approval Notice ant="" />
Value of appr oval Not i ce2Var : (subsequent to <copy>)
<t ns2: approval Noti ce ant="4500" />
(c) Ell-to-TlI copy
XML Data Context

Vaueof credit Approval Var:

<tns:creditApplication appld="123-456">
<t ns: approvedLi mt code="AXR'>4500</t ns: approvedLi m t >
</tns:creditApplication>

o Examplel:

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 210 of 264

<assi gn>
<copy>
<fronm>$credi t Approval Var/tns: approvedLi mit </ fronp
<t o>$approval Noti ce3Var/text()</to>
</ copy>
</ assi gn>

This <copy> replaces the content of "appr oval Not i ce3Vvar " with that of the approved
[imitin"credit Approval Var".

Value of approval Not i ce3Var : (prior to <copy>)

<t ns3: appr oval Not i ce>0</t ns3: appr oval Noti ce>

Value of appr oval Not i ce3Var : (subsequent to <copy>)

<t ns3: appr oval Not i ce>4500</t ns3: appr oval Not i ce>

o Example2:

<assi gn>
<copy>
<fronm>$cr edi t Approval Var/tns: approvedLi mit</fronp
<t o>$appr oval Noti ce4Var/text ()</to>
</ copy>
</ assi gnh>

Value of approval Not i ce4Var : (prior to <copy>)

<t ns4: appr oval Not i ce></t ns4: approval Noti ce>

As no text node exists under't ns4: appr oval Not i ce", asel ecti onFai | ur e fault will
be thrown, and no replacement logic executed.

e Example 3: Ell-to-Ell (for comparison to Ell-to-TII)

<assi gn>
<copy>
<fron>$cr edi t Appr oval Var/t ns: approvedLi m t</fron®
<t o>$appr oval Not i ced4Var </t 0>
</ copy>
</ assi gn>

This <copy> replaces the attributes and elements of "appr oval Not i ce4Var " with those
of the approved limit in "cr edi t Appr oval Var ".

Vaue of appr oval Not i ce4Var : (prior to Ell-to-Ell <copy>)

<t ns4: appr oval Noti ce></tns4: approval Noti ce>

Vaue of approval Not i ce4Var : (subsequent to Ell-to-Ell <copy>)

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 211 of 264

<t ns4: appr oval Noti ce code="AXR'>4500</t ns4: approval Noti ce>
(d) All-to-All copy
XML Data Context

Vaue of or der Det ai | Var :

<tns:orderDetail ant="2299" />

e Examplel:

<assi gn>
<copy>
<f r on>$or der Det ai | Var/ @nt </ fr one
<t 0>$bi | | i ngDet ai | Var/ @nt </t 0>
</ copy>
</ assi gn>

This <copy> replaces the content of the amount attribute in "bi I 1 i ngDet ai | Var " with
that of the amount if "or der Det ai | Var ".

Valueof bi | I'i ngDet ai | Var : (prior to <copy>)

<tns:billingDetail ant="" />

Value of bi | I'i ngDet ai | Var : (subsequent to <copy>)

<tns:billingDetail ant="2299" />
(e) All-to-Ell copy
XML Data Context

Value of or der Det ai | Var:

<tns:orderDetail ant="3399" />

e Examplel:

<assi gn>
<copy>
<fronm>$or der Det ai | Var/ @nt </ f r on»
<t 0>$bi | | i ngDet ai | Var/tns1: bi |l | i ngAmount </t 0>
</ copy>
</ assi gn>

This <copy> replaces the content of the billing amount in "bi I 1 i ngDet ai | Var " with
that of the amount attribute in "or der Det ai | Var ".

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 212 of 264

Vaueof bi | Ii ngDet ai | Var: (prior to <copy>)

<tnsl:billingDetail id="8675309">
<tnsl: billingAmunt code="FO00B2R'></tns1: billingAmount >
</tnsl:billingDetail >

Vaueof bi | Ii ngDet ai | Var : (Subsegquent to <copy>)

<tnsl:billingDetail id="8675309">
<tnsl: billingAmount code="F00B2R'>3399</tns1: billi ngAmount >
</tnsl:billingDetail>

(f) All-to-TII copy

XML Data context.

Value of or der Det ai | Var:
<tns:orderDetail ant="4499" />

e Examplel:

<assi gn>
<copy>
<f r on>$or der Det ai | Var/ @nt </ fr one
<t 0>$bi I | i ngAnount 2Var/ t ext () </t o>
</ copy>
</ assi gn>

This <copy> replaces the content of "bi | | i ngAmount 2Var " with that of the amount
attribute in "or der Det ai | Var ".

Vaueof bi | | i ngAnount 2Var : (prior to <copy>)

<tns2: bi | | i ngAmount >0</t ns2: bi | | i ngAnount >

Vaueof bi | I'i ngAnount 2Var : (subsequent to <copy>)

<tns2: bi | | i ngAmount >4499</t ns2: bi | | i ngAnount >
(g) TIl-to-TIl copy
XML Data context

Value of post al CodeVar :

<t ns: post al Code>95110</t ns: post al Code>

e Examplel:

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 213 of 264

<assi gn>
<copy>
<from>$post al CodeVar/text () </fronr
<t 0>$shi ppi ngPost al CodeVar/text () </t o>
</ copy>
</ assi gn>

This <copy> replaces the content of "shi ppi ngPost al CodeVar " with that of
"post al CodeVar".

Value of shi ppi ngPost al CodeVar : (prior to <copy>)
<t ns: shi ppi ngPost al Code>0</t ns: shi ppi ngPost al Code>
Value of shi ppi ngPost al CodeVar : (Subsequent to <copy>)
<t ns: shi ppi ngPost al Code>95110</t ns: shi ppi ngPost al Code>
(h) TlI-to-All copy
XML Data Context
Vaue of post al CodeVar :
<t ns: post al Code>94304</t ns: post al Code>
o Examplel:

<assi gn>
<copy>
<f r on>$post al CodeVar/t ext () </fronw
<t 0>$shi ppi ngAddr ess1Var/ @ost Code</ t 0>
</ copy>
</ assi gn>

This <copy> replaces the content of the post code attribute of "shi ppi ngAddr ess1Var"
with the content of "post al CodeVar".

Value of shi ppi ngAddr ess1Var : (prior to <copy>)

<t ns1: shi ppi ngAddr ess post Code="" />

Value of appr oval Not i celVar : (subsequent to <copy>)

<t nsl: shi ppi ngAddr ess post Code="94304" />
(i) TlI-to-Ell copy

XML Data Context

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 214 of 264

Vaue of post al CodeVar :

<t ns: post al Code>94107</t ns: post al Code>

o Examplel:

<assi gn>
<copy>
<f r on>$post al CodeVar/t ext () </fronw
<t 0>$shi ppi ngAddr ess2Var/t ns2: post al Code</t 0>
</ copy>
</ assi gn>

This <copy> replaces the content of the postal code element in
"shi ppi ngAddr ess2Var " with that of "post al CodeVar".

Value of shi ppi ngAddr ess2Var : (prior to <copy>)

<t ns2: shi ppi ngAddr ess i d="9035768" >
<t ns2: post al Code></t ns2: post al Code>
</tns2: shi ppi ngAddr ess>

Value of shi ppi ngAddr ess2Var : (subsequent to <copy>)

<t ns2: shi ppi ngAddr ess i d="9035768" >
<t ns2: post al Code>94107</t ns2: post al Code>
</ tns2: shi ppi ngAddr ess>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 215 of 264

Appendix E. XML Schemas

Schema for Executable Process for WS-BPEL 2.0

<?xm version="1.0" encodi ng="UTF-8"?>

<l --

Copyright (c) OASIS Open 2003-2006. All Ri ghts Reserved

-
<xsd: schema

xm ns="http://docs. oasi s- open. or g/ wshpel / 2. 0/ pr ocess/ execut abl e"
xm ns: xsd="htt p: //ww. w3. or g/ 2001/ XM_Schena"

t ar get Nanmespace="htt p: // docs. oasi s- open. or g/ wsbpel / 2. 0/ pr ocess/ execut abl e"
el ement For mDef aul t =" qual i fi ed" bl ockDef aul t="#al | ">

<xsd: annot at

<xsd: docunment ati on>

Schemn f

<xsd: i nport

<xsd: el enent
<xsd: annot

i on>

or Executable Process for W5-BPEL 2.0
Last nodified date: 18th Cctober, 2006
</ xsd: docunent at i on>
</ xsd: annot at i on>
nanespace="htt p://ww. w3. or g/ XM./ 1998/ nanespace"
schemalLocati on="http://ww. w3. or g/ 2001/ xm . xsd" />
nanme="process" type="tProcess">

ati on>

<xsd: document ati on>
This is the root element for a W5-BPEL 2.0 process.
</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: conpl exType name="t Process" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >

<xsd: sequence>

<xsd
<xsd

: el enent
c el enent

ref =" ext ensi ons" m nCccurs="0" />
ref="inmport" m nCccurs="0"

maxQccur s="unbounded" />

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

el enent
el enent
el enent
el enent
el ement
el enent

ref =" partnerLi nks" m nCccurs="0" />

ref =" messagekExchanges” m nCccurs="0" />
ref ="vari abl es" m nCccurs="0" />
ref="correl ati onSets" m nCccurs="0" />
ref="faul t Handl ers" m nCccurs="0" />
ref ="event Handl ers" m nCccurs="0" />

group ref="activity" />
</ xsd: sequence>
<xsd:attribute nane="nanme" type="xsd: NCNane"

<xsd:attribute nane="t ar get Nanespace" type="xsd: anyURl "
use="required" />

<xsd: attri bute
def aul t ="ur n:
<xsd: attribute
def aul t ="ur n:
<xsd: attri bute
def aul t =" no"
<xsd: attri bute
def aul t =" no"

</ xsd: ext ensi on>

wsbpel-v2.0-0S

name="quer yLanguage" type="xsd: anyURl "

use="required" />

oasi s: nanmes: t c: wsbpel : 2. 0: subl ang: xpat h1. 0" />

nane="expr essi onLanguage" type="xsd: anyURl "

oasi s: nanes: t c: wsbpel : 2. 0: subl ang: xpat h1. 0" />

nane="suppressJoi nFai | ure" type="t Bool ean"
/>
nane="exi t OnSt andar dFaul t" type="t Bool ean”
/>

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 216 of 264

</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType name="t Ext ensi bl eEl enent s" >
<xsd: annot at i on>
<xsd: docunent ati on>
This type is extended by other conponent types to allow
el enents and attributes from ot her nanespaces to be added at
t he nodel ed pl aces.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el enment ref="docunentation" m nOccurs="0"
maxQOccur s="unbounded” />
<xsd: any namespace="##ot her" processContents="|ax" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
<xsd: anyAttribut e nanespace="##ot her" processContents="|ax" />
</ xsd: conpl exType>
<xsd: el enent nane="docunentation" type="tDocunentation" />
<xsd: conpl exType nane="t Docunent ati on" m xed="true">
<xsd: sequence>
<xsd: any processContents="|ax" m nCccurs="0"
maxQOccur s="unbounded” />
</ xsd: sequence>
<xsd:attribute name="source" type="xsd:anyURl " />
<xsd:attribute ref="xm:I|ang" />
</ xsd: conpl exType>
<xsd: group name="activity">
<xsd: annot at i on>
<xsd: docunent ati on>
Al standard Ws-BPEL 2.0 activities in al phabetical order.
Basic activities and structured activities. Addtiona
constraints: - rethrow activity can be used ONLY within a
fault handler (i.e. "catch" and "catchAl|l" el ement) -
conpensat e or conpensateScope activity can be used ONLY within
a fault handl er, a conpensation handler or a term nation
handl er
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: choi ce>
<xsd: el enent ref="assign" />
<xsd: el enent ref="conpensate" />
<xsd: el ement ref="conpensat eScope" />
<xsd: el ement ref="enpty" />
<xsd: el ement ref="exit" />
<xsd: el enent ref="extensionActivity" />
<xsd: el ement ref="flow' />
<xsd: el ement ref="forEach" />
<xsd: el ement ref="if" />
<xsd: el ement ref="invoke" />
<xsd: el enent ref="pick" />
<xsd: el ement ref="receive" />
<xsd: el ement ref="repeatUntil" />
<xsd: el ement ref="reply" />
<xsd: el ement ref="rethrow' />
<xsd: el enent ref="scope" />
<xsd: el enent ref="sequence" />
<xsd: el ement ref="throw' />

