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Abstract In this paper, we propose a survey concerning
the state of the art of the graph matching problem, con-
ceived as the most important element in the definition of
inductive inference engines in graph-based pattern recog-
nition applications. We review both methodological and
algorithmic results, focusing on inexact graph matching
procedures. We consider different classes of graphs that are
roughly differentiated considering the complexity of the
defined labels for both vertices and edges. Emphasis will be
given to the understanding of the underlying methodolog-
ical aspects of each identified research branch. A selection
of inexact graph matching algorithms is proposed and
synthetically described, aiming at explaining some signif-
icant instances of each graph matching methodology
mainly considered in the technical literature.

Keywords Graph-based pattern recognition - Inexact
graph matching - Graph edit distance - Graph kernels -
Graph embedding

1 Introduction

The graph matching problem is a research field character-
ized by both theoretical and practical issues. This problem
has received a great amount of research efforts in the last
30 years, mainly because many pattern recognition prob-
lems have been formulated through graphs that are com-
plex combinatorial objects able to model both relational
and semantic information in data. They are flexible mod-
eling structures with a vast scientific literature also in many
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applied contexts, but they lack a strong and well-estab-
lished mathematical framework for some important oper-
ations. For example, the similarity of two (real) vectors can
be easily defined, but it is not so easy to say how similar
two given graphs are. Conversely, the whole set of pattern
recognition and machine learning methodologies are well
established and tested on standard domains, where basic
concepts, like distance between simple patterns, are well
defined. Thus, in the past few years, the research challenge
was to be able to import the whole set of learning and
recognition tools in the domain of graphs. This goal was
achieved in two ways: defining a measure of dissimilarity
directly in the graphs domain, and through a representation
of them in a suitable space. The numerous matching pro-
cedures proposed in the technical literature can be classi-
fied into two well-defined families, those of exact and
inexact matching. The first one relies on a boolean evalu-
ation of the (dis)similarity of the graphs, while the latter is
a more complex problem where the challenge is in com-
puting how much they differ. In this survey, our interest
will be focused on inexact graph matching related issues,
because they are of great interest in a vast range of modern
scientific disciplines and applied fields.

Our objective is to both describe the main methodo-
logical approaches identified by us in the literature and
some of the algorithms, providing a compact, yet clear,
taxonomy of these. Some algorithms are simply cited and
the related experimental results are not treated in this
survey, postponing to other references for a deeper analy-
sis. Of course, the list of presented algorithms does not
pretend to be exhaustive. Considering this aim, we will
show also some formal definitions and results, limiting
the exposition at the essentiality. We will see that for each
presented algorithm, it is possible to identify a set of
important parameters that by definition influence and, in
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the same time permit, the applicability of these methods to
different domains. The exposition of both methods and
algorithms aims at homogenizing as much as possible the
different notations and viewpoints that can be found in the
original contributions.

This article is structured as follows: the preliminary
definitions and a brief description of the context is given in
Sect. 1. The state of the art methodologies are exposed in
Sect. 2. In Sect. 3 some of the most important algorithms
are described, followed, in Sect. 3.5, by an analysis con-
cerning their peculiarities. In Sect. 4, we will draw our
conclusions together with some interesting new research
directions.

1.1 Preliminary definitions

In this section, we will give some basic preliminary defi-
nitions, mainly regarding labeled (or attributed) graphs,
which is the more general way to define a graph, without
assuming restrictions to both vertices and edges label
characterization. The definitions are extremely general and
can be found in many references [11, 31], or in some of the
reviews in [1, 24].

The set of real numbers R is assumed to be equipped
with the number zero, i.e., R =R U {0}. In general, the
calligraphic form & denotes a set, X a vector, A a matrix
and f(-) a function (not its evaluation). The element (i, j) of

a matrix A can be referred to as Aj; or [A];;.

Definition 1 (Labeled graph) A labeled graph is a tuple
G=(V,& u,v), where

e YV is the (finite) set of vertices (also referred to as
nodes),

o £ CVxVisthe set of edges,

e :V — Ly is the vertex labeling function with £y, the
vertex-labels set, and

e v:& — L¢is the edge labeling function with L¢ the
edge-labels set.

Both u(-) and v(-) are assumed to be total functions. The
items of £ can be denoted with e; = (v;, v;), meaning
an edge from vertex v; to vertex v, We can also denote
edges with e = (v, u) or ¢; = (v,u), i =1,...,|&|, with
v # u, without using any index on the vertices set. If £ is a
symmetric relation, (v,u) € €< (u,v) € E,Vv,u €V,
then the graph G is called an undirected graph, conversely
it is referred to as a directed graph. If £y, = L¢ = () then G
is referred to as an unlabeled graph. In any case the vertices
set )V is assumed to be indexed, i.e., {v;}}=; where |V| = n,
so that we can distinguish them. The same is valid for &. If
L¢ CR, then G is usually called a weighted graph. An
unweighted graph can be seen as a weighted one with
vie)=1Yeec& If Lec#0DANLy=10, the graph G is
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referred to as edge-labeled. If Lg¢ = () A Ly # (), the graph
G is referred to as vertex-labeled. Finally, if both sets are
non-empty we can refer to G as a fully labeled or simply
labeled graph. The notations V(G) and £(G) will refer to
the set of vertices and edges of the graph G. If it is not
explicitly defined, a graph is assumed to be labeled.

Definition 2 (Walks) A walk w of length k in a graph G
is a sequence of vertices w=(v,...,v1) with

eiiv1 = (Vi,vip) €&, i=1—k

A pathin a graph G is a walk in whichv; # v; & i # j.
A cycle in a directed graph G is a path with (vgyq,v;) € &.
A graph G is called connected if there is at least one walk
between any two vertices.

Definition 3 (Subgraph) Let G, = (V1,&1, 1y, v1) and
G, = V2, &2, 1y, v2) be two labeled graphs. Graph G, is a
subgraph of G,, written as G; C G,, if these conditions
hold

Vi C Vs,

& C &,

w(v) = w(v), Yv € Vy, and
vi(e) = va(e), Ve € &;.

Conversely, graph G, is called a supergraph of G;.

If the second condition is replaced by & = &, N (Vy x
V1), then we refer to induced subgraph by the set of ver-
tices V;, denoted with G| = Gy[V].

Definition 4 (Neighborhood subgraph) Given a graph
G=WV,& u,v) and a vertex v €V, the neighborhood
subgraph G, of v in G is defined as

V,={viU{u: (u,v) € EV(v,u) €&},
E =En{VY, x WV},
Hy = Ry,

Vy = v‘gv.

Sometimes, especially from the computational point of
view, it is useful to represent the edges labels as a matrix.

Definition 5 (Edge-labels matrix) Let G be a graph with

|V| = n.The edge-labels matrix is a square matrix Lig"

with

B V(é’ij) if ¢; € g,
[L<8)]ij - { { otherwise.

where the special label { means “no label”.

The adjacency matrix of G is denoted with A" and if
G is weighted, we have the weighted adjacency matrix
A;; = v(e;j), usually denoted as W, which can be thought of
as a special case (Lg C R and { = 0) of the edge-labels
matrix shown in Definition 5. For undirected graphs,
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matrices A, L) and W are symmetric. The transition
matrix of G is denoted with T"*", and is defined as T =
D 'A, where D;; = deg(v;) = > /A; is a diagonal matrix of
vertices degree.

Definition 6 (Random walks) A random walk on G is a
stochastic process generating sequences of vertices v; , v;,,

. according to the conditional probability P(ix1liy,
cewil) =T,

Kok

The k-th power of this matrix, T¥, describes k-length
random walks on G. The component Tfj gives the proba-
bility of a transition from vertex v; to vertex v; via a random
walk of length k. Similarly, Afj- gives the number of
k-length walks.