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007

Page 217 of 264

<xsd: el ement ref="validate" />
<xsd: el ement ref="wait" />
<xsd: el ement ref="while" />
</ xsd: choi ce>
</ xsd: gr oup>
<xsd: el enent nane="ext ensi ons" type="t Extensions" />
<xsd: conpl exType name="t Ext ensi ons" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="extensi on" maxQOccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="extensi on" type="t Extension" />
<xsd: conpl exType name="t Ext ensi on" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd:attribute name="nanespace" type="xsd: anyURl "
use="required" />
<xsd: attribute name="nust Under st and" type="t Bool ean"
use="required" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="inport" type="tlnport" />
<xsd: conpl exType nanme="t | nport">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: attribute nane="nanmespace" type="xsd:anyURl"
use="optional" />
<xsd:attribute name="|ocation" type="xsd: anyURl "
use="optional " />
<xsd:attribute name="inportType" type="xsd:anyURl"
use="required" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="partnerLinks" type="tPartnerLinks" />
<xsd: conpl exType nane="t Part nerLi nks" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="partnerLink" naxCccurs="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="partnerLink" type="tPartnerLink" />
<xsd: conpl exType nane="t Part nerLi nk" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd:attribute nane="nane" type="xsd: NCNane" use="required" />
<xsd:attribute name="partnerLi nkType" type="xsd: QNane"
use="required" />
<xsd: attribute name="nmyRol e" type="xsd: NCNane" />
<xsd:attribute nane="partnerRol e" type="xsd: NCNane" />

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 218 of 264

<xsd:attribute nane="initializePartnerRole" type="tBool ean" />

</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: el ement nanme="nmessageExchanges" type="t MessageExchanges" />

<xsd: conpl exType nanme="t MessageExchanges" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="nmessageExchange" nmaxCccur s="unbounded"
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="nmessageExchange" type="t MessageExchange" />
<xsd: conpl exType nanme="t MessageExchange" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >

/>

<xsd:attribute name="nane" type="xsd: NCNanme" use="required" />

</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="vari abl es" type="t Vari abl es" />
<xsd: conpl exType nane="t Vari abl es" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="variabl e" maxCccurs="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="vari abl e" type="tVariable" />
<xsd: conpl exType nane="t Vari abl e" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="from' m nCccurs="0" />
</ xsd: sequence>
<xsd:attribute nane="nanme" type="BPELVari abl eNanme"
use="required" />
<xsd: attribute name="nessageType" type="xsd: QNane"
use="optional " />

<xsd:attribute name="type" type="xsd: QNane" use="optional" />
<xsd:attribute nane="el ement" type="xsd: QNane" use="optional" />

</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: si npl eType nanme="BPELVari abl eNanme" >
<xsd:restriction base="xsd: NCNane" >
<xsd: pattern value="["\.]+" />
</ xsd:restriction>
</ xsd: si npl eType>
<xsd: el ement nane="correl ati onSets" type="tCorrel ati onSets" />
<xsd: conpl exType name="t Correl ati onSets" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 219 of 264

<xsd: el enent ref="correl ati onSet" naxQccur s="unbounded"

</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: el enent nane="correl ati onSet" type="tCorrel ati onSet" />

<xsd: conpl exType name="t Correl ati onSet" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >

<xsd:attribute nane="properties" type="QNanes" use="required" />
<xsd: attribute nane="nane" type="xsd: NCNane" use="required" />

</ xsd: ext ensi on>
</ xsd: conpl exCont ent >

</ xsd: conpl exType>
<xsd: si npl eType nanme="QNanes" >
<xsd:restriction>
<xsd: si npl eType>
<xsd:list itenlype="xsd: QNane" />
</ xsd: si npl eType>
<xsd: mi nLengt h val ue="1" />
</ xsd:restriction>
</ xsd: si npl eType>

<xsd: el enent

name="f aul t Handl ers" type="t Faul t Handl ers" />

<xsd: conpl exType nane="t Faul t Handl er s" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="catch" m nCccurs="0"
maxQccur s="unbounded” />
<xsd: el enment ref="catchA " m nQccurs="0" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: el enent

nane="cat ch" type="t Catch">

<xsd: annot ati on>
<xsd: docunent ati on>
This el ement can contain all activities including the
activities conmpensate, conpensateScope and ret hrow
</ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: conpl exType nane="t Catch">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Acti vi t yCont ai ner" >
<xsd:attribute nane="faul t Nane" type="xsd: QNane" />

<xsd: attri bute

<xsd:attribute nane="faul t MessageType" type="xsd: QNanme" />
<xsd:attribute nane="faultEl ement" type="xsd: QNane" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: el enent

nane="cat chAl | " type="t Acti vityContai ner">

<xsd: annot ati on>
<xsd: docunent ati on>
This el ement can contain all activities including the
activities conpensate, conpensateScope and rethrow.
</ xsd: docunent at i on>

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

nane="faul t Vari abl e" type="BPELVari abl eNange" />

11 April 2007
Page 220 of 264

</ xsd: annot at i on>
</ xsd: el enent >
<xsd: conpl exType nane="t Acti vi tyCont ai ner">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >
<xsd: sequence>
<xsd: group ref="activity" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="event Handl ers" type="t Event Handl ers" />
<xsd: conpl exType nane="t Event Handl er s" >
<xsd: annot at i on>
<xsd: docunent at i on>
XSD Aut hors: The child el enent onAl arm needs to be a Loca
El enent Decl aration, because there is another onAl arm el ement
defined for the pick activity.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="onEvent" m nCccurs="0"
maxQccur s="unbounded" />
<xsd: el enent nanme="onAl arni type="t OnAl ar nEvent"
m nCccur s="0" maxQOccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nanme="onEvent" type="t OnEvent" />
<xsd: conpl exType nane="t OnEvent ">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t OnMsgConmon" >
<xsd: sequence>
<xsd: el ement ref="scope" />
</ xsd: sequence>
<xsd:attribute name="nmessageType" type="xsd: QNane"
use="optional " />
<xsd:attribute nane="el ement" type="xsd: QNane" use="optional" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType nanme="t OnMsgConmon" >
<xsd: annot ati on>
<xsd: docunent ati on>
XSD Aut hors: The child el ement correl ati ons needs to be a
Local El ement Decl aration, because there is another
correlations el ement defined for the invoke activity.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >
<xsd: sequence>
<xsd: el enent nane="correl ati ons" type="t Correl ati ons"
m nCccur s="0" />
<xsd: el enment ref="fronmParts" m nCccurs="0" />

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 221 of 264

</ xsd: sequence>
<xsd:attribute name="partnerLink" type="xsd: NCNane"
use="required" />
<xsd:attribute name="port Type" type="xsd: QNane"
use="optional " />
<xsd:attribute nane="operation" type="xsd: NCNane"
use="requi red" />
<xsd:attribute nane="nmessageExchange" type="xsd: NCNane"
use="optional " />
<xsd:attribute nane="variabl e" type="BPELVari abl eNane"
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType nanme="t Correl ati ons" >
<xsd: annot ati on>
<xsd: docunent ati on>
XSD Aut hors: The child el enent correlation needs to be a Loca
El enent Decl aration, because there is another correlation
el enent defined for the invoke activity.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >
<xsd: sequence>
<xsd: el enent nane="correl ation" type="tCorrel ati on"
maxQccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType nane="t Correl ati on">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >
<xsd:attribute nane="set" type="xsd: NCNanme" use="required" />
<xsd:attribute nane="initiate" type="tlnitiate" default="no" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: si npl eType name="tlnitiate">
<xsd:restriction base="xsd:string">
<xsd: enuneration val ue="yes" />
<xsd: enuneration val ue="join" />
<xsd: enuner ati on val ue="no" />
</xsd:restriction>
</ xsd: si npl eType>
<xsd: conpl exType nanme="t OnAl ar nEvent " >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >
<xsd: sequence>
<xsd: choi ce>
<xsd: sequence>
<xsd: group ref="forOrUntil G oup" />
<xsd: el enent ref="repeat Every" m nCccurs="0" />
</ xsd: sequence>
<xsd: el enent ref="repeat Every" />
</ xsd: choi ce>
<xsd: el ement ref="scope" />

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 222 of 264

</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: group name="forOrUntil G oup">
<xsd: choi ce>
<xsd: el ement ref="for" />
<xsd: el ement ref="until" />
</ xsd: choi ce>
</ xsd: gr oup>
<xsd: el enent nane="for" type="tDuration-expr" />
<xsd: el ement name="until" type="tDeadline-expr" />
<xsd: el enent nane="repeat Every" type="tDuration-expr" />
<xsd: conpl exType nanme="t Activity">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el enment ref="targets" m nCccurs="0" />
<xsd: el ement ref="sources" m nCccurs="0" />
</ xsd: sequence>
<xsd: attribute nane="nanme" type="xsd: NCNane" />

<xsd: attribute name="suppressJoi nFail ure" type="tBool ean"

use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="targets" type="tTargets" />
<xsd: conpl exType nane="t Tar gets" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >
<xsd: sequence>
<xsd: el enment ref="joinCondition" m nQccurs="0" />
<xsd: el ement ref="target" naxCccurs="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="j oi nCondi ti on" type="t Condition" />
<xsd: el ement nane="target" type="tTarget" />
<xsd: conpl exType name="t Target">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd:attribute nane="1inkNane" type="xsd: NCNane"
use="required" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="sources" type="t Sources" />
<xsd: conpl exType name="t Sources" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="source" nmaxCccurs="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="source" type="t Source" />

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 223 of 264

<xsd: conpl exType nanme="t Source" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el enment ref="transitionCondition" m nCccurs="0" />
</ xsd: sequence>
<xsd: attribute name="linkName" type="xsd: NCNane"
use="required" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="transitionCondition" type="tCondition" />
<xsd: el enent nane="assign" type="tAssign" />
<xsd: conpl exType nane="t Assi gn">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: choi ce maxCccur s="unbounded" >
<xsd: el ement ref="copy" />
<xsd: el enment ref="extensi onAssi gnCOperation" />
</ xsd: choi ce>
</ xsd: sequence>
<xsd:attribute name="validate" type="tBool ean" use="optional"
def aul t="no" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="copy" type="t Copy" />
<xsd: conpl exType nane="t Copy" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="from' />
<xsd: el ement ref="to" />
</ xsd: sequence>
<xsd: attribute nane="keepSrcEl enent Nane" type="t Bool ean"
use="optional " default="no" />
<xsd:attribute name="ignoreM ssi ngFronDat a" type="t Bool ean"
use="optional " defaul t="no" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="fronm' type="tFroni />
<xsd: conpl exType nane="t Froni m xed="true">
<xsd: sequence>
<xsd: el ement ref="docunentation" m nOccurs="0"
maxQccur s="unbounded" />
<xsd: any nanespace="##ot her" processContents="|ax" m nCccurs="0"
maxQccur s="unbounded" />
<xsd: choi ce m nCccurs="0">
<xsd: el ement ref="literal" />
<xsd: el ement ref="query" />
</ xsd: choi ce>
</ xsd: sequence>
<xsd:attribute name="expressi onLanguage" type="xsd:anyURl " />
<xsd:attribute nane="variabl e" type="BPELVari abl eNane" />
<xsd:attribute name="part" type="xsd: NCNane" />
<xsd:attribute nane="property" type="xsd: QName" />

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 224 of 264

<xsd:attribute nane="partnerLi nk" type="xsd: NCNange" />
<xsd: attribute name="endpoi nt Ref erence" type="tRol es" />
<xsd:anyAttri but e nanmespace="##ot her" processContents="|ax" />
</ xsd: conpl exType>
<xsd: el ement nanme="literal" type="tLiteral" />
<xsd: conpl exType name="tLiteral" ni xed="true">
<xsd: sequence>
<xsd: any nanespace="##any" processContents="1ax" m nCOccurs="0" />
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: el enent nane="query" type="t Query" />
<xsd: conpl exType nane="t Query" m xed="true">
<xsd: sequence>
<xsd: any processContents="|ax" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
<xsd: attribute name="querylLanguage" type="xsd:anyURl " />
<xsd:anyAttri but e namespace="##ot her" processContents="|ax" />
</ xsd: conpl exType>
<xsd: si npl eType nanme="t Rol es" >
<xsd:restriction base="xsd: string">
<xsd: enunerati on val ue="nyRol e" />
<xsd: enuneration val ue="partnerRol e" />
</xsd:restriction>
</ xsd: si npl eType>
<xsd: el enent nane="to" type="tTo" />
<xsd: conpl exType name="t To" ni xed="true">
<xsd: sequence>
<xsd: el ement ref="docunentation"” m nCccurs="0"
maxQccur s="unbounded" />
<xsd: any nanmespace="##ot her" processContents="lax" m nCccurs="0"
maxQccur s="unbounded" />
<xsd: el ement ref="query" m nOccurs="0" />
</ xsd: sequence>
<xsd:attribute name="expressi onLanguage" type="xsd:anyURl " />
<xsd:attribute nane="variabl e" type="BPELVari abl eNane" />
<xsd:attribute name="part" type="xsd: NCNane" />
<xsd:attribute name="property" type="xsd: QName" />
<xsd:attribute name="partnerLink" type="xsd: NCNane" />
<xsd: anyAttribut e nanespace="##ot her" processContents="1ax" />
</ xsd: conpl exType>
<xsd: el enent nanme="ext ensi onAssi gnOper ati on"
type="t Ext ensi onAssi gnQper ati on" />
<xsd: conpl exType nanme="t Ext ensi onAssi gnOper ati on">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enents" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="conpensate" type="t Conpensate" />
<xsd: conpl exType name="t Conpensate" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="conpensat eScope" type="t Conpensat eScope" />
<xsd: conpl exType nanme="t Conpensat eScope" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 225 of 264

<xsd:attribute nane="target" type="xsd: NCNane" use="required" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="enpty" type="tEnmpty" />
<xsd: conpl exType nane="t Enpty">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="exit" type="tExit" />
<xsd: conpl exType nane="tExit">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="extensi onActivity" type="tExtensionActivity" />
<xsd: conpl exType nane="t Ext ensi onActivity">
<xsd: sequence>
<xsd: any namespace="##ot her" processContents="|ax" />
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: el ement nane="fl ow' type="tFl ow' />
<xsd: conpl exType nanme="t Fl ow'>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el ement ref="1inks" m nCccurs="0" />
<xsd: group ref="activity" maxCccurs="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement name="Ilinks" type="tLinks" />
<xsd: conpl exType nane="t Li nks" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="link" maxCccurs="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="Ilink" type="tLink" />
<xsd: conpl exType nane="t Li nk" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd:attribute name="nane" type="xsd: NCNanme" use="required" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="forEach" type="t For Each" />
<xsd: conpl exType nane="t For Each" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el ement ref="startCounterVal ue" />
<xsd: el enment ref="final CounterVal ue" />

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 226 of 264

<xsd: el enent ref="conpl eti onCondition" m nCccurs="0" />
<xsd: el ement ref="scope" />
</ xsd: sequence>
<xsd:attribute nane="count er Nane" type="BPELVari abl eNane"
use="required" />
<xsd:attribute nane="parallel" type="tBool ean" use="required"
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="start Count er Val ue" type="t Expression" />
<xsd: el enent nanme="fi nal Count er Val ue" type="t Expressi on" />
<xsd: el enent nane="conpl eti onCondi ti on" type="t Conpl eti onCondi ti on"
<xsd: conpl exType nane="t Conpl eti onCondi ti on">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="branches" m nCccurs="0" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="branches" type="tBranches" />
<xsd: conpl exType nane="t Branches" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Expressi on">
<xsd: attribute nane="successful BranchesOnl y" type="t Bool ean"
def aul t="no" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="if" type="tIf" />
<xsd: conpl exType name="t|f">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el ement ref="condition" />
<xsd: group ref="activity" />
<xsd: el ement ref="elseif" m nCccurs="0"
maxQccur s="unbounded" />
<xsd: el ement ref="else" m nCccurs="0" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="el seif" type="tElseif" />
<xsd: conpl exType nanme="t El sei f">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="condition" />
<xsd: group ref="activity" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="el se" type="tActivityContainer" />
<xsd: el enent nane="i nvoke" type="tl|nvoke" />
<xsd: conpl exType nane="t | nvoke">

wsbpel-v2.0-0S

/>

/>

11 April 2007

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 227 of 264

<xsd: annot ati on>
<xsd: docunent ati on>
XSD Aut hors: The child el ement correl ati ons needs to be a
Local El ement Decl aration, because there is another
correl ati ons el ement defined for the non-invoke activities.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el enent nane="correl ati ons"
type="tCorrel ati onsWthPattern" m nCccurs="0" />
<xsd: el ement ref="catch" m nQccurs="0"
maxQccur s="unbounded” />
<xsd: el enment ref="catchA " m nQccurs="0" />
<xsd: el enent ref="conpensationHandl er" m nCccurs="0" />
<xsd: el enent ref="toParts" m nCccurs="0" />
<xsd: el ement ref="fronmParts" m nCccurs="0" />
</ xsd: sequence>
<xsd:attribute name="partnerLink" type="xsd: NCNanme"
use="required" />
<xsd:attribute nanme="port Type" type="xsd: QNane"
use="optional " />
<xsd:attribute nane="operation" type="xsd: NCNane"
use="required" />
<xsd:attribute nane="i nput Vari abl e" type="BPELVari abl eNange"
use="optional " />
<xsd: attribute nane="out put Vari abl e" type="BPELVari abl eNane"
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType name="t Correl ati onsWthPattern">
<xsd: annot at i on>
<xsd: docunent at i on>
XSD Aut hors: The child el ement correlation needs to be a Loca
El ement Decl arati on, because there is another correlation
el ement defined for the non-invoke activities.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement name="correl ati on"
type="tCorrel ati onWthPattern" maxCccurs="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType name="t Correl ati onWthPattern">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Correl ati on">
<xsd:attribute name="pattern" type="tPattern"” />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: si npl eType nane="t Pattern">
<xsd:restriction base="xsd:string">

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 228 of 264

<xsd: enuner ati on val ue="request" />
<xsd: enunerati on val ue="response" />
<xsd: enuneration val ue="request-response" />
</xsd:restriction>
</ xsd: si npl eType>
<xsd: el enent name="fronParts" type="tFronParts" />
<xsd: conpl exType name="t FronParts">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >
<xsd: sequence>
<xsd: el ement ref="fronmPart" maxCccurs="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="fronPart" type="tFronPart" />
<xsd: conpl exType name="t FronPart" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enment s" >
<xsd:attribute nane="part" type="xsd: NCNane" use="required" />
<xsd:attribute nane="toVari abl e" type="BPELVari abl eNang"
use="requi red" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="toParts" type="t ToParts" />
<xsd: conpl exType name="t ToParts">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >
<xsd: sequence>
<xsd: el ement ref="toPart" naxCccurs="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nanme="toPart" type="t ToPart" />
<xsd: conpl exType name="t ToPart" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >
<xsd:attribute nane="part" type="xsd: NCNane" use="required" />
<xsd:attribute nane="fronVari abl e" type="BPELVari abl eNang"
use="requi red" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="pick" type="tPick" />
<xsd: conpl exType nane="t Pi ck" >
<xsd: annot at i on>
<xsd: docunent at i on>
XSD Aut hors: The child el ement onAl arm needs to be a Loca
El enent Decl aration, because there is another onAl arm el ement
defined for event handl ers.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el ement ref="onMessage" maxOccurs="unbounded" />

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 229 of 264

<xsd: el enent nane="onAl arni' type="t OnAl ar nPi ck"
m nCccur s="0" maxQOccur s="unbounded" />
</ xsd: sequence>
<xsd:attribute nane="createl nstance" type="t Bool ean”
def aul t="no" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="onMessage" type="t OnMessage" />
<xsd: conpl exType name="t OnMessage" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t OnMsgConmon" >
<xsd: sequence>
<xsd: group ref="activity" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType nane="t OnAl ar nPi ck" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enment s" >
<xsd: sequence>
<xsd: group ref="forOrUntil G oup" />
<xsd: group ref="activity" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="receive" type="tReceive" />
<xsd: conpl exType name="t Recei ve">
<xsd: annot ati on>
<xsd: docunent ati on>
XSD Aut hors: The child el enent correlati ons needs to be a
Local El ement Decl aration, because there is another
correlations el ement defined for the invoke activity.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el enent nane="correl ati ons" type="t Correl ati ons"
m nCccur s="0" />
<xsd: el ement ref="fronmParts" m nCccurs="0" />
</ xsd: sequence>
<xsd:attribute name="partnerLink" type="xsd: NCNanme"
use="required" />
<xsd:attribute name="port Type" type="xsd: QNane"
use="optional " />
<xsd:attribute nane="operation" type="xsd: NCNane"
use="required" />
<xsd:attribute nane="vari abl e" type="BPELVari abl eNange"
use="optional" />
<xsd:attribute nane="createl nstance" type="t Bool ean”
def aul t="no" />
<xsd: attribute nane="nmessageExchange" type="xsd: NCNane"
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 230 of 264

</ xsd: conpl exType>
<xsd: el enent nane="repeatUntil" type="t RepeatUntil" />
<xsd: conpl exType nane="t Repeat Until ">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: group ref="activity" />
<xsd: el enment ref="condition" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="reply" type="tReply" />
<xsd: conpl exType nane="t Repl y">
<xsd: annot ati on>
<xsd: docunent ati on>
XSD Aut hors: The child el enent correl ati ons needs to be a
Local El ement Decl aration, because there is another
correlations el enment defined for the invoke activity.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el ement nane="correl ati ons" type="tCorrel ati ons"
m nCccur s="0" />
<xsd: el ement ref="toParts" m nCccurs="0" />
</ xsd: sequence>
<xsd:attribute nane="partnerLi nk" type="xsd: NCNane"
use="required" />
<xsd:attribute nane="port Type" type="xsd: QNane"
use="optional " />
<xsd:attribute nane="operation" type="xsd: NCNane"
use="required" />
<xsd:attribute nane="variabl e" type="BPELVari abl eNane"
use="optional " />
<xsd:attribute nane="faul t Name" type="xsd: QNane" />
<xsd:attribute nane="nmessageExchange" type="xsd: NCNane"
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="ret hrow' type="tRethrow' />
<xsd: conpl exType nane="t Ret hr ow' >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="scope" type="t Scope" />
<xsd: conpl exType nane="t Scope" >
<xsd: annot at i on>
<xsd: docunent ati on>
There is no schema-|evel default for "exitOnStandardFault" at
"scope". Because, it will inherit default from enclosing scope
or process.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 231 of 264

<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el ement ref="partnerLinks" m nCccurs="0" />
<xsd: el ement ref="nessageExchanges” m nCccurs="0" />
<xsd: el ement ref="variabl es" m nQOccurs="0" />
<xsd: el ement ref="correlati onSets" m nCccurs="0" />
<xsd: el enment ref="faul t Handl ers" m nQccurs="0" />
<xsd: el enment ref="conpensationHandl er" m nCccurs="0" />
<xsd: el ement ref="term nati onHandl er” m nCccurs="0" />
<xsd: el ement ref="eventHandl ers" m nQccurs="0" />
<xsd: group ref="activity" />
</ xsd: sequence>
<xsd:attribute name="isol ated" type="tBool ean" default="no" />
<xsd:attribute name="exitOnStandardFaul t" type="tBool ean" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="conpensati onHandl er" type="tActi vityContai ner">
<xsd: annot ati on>
<xsd: docunent ati on>
This el ement can contain all activities including the
activities conpensate and conpensat eScope.
</ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el ement >
<xsd: el enent nanme="term nati onHandl er" type="tActi vityContainer">
<xsd: annot ati on>
<xsd: docunent ati on>
This el ement can contain all activities including the
activities conpensate and conpensat eScope.
</ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: el ement nane="sequence" type="t Sequence" />
<xsd: conpl exType name="t Sequence" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: group ref="activity" maxCccurs="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nanme="t hrow' type="t Throw' />
<xsd: conpl exType nanme="t Thr ow'>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd:attribute name="faul t Nanme" type="xsd: QNanme"
use="required" />
<xsd:attribute nane="faultVariabl e" type="BPELVari abl eNane" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="val i date" type="tValidate" />
<xsd: conpl exType name="t Val i date" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd:attribute name="vari abl es" type="BPELVari abl eNanes"

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 232 of 264

use="required" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: si npl eType name="BPELVari abl eNanes" >
<xsd:restriction>
<xsd: si npl eType>
<xsd:|ist itenlype="BPELVari abl eNane" />
</ xsd: si npl eType>
<xsd: mi nLengt h val ue="1" />
</ xsd:restriction>
</ xsd: si npl eType>
<xsd: el enent nane="wait" type="tVWait" />
<xsd: conpl exType name="tWit">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: choi ce>
<xsd: el ement ref="for" />
<xsd: el ement ref="until" />
</ xsd: choi ce>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="while" type="tWile" />
<xsd: conpl exType nanme="t Wil e">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el enment ref="condition" />
<xsd: group ref="activity" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType name="t Expressi on" ni xed="true">
<xsd: sequence>
<xsd: any processContents="lax" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
<xsd:attribute name="expressi onLanguage" type="xsd:anyURl " />
<xsd: anyAttribut e nanespace="##ot her" processContents="1ax" />
</ xsd: conpl exType>
<xsd: conpl exType nane="t Condi ti on" m xed="true">
<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="t Expressi on" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="condition" type="tBool ean-expr" />
<xsd: conpl exType nanme="t Bool ean-expr" mi xed="true">
<xsd: conpl exCont ent ni xed="true">
<xsd: ext ensi on base="t Expressi on" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType name="t Duration-expr" mi xed="true">
<xsd: conpl exCont ent ni xed="true">
<xsd: ext ensi on base="t Expressi on" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 233 of 264