1.2 Graph representations and applications

Research on inductive modeling has defined many auto-
matic systems able to cope with patterns defined on R”"
[117]. However, many recognition problems coming from
interesting practical applications deal directly with struc-
tured patterns, such as images [29, 89], audio/video signals
[45, 101], chemical compounds [14] and metabolic net-
works [121], for instance. Usually, to take advantage of the
existing data driven modeling systems, each pattern of a
structured domain S is transformed to an R™ feature vector
by adopting a suitable preprocessing function ¢ : S — R™.
The design of these functions is a challenging problem,
mainly due to the implicit semantic and informative gap
between S and R™. A key element to design an automatic
system dealing with these recognition problems is the
information granulation of the input set S [78, 102].
Granular computing and modeling [5] is a novel paradigm
concerned with the analysis of complex data, usually
characterized by the need of different levels of represen-
tation. The key aspect, and founding concept, of the
granular modeling approach is the grouping of low-level
atomic elements into semantically relevant groups, called
information granules. Hence, granular computing consists
in finding the correct level of information granulation, i.e.,
a way to map a raw data level domain into a higher

Fig. 1 Graphical representation
of data on proteins

protein
data

secondary
structure elements

A A AR

Fig. 2 Letter example

semantic level, and in defining a proper inductive inference
directly into this symbolic domain. Labeled graphs enter
predominantly in this context, because they are general
enough to be able to model information granules and their
mutual spatio-temporal relations via vertices and edges,
respectively, together with their assigned labels. That is,
they are able to represent both topological and semantic
information of data in a single structure.

A variegated recent repository of labeled graphs is the
IAM graphs database [97]. It consists of different datasets,
from different real scientific contexts, such as recognition of
characters and molecules. The graph-based representation
can be very intuitive and effective when dealing with mol-
ecules. For example, in [64] the recognition of mutagenic
compounds is carried out employing graphs as patterns rep-
resenting the chemical dataset. The representation of mole-
cules as graphs is straightforward. Indeed, the atoms are the
vertices and the covalent bonds become the edges. Vertices
are labeled with the corresponding chemical symbol and
edges by the valence of the linkage. In [14] data on proteins
are considered for recognition. Labeled graphs are con-
structed considering the secondary structure elements of the
proteins and their spatial relations. Indeed, each vertex is
connected to the three nearest neighbors in the space. Both
vertices and edges are equipped with complex composite
type labels, describing both biological and spatial informa-
tion of data. Figure 1, taken from [14, Figure 2], shows a
simple illustration of the graphs’ elaboration process.

Another example of graph-based representation comes
from the recognition of letters, largely described in [89].
Graphs are employed to represent distorted letter drawings.
For example, Fig. 2 shows different levels of distortions
applied to the “A” letter. Labeled graphs are constructed
representing straight lines by undirected and unlabeled
edges and ending points of lines by vertices. Each vertex is

x

structure

sequence
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Fig. 3 Graphs representing a (distorted) “A” Letter

labeled with a two-dimensional attribute giving its position
relative to a reference coordinate system (usually the 2D
plane). Figure 3 shows a sample graph representation,
taken from a pattern of the IAM Letter dataset, of a dis-
torted “A” letter.

There are many other fields of application where labeled
graphs can be, and have been, applied as a powerful and
general representation tool. For example, just to mention a
few, we can cite applications to Web content-based infor-
mation retrieval [110], smart grids modeling [33] and
complex networks analysis [10, 21]. Obviously, from the
computational viewpoint, there are different interests, not
limited to the graph matching problem. Generally speak-
ing, it is of interest to represent data as labeled graphs when
both topological and semantic (i.e., labels) information are
relevant for the task at hand.

1.3 Exact matching

The exact matching between graphs is characterized by the
fact that the mapping between the vertices of the two
graphs must be edge-preserving, in the sense that if two
vertices in the first graph are adjacent, they are mapped to
two vertices in the second graph that are adjacent as well. If
we consider labeled graphs, we also need to match the
labels of both vertices and edges. When this relation is
bijective, we are talking about the well-known graph iso-
morphism problem.

1.3.1 Graph isomorphism

The strictest form of exact matching between graphs is the
graph isomorphism. Informally, it consists in deciding if
two given graphs are equivalent in terms of structure and
labels. The definition of the problem, considering labeled
graphs, is the following:

Definition 7 (Labeled Graph Isomorphism) Let G| =

V1, &1, 10,vm) and G, = (V, €2, 1y, v2) be two graphs.

A graph isomorphism between G, and G, is a bijection

f V1 — V), satisfying

o« m0) =), we v,

o Ve, = (u,v) € & there exists an edge ex = (f(u),f(v))
€ &, such that vi(e;) = vy(ep),

o Vey = (u,v) € & there exists an edge e = (f'(u),
F1(v)) € & such that vi(e;) = vy(ey).

@ Springer

Two graphs are called isomorphic if there exists an
isomorphism f{-) between them. Definition 7 is an exten-
sion of the classical formulation of the problem to the case
of labeled graphs. To establish an isomorphism, one has to
map each vertex from the first graph to a vertex of the
second graph such that the edge structure is preserved and
the vertex and edge labels are consistent to each other. This
problem is known to be in NP, neither known to be in P nor
NP-complete [42]. We will refer to the isomorphism rela-
tion with the notation G ~ G'.

There are well-known special cases where the graph iso-
morphism problem can be solved efficiently, i.e., polynomial
time. For example, checking for the isomorphism between
planar graphs is known to be solvable in linear time [55].

Another type of exact graph matching is the graph
homomorphism [54]. This is a weaker form of matching in
which adjacent vertices on the first graph must be mapped
to adjacent vertices in the second graph, but the corre-
spondence can be many to one.

1.4 Inexact and error-tolerant graph matching

In many real-world applications, especially in the fields of
machine learning and pattern recognition, it is more
interesting to take into account both structural and labels-
related differences between graphs. This need comes from
the motivation that graphs that represent patterns from the
same class may differ only in small parts, due, for example,
to external noises. Some of the state-of-the-art methodol-
ogies are general enough to be applied to a wide range of
graphs, but we think that it is operatively better to distin-
guish between two main categories: the ones that works
well on graphs with simple labels and the ones that are
better on (possibly) fully labeled graphs. This distinction,
also done in [41], is motivated by the fact that it is possible
to formulate very specific and more efficient algorithms
that rely on the particular domain of application and
structural definition of the graph. There are two other well-
done and interesting works with a general point of view
about the algorithmic problems concerning the graph
matching related issues [23, 89].

One intuitive way to deal with an imprecise graph
matching consists in evaluating how much two graphs
share. This issue can be addressed via the notion of sub-
graph isomorphism.

Definition 8 (Subgraph isomorphism) Let G, G, be two
graphs. An injective function f : V| — V), is called a sub-
graph isomorphism from G| to G, if there exists a subgraph
G C G, such that f{-) is a graph isomorphism between G,
and G.

A subgraph isomorphism exists between two graphs if
the larger, say G,, of the two can be reduced into a smaller
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graph by removing some vertices and/or edges, and this
reduced version is isomorphic to G;. The subgraph iso-
morphism problem is known to be NP-complete [24].
Another possibility for the computation of the matching
degree between graphs comes from the maximum common
subgraph (MCS) problem [73]. Unfortunately, also this
problem is known to be NP-hard [42].

Definition 9 (MCS) Let G, G, be two graphs. A graph
G = (V,&, u,v) is called a common subgraph of G, and G,
if G~ G and G ~ G,. A common subgraph G is called
maximum (MCS), denoted with Gycs, if there exists no
other common subgraph of G; and G, with more vertices
than G.