<xsd: conpl exType nanme="t Deadl i ne-expr" mni xed="true">
<xsd: conpl exCont ent mi xed="true">
<xsd: ext ensi on base="t Expression" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: si npl eType nanme="t Bool ean" >
<xsd:restriction base="xsd: string">
<xsd: enunerati on val ue="yes" />
<xsd: enuner ati on val ue="no" />
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: schenma>

Schema for Abstract Process Common Base for WS-BPEL 2.0

<?xm version="1.0" encodi ng="UTF-8"?>
<l--
Copyright (c) OASIS Open 2006. All Rights Reserved.
o=
<xsd: schema
xm ns="http://docs. oasi s- open. or g/ wsbpel / 2. 0/ pr ocess/ abstract"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Scherma"
xm ns: xsd-derived="http://docs. oasi s- open. or g/ wsbhpel / 2. 0/ process/ abstract"
t ar get Nanmespace="htt p: // docs. oasi s- open. or g/ wsbpel / 2. 0/ pr ocess/ abstract"
el ement For nDef aul t =" qual i fi ed" bl ockDefaul t="#all ">
<xsd: annot at i on>
<xsd: docunent at i on>
Schema for Abstract Process Common Base for WS-BPEL 2.0 Last
nodi fi ed date: 18th Cctober, 2006
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: i nmport nanmespace="http://ww. w3. or g/ XM_/ 1998/ nanespace"
schemalLocati on="http://ww. w3. or g/ 2001/ xm . xsd" />
<xsd: el ement name="process" type="tProcess">
<xsd: annot at i on>
<xsd: docunent ati on>
This is the root element for a W5-BPEL 2.0 process.
</ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: conpl exType nane="t Process" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="extensions" m nCccurs="0" />
<xsd: el ement ref="inmport" m nCccurs="0"
maxQccur s="unbounded" />
<xsd: el enent ref="partnerLinks" m nCccurs="0" />
<xsd: el enent ref="nmessageExchanges" m nCccurs="0" />
<xsd: el ement ref="variables" m nCccurs="0" />
<xsd: el ement ref="correl ati onSets" m nCccurs="0" />
<xsd: el ement ref="faultHandl ers" m nCccurs="0" />
<xsd: el ement ref="eventHandl ers" m nQccurs="0" />
<xsd: group ref="activity" m nCccurs="0" />
</ xsd: sequence>
<xsd:attribute nane="nanme" type="xsd-derived: NCNane"
use="optional " />
<xsd:attribute nane="t ar get Nanespace"

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 234 of 264

type="xsd-derived: anyURl " use="optional" />
<xsd: attribute nanme="querylLanguage" type="xsd-derived: anyURl "
def aul t ="urn: oasi s: nanes: t c: wsbpel : 2. 0: subl ang: xpat h1. 0" />
<xsd:attribute nane="expressi onLanguage"
t ype="xsd-derived: anyURl "
def aul t ="ur n: oasi s: nanes: t c: wsbpel : 2. 0: subl ang: xpat h1. 0" />
<xsd: attribute nane="suppressJoi nFail ure" type="t Bool ean"
defaul t="no" />
<xsd:attribute nane="exitOnStandardFault" type="t Bool ean”
def aul t="no" />
<xsd: attribute nane="abstract ProcessProfile" type="xsd:anyURl"
use="required" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType nanme="t Ext ensi bl eEl ement s" >
<xsd: annot ati on>
<xsd: docunent ati on>
This type is extended by ot her conponent types to allow
el ements and attributes from ot her namespaces to be added at
t he nodel ed pl aces.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement ref="docunentation" m nCccurs="0"
maxQccur s="unbounded" />
<xsd: any namespace="##ot her" processContents="|ax" m nCccurs="0"
maxQccur s="unbounded” />
</ xsd: sequence>
<xsd:anyAttribute namespace="##ot her" processContents="|ax" />
</ xsd: conpl exType>
<xsd: el enent nanme="docunent ati on" type="tDocunentation" />
<xsd: conpl exType name="t Docunent ati on” m xed="true">
<xsd: sequence>
<xsd: any processContents="1ax" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
<xsd:attribute name="source" type="xsd-derived:anyURl " />
<xsd:attribute ref="xm :lang" />
</ xsd: conpl exType>
<xsd: group nanme="activity">
<xsd: annot ati on>
<xsd: docunent ati on>
Al standard W5-BPEL 2.0 activities in al phabetical order.
Basic activities and structured activities. Addtiona
constraints: - rethrow activity can be used ONLY within a
fault handler (i.e. "catch" and "catchAll" el ement) -
conpensat e or conpensateScope activity can be used ONLY within
a fault handler, a conpensation handler or a termnation
handl er
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: choi ce>
<xsd: el ement ref="assign" />
<xsd: el ement ref="conpensate" />
<xsd: el enent ref="conpensat eScope" />
<xsd: el enent ref="enmpty" />
<xsd: el ement ref="exit" />

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 235 of 264

<xsd: el enent ref="extensionActivity" />
<xsd: el ement ref="flow' />
<xsd: el ement ref="forEach" />
<xsd: el ement ref="if" />
<xsd: el ement ref="invoke" />
<xsd: el enent ref="pick" />
<xsd: el ement ref="receive" />
<xsd: el ement ref="repeatUntil" />
<xsd: el ement ref="reply" />
<xsd: el ement ref="rethrow' />
<xsd: el enent ref="scope" />
<xsd: el ement ref="sequence" />
<xsd: el ement ref="throw' />
<xsd: el emrent ref="validate" />
<xsd: el ement ref="wait" />
<xsd: el ement ref="while" />
<xsd: el enment ref="opaqueActivity" />
</ xsd: choi ce>
</ xsd: gr oup>
<xsd: el ement nane="ext ensi ons" type="t Extensions" />
<xsd: conpl exType name="t Ext ensi ons" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el enent ref="extension" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nanme="extensi on" type="t Extension" />
<xsd: conpl exType name="t Ext ensi on" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: attribute nane="nanmespace" type="xsd-derived: anyURl "
use="optional " />
<xsd: attribute name="nust Under st and" type="t Bool ean"
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="inport" type="tlnport" />
<xsd: conpl exType nanme="t | nport">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >
<xsd: attribute nane="nanmespace" type="xsd-derived: anyURl "
use="optional" />
<xsd:attribute name="|ocation" type="xsd-derived: anyURl "
use="optional " />
<xsd:attribute name="inportType" type="xsd-derived: anyURl "
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="partnerLinks" type="tPartnerLinks" />
<xsd: conpl exType nane="t Part nerLi nks" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 236 of 264

<xsd: sequence>
<xsd: el ement ref="partnerLink" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="partnerLink" type="tPartnerLink" />
<xsd: conpl exType nane="t Part nerLi nk">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: attribute name="name" type="xsd-derived: NCNane"
use="optional " />
<xsd:attribute name="partnerLi nkType" type="xsd-derived: Q\Nane"
use="optional " />
<xsd:attribute nane="nyRol e" type="xsd-derived: NCNane" />
<xsd:attribute name="partnerRol e" type="xsd-derived: NCNane" />
<xsd:attribute name="initializePartnerRole" type="tBool ean" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="nessageExchanges" type="t MessageExchanges" />
<xsd: conpl exType nanme="t MessageExchanges" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el enment ref="nessageExchange" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="nmessageExchange" type="t MessageExchange" />
<xsd: conpl exType nane="t MessageExchange" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: attribute name="nanme" type="xsd-derived: NCNane"
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="vari abl es" type="tVari abl es" />
<xsd: conpl exType nane="t Vari abl es" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="variabl e" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="vari abl e" type="tVariable" />
<xsd: conpl exType name="t Vari abl e" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: group ref="fronG oup" m nCccurs="0" />

wsbpel-v2.0-0S

11 April 2007

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 237 of 264

</ xsd: sequence>
<xsd: attribute name="nane" type="BPELVari abl eNane"
use="optional " />
<xsd:attribute name="nmessageType" type="xsd-derived: QNane"
use="optional " />
<xsd:attribute nane="type" type="xsd-derived: QNane"
use="optional" />
<xsd:attribute name="el ement" type="xsd-derived: QNane"
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: si npl eType nane="BPELVari abl eNane" >
<xsd: uni on>
<xsd: si npl eType>
<xsd:restriction base="xsd: NCNane" >
<xsd: pattern value="["\.]+" />
</xsd:restriction>
</ xsd: si npl eType>
<xsd: si npl eType>
<xsd:restriction base="xsd: string">
<xsd: enuner ati on val ue="##opaque" />
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: uni on>
</ xsd: si npl eType>
<xsd: el ement nanme="correl ati onSets" type="tCorrel ati onSets" />
<xsd: conpl exType nane="t Correl ati onSet s">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="correl ationSet" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="correl ati onSet" type="tCorrelationSet" />
<xsd: conpl exType nane="t Correl ati onSet ">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd:attribute name="properties" type="QNanes" use="optional" />
<xsd:attribute nane="nanme" type="xsd-derived: NCNane"
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: si npl eType nane="QNanmes" >
<xsd:restriction>
<xsd: si npl eType>
<xsd:list itenlype="xsd-derived: QNane" />
</ xsd: si npl eType>
<xsd: mi nLengt h val ue="1" />
</xsd:restriction>
</ xsd: si npl eType>
<xsd: el enent nanme="faul t Handl ers" type="t Faul t Handl ers" />
<xsd: conpl exType nanme="t Faul t Handl er s" >
<xsd: conpl exCont ent >

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 238 of 264

<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="catch" m nCccurs="0"
maxQccur s="unbounded” />
<xsd: el ement ref="catchA " m nQccurs="0" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="catch" type="t Catch">
<xsd: annot ati on>
<xsd: docunent ati on>
This el ement can contain all activities including the
activities conmpensate, conpensateScope and ret hrow
</ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el ement >
<xsd: conpl exType nane="t Catch">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Acti vi t yCont ai ner" >
<xsd:attribute nane="faul t Nane" type="xsd-derived: QNane" />
<xsd:attribute nanme="faul tVari abl e" type="BPELVari abl eNange" />
<xsd:attribute nane="faul t MessageType"
type="xsd- deri ved: QNane" />
<xsd:attribute nane="faultEl ement" type="xsd-derived: QNane" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="catchAl|" type="tActivityContainer">
<xsd: annot ati on>
<xsd: docunent ati on>
This el ement can contain all activities including the
activities conmpensate, conpensateScope and ret hrow
</ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: conpl exType name="t Acti vi tyCont ai ner">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >
<xsd: sequence>
<xsd: group ref="activity" m nCccurs="0" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="event Handl ers" type="t Event Handl ers" />
<xsd: conpl exType nanme="t Event Handl er s" >
<xsd: annot at i on>
<xsd: docunent at i on>
XSD Aut hors: The child el ement onAl arm needs to be a Loca
El enent Decl aration, because there is another onAl arm el ement
defined for the pick activity.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="onEvent" m nCccurs="0"

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 239 of 264

maxQccur s="unbounded" />
<xsd: el enent name="onAl arni type="t OnAl ar nEvent"
m nOccur s="0" maxCccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="onEvent" type="t OnEvent" />
<xsd: conpl exType nane="t OnEvent ">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t OnMsgCommon" >
<xsd: sequence>
<xsd: el ement ref="scope" m nCccurs="0" />
</ xsd: sequence>
<xsd:attribute nane="nmessageType" type="xsd-derived: QNane"
use="optional " />
<xsd:attribute nane="el enent" type="xsd-derived: QNane"
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType name="t OnMsgCommon" >
<xsd: annot at i on>
<xsd: docunent ati on>
XSD Aut hors: The child el ement correl ati ons needs to be a
Local El ement Decl aration, because there is another
correlations el ement defined for the invoke activity.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement nane="correl ati ons" type="t Correl ati ons"
m nQccur s="0" />
<xsd: el ement ref="fronParts" m nCccurs="0" />
</ xsd: sequence>
<xsd: attribute name="partnerLi nk" type="xsd-derived: NCNange"
use="optional " />
<xsd:attribute nane="port Type" type="xsd-derived: QNanme"
use="optional " />
<xsd:attribute nane="operation" type="xsd-derived: NCNane"
use="optional " />
<xsd:attribute nane="messageExchange"
t ype="xsd- deri ved: NCNane" use="optional" />
<xsd:attribute nane="variabl e" type="BPELVari abl eNane"
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType nanme="t Correl ati ons">
<xsd: annot ati on>
<xsd: docunent ati on>
XSD Aut hors: The child el enent correlation needs to be a Loca
El ement Decl arati on, because there is another correlation
el enent defined for the invoke activity.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 240 of 264