One naive method to establish a dissimilarity measure,
using the MCS, between two graphs is the well-known
MCS distance [19], defined as

|VMCS| (1)

dvics(G1, Ga) =1 = 5= -
mcs (G, G2) max{|V|, [V>|}

If two graphs are isomorphic, their MCS distance is
zero, and if they do not share anything, their MCS distance
is one [19]. The MCS distance between two graphs is
uniquely defined; conversely, the maximum common
subgraph is not unique.

2 Methodologies

Given two labeled graphs, G| and G, the general objective
is to be able to match these two structures considering both
structural and semantic information, i.e., the information
provided by the labels. As in [41], we will refer to the first
considered graph as data graph and to the second one as
the model graph. The challenge is in obtaining an esti-
mation of how much the data graph resembles the model
graph. This generic problem can be formulated in two
ways:

e compute the similarity or
e compute the dissimilarity of these two graphs.

The difference between these two approaches may seem
small, although there are theoretical and practical impli-
cations. The first approach is based on the representation of
graphs in a suitable implicitly induced vector space. The
second one has two incarnations. The first one aims to
estimate the amount of distortions needed to transform the
data graph into the model graph. This estimation is carried
out directly in the domain of the graphs. The second
incarnation is again built with the aim of representing the
graph in an explicit embedding space, where the com-
monalities between the input graphs should be reflected by
their mutual distance in this space. Of course, there are also

hybridized formulations. The establishment of a (dis)sim-
ilarity measure between graphs permits performing recog-
nition and learning tasks with standard tools, such as the k-
NN classifier, (fuzzy) neural networks or kernel machines
[117]. As in many graph-based problems, one of the main
limitation is the computational cost of these procedures. A
straightforward consequence is the adoption of some fea-
sible approximate solution for both time and space
requirements. The objective is to obtain a good trade-off
between what is left in the approximation and what is
gained in terms of resources. Unfortunately, it is not
so easy to achieve this trade-of only by theoretical analy-
sis, leaving the final judgment to the mandatory
experimentations.

In the actual scientific literature, we can clearly distin-
guish three mainstream approaches for the inexact graph
matching problem:

1. Graph edit distance [17, 40, 83, 84, 87, 88, 89, 90, 94,
98, 109, 129]: these methods match the graphs directly
in their domain and, in general, are applicable to a
wide class of graphs.

2. Graph kernels [14, 43, 50, 63, 66, 75, 79, 85, 86, 123]:
they are based on the notion of similarity between two
discrete objects that is evaluated on an implicitly
induced feature space. Being able to define a kernel
function for graphs permits importing the whole class
of kernel machines on this domain.

3.  Graph embedding [28, 29, 34, 35, 59, 74, 92, 96, 99,
100, 101, 103, 104, 105, 115]: these methods are based
on the embedding of the graph to obtain a general (and
usually relative to the data) vector representation.
These methods can be seen as a generalization of the
graph kernels approach.

2.1 Graph edit distance

The first and very important concept to introduce here is
the graph edit distance (GED) measure [17,109], which can
be thought as a reformulation of the well-known edit dis-
tance for strings, such as the Levenshtein distance [72], in
the graphs domain. A GED is a measure of dissimilarity
between graphs, defined directly in their domain G as a
nonnegative function d: G x G — R, The problem of
defining such a dissimilarity measure can be formulated is
this way: given two graphs G, and G,, we calculate the
amount of both structural and label’s distortions needed to
transform G, into G». To be able to talk about distortions in
graphs, we need to introduce the concept of edit path.

Definition 10 (Edit path) Let Gy, G, be two graphs. Any
bijection f : 91 — l}z, where 171 CV; and fig CV,, is
called an edit path between G, and G,.
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To be able to construct an edit path between two graphs,
we need to define the basic edit operations that are valid for
both vertices and edges. For simplicity, in the following
list, we will refer to vertex operations only.

e Substitution: # — v, with u €V, and v € V,. The
substitution is in fact a vertex label substitution.

e Deletion: u — e&.

e Insertion: & — u.

Other types of basic edit operations can be defined for
application-specific purposes, such as vertex merge and
splitting [3]. Let o be a complete edit path, i.e., a path that
completely transform the data graph into the model graph.
We can denote it as a sequence of basic edit operations
0= (04,...,0¢) = (u — v,...,e6 — w). Each edit operation
o0; has an associated edit cost, denoted with c(0;). For all pairs
of graphs there exist at least one edit path, i.e., by removing
all vertices from the data graph and inserting all vertices of
the model graph, but this approach is not much informative
about the structural dissimilarity of the two graphs.

Definition 11 (Edit cost function) The edit cost function
is a nonnegative function of the form

c:0—R"

that also satisfies the following inequalities to avoid
unnecessary edit operations:

clu—w)<clu—v)+clv—ow)
clu—¢e)<clu—v)+clv—e)

cle—=v)<cle = u)+clu—v)

O is the set of all edit paths. It is intuitive to understand
that edit paths without unnecessary edit operations are to be
considered preferable in this edit model [89]. It is worth
stressing that the definition of such edit costs c(0;) is a crucial
task for the inexact graph matching based on GED. Now, we
are ready to define the graph edit distance [17, 36, 109].

Definition 12 (Graph edit distance) Let G;, G, be two
graphs, and let c(o) denote the cost of an edit path o from
G to G,. Let O be the finite set of edit paths from G, to G5,
then the edit distance between G; and G, is defined as

dcep (G, G2) = min »  ¢(0;). (2)

0€0 ;

The set O in general is infinite, but with proper
observations of some of these given in Definition 11, the

b \/]/D R:fu ..... - '//D\ "

0

Fig. 4 Example of edit path

@ Springer

LA LA L

number of allowable edit operations can be reduced. We
can consider only |V;| deletion of vertices from G, V5]
insertion of vertices from G,, the [Vi|-|V,| vertices
substitutions from G, to G, and the corresponding || +
|€2] + |€1] - |€2| operations on edges [89]. In general GED
is not symmetric, but if the cost function satisfies the
conditions of positive definiteness and symmetry as well as
the triangle inequality at the level of single edit operations
0;, the resulting edit distance is known to be a metric [17].

Figure 4, taken from [98, Figure 1], shows a possible
sequence of edit operations needed to transform the graph
G, into the graph G,.

2.1.1 Exact computation of GED

Computing the exact edit distance between two graphs G,
and G is equal to finding the minimum of Eq. 2. The A*
algorithm [17] evaluates all edit paths traversing a search
tree in a greedy strategy, choosing, from the current set of
edit path candidates, the one with the minimum edit cost.
In general, this approach is known to be exponential both
in space and time in the number of involved vertices, and
thus is practically applicable only to very small graphs
[89]. All modern strategies are based on suboptimal solu-
tions of this problem. It was observed that the gain in
accuracy, when using the exact procedure, is not justified
with the big gap in terms of computation time and
resources demand [89]. Its usage is very limited in the
domains where the maximum accuracy is mandatory. The
A* algorithm is explained in Sect. 3.1.1.

2.2 Graph kernels

In this section, we introduce the concept of kernel function
and its application to the domain of graphs, namely the
graph kernels. Graphs are the most general example of
discrete structures, and thus these methodologies can be
applied, with proper observations, to any discrete structure,
such as strings and automata. Graph kernels rely on the
representation of a graph in an implicitly defined feature
space, where eventually they are analyzed. Therefore,
graph kernels are the key for the application of kernel
machines (e.g., Support Vector Machines [15, 25]) to the
domain of labeled graphs G.

The needed mathematical background is briefly intro-
duced here, starting from kernel functions and the repro-
ducing property in a Hilbert space.