<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement nanme="correl ation" type="tCorrel ati on"
m nCccur s="0" maxOccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType nane="t Correl ati on">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd:attribute name="set" type="xsd-derived: NCNane"
use="optional " />

<xsd:attribute name="initiate" type="tlnitiate" default="no"

</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: si npl eType nane="tlnitiate">
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="yes" />
<xsd: enuner ati on val ue="join" />
<xsd: enuneration val ue="no" />
<xsd: enumner at i on val ue="##opaque" />
</xsd:restriction>
</ xsd: si npl eType>
<xsd: conpl exType nanme="t OnAl ar nEvent " >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: group ref="forOruntil G oup” m nCccurs="0" />
<xsd: el enent ref="repeat Every" m nCccurs="0" />
<xsd: el enent ref="scope" m nCccurs="0" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: group name="forOrUntil G oup">
<xsd: choi ce>
<xsd: el ement ref="for" m nCccurs="0" />
<xsd: el ement ref="until" m nCccurs="0" />
</ xsd: choi ce>
</ xsd: gr oup>
<xsd: el ement nane="for" type="tDuration-expr" />
<xsd: el enent name="until" type="tDeadline-expr" />
<xsd: el ement nane="repeat Every" type="tDuration-expr" />
<xsd: conpl exType name="t Activity">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="targets" m nCccurs="0" />
<xsd: el ement ref="sources" m nCccurs="0" />
</ xsd: sequence>
<xsd:attribute name="nane" type="xsd-derived: NCNane" />
<xsd:attribute nane="suppressJoi nFail ure" type="t Bool ean"
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

/>

11 April 2007
Page 241 of 264

<xsd: el enent nane="targets" type="t Targets" />
<xsd: conpl exType nanme="t Tar gets" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el enent ref="joinCondition" m nCccurs="0" />
<xsd: el ement ref="target" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="j oi nCondi ti on" type="t Condition" />
<xsd: el ement nane="target" type="tTarget" />
<xsd: conpl exType name="t Target">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd:attribute nane="1inkNane" type="xsd-derived: NCNane"
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="sources" type="t Sources" />
<xsd: conpl exType nane="t Sour ces" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="source" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nanme="source" type="t Source" />
<xsd: conpl exType name="t Source" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="transitionCondition" m nCccurs="0" />
</ xsd: sequence>
<xsd:attribute nane="1inkNane" type="xsd-derived: NCNane"
use="optional" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="transitionCondition" type="tCondition" />
<xsd: el ement nane="assign" type="tAssign" />
<xsd: conpl exType nane="t Assi gn">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: choi ce maxCccur s="unbounded" >
<xsd: el ement ref="copy" m nCccurs="0" />
<xsd: el ement ref="extensi onAssi gnOperati on" mi nCccurs="0" />
</ xsd: choi ce>
</ xsd: sequence>
<xsd:attribute name="val i date" type="tBool ean" use="optional "
def aul t="no" />

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 242 of 264

</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="copy" type="t Copy" />
<xsd: conpl exType nane="t Copy" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: group ref="fronG oup" m nCccurs="0" />
<xsd: el ement ref="to" m nCccurs="0" />
</ xsd: sequence>
<xsd: attribute name="keepSrcEl enent Nane" type="t Bool ean"
use="optional " default="no" />
<xsd:attribute name="ignoreM ssi ngFronDat a" type="t Bool ean"
use="optional " default="no" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: group name="fronG oup" >
<xsd: choi ce>
<xsd: el enent ref="opaqueFront />
<xsd: el ement ref="from' />
</ xsd: choi ce>
</ xsd: gr oup>
<xsd: el ement nane="opaqueFroni type="t Extensi bl eEl enents" />
<xsd: el enent nanme="from'' type="tFron' />
<xsd: conpl exType name="t From' m xed="true">
<xsd: sequence>
<xsd: el ement ref="docunentation"” m nCccurs="0"
maxQccur s="unbounded" />
<xsd: any nanmespace="##ot her" processContents="lax" m nCccurs="0"
maxQccur s="unbounded" />
<xsd: choi ce m nCccurs="0">
<xsd:elenment ref="literal” mnCccurs="0" />
<xsd: el ement ref="query" m nCccurs="0" />
</ xsd: choi ce>
</ xsd: sequence>
<xsd:attribute nane="expressi onLanguage"
t ype="xsd-derived: anyURl " />
<xsd:attribute nane="variabl e" type="BPELVari abl eNane" />
<xsd:attribute nane="part" type="xsd-derived: NCNane" />
<xsd:attribute name="property" type="xsd-derived: QNane" />
<xsd:attribute name="partnerLink" type="xsd-derived: NCNane" />
<xsd:attribute nane="endpoi nt Ref erence" type="tRol es" />
<xsd: attribute nane="opaque" type="xsd-derived:tOpaqueBool ean" />
<xsd: anyAttribut e nanespace="##ot her" processContents="1ax" />
</ xsd: conpl exType>
<xsd: el enent nane="literal" type="tLiteral" />
<xsd: conpl exType name="tLiteral" ni xed="true">
<xsd: sequence>

<xsd: any nanmespace="##any" processContents="|ax" m nQccurs="0" />

</ xsd: sequence>
</ xsd: conpl exType>
<xsd: el ement nanme="query" type="t Query" />
<xsd: conpl exType nanme="t Query" mi xed="true">
<xsd: sequence>
<xsd: any processContents="|ax" m nCccurs="0"
maxQccur s="unbounded" />

wsbpel-v2.0-0S

11 April 2007

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 243 of 264

</ xsd: sequence>
<xsd:attribute name="querylLanguage" type="xsd-derived: anyUR " />
<xsd:attribute name="opaque" type="xsd-derived:tOQpaqueBool ean" />
<xsd:anyAttri but e nanmespace="##ot her" processContents="|ax" />
</ xsd: conpl exType>
<xsd: si npl eType nane="t Rol es" >
<xsd:restriction base="xsd:string">
<xsd: enunerati on val ue="nyRol e" />
<xsd: enuneration val ue="partnerRol e" />
<xsd: enumer at i on val ue="##opaque" />
</ xsd:restriction>
</ xsd: si npl eType>
<xsd: el enent nane="to" type="tTo" />
<xsd: conpl exType nane="t To" m xed="true">
<xsd: sequence>
<xsd: el ement ref="docunentation" m nOccurs="0"
maxQccur s="unbounded" />
<xsd: any nanespace="##ot her" processContents="|ax" m nCccurs="0"
maxQccur s="unbounded" />
<xsd: el ement ref="query" m nCccurs="0" />
</ xsd: sequence>
<xsd: attribute name="opaque" type="xsd-derived:tOpaqueBool ean" />
<xsd:attribute nane="expressi onLanguage"
t ype="xsd-derived: anyURl " />
<xsd:attribute nane="variabl e" type="BPELVari abl eNane" />
<xsd:attribute nane="part" type="xsd-derived: NCNane" />
<xsd:attribute name="property" type="xsd-derived: QNane" />
<xsd:attribute name="partnerLink" type="xsd-derived: NCNane" />
<xsd:anyAttri but e nanmespace="##ot her" processContents="|ax" />
</ xsd: conpl exType>
<xsd: el enent nane="ext ensi onAssi gnQper ati on"
type="t Ext ensi onAssi gnQper ati on" />
<xsd: conpl exType nanme="t Ext ensi onAssi gnOper ati on">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enents" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="conpensate" type="t Conpensate" />
<xsd: conpl exType nane="t Conpensat e" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="conpensat eScope" type="t Conpensat eScope" />
<xsd: conpl exType nanme="t Conpensat eScope" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd:attribute name="target" type="xsd-derived: NCNane"
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="enpty" type="tEnpty" />
<xsd: conpl exType nanme="t Enpty">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007

Page 244 of 264

<xsd: el enent nane="exit" type="tExit" />
<xsd: conpl exType nane="tExit">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="extensi onActivity" type="tExtensionActivity" />
<xsd: conpl exType nane="t Ext ensi onActivity">
<xsd: sequence>
<xsd: any nanmespace="##ot her" processContents="|ax" />
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: el enent nane="fl ow' type="tFl ow' />
<xsd: conpl exType nanme="t Fl ow'>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el ement ref="1inks" m nCccurs="0" />
<xsd: group ref="activity" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="Ilinks" type="tLinks" />
<xsd: conpl exType nane="t Li nks">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el ement ref="link" m nCccurs="0" naxCccurs="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="Ilink" type="tLink" />
<xsd: conpl exType nane="t Li nk" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd:attribute nane="nanme" type="xsd-derived: NCNane"
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nanme="for Each" type="t For Each" />
<xsd: conpl exType name="t For Each" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el ement ref="startCounterVal ue" m nQccurs="0" />
<xsd: el ement ref="final CounterVal ue" m nQccurs="0" />
<xsd: el enent ref="conpl eti onCondition" m nCccurs="0" />
<xsd: el enent ref="scope" m nCccurs="0" />
</ xsd: sequence>
<xsd: attribute nane="count er Nane" type="BPELVari abl eNane"
use="optional " />
<xsd:attribute nane="parallel" type="tBool ean" use="optional" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 245 of 264

</ xsd: conpl exType>
<xsd: el ement nane="start Count er Val ue" type="t Expression" />
<xsd: el ement nane="fi nal Count er Val ue" type="t Expression" />
<xsd: el enent nane="conpl eti onCondi ti on" type="t Conpl eti onCondition" />
<xsd: conpl exType nanme="t Conpl eti onCondi ti on">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el enent ref="branches" m nQccurs="0" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="branches" type="tBranches" />
<xsd: conpl exType name="t Branches" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Expressi on">
<xsd: attribute nane="successful BranchesOnl y" type="t Bool ean”
defaul t="no" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enment nane="if" type="tlIf" />
<xsd: conpl exType nane="tIf">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el enment ref="condition" m nCccurs="0" />
<xsd: group ref="activity" m nCccurs="0" />
<xsd: el ement ref="elseif" m nCccurs="0"
maxQccur s="unbounded" />
<xsd: el ement ref="else" m nCccurs="0" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent name="el sei f" type="tElseif" />
<xsd: conpl exType nane="t El sei f">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >
<xsd: sequence>
<xsd: el ement ref="condition" m nQccurs="0" />
<xsd: group ref="activity" m nCccurs="0" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="el se" type="tActivityContainer" />
<xsd: el ement nane="invoke" type="tlnvoke" />
<xsd: conpl exType name="t | nvoke" >
<xsd: annot ati on>
<xsd: docunent ati on>
XSD Aut hors: The child el enent correlati ons needs to be a
Local El ement Declaration, because there is another
correl ati ons el ement defined for the non-invoke activities.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 246 of 264

<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el enent nane="correl ati ons"
type="t Correl ati onsWthPattern" m nQOccurs="0" />
<xsd: el enent ref="catch" m nQccurs="0"
maxQccur s="unbounded" />
<xsd: el enent ref="catchAll" m nQccurs="0" />

<xsd: el enent ref="conpensati onHandl er" mni nCccurs="0"

<xsd: el enent ref="toParts" m nCccurs="0" />
<xsd: el enent ref="fromParts" m nCccurs="0" />
</ xsd: sequence>

<xsd:attribute name="partnerLink" type="xsd-derived: NCNane"

use="optional " />

<xsd:attribute name="port Type" type="xsd-derived: QNane"

use="optional " />

<xsd:attribute nane="operation" type="xsd-derived: NCNane"

use="optional" />

<xsd:attribute name="input Vari abl e" type="BPELVari abl eNane"

use="optional " />

<xsd: attribute nane="out put Vari abl e" type="BPELVari abl eNane"

use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType name="t Correl ati onsWthPattern">
<xsd: annot ati on>
<xsd: docunent at i on>