/
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Definition 13  (Positive definite kernel function) Let X be
a generic input space and k : X x X — R be a continuous
function on the product space X x X. The function k(- -)
is called a positive definite kernel on X x X if it is sym-
metric, k(x,z) = k(z,x), Vx,z € X, and positive definite,
thatis Vn € N, xq,...,x, € X and cy,...,c, € R, it follows
that

Z Cink(xi,Xj) ZO

Actually, if the > operator is used in Definition 13, the
kernel is called positive semi-definite. As many other
authors [6], we will avoid the specification. A kernel
function provides a way to express the similarity between
elements of a (generic) input set. When X coincides with
R" there are many different types of kernel functions [111,
113], some of which are listed in Table 1.

We introduce now the definition of inner product
spaces, a powerful generalization of Euclidean spaces to
vector spaces geometry, where notions such as angles and
length of vectors (and functions) can be formally defined.

Definition 14 (Inner product space) An inner product
space (X, (-,-)) is a vector (or linear) space X along with a
function (-,-) : X x X — R called the inner product, such
that

1. Vx,y € X holds (x,y) = (y,x) (symmetry),
Vx,y,z € X and scalar o € R holds (ox,y) = a(x,y)
and {x + z,y) = {x,y) + (z, y)(linearity),

3. Vx € X holds x # 0 = (x,x) > 0 (positiveness).

Every inner product space is a normed vector space

with the norm x; = \/(x,x), and thus a metric space
with  da(x,) = [~ yll, = /& y.x—3) = Vmat
(y,¥) — 2{x,y). An Hilbert space H is an inner product
space that is also complete (i.e., each Cauchy sequence is
convergent in it) with respect to the induced metric by the
inner product.

Now, we introduce the important reproducing property
of kernel functions, being a fundamental pillar in pattern
recognition and machine learning contexts [111, 113].

Table 1 Some kernel functions

Kernel Formula
Linear (x,2) =X-2
Polynomial ((x,z) + v)d
RBF exp(—y [ x—z[?*),7>0
General Gaussian exp(—(x — ;)TC(X —1z))
Normalized _ k(xz)

k(x.x)-k(zz)

Weighted sum >iwiki(X,Z), w; >0

Definition 15 (Reproducing kernels Hilbert space) Let H
be a set of functions of the form f: X — R. A kernel
function k : X x X — R is called a reproducing kernel if

e Vx € X the function k(x,-) € H, and

e Vx,z€ X and Vf(-) € H the reproducing property
holds, i.e., (k(x,),f(:)) =f(x). In particular, (k(x,-),
k(Za )> - k<x7 Z)'
'H is called the reproducing kernel Hilbert space (RKHS).

Let ®: X — H be a mapping function that assigns to
each pattern x € X a function on the domain X, that is
@(x)(-) = k(x,-). It is possible to construct a feature space,
i.e., an RKHS H, that contains the image of the input
patterns of X under ®(-), and where an inner product
operator (-,-);, can be evaluated such that k(x,z) =
(®(x),®(z)), Vx,z € X, holds [111, 113]. As a conse-
quence, we can state that every reproducing kernel is a
positive definite kernel, since:

Z cicjk(xi,xj) = <IZ cik(x;, '),Zcik(% )>

ije{l,...n} i=1 i=1

i c,-k(xi, )
i=1

The RKHS H is a Hilbert space of functions. It is
possible to formulate what is called a Mercer kernel [111,
Section 2.2.4], with very similar properties to the ones of
reproducing kernels, but the associated Hilbert space,
denoted as Hy, is now a sequences space (e.g., an [, space)
and not a functions space. To be a valid Mercer kernel,
k(-,-) must satisfy the well-known Mercer’s conditions [2,
80], i.e., it must be continuous, symmetric and positive
definite. It is possible to show that for each valid Mercer
kernel k: X x X — R there is at least one mapping
function @ : X — H; such that k(x,z) = (®(x), D(z))4,,
Vx,z € X. The inner product is evaluated in Hj, that is
dependent on &(-, -) and is most of the times unknown [111,
113]. In the remainder of the paper, we will omit the
subscript to the inner product operator.

A notable example of valid kernel is the Gaussian RBF

>0. (3)

kernel, defined as k(x,z) = exp(—y - d(x,z)?), where
d(-,-) is a metric distance, y = 1/2¢2 and x, z are assumed
to be real vectors. Of course, the Gaussian RBF kernel can
be applied to any generalized input set X. The only
requirement is that a suitable (symmetric) distance function
d: X x X — R must be defined. Anyway, the associated
Hilbert space Hy is an infinite dimensional feature space in
this case. A larger class of kernel functions related to
positive definite kernels are the conditionally positive
definite kernels, where > i.jc; = 0 holds. Every positive
definite kernel is also a conditionally positive definite
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kernel. For the closure property under pointwise addition
and multiplication of kernel functions [6], it is possible to
derive other kernels that are useful in specific contexts.
Other examples of positive definite kernels are the linear,
polynomial and (for a restricted range of its parameters) the
hyperbolic tangent (also called sigmoid) kernel function.
For a more in-depth analysis on kernel functions, together
with their applications in kernel machines, see [111, 113].

Both reproducing and Mercer kernel functions are of
fundamental importance in machine learning and pattern
recognition applications with kernel machines, and the
relation k(x, z) = (P(x), ®(z)), Vx,z € X, is referred to as
the kernel trick in those contexts [2]. Indeed, the term
kernel trick is usually intended for the necessity to define
only a valid kernel function (-, ), tailored to the specific
nature of X', without any necessity to define explicitly the
function ®(-) in closed form. In Sect. 3.2, we will show
many applications of this property on graph matching
related problems, i.e., when X = G.

To help the reader understand the mechanism behind the
kernel trick, we report a simple example that shows explicitly
the embedding space ;. Let X be R%. Suppose that the
employed valid kernel function is the polynomial kernel with
v=0andd = 2,i.e. k(x,z) = (x - z)*, where the operator -
is the dot product. In this case, it is easy to find a Hilbert space
Hy, and a mapping function ® : R> — 7, such that (x -
z)? = (®(x), ®(z)). We define the inner product as the dot
product, i.e., as (D(x), (z)) = P(x) - ©(z). Expanding the
kernel function, we have (x - 1)2 = (x1z1 + szz)z =xiz3 +
2X121%220 + x%z%, that can be also expressed as

2

X
(-2 = | V2un | [§v2an 4] @
X2

Hence, by defining the mapping function as

X1
(D(X) = \/E)C])Cz , (5)
B
we obtain
2 x%
(x-2)" = | V2x1x2 [zfﬁzlzz Z%] = O(x) - O(z). (6)
2
X3

Therefore, we have shown that k(x,z) = @(x) - D(z),
where the dot product is actually evaluated in H; = R>.

For example, when the input patterns are confined in
[—1, 11%, the image of ®(-) looks like the one shown in
Fig. 5 (the figure is taken from [20, Figure 8]).

Now, we introduce some other mathematical back-
ground necessary to be able to deal with the concept of
product of graphs.

@ Springer

Definition 16 (Kronecker product) Given two real
matrices A" and B?*?, the Kronecker product is denoted
A @B € R"7*"™ and defined as

A B AB AyB

A®B=

An,lB An,ZB An,mB

Unlike matrix multiplication, the Kronecker product
A ® B does not entail a restriction on the size of the
involved matrices [8]. Another interesting and useful
property of the Kronecker product is

(A®B)(C®D) = AC ® BD. (7)

Definition 17 (Schur product) Given two real matrices
A" and B the Schur (or Hadamard) product is denoted
A ©B € R™" and is defined as the componentwise product

A ©B]; = A;Bj;.
Kronecker and Schur products are linked with relation

AB)®(Ce®D)=(AGB)® (CoOD). (8)

See [8, Chapter 7] for a more complete treatment of the
Kronecker and Schur algebras. It is possible to extend the
Kronecker algebra to graphs, introducing the Tensor Product
operator for graphs (also called Direct Product) [56].