XSD Aut hors: The child elenent correl ati on needs to be a Loca

El emrent Decl arati on, because there is another correl ation

el ement defined for the non-invoke activities.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >
<xsd: sequence>
<xsd: el ement nane="correl ation"
type="tCorrel ati onWthPattern" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType nane="t Correl ati onWthPattern">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Correl ati on">
<xsd:attribute nane="pattern" type="tPattern" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: si npl eType name="t Pattern">
<xsd:restriction base="xsd: string">
<xsd: enunerati on val ue="request" />
<xsd: enuner ati on val ue="response" />
<xsd: enunerati on val ue="request -response" />
<xsd: enumer at i on val ue="##opaque" />
</ xsd:restriction>
</ xsd: si npl eType>
<xsd: el ement nanme="fronParts" type="tFronParts" />

wsbpel-v2.0-0S

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 247 of 264

<xsd: conpl exType name="t FronmPart s" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >
<xsd: sequence>
<xsd: el ement ref="fronmPart" m nQccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="fronPart" type="tFronPart" />
<xsd: conpl exType name="t FronPart" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >
<xsd:attribute nane="part" type="xsd-derived: NCNane"
use="optional " />
<xsd:attribute nane="toVari abl e" type="BPELVari abl eNange"
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nanme="toParts" type="t ToParts" />
<xsd: conpl exType nane="t ToParts">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl ement s" >
<xsd: sequence>
<xsd: el ement ref="toPart" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="toPart" type="tToPart" />
<xsd: conpl exType nane="t ToPart">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd:attribute name="part" type="xsd-derived: NCNanme"
use="optional " />
<xsd:attribute name="fronWVari abl e" type="BPELVari abl eNane"
use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="pi ck" type="tPick" />
<xsd: conpl exType nane="t Pi ck" >
<xsd: annot ati on>
<xsd: docunent ati on>
XSD Aut hors: The child el enent onAl arm needs to be a Loca

El enent Decl arati on, because there is anot her onAl arm el enent

defined for event handl ers.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el enent ref="onMessage" m nCccurs="0"
maxQccur s="unbounded" />
<xsd: el enent nane="onAl arnm' type="t OnAl ar nPi ck"

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

11 April 2007
Page 248 of 264

m nCccur s="0" maxQOccur s="unbounded" />
</ xsd: sequence>
<xsd:attribute nane="createl nstance" type="t Bool ean”
defaul t="no" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="onMessage" type="t OnMessage" />
<xsd: conpl exType nane="t OnMessage" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t OnMsgCommon" >
<xsd: sequence>
<xsd: group ref="activity" m nCccurs="0" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType nanme="t OnAl ar nPi ck" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: group ref="forOrUntil G oup” m nQccurs="0" />
<xsd: group ref="activity" m nCccurs="0" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nanme="receive" type="tReceive" />
<xsd: conpl exType nane="t Recei ve" >
<xsd: annot ati on>
<xsd: docunent at i on>
XSD Aut hors: The child el enment correl ati ons needs to be a
Local El ement Decl aration, because there is another
correlations elenment defined for the invoke activity.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el ement nane="correl ati ons" type="tCorrel ati ons"
m nCccurs="0" />
<xsd: el ement ref="fronmParts" m nQccurs="0" />
</ xsd: sequence>
<xsd:attribute name="partnerLink" type="xsd-derived: NCNane"
use="optional " />
<xsd: attribute nane="port Type" type="xsd-derived: QNane"
use="optional" />
<xsd:attribute name="operation" type="xsd-derived: NCNane"
use="optional " />
<xsd:attribute nane="variabl e" type="BPELVari abl eNane"
use="optional " />
<xsd: attri bute nane="createl nstance" type="t Bool ean"
defaul t="no" />
<xsd:attribute name="nmessageExchange"
t ype="xsd-derived: NCNane" use="optional" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 249 of 264

<xsd: el enent nane="repeatUntil" type="t RepeatUntil" />
<xsd: conpl exType nane="t Repeat Until">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: group ref="activity" m nCccurs="0" />
<xsd: el ement ref="condition" m nQccurs="0" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="reply" type="tReply" />
<xsd: conpl exType nane="t Repl y">
<xsd: annot at i on>
<xsd: docunent ati on>
XSD Aut hors: The child el enent correl ati ons needs to be a
Local El ement Decl aration, because there is another
correlations el ement defined for the invoke activity.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el ement nane="correl ati ons" type="t Correl ati ons"
m nCccurs="0" />
<xsd: el ement ref="toParts" m nCccurs="0" />
</ xsd: sequence>
<xsd:attribute nane="partnerLi nk" type="xsd-derived: NCNane"
use="optional " />
<xsd:attribute nane="port Type" type="xsd-derived: QNane"
use="optional " />
<xsd: attribute nane="operation" type="xsd-derived: NCNane"
use="optional " />
<xsd:attribute nane="vari abl e" type="BPELVari abl eNane"
use="optional " />
<xsd:attribute nane="faul t Nane" type="xsd-derived: QNane" />
<xsd: attribute nane="nessageExchange"
t ype="xsd- deri ved: NCNane" use="optional" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nanme="rethrow' type="tRethrow' />
<xsd: conpl exType nane="t Ret hr ow' >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="scope" type="t Scope" />
<xsd: conpl exType nane="t Scope" >
<xsd: annot ati on>
<xsd: docunent ati on>
There is no schema-1evel default for "exitOnStandardFault" at
"scope". Because, it will inherit default from enclosing scope
or process.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 250 of 264

<xsd: sequence>
<xsd: el ement ref="partnerLinks" m nCccurs="0" />
<xsd: el ement ref="nessageExchanges” m nCccurs="0" />
<xsd: el ement ref="variables" m nCccurs="0" />
<xsd: el ement ref="correl ati onSets" m nCccurs="0" />
<xsd: el enment ref="faul t Handl ers" m nQccurs="0" />
<xsd: el ement ref="conpensationHandl er" m nCccurs="0" />
<xsd: el ement ref="term nati onHandl er” m nCccurs="0" />
<xsd: el ement ref="eventHandl ers" m nCccurs="0" />
<xsd: group ref="activity" m nCccurs="0" />
</ xsd: sequence>
<xsd: attribute nane="isol ated" type="tBool ean" defaul t="no" />
<xsd:attribute name="exitOnStandardFaul t" type="tBool ean" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nane="conpensati onHandl er" type="tActivityContai ner">
<xsd: annot at i on>
<xsd: docunent ati on>
This el ement can contain all activities including the
activities conpensate and conpensat eScope.
</ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: el ement nanme="term nati onHandl er" type="tActi vityContainer">
<xsd: annot ati on>
<xsd: docunent at i on>
This el ement can contain all activities including the
activities conmpensate and conpensat eScope.
</ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el ement >
<xsd: el ement nane="sequence" type="t Sequence" />
<xsd: conpl exType nane="t Sequence" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: group ref="activity" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el enent nanme="t hrow' type="t Throw' />
<xsd: conpl exType nanme="t Thr ow'>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd:attribute name="faul t Name" type="xsd-derived: QNanme"
use="optional " />
<xsd:attribute nane="faultVariabl e" type="BPELVari abl eNane" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="val i date" type="tValidate" />
<xsd: conpl exType name="t Val i date" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd:attribute name="vari abl es" type="BPELVari abl eNanes"

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 251 of 264

use="optional " />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: si npl eType name="BPELVari abl eNanes" >
<xsd:restriction>
<xsd: si npl eType>
<xsd:|ist itenlype="BPELVari abl eNane" />
</ xsd: si npl eType>
<xsd: mi nLengt h val ue="1" />
</ xsd:restriction>
</ xsd: si npl eType>
<xsd: el enent nane="wait" type="tVWait" />
<xsd: conpl exType name="tWit">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: choi ce>
<xsd: el ement ref="for" m nCccurs="0" />
<xsd: el ement ref="until" m nCccurs="0" />
</ xsd: choi ce>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="while" type="tWile" />
<xsd: conpl exType nanme="t Wil e">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity">
<xsd: sequence>
<xsd: el ement ref="condition" m nOccurs="0" />
<xsd: group ref="activity" m nCccurs="0" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType name="t Expressi on" ni xed="true">
<xsd: sequence>
<xsd: any processContents="lax" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
<xsd: attribute nane="expressi onLanguage"
t ype="xsd-derived: anyURl " />
<xsd: attribute name="opaque" type="xsd-derived:tOpaqueBool ean" />
<xsd:anyAttri but e namespace="##ot her" processContents="|ax" />
</ xsd: conpl exType>
<xsd: conpl exType name="t Condi ti on" m xed="true">
<xsd: conpl exCont ent ni xed="true">
<xsd: ext ensi on base="t Expressi on" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="condition" type="tBool ean-expr" />
<xsd: conpl exType nanme="t Bool ean-expr" ni xed="true">
<xsd: conpl exCont ent mi xed="true">
<xsd: ext ensi on base="t Expressi on" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType nanme="t Duration-expr" m xed="true">
<xsd: conpl exCont ent mi xed="true">
<xsd: ext ensi on base="t Expressi on" />

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 252 of 264

</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: conpl exType nane="t Deadl i ne-expr" m xed="true">
<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="t Expressi on" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: si npl eType nane="t Bool ean">
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="yes" />
<xsd: enunerati on val ue="no" />
<xsd: enuner ati on val ue="##opaque" />
</xsd:restriction>
</ xsd: si npl eType>
<l-- SCHEMA NOTE: new types and el ement introduced for Abstract W5 BPEL -->
<xsd: si npl eType name="t QpaqueStr" >
<xsd:restriction base="xsd:string">
<xsd: enumner at i on val ue="##opaque" />
</xsd:restriction>
</ xsd: si npl eType>
<xsd: si npl eType name="CQNane" >
<xsd: uni on nmenber Types="xsd: Q\Nane t OpaqueStr" />
</ xsd: si npl eType>
<xsd: si npl eType nane="NCNane" >
<xsd: uni on nmenber Types="xsd: NCNane t QpaqueStr" />
</ xsd: si npl eType>
<xsd: si npl eType name="anyURl " >
<xsd: uni on nenber Types="xsd: anyURl t QpaqueStr" />
</ xsd: si npl eType>
<xsd: si npl eType name="t QpaqueBool ean" >
<xsd:restriction base="xsd: string">
<xsd: enuneration val ue="yes" />
</xsd:restriction>
</ xsd: si npl eType>
<xsd: el ement nane="opaqueActivity" type="t QpaqueActivity" />
<xsd: conpl exType nanme="t OpaqueActivity">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tActivity" />
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: schenma>

Partner Link Type Schemafor WS-BPEL 2.0

<?xm version="1.0" encodi ng="UTF-8""?>
&l ==
Copyright (c) OASIS Open 2003-2006. All Rights Reserved.

-->

<xsd: schenma target Nanmespace="htt p://docs. oasi s- open. or g/ wsbpel / 2. 0/ pl nkt ype
xm ns: pl nk="htt p: //docs. oasi s- open. or g/ wsbpel / 2. 0/ pl nkt ype"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Scherma"
el ement For mDef aul t =" qual i fi ed"
bl ockDef aul t ="#al | " >

<xsd: annot at i on>
<xsd: docunent ati on>
Partner Link Type Schema for W5-BPEL 2.0
Last nodified date: 17th August, 2006

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 253 of 264

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd:inmport nanespace="http://ww. w3. or g/ XM_/ 1998/ nanespace"
schemalLocati on="http://ww. w3. or g/ 2001/ xm . xsd"/ >

<xsd: el enent nanme="partnerLi nkType" type="pl nk:tPartnerLi nkType"/>
<xsd: conpl exType nane="t Part nerLi nkType" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="pl nk: t Ext ensi bl eEl enent s" >
<xsd: sequence>
<xsd: el enment ref="plnk:role" m nQccurs="1" maxCccurs="2"/>
</ xsd: sequence>
<xsd:attribute name="nane" type="xsd: NCNane" use="required"/>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType nane="t Ext ensi bl eEl ement s">
<xsd: annot ati on>
<xsd: docunent ati on>
This type is extended by ot her conponent types to allow el enents and
attributes from ot her namespaces to be added at the nodel ed pl aces.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement ref="pl nk: docunentation" m nCccurs="0"
maxQccur s="unbounded"/ >
<xsd: any nanespace="##ot her" processContents="|ax" m nCccurs="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd: anyAttribut e nanespace="##ot her" processContents="1ax"/>
</ xsd: conpl exType>

<xsd: el ement nanme="docunentati on">
<xsd: conpl exType m xed="true">
<xsd: sequence>
<xsd: any processContents="|ax" m nCccurs="0" maxOccur s="unbounded"/>
</ xsd: sequence>
<xsd:attribute name="source" type="xsd:anyURl "/>
<xsd:attribute ref="xm:I|ang"/>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el ement nane="rol e" type="plnk:tRole"/>
<xsd: conpl exType nane="t Rol e" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="pl nk: t Ext ensi bl eEl enent s" >
<xsd:attribute nane="nanme" type="xsd: NCNane" use="required"/>
<xsd:attribute nane="port Type" type="xsd: QNane" use="required"/>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