Definition 18 (Tensor product of graphs) The tensor
productbetween two graphs G, G,, denoted with G; ® G,
produces a graph Gy = (V«,Ex) defined as

Vi = {(vi,ur) :vi € Vi,ur € Va},
Ex = {(visue), (vj,us)) = (vi,vj) € E1 A (ur, us) € Ea}.

Note that we have used the same symbol ® for both
Kronecker and tensor products, because indeed the tensor
product of two graphs corresponds to the computation of
the Kronecker product of the two respective adjacency
matrices of G; and G,. Figure 6 shows an illustrative
example of the tensor product between two simple graphs.

08¢}
06
04r
0.2

0.4
0.6 08

Fig. 5 Image of the mapping function ®(-) shown in Eq. 5


https://www.researchgate.net/publication/239054666_Harmonic_Analysis_on_Semigroups_Theory_of_Positive_Definite_and_Related_Functions?el=1_x_8&enrichId=rgreq-54ec521684168f9cd265f52d7dd1c44d-XXX&enrichSource=Y292ZXJQYWdlOzI1NzQ3MTk3NDtBUzoyOTkzNzczNDUyMjA2MjlAMTQ0ODM4ODUyOTgwMw==
https://www.researchgate.net/publication/203918300_Smola_A_Learning_with_Kernels_-_Support_Vector_Machines_Regularization_Optimization_and_Beyond_MIT_Press_Cambridge_MA?el=1_x_8&enrichId=rgreq-54ec521684168f9cd265f52d7dd1c44d-XXX&enrichSource=Y292ZXJQYWdlOzI1NzQ3MTk3NDtBUzoyOTkzNzczNDUyMjA2MjlAMTQ0ODM4ODUyOTgwMw==
https://www.researchgate.net/publication/229439297_Matrix_Mathematics_Theory_Facts_and_Formulas_Second_Edition?el=1_x_8&enrichId=rgreq-54ec521684168f9cd265f52d7dd1c44d-XXX&enrichSource=Y292ZXJQYWdlOzI1NzQ3MTk3NDtBUzoyOTkzNzczNDUyMjA2MjlAMTQ0ODM4ODUyOTgwMw==
https://www.researchgate.net/publication/220694854_Kernel_Methods_for_Pattern_Analysis?el=1_x_8&enrichId=rgreq-54ec521684168f9cd265f52d7dd1c44d-XXX&enrichSource=Y292ZXJQYWdlOzI1NzQ3MTk3NDtBUzoyOTkzNzczNDUyMjA2MjlAMTQ0ODM4ODUyOTgwMw==

Pattern Anal Applic (2013) 16:253-283

261

0 g @ ©
°°° & o e

Fig. 6 Example of tensor product between graphs

The tensor product operator ® is commutative, associa-
tive and has many other interesting and useful properties
[56, 95, 108]. For example, it is possible to show that per-
forming a (random) walk on the tensor product graph
G . = G| ® G, is equivalent to performing two simulta-
neous (random) walks on G; and G,. Another important
property is that the neighborhood of a vertex (v,u) €
V(G ),denoted with A/((v,u)), is given by the cartesian
product N'(v) x N'(u), and consequently the degree of
(v, u) is given by deg((v,u)) = deg(v) - deg(u). The tensor
product graph G , , in some sense, is able to encode the
commonalities between the two input graphs G; and G,.

2.2.1 Convolution kernels

Convolution kernels, first described in [53] as R-convolu-
tion kernels, infer the similarity of composite discrete
objects from the similarity of their parts. It is intuitive to
understand that a similarity function can be more easily
defined for smaller parts rather than for the whole com-
posite object. Assuming to be able to calculate the simi-
larities between the simpler parts of the composite objects,
a convolution operation is applied in order to turn them into
a kernel function for the whole object. It is possible to
construct a new valid kernel function starting from differ-
ent distinct kernels, considering the closure property under
addition and multiplication by a positive constant of the
class of positive definite functions [6].

Definition 19 (R-convolution kernel) Let X be an input
space of discrete objects. Let the decomposition in D parts
of two elements x, X' € X be defined as x = (xy,...,xp) and
x' = (¥),...,x}), respectively. Assume that for each d-th
part of the elements, we can calculate the similarity with the
kernel x4(x4,x}). Then the similarity between x and X’ as a

whole is defined as the generalized convolution operation
D

k(x,x') = Z H Ki(xi, x5, 9)
(x1ip)eR™L(x) i=1
(x/] ,....,«’D)erl «)

where R~!(x) stands for the set of all possible decompo-

sitions of element x. The R-convolution of x1,...,Kkp is

denoted with %, ..., *Kp(x,x').

The ANOVA kernel [127], for instance, is a particular
convolution kernel, which uses a subset of the components

of a composite object for comparison. Another example is
to adopt the RBF kernel [113, 114], i.e., a kernel function
of the form

01?2

K(x,y) =e @ (10)

where f(+) is a function from the input space into R. The R-
convolution of these functions, assuming only one way to

decompose these objects IR™'x)I=IR"'WI =1, is
written as

ED Fg ™) —Fg ) fd(‘
K1 (x,y)%, .. kkp(x,y) =e T (11)

The R-convolution kernel has laid the groundwork for
many graph kernels. The decomposition of a graph G into d
parts (Gy,...,G;), is then mathematically denoted by
R7(G) ={(Gy,...,Gq) : R(Gy,...,Gq,G)}. The most
simple and immediate example of decomposition of a
graph is the one that assume the set of all decompositions
of a graph G € G as the set of its vertices, R"!(G) = V. A
general convolution kernel function for graphs G,G’' € G
can then be written as

KG.G)= Y H xi(Gi, GL), (12)

Gl (‘d)ek’ (‘)l
(G G)ER @)

using a specialized kernel function «;(-, -) for each vertex v;
(i.e., its associated label). It is easy to understand that when
dealing with graphs, the definition of R™'(G) becomes
critical, because of the computational hardness associated
with their combinatorial nature.

An interesting, and mathematically-grounded, way to
apply the convolution property to graphs is through the
tensor product operator explained in Definition 18. Indeed,
this operator can be seen as a rigorous way to merge two
labeled graphs, employing different specialized valid ker-
nel functions for vertices and edges labels. In Sect. 3.2, we
will see different examples of graph kernels using this
approach.

2.2.2 Complete graph kernel computation

A complete graph kernel [43, Section 5.3] is based on the
notion of isomorphism between two graphs and the relative
equivalence classes induced on the set of all graphs G. The
quotient set G/~ implies the relation G ~ G’ = ¢(G) =
¢(G'), where ¢(G) is the mapping of the graph in a high-
dimensional feature space. Hence, a complete graph kernel
is able to recognize all non-isomorphic graphs. This kernel is
useful when one wants to distinguish between graphs that
differ only in their vertices’ identifiers. Now, we introduce
the definition of complete graph kernel mainly to show an
example of an NP-hard formulation of a graph kernel.

@ Springer


https://www.researchgate.net/publication/221996125_Convolution_Kernels_on_Discrete_Structures?el=1_x_8&enrichId=rgreq-54ec521684168f9cd265f52d7dd1c44d-XXX&enrichSource=Y292ZXJQYWdlOzI1NzQ3MTk3NDtBUzoyOTkzNzczNDUyMjA2MjlAMTQ0ODM4ODUyOTgwMw==
https://www.researchgate.net/publication/239054666_Harmonic_Analysis_on_Semigroups_Theory_of_Positive_Definite_and_Related_Functions?el=1_x_8&enrichId=rgreq-54ec521684168f9cd265f52d7dd1c44d-XXX&enrichSource=Y292ZXJQYWdlOzI1NzQ3MTk3NDtBUzoyOTkzNzczNDUyMjA2MjlAMTQ0ODM4ODUyOTgwMw==
https://www.researchgate.net/publication/238862762_On_tensor_product_graphs?el=1_x_8&enrichId=rgreq-54ec521684168f9cd265f52d7dd1c44d-XXX&enrichSource=Y292ZXJQYWdlOzI1NzQ3MTk3NDtBUzoyOTkzNzczNDUyMjA2MjlAMTQ0ODM4ODUyOTgwMw==
https://www.researchgate.net/publication/265520897_On_Tensor_Product_of_Standard_Graphs?el=1_x_8&enrichId=rgreq-54ec521684168f9cd265f52d7dd1c44d-XXX&enrichSource=Y292ZXJQYWdlOzI1NzQ3MTk3NDtBUzoyOTkzNzczNDUyMjA2MjlAMTQ0ODM4ODUyOTgwMw==
https://www.researchgate.net/publication/220694854_Kernel_Methods_for_Pattern_Analysis?el=1_x_8&enrichId=rgreq-54ec521684168f9cd265f52d7dd1c44d-XXX&enrichSource=Y292ZXJQYWdlOzI1NzQ3MTk3NDtBUzoyOTkzNzczNDUyMjA2MjlAMTQ0ODM4ODUyOTgwMw==

262

Pattern Anal Applic (2013) 16:253-283

Definition 20 (Complete graph kernel) Let ¢ : G — H be
a map from G into a Hilbert space H, and let
k:GxG— R be a kernel such that ($(G),d(G)) =
k(G,G"). If ¢(G) = ¢(G’) implies that G ~ G’ for all
graphs in G, then k(-,-) is called a complete graph kernel.

It is easy to understand that with such definitions, G ~
G < ¢(G) = ¢(G') holds for each pair of graphs in G. It
is possible to show that computing a complete kernel is as
hard as deciding if two graphs are isomorphic, and con-
sequently NP-hard. Similarly, if the graph kernel is based
on (all) their common subgraphs, it is possible to show that
there is no polynomial time algorithm for computing the
graph kernel [43, section 5.3].

2.3 Graph embedding

In the field of structural pattern recognition, the input
domain can be any generalized set X where the common
mathematical structure of metric, normed or inner product
spaces cannot be defined obviously. The notion of neigh-
borhood of objects of a generic input space X is extremely
linked to the notion of commonality between these. If two
objects share many common descriptive attributes, then
they must result close in the representation framework.
Generalizing the definition of a topological space, one
could be able to deal with this kind of very general rep-
resentation [92]. The primitive and intuitive notion of
dissimilarity between objects of a generic input space can
be used to build various pattern recognition and learning
systems. A dissimilarity is basically a generalization of a
metric distance that requires fewer constraints about its
definition. The dissimilarity is the dual concept of the
similarity, of which kernel functions are only an example.
The dissimilarity measures can be defined in various
domains, and not only in metric spaces. For example, a
measure of divergence between two distributions is the
well-known Kullback-Leibler divergence [69]. This is not
a metric because it is not symmetric, in general. The notion
of dissimilarity can be employed to produce a generalized
notion of topology over a generic set of objects. Another
good reference containing (but not limited to) this aspect
related to (dis)similarity functions on a generalized space
X can be found in [117, Section 11.2].

The embedding between spaces plays a crucial role in
this scenario, because it permits associating the generic
input space X’ to a known space, where classical and well-
tested recognition and learning algorithms can be applied
directly. We can cite two main applications regarding this
issue: dissimilarity space embedding [92] and metric space
embedding [77]. The first one has been already applied in
problems regarding graphs [100], i.e., where the input
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space is a set of graphs, X = G. We will proceed with
some definitions regarding generalized metric spaces,
Lipschitz functions, space embedding and related issues.
For a more in-depth treatment see, for example, [82, 92,
128].

Definition 21 (Generalized metric spaces) Given a set X
and a dissimilarity function p: X x X — R", the pair
(X, p) is said to be:

1. Hollow space: if p(-,-) is reflexive.

2. Premetric space: a hollow space obeying the symmetry
constraint.

3. Quasimetric space: a premetric space obeying the
definiteness constraint.

4. Semimetric space: a premetric space that satisfies the
triangle inequality.

5. Metric space: if p(-,-) is reflexive, positive definite,
symmetric and satisfies the triangle inequality.

As we have said before, the establishment of a dissim-
ilarity d : X x X — R is able to naturally induce a gen-
eralized topology over the same generic set X, via the
notion of open ball neighborhood basis.

Definition 22 (Open ball neighborhood basis) Given a
set X and a generalized distance d: X x X — R*, the
open ball neighborhood for x € X is defined as B.(x) =
{y € X :d(x,y) <e}, for ¢ > 0. The open ball neighbor-
hood basis is defined as N'g(x) = {B.(x) : ¢ > 0}.

The neighborhood basis can be used to entirely describe
the (pre-)topology of a set X' [82, 92]; hence, also a gen-
eralized definition of the topology of this set can be given.
This kind of definition of topology automatically induces a
generalized neighborhood function v : X — P(P(X)), that
establishes at each x € X its neighborhood N (x) (with
Ng(x) C N(x)), i.e., a collection of subsets over X con-
taining objects that are in some sense similar to each other.
Given the neighborhoods, one can conceive a dissimilarity
measure also between generalized sets using only topo-
logical information of the input data, employing, for
instance, extensions of the Hausdorff distance [92, Section
5.5]. These generalizations are well described and widely
contextualized in [92], where they are employed as some of
the founding concepts of the theory of the dissimilarity
representations.

When we basically deal with sets, it is possible to
observe that the generalization can be conceived also in a
more radical way, employing, for example, concepts from
the fuzzy sets theory [133] and the more recent develop-
ment of the field known as granular modeling of systems
and data [5]. However, a deep treatment of these topics is
out of the scope of this review.
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2.3.1 Embeddings

The following results are taken mostly from [92, 128]. We
start by introducing the concept of embedding between
finite spaces, considering the properties derived from the
dissimilarity measure adopted in the input space.

Definition 23 (Isometric embedding) Let (X,d) and
(Y, p) be two metric spaces. (X,d) is isometrically em-
beddable into (Y, p) if there exists a mapping function,
called isometry, ¢ : X — Y such that d(x,y) = p(d(x),

#(y)), Vx,y € X.

Two spaces are isometrically isomorphic if there exists a
bijective isometry between them. Every complete metric
space is isometrically isomorphic to a closed subset of
some Banach space. Every metric space is isometrically
isomorphic to a subset of some normed vector space. Two
Hilbert spaces are always isometrically isomorphic.
A Euclidean space (R™ d,) is embeddable in a Hilbert
space, and every finite subset of m elements in a Hilbert
space can be embedded in (R™"' d,). Not every metric
space can be embedded in a Hilbert space:

Theorem 1 (Schoenberg) Given p € (0,2], and r € (0,]
the space (R™, ) is isometrically embeddable in a Hilbert
space.

This theorem applies to both metric and non-metric
spaces, using a suitable power r of the adopted dissimi-
larity function ,(-, -). However, not every metric space is
isometrically embeddable to I;(-,-), L(-,-) or lx(-")
derived metric spaces. Note that when finite-dimensional
spaces (e.g., Euclidean spaces) are considered, ()
induced metric corresponds to the Euclidean metric dis-
tance d, (-, ).