</ xsd: schenma>
Variable Properties Schema for WS-BPEL 2.0

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 254 of 264

<?xm version="1.0" encodi ng="UTF-8""?>
&l ==
Copyright (c) OASIS Open 2003-2006. All Rights Reserved

-

<xsd: schena target Nanespace="http://docs. oasi s-open. or g/ wsbpel / 2. 0/ var pr op"
xm ns: vprop="http://docs. oasi s- open. or g/ wsbpel / 2. 0/ var pr op"
xm ns: xsd="htt p: //ww. w3. or g/ 2001/ XM_Schenma"
el ement For nDef aul t =" qual i fi ed"
bl ockDef aul t ="#al | ">

<xsd: annot ati on>
<xsd: docunent ati on>
Vari abl e Properties Schema for W5 BPEL 2.0
Last nodified date: 22th August, 2006
</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: i mport namespace="http://ww. w3. or g/ XM_/ 1998/ nanespace”
schemalLocati on="http://ww. w3. or g/ 2001/ xm . xsd"/ >

<xsd: el enent nane="property">
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="vprop:t Ext ensi bl eEl enent s" >
<xsd:attribute nane="nanme" type="xsd: NCNane" use="required"/>
<xsd:attribute nane="type" type="xsd: QNane"/>
<xsd:attri bute nane="el enent" type="xsd: QNane"/ >
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: conpl exType nanme="t Ext ensi bl eEl ement s" >
<xsd: annot ati on>
<xsd: docunent ati on>
This type is extended by ot her conmponent types to allow el ements and
attributes from other namespaces to be added at the nobdel ed pl aces.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el enent ref="vprop: docunentati on" mi nCccurs="0"
maxQccur s=" unbounded"/ >
<xsd: any namespace="##ot her" processContents="|ax" m nCccurs="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd: anyAttribut e nanespace="##ot her" processContents="1ax"/>
</ xsd: conpl exType>

<xsd: el emrent nanme="docunent ati on">
<xsd: conpl exType mi xed="true">
<xsd: sequence>
<xsd: any processContents="|ax" m nQccurs="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="source" type="xsd:anyURl"/>
<xsd:attribute ref="xm :Iang"/>
</ xsd: conpl exType>
</ xsd: el ement >

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 255 of 264

<xsd: el enent nane="propertyAlias">
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="vprop:t Ext ensi bl eEl enment s" >
<xsd: sequence>
<xsd: el enent ref="vprop: query" m nCccurs="0"/>
</ xsd: sequence>
<xsd:attribute name="propertyNane" type="xsd: QNane"
use="required"/ >
<xsd:attribute nane="nmessageType" type="xsd: QNane"/>
<xsd:attribute nane="part" type="xsd: NCNane"/ >
<xsd:attribute name="type" type="xsd: QNane"/>
<xsd:attribute name="el ement" type="xsd: QNane"/>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: el ement nane="query" type="vprop:tQery"/>
<xsd: conpl exType nanme="t Query" mi xed="true">
<xsd: sequence>
<xsd: any processContents="]ax" m nQccurs="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="querylLanguage" type="xsd: anyURl "
def aul t ="ur n: oasi s: nanes: t c: wsbpel : 2. 0: subl ang: xpat h1. 0"/ >
<xsd: anyAttribut e nanespace="##ot her" processContents="1ax"/>
</ xsd: conpl exType>

</ xsd: schema>

Service Reference Schema for WS-BPEL 2.0

<?xm version="1.0" encodi ng="UTF-8"?>
&l ==
Copyright (c) OASIS Open 2006. All Rights Reserved.

-

<xsd: schena t arget Nanespace="http://docs. oasi s-

open. or g/ wshpel / 2. 0/ servi ceref"
xm ns: sref="http://docs. oasi s- open. or g/ wsbpel / 2. 0/ servi ceref"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Scherma"
el enent For nDef aul t =" qual i fi ed"
bl ockDef aul t ="#al | " >

<xsd: annot ati on>
<xsd: docunent ati on>
Servi ce Reference Schema for W5S-BPEL 2.0
Last nodified date: 17th August, 2006
</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: el ement nane="service-ref" type="sref: ServiceRef Type">
<xsd: annot ati on>
<xsd: docunent ati on>
This el ement can be used within a from spec.
</ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el ement >
<xsd: conpl exType nanme="Ser vi ceRef Type" >

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 256 of 264

<xsd: annot at i on>
<xsd: docunent at i on>
This type definition is for service reference container
This container is used as envel ope to wap around the actual endpoint
ref erence val ue, when a BPEL process interacts the endpoint reference
of a partnerLink. It provides pluggability of different versions of
servi ce referenci ng schenes being used within a BPEL program The
design pattern here is simlar to those of expression |anguage.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: any namespace="##ot her" processContents="|ax"/>
</ xsd: sequence>
<xsd:attribute name="reference-schene" type="xsd: anyURl "/>
</ xsd: conpl exType>

</ xsd: schena>

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 257 of 264

Appendix F. References

1. Normative References

[BPELAWS 1.1] BEA, IBM, Microsoft, SAP and Siebel, “ Business Process Execution
Language for Web Services Version 1.1”, S. Thatte, et al., May 2003.
ftp://www6.software.ibm.com/software/devel oper/library/ws-bpel . pdf

[Infoset] W3C Recommendation, “XML Information Set (Second Edition)”, J.
Cowan, R. Tobin, February 4, 2004.
http://www.w3.0rg/TR/2004/REC-xml -infoset-20040204

[RFC 2119] IETF, “Key words for use in RFCs to Indicate Requirement Levels’,
RFC 2119, S. Bradner, March 1997.
http://www.ietf.org/rfc/rfc2119.txt

[RFC 2396] IETF, “Uniform Resource Identifiers (URI): Generic Syntax”, RFC
2396, T. Berners-Lee, R. Fielding, L. Masinter, August 1998.
http://www.ietf.org/rfc/rfc2396.txt

[WSDL 1.1] W3C Note, “Web Services Definition Language (WSDL) 1.1", E.
Christensen, F. Curbera, G. Meredith, S. Weerawarana, March 15,
2001. http://www.w3.org/ TR/2001/NOT E-wsdl-20010315

[WS-I Basic Profile 1.1 Errata] Web Services Interoperability Organization, “Basic Profile
Version 1.1 Errata’, Revision 1.8, A. Karmarkar , October 25, 2005.
http://www.ws-i.org/Profiles/BasicProfile-1.1-errata-2005-10-25.html

[WS-I Basic Profile] Web Services Interoperability Organization, “Basic Profile Version
1.1", K. Ballinger, D. Ehnebuske, M. Gudgin, M. Nottingham, P.
Yendluri, April 16, 2004.
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

[XML Namespace] W3C Recommendation , “Namespacesin XML", T. Bray, D.
Hollander, A. Layman, January 14, 1999.
http://www.w3.0rg/TR/1999/REC-xml-names-19990114

[XML SchemaPart 1] W3C Recommendation, “XML Schema Part 1: Structures Second
Edition”, H. S. Thompson, D. Beech, M. Maloney, N. Mendel sohn,
October 28, 2004. http://www.w3.0rg/TR/2004/REC-xmlschema-1-
20041028/

[XML SchemaPart 2] W3C Recommendation, “XML Schema Part 2: Datatypes Second
Edition”, P. V. Biron, A. Malhotra, October 28, 2004.
http://www.w3.org/ TR/2004/REC-xmlschema-2-20041028/

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 258 of 264

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/2004/REC-xml-infoset-20040204
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3c.org/tr/wsdl
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.ws-i.org/Profiles/BasicProfile-1.1-errata.html
http://www.ws-i.org/Profiles/BasicProfile-1.1-errata-2005-10-25.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

[XML Spec] W3C Recommendation, “Extensible Markup Language (XML) 1.0
(Third Edition)", T. Bray, J. Paoli, C. M. Sperberg-McQueen, E.
Maler, F. Yergeau, February 4, 2004.
http://www.w3.0rg/TR/2004/REC-xml-20040204

[XPATH 1.0] W3C Recommendation, “XML Path Language (XPath) Version 1.0", J.
Clark, S. DeRose, November 1999. http://www.w3.org/TR/1999/REC-
Xpath-19991116

[XSLT 1.0] W3C Recommendation, “XSL Transformations (XSLT) Version 1.0”,
J. Clark, November 16, 1999. http://www.w3.org/TR/1999/REC-xdlt-
19991116

2. Non-Normative References

[Sagas] GarciaaMolinaH. and Kenneth Salem, "SAGAS", Proceedings of the
ACM SIGMOD International Conference on Management of Data,
pages 249--259, May 1987.

[SOAP 1.1] W3C Note, “Simple Object Access Protocol (SOAP) 1.17, D. Box, D.
Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S.
Thatte, D. Winer, May 8, 2000. http://www.w3.0rg/TR/2000/NOTE-
SOA P-20000508

[Trends] Traiger I. L., "Trends in System Aspects of Database Management”,
Proceeding of the 2nd International Conference on Database (ICOD-2),
pages 1-21, Wiley & Sons, 1983.

[UDDI] OASIS, “UDDI Version 3.0.2", L. Clement, A. Hately, C. V. Riegen,
T. Rogers, October 19, 2004. http://uddi.org/pubs/uddi-v3.0.2-
20041019.htm

[WSFL] IBM, “Web Service Flow Language (WSFL 1.0)”, F. Leymann, May

2001. http://www-
306.i1bm.com/software/sol utions/webservi ces/pdf/WSFL . pdf

[XLANG] Microsoft, “XLANG Web Services for Business Process Design”, S.
Thatte, 2001. http://www.gotdotnet.com/team/xml wsspecs/xlang-
c/default.htm

wsbpel-v2.0-0S 11 April 2007

Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 259 of 264

http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/xpath
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/xslt
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm

Appendix G. Committee Members (Non-
Normative)

The following individuas are current members of the committee:

Alastair Green, Choreology Ltd

Algandro Guizar, Redhat, formerly JBoss Inc
Alex Yiu, Oracle

Alexandre Alves, BEA Systems, Inc.
Allen Brookes, Rogue Wave Software
Ashish Agrawal, Adobe Systems

Assaf Arkin, Intalio, Inc.

Axel Martens, IBM

Balinder Mahi, Microsoft Corporation
Bernd Eckenfels, Seeburger, AG

Canyang Liu, SAPAG

Charles Fenton, Sterling Commerce
Charlton Barreto, Adobe Systems
Christopher Keller, Active Endpoints, Inc.
Danny van der Rijn, TIBCO Software Inc.
DennisCurry, EDS

Diane Jordan, IBM

Dieter Koenig, IBM

Dulipala Jagannadham, Hewlett-Packard
Fabienne Marquardt, IBM

Fang Gu, Changfeng Open Standards Platform Software Alliance
Francisco Curbera, IBM

Frank Leymann, IBM

Frank Ryan, Active Endpoints, Inc.

Greg Carter, Metastorm, Inc.

Hadrian Zbarcea, IONA Technologies
Harvey Reed, Mitre Corporation

Hyun Jung, Korean National Computerization Agency
Innamuri venubabu, CrimsonLogic Pte Ltd
Ivana Trickovic, SAP AG

J. Darrel Thomas, EDS

James Pasley, Cape Clear Software

Jim Alateras, |Psphere Forum

John Evdemon, Microsoft Corporation

Kent Horng, webMethods, Inc.

Kristofer Agren, Individual

Layna Fischer, Workflow Management Coalition (WfMC)
Mark David, Gensym Corporation

Mark Ford, Active Endpoints, Inc.

Mark Little, Redhat, formerly JBoss Inc.

wsbpel-v2.0-0S
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

Jianguang Geng, Changfeng Open Standards Platform Software Alliance

11 April 2007
Page 260 of 264

Martin Chapman, Oracle

Michael Kleinhenz, The OpenDocument Foundation, Inc.
Mike Marin, IBM, formerly FileNet Corporation
Monica J. Martin, Sun Microsystems
Muruga Chinnananchi, Oracle

Nickolaos Kavantzas, Oracle

Nitin Raut, IBM

Nobuyuki Sambuichi, Hitachi Systems & Services, Ltd.
Peter Furniss, Choreology Ltd

Prasad Y endluri, webMethods, Inc.
Rakesh Saha, Oracle

Ralph Stout, iWay Software

RaniaKhalaf, IBM

Ricardo Jimenez-Peris, Individual

Rob Bartel, Corel Corporation

Rob Williams, Concurrence, Inc.