Now, we show an important concept of continuity of a
mapping function between two metric spaces that finds
interesting applications also in pattern recognition contexts
employing explicit embedding strategies.

Definition 24 (Lipschitz mapping function) Let (X,d)
and (Y, p) be two metric spaces. A mapping function ¢ :
X — Y is said to be Lipschitz continuous if there exists a
constant k > 0 such that p(¢p(x),d(y)) <k-d(x,y), ¥V
x,yeX.

The smallest k is called Lipschitz number or Lipschitz
constant of ¢(-) and is usually denoted with L(¢) [128]. If
k <1 the mapping is a contraction of the original set.
Conversely, if k > 1, it is called an expansive map. Finally,
if k = 1 the mapping is called non-expansive. A Lipschitz
mapping ¢(-) can be seen as an explicit embedding method
able to preserve and bound, with a constant scaling factor
k, mutual distances of the elements of the original input set

into the embedding space. This fact is of practical impor-
tance for pattern recognition problems, since patterns dis-
tances in the representation space are the primary source of
information of any inductive modeling system. A function
¢(+) is called locally Lipschitz continuous if for every x €
X there exists a neighborhood N (x) of x such that ¢(-),
restricted to AN (x), is Lipschitz continuous. Note that
Lipschitz continuity always implies uniform continuity,
and every uniform continuous function is continuous.
Conversely, not every continuous function is uniformly
continuous, and thus Lipschitz. For example, fix) = X2 s
only locally Lipschitz.

Admitting distortions in the embedding procedure, it is
possible to make another kind of embedding, called bi-
Lipschitz embedding.

Definition 25  (bi-Lipschitz embedding) Given two metric
spaces, (X,d) and (Y, p), and an embedding ¢ : X — ),
we say that the embedding function is a distorted embed-
ding function, or bi-Lipschitz, if there exist » > 0 and
¢ > 1 such that r-d(x,y) <p(d(x),d(y)) <c-r-d(x,y),
Vx,y € X. The real number c is the distortion of the
embedding.

A scalar-valued Lipschitz function is a function of the
form ¢ : X — F, where F is a generic field (such as the
reals R).

Definition 26 (Lipschitz space) Let (X,d) be a metric
space. Then Lip(X) is the Lipschitz complete (Banach)
vector space of all bounded scalar-valued Lipschitz
functions ¢(-) on X, with (Lipschitz) norm ¢, =

max (¢, L(§))-

A pseudo-Euclidean space [48] is a simple kind of
decomposable inner product space where an indefinite
inner product can be defined, forming an indefinite inner
product space. It is basically an inner product space that
satisfies only symmetry and linearity conditions (see Def-
inition 14). We will see that this concept plays an important
role in some topics concerning the linear embedding of
spaces. Formally,

Definition 27 (Pseudo-Euclidean space) A pseudo-

Euclidean space E = R"™™ is a real vector space equipped
with an indefinite inner product (-, ) that admits a direct
orthogonal decomposition E=FE, @ E_, where E, = R"
and E_ = R™ are the set of positive and negative vectors,
respectively.

Therefore, the indefinite inner product (-, ) is definite
positive on R" and negative definite on R™. Note that a
vector x is said to be positive (negative) if (x,x) >0

({(x,x) <0) holds. Consequently, this definition extends
directly to subspaces [92, Section 2.7].
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Fig. 7 Absolute and relative representations of data
2.3.2 Dissimilarity representations

Given a generalized finite metric space (X, d), where X =
{x1,x2,...,x,} and d(-, -) is a general dissimilarity measure
on the elements of X', a dissimilarity matrix D is a (square)
matrix with Dy = d(x;,x;), Vx;, x; € X. Thus D is nonneg-
ative and has a zero diagonal. The dissimilarity represen-
tation [92] for an input space X is written as
D(X,R) € R™". This notation means that all the objects
in X are represented relatively to the objects in R C
X,|R| =r<n. This is the first and the most important
characteristic of this type of representation, as the objects
are described considering only local reference systems.
Conversely, the positive definite kernel functions implicitly
represent the objects (i.e., graphs, strings etc...) in a pre-
defined feature space. Figure 7 (a re-elaboration of [92,
Figure 3]) shows an intuitive explanation of the key
aspects introduced by the relative representation scheme
followed by the dissimilaritiescomputation, against the
standard feature-based, or absolute, representations.

A dissimilarity matrix D is called Euclidean, also
denoted with D*2, if Dy = ds(x;, x;), Vx;, x; € X.

Definition 28 (Metric for D) A dissimilarity matrix D is
metric if the triangle inequality d;; < dj + dj; holds for all
triplets (i, j, k).

If two objects, say the i-th and the j-th are equal, then
d; = 0 and we have that dy = dj, Vk. If the dissimilarity
matrix D is not Euclidean, then it is possible to apply a
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correction of the form D' =D+ c(11" —1), with
¢ >max,,, ld,, + d, — dg). If D is Euclidean, then any
concave and nondecreasing transformation D;; = f(d;;) of
the dissimilarity values will preserve the Euclidean
properties.

Definition 29 (Euclidean behavior) A dissimilarity
matrix D € R™” is Euclidean if it can be embedded in a
Euclidean space (R",d,), with m < n.

This means that an input space (feature vectors) X =
{x;}i_, is embeddable in R" with d>(x;,X;) = X; —X;2 =
Dj;, Vi,j. The Euclidean property is a favorable aspect of
D, that permits its embedding without loss of information
regarding the input dissimilarities of data. Refer to [92,
Section 3.4] for more details on how to test the Euclidean
behavior of dissimilarity matrices and for various correct-
ing techniques.

Generally speaking, considering a dissimilarity repre-
sentation of a training set 7, it is convenient to find a
subset of prototypes P C 7T that are able to approximately
describe the entire set considering some quality measure. In
this case, the representation can be generalized using a
relative representation D(7,P), that is, describing the
entire set as a function of a relatively small set of its ele-
ments, mostly due to computational speed-up purposes. An
embedding can be found directly for D(P,P), projecting
the other 7\P elements into the embedding space, or
defining an embedding that resembles a Lipschitz mapping
between the input space and the representation space. The
latter was first exploited in [100] considering graphs, and is
described in this paper in Sect. 3.3.1. In this case, proto-
types selection techniques play a crucial role.

Given an input set of generic non-represented objects
R ={p1,...,p»} and the dissimilarity matrix D(R,R),
three possibilities are outlined in [92] for the dissimilarity
representation of R : direct employment of the dissimilar-
ities, linear embedding [92, Section 3.5] and finally spatial
representation [92, Section 3.6] of D(R,R).

Direct employment of dissimilarities A direct use of the
dissimilarity values Dj; in, for example, a classifier using
the k-NN rule. Any monotone nondecreasing concave
transformation can be applied directly to the dissimilarities
D;;. This is a simple, but absolutely not trivial, example of
how to employ the dissimilarities directly in a recognition
system in order to define a proper inductive logic inference.