Ron Ten-Hove, Sun Microsystems

Sally St. Amand, Individual

Satish Thatte, Microsoft Corporation
Simon Moser, IBM

Subramanian Hariharan, Oracle

Sumeet Malhotra, Unisys Corporation
Takatoshi Kitano, NEC Corporation
Thomas Erl, SOA Systems Inc.

Thomas Schulze, IBM

V enkatraman Bal asubramanian, Individual
Vinkesh Mehta, Deloitte Consulting LLP
Willemde Pater, Oracle

William Barnhill, Booz Allen Hamilton
Wolfgang Dostal, IBM

Wu Chou, Avaya, Inc.

Yin-Leng Husband, Hewlett-Packard

The following individuals were previously members of the committee:

Ajay Gummadi, Individual

Alex Chan, Cisco Systems, Inc.

Andrew Francis, Individual

Andrew Pugsley, Hewlett-Packard
Aniruddha Thakur, Oracle

Anthony Roby, Accenture

Art Machado, PeopleSoft

Arun Candadai, Individual

Ashok Anand, BAHWAN CYBERTEK INC
B.J Fesq, Individual

Bala Kamallakharan, Cap Gemini Ernst & Y oung
Ben Bloch, Systinet

Bill Flood, Sybase

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 261 of 264

Bill Pope, Individual

Bimal Mehta, Microsoft Corporation

Bob Schmidt, Microsoft Corporation

Brian Carroll, Serena

Chad Kulesa, SPS Commerce

Christopher Kurt, Microsoft Corporation
Chunbo Huang, BEA Systems, Inc.

Claus von Riegen, SAP

Daniel Dominguez, Parasoft

Darran Rolls, Sun Microsystems

Dave Bettin, Attachmate

Dave Chappell, Sonic Software

David Bolene, Individual

David Burdett, CommerceOne

David Hayes, OpenStorm Software, Inc.
David Ingham, Arjuna Technologies Limited
David Webber, Individual

Debra Kellington, Convergys

Derick Townsend, OpenStorm Software, Inc.
Dieter Roller, IBM

Donald Steiner, WebV 2, Inc.

Doug Knowles, Novell

Edwin Khodabakchian, Oracle

Eunju Kim, Korean National Computerization Agency
Fred Carter, AmberPoint

Fred Cummins, EDS

Ganesh Vednere, Cap Gemini Ernst & Young
Genadi Genov, Seeburger, AG

George Brown, Intel

Glenn Mi, Oracle

Gloria Vargas, Reuters

Goran Olsson, Oracle

Goutham Sukumar, Microsoft Corporation
Greg Ritzinger, Novell

Hedy Alban, Individual

Heidi Buelow, Rogue Wave Software
Howard Smith, Business Process Management Initiative
James Rust, CTO and VP Strategy

Jean-Luc Giraud, Axway software

Jeff Mischkinsky, Oracle

Jim Clune, Parasoft

Jog Rgj, Popkin Software & Systems, Inc.
John Parkinson, Cap Gemini Ernst & Y oung
John Wunder, Lockheed Martin

John Y unker, Individual

Jon Pyke, Workflow Management Coalition (WfMC)
Justin Brunt, Staffware plc

Keith Swenson, Fujitsu

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 262 of 264

Kelvin Lawrence, IBM

Ken Pugsley, PeopleSoft

Kenji Nagahashi, Fujitsu

Kent Below, IBM

Kenwood Tsai, Documentum

Kevin Hein, Teamplate

Kireet Reddy, Oracle

Lalitha Prakash, BAHWAN CYBERTEK INC
LindaDeMichiel, Sun Microsystems

Macig Szefler, FiveSight Technologies

Manoj Das, Oracle

Marc-Thomas Schmidt, IBM

Martin Smith, US Department of Homeland Security
Martin Owen, Popkin Software & Systems, Inc.
Matthew Pryor, Business Process Management Initiative (BP...
Melanie Kudela, Uniform Code Council, Inc.
Michael DeBéllis, Fujitsu

Michael Rowley, BEA Systems, Inc.

Michael Winters, IBM

Mike Blevins, BEA Systems, Inc.

Mike Gilger, Workflow Management Coalition (WfMC)
Muthu Ramadoss, BAHWAN CYBERTEK INC
Neelakantan Kartha, Sterling Commerce

Parijat Sinha, Convergys

Patrick Hogan, Individual

Paul Lipton, Computer Associates

Pete Wenzel, SeeBeyond Technology Corporation
Phil Rossomando, Unisys Corporation

Philip Lee, Business Process Management Initiative (BP...
Pinaki Shah, E20pen

Rajaraman Sowmya, BAHWAN CYBERTEK INC
Rajesh Manglani, Uniform Code Council, Inc.
Rajesh Pradhan, lopsis Software

Ram Jeyaraman, Sun Microsystems

Ran Tamir, BMC Software

Randall Anderson, Macgregor

Ravi Akireddy, Individua

Richard Katz, Individua

Robert Haugen, Choreology Ltd

Robert Carpenter, Intel

Roshan Punnoose, Booz Allen Hamilton

Ryan Cairns, OpenStorm Software, Inc.

Samih Fadli, Momentum SI

Sanjeev Kumar, Individual

Sazi Temel, BEA Systems, Inc.

Scott Hinkelman, IBM

Scott Tattrie, Teamplate

Scott Woodgate, Microsoft Corporation

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 263 of 264

Sid Askary, Individual

Srinivas Padmanabhuni, Infosys Technol ogies
Stephen White, IBM

Steve Brown, Metastorm

Steve Ross-Talbot, Enigmatec Corporation Ltd
Stuart Wheater, Arjuna Technologies Limited
Subhra Bose, Reuters

Sundari Revanur, Oracle

Sun-Ho Kim, Individua

Terry Bjornsen, Booz Allen Hamilton

Tim Moses, Entrust

Tony Andrews, Microsoft Corporation

Tony Fletcher, Choreology Ltd

Ugo Corda, SeeBeyond Technology Corporation
Van Wiles, BMC Software

Vaughn Bullard, AmberPoint

Vishwanath Shenoy, Infosys Technologies
William Vambenepe, Hewlett-Packard
Yanming Li, France Telecom

Y aron Goland, BEA Systems, Inc.

Y oko Seki, Hitachi

Y uji Sakata, Individual

Y uzo Fujishima, NEC Corporation

Ziyang Duan, Reuters

wsbpel-v2.0-0S 11 April 2007
Copyright © OASIS® 1993-2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 264 of 264

	Table of Contents
	1. Introduction
	2. Notational Conventions
	3. Relationship with Other Specifications
	4. Static Analysis of a Business Process
	5. Defining a Business Process
	5.1. Initial Example
	5.2. The Structure of a Business Process
	5.3. Language Extensibility
	5.4. Document Linking
	5.5. The Lifecycle of an Executable Business Process
	5.6. Revisiting the Initial Example

	6. Partner Link Types, Partner Links, and Endpoint References
	6.1. Partner Link Types
	6.2. Partner Links
	6.3. Endpoint References

	7. Variable Properties
	7.1. Motivation
	7.1.1 Motivation for Message Properties
	7.1.2 Motivation for Variable Properties

	7.2. Defining Properties
	7.3 Defining Property Aliases

	8. Data Handling
	8.1. Variables
	8.2 Usage of Query and Expression Languages
	8.2.1 Enclosing Elements
	8.2.2 Binding WS-BPEL Variables In XPath 1.0
	8.2.3 XPath 1.0 Perspective and WS-BPEL
	8.2.4 Default use of XPath 1.0 for Expression Languages
	8.2.5 Use of XPath 1.0 for Expression Languages in Join Conditions
	8.2.6 Use of XPath 1.0 for Query Languages in Copy Operations and Property Aliases

	8.3. Expressions
	8.3.1. Boolean Expressions
	8.3.2. Deadline Expressions
	8.3.3. Duration Expressions
	8.3.4. Unsigned Integer Expressions
	8.3.5. General Expressions

	8.4. Assignment
	8.4.1. Selection Result of Copy Operations
	8.4.2. Replacement Logic of Copy Operations
	8.4.3. Type Compatibility in Copy Operations

	9. Correlation
	9.1. Message Correlation
	9.2. Declaring and Using Correlation Sets

	10. Basic Activities
	10.1. Standard Attributes for All Activities
	10.2. Standard Elements for All Activities
	10.3. Invoking Web Service Operations – Invoke
	10.3.1. Mapping WSDL Message Parts

	10.4. Providing Web Service Operations – Receive and Reply
	10.4.1. Message Exchanges

	10.5. Updating Variables and Partner Links – Assign
	10.6. Signaling Internal Faults – Throw
	10.7. Delayed Execution – Wait
	10.8. Doing Nothing – Empty
	10.9. Adding new Activity Types – ExtensionActivity
	10.10. Immediately Ending a Process – Exit
	10.11. Propagating Faults – Rethrow

	11. Structured Activities
	11.1. Sequential Processing – Sequence
	11.2. Conditional Behavior – If
	11.3. Repetitive Execution – While
	11.4. Repetitive Execution – RepeatUntil
	11.5. Selective Event Processing – Pick
	11.6. Parallel and Control Dependencies Processing – Flow
	11.6.1. Flow-related Standard Attributes and Elements
	11.6.2. Link Semantics
	11.6.3. Dead-Path-Elimination
	11.6.4. Flow Graph Example
	11.6.5. Links and Structured Activities

	11.7. Processing Multiple Branches – ForEach

	12. Scopes
	12.1. Scope Initialization
	12.2. Message Exchange Handling
	12.3. Error Handling in Business Processes
	12.4. Compensation Handlers
	12.4.1. Defining a Compensation Handler
	12.4.2. Process State Usage in Compensation Handlers
	12.4.3. Invoking a Compensation Handler
	12.4.3.1. Compensation of a Specific Scope
	12.4.3.2. Invoking Default Compensation Behavior

	12.4.4. Compensation within Repeatable Constructs or Handlers
	12.4.4.1. Compensation Handler Instance Groups
	12.4.4.2. Compensation within Repeatable Constructs
	12.4.4.3. Compensation within FCT-Handlers

	12.5. Fault Handlers
	12.5.1. Default Fault, Compensation, and Termination Handlers
	12.5.2. Default Compensation Order
	12.5.3. Relation between Compensation Handlers and Isolated Scopes
	12.5.4. Handling WS-BPEL Standard Faults

	12.6 Termination Handlers
	12.7. Event Handlers
	12.7.1. Message Events
	12.7.2. Alarm events
	12.7.3. Enablement of Events
	12.7.4. Processing of Events
	12.7.4.1. Alarm Events
	12.7.4.2. Message Events

	12.7.5. Disablement of Events
	12.7.6. Fault Handling Considerations
	12.7.7. Concurrency Considerations

	12.8. Isolated Scopes

	13. WS-BPEL Abstract Processes
	13.1. The Common Base
	13.1.1. URI
	13.1.2. Structure of an Abstract Process
	13.1.3. Hiding Syntactic Elements
	Opaque Language Extensions
	Omission

	13.1.4. Syntactic Validity Constraints
	13.1.5. Interpretation of the Common Base

	13.2. Abstract Process Profiles and the Semantics of Abstract Processes
	13.3. Abstract Process Profile for Observable Behavior
	13.3.1. Profile URI
	13.3.2. Subset of the Processes Allowed in the Common Base
	13.3.3. The Use of Opaque Variable References
	13.3.4. Subset of the Executable Completions Allowed in the Base

	13.4. Abstract Process Profile for Templates
	13.4.1. Profile URI
	13.4.2. Opaque Start Activities
	13.4.3. Subset of the Processes Allowed in the Common Base
	13.4.4. Adding Constructs without explicit opacity
	13.4.5. Extensions and Document Usage
	13.4.6. Syntactic Validity

	14. Extension Declarations
	15. Examples
	15.1. Shipping Service
	15.1.1. Service Description
	15.1.2. Properties
	15.1.3. Process

	15.2. Ordering Service
	15.2.1. Service Description
	15.2.2. Properties
	15.2.3. Process

	15.3. Loan Approval Service
	15.3.1. Service Description
	15.3.2. Process

	15.4. Auction Service
	15.4.1. Service Description
	15.4.2. Process

	16. Security Considerations
	Appendix A. Standard Faults
	Appendix B. Static Analysis requirement summary (Non-Normative)
	Appendix C. Attributes and Defaults
	Appendix D. Examples of Replacement Logic
	Appendix E. XML Schemas
	Appendix F. References
	1. Normative References
	2. Non-Normative References

	Appendix G. Committee Members (Non-Normative)