Linear embedding A linear embedding in a (pseudo-
)Euclidean space R¥ k<n, consists in finding a vector
configuration X = {x,,...,x,} with x; € R*. The repre-
sentation matrix X € R™* built with the vectors x,,i =
1 — n, should be found preserving the dissimilarities of
D(R,R). If the dissimilarity matrix D is Euclidean; a
linear mapping preserving this kind of information can be
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found using projection techniques of the family of Clas-
sical Scaling [12, 57]. The main problem here is how to
find the right k such that the dissimilarities are preserved.
The embedding dimension k is found with a PCA-like
analysis [62], taking into account only the first k < n
dimensions corresponding to the first k eigenvectors with
the largest eigenvalues (in absolute value). The represen-
tation X is found as

X = QA (13)

where Q, € R™* is the matrix of the first k eigenvectors

(as columns) and A,i/ % is the nonnegative diagonal matrix
of the first k largest eigenvalues of the gram matrix G =
QAl/ 2Q", obtained from the relation with the input
(Euclidean) dissimilarity matrix D. If the dissimilarity
matrix D is Euclidean, then the Gram matrix G = — %JDJ
is positive (semi)definite, where J is referred as the
centering matrix. If D is not perfectly Euclidean, some
corrections should be applied. When these corrections are
not applicable or not sufficient, a pseudo-Euclidean
embedding of D can be applied in RP9) [48], obtaining

XJ, X' =G =QAQ" = Q|| ["”q 0} Al"2QT,

(14)

with k = p 4+ g and A a diagonal matrix containing, in
order, p positive and ¢ negative eigenvalues both in
decreasing order, followed by zeros. J,, is called the fun-
damental symmetry matrix. This matrix allows the com-
putation of the inner product (then the norm and distance)
in a standard Euclidean space R”" related to the pseudo-

Euclidean space R(P4) [92, Section 3.5.3]. The configura-

tion X = Q;|Ay|"? can be found in R?%) using only the
first £ non-zero eigenvalues. Other linear embedding
techniques can be found in [92, Section 3.5].

Spatial representation Given an input set of generic
objects R and the relative dissimilarity matrix D(R, R), a
spatial representation of D is a configuration of vectors
representing the objects in a space, directly derived
considering the rows of D as vectors, usually in a
(pseudo-)Euclidean space. Spatial representations are to
be considered approximate embeddings into suitable
low-dimensional vector spaces, mostly used for data
visualization purposes. The cited methodologies include
FastMap [37] and some nonlinear multidimensional
scaling techniques [12], such as the Sammon mapping
[107] with its variations, the least squares scaling (LSS)
[26, 67, 68]. These methods are based on a loss function
that estimates the stress S(-) after the projection in a
vector configuration X (the row matrix with projected

vectors). For example, the simplest loss function is the
raw stress, defined as

X =53 (1Dy) — dy(X)Y, (15)
i=1 j=itl

where f(-) is a continuous monotonic transformation for
the dissimilarities, and d;(X) stands for the distance cal-
culation between the i-th and j-th vector configuration. The
family of Sammon mappings [92, Section 3.6] are non-
linear projection techniques from a high-dimensional
Euclidean vector space to a low-dimensional space.

2.3.3 Embedding in structure spaces

In [59], a method to embed a graph into what is called the
T -space has been proposed. The basic idea is to look at the
graphs as equivalence classes of vectors via their weight
matrices W, where the elements of the same equivalence
class are different vector representations of the same graph.
Direct edge-labeled graphs are considered in [59]. To apply
this methodology, all input graphs are to be aligned to the
same bounded order, say n. Considering a graph G, two
weight matrices are said to be equivalent if one can be
obtained from the other with a permutation of the vertices
order. Formally,

W~AW & 3IPeT :PTWP =W, (16)

where 7 denotes the set of all n x n permutation matrices.
It is possible to embed the matrix W into a Euclidean
vector space X = R™"; as a consequence, each graph can
be represented with a vector x just concatenating the col-
umns of W. So, in what follows we can consider equivalent
the matrix and the respective vector representations, using,
for simplicity, the latter.

Given a Euclidean vector space X' = R™, let 7 be the
set of permutation matrices; the orbit of X € X is defined as

x; = {Px: P T}, (17)

i.e., the set of all the equivalent vector representations of x.
The quotient set over X is referred to as the 7 -space and X
is the representation space of X.

Definition 30 (7 -space) A T-space over a Euclidean
vector space X is the orbit space X7 = X /7 of all orbits
of x € X under the action of 7,

Xr=X/T = | Jxl;- (18)

xeX

The embedding space Xr aims at getting rid of the
different equivalent representations of a given graph.
Figure 8, taken from [59, Figure 5], shows an illustrative
example of this embedding method.
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Fig. 8 The embedding of two
sample graphs

graphs matrices

2.3.4 Other embeddings

There are other kinds of embedding for graphs [34, 35, 96,
105]. For example we can cite the Spectral Embedding [94,
103, 104], that consists in finding a proper representation of
the graph analyzing the set of its eigenvectors. For this
purpose both adjacency, transition and Laplacian matrix
can be used. Another possibility comes from the embed-
ding of the graph into a Riemannian manifold, using metric
properties derived from differential geometry operators
[105].

3 Algorithms

The first macro-class of graphs taken in consideration can
be defined as the ones with simple type of labels for both
vertices and edges. A simple type is, for example, a scalar
number or string considered as an element in a finite
nominal set. For this kind of graph, a straightforward
approach is the one that firstly transforms the graph into a
sequence of its vertices, applying then a matching method
for sequences over them. Two particular types of graphs
are directed acyclic graph (DAG) and trees; in particular
when dealing with trees, the tree edit distance (TED) is
adopted [7, 9, 119, 120]. In this survey, we will describe
only some of the seriation-based methods [94, 103, 104,
115, 115, 132]. For a good treatment of TED techniques,
and other kind of matching between non-labeled graphs,
see [41, Section 4.2.1].

Considering complexly labeled input graphs, i.e., labels
in R" or other kind of composite types, some issues arise.
The most interesting in this case is the capability of
inexact graph matching algorithms to manage the com-
monalities in terms of both topology and labels in a uni-
fied framework. The algorithms belonging to GED-based,
graph kernel-based and graph embedding-based families
are general enough to be applicable to a wide range of
types of graphs.
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vectors embedding
1 x =(2,1,1,4)
2 X=(4,1,1,2)
1 y =@ 1,1, 1)
3 y=(1,1,1,9)

3.1 GED based

Those methods are focused on the estimation of the amount
of distortions needed to transform the data graph into the
model graph. An important factor is how they define the edit
costs. These costs can be known a priori or we will see that
they can be defined in such a way that edit operations that
are very likely to occur have in fact lower edit costs than the
infrequent ones. Moreover, the edit costs can be estimated
directly equipping each algorithm with specific low-level
dissimilarity function tailored to the particular labels defi-
nition. Indeed, most of the GED-based algorithms are
applicable to virtually any type of labeled graphs.

3.1.1 GED computation based on the A" algorithm

The A* algorithm [17] employs a search tree to model the
edit paths, referred to as OPEN in Algorithm 1, which is
constructed by considering each vertex of the first graph one
after the other (uy,uy,...,up,|).g(0) is the function eval-
uating the cost of the optimal path from the root node of the
search tree to the current node o found by the A*.h(0)
denotes the estimated costs from o to a leaf node. Finally,
g(0) + h (o) gives the heuristic estimation of the current
node (edit operation) o. In each step, the next unprocessed
vertex of the data graph u;, is selected from OPEN and
tentatively substituted by all unprocessed vertices of the
model graph (line 11) as well as deleted (line 12). Edit
operations on edges are implied by edit operations on their
adjacent vertices and the costs of these are dynamically
added to the corresponding paths. The currently most
promising node o of the search tree is the one minimizing
the A* search costs g(0) + h(o) (line 5). When a complete
edit path is obtained in this way, it is guaranteed to be an
optimal one [52]. In the simplest scenario, the estimated
lower bound /(o) of the costs from o to a leaf node is set to
zero for all o. This means that no heuristic information of
the potentially best search direction is used at all for actu-
ally performing a breadth-first search. On the other hand, it
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is possible to compute a complete edit distance for each
node of the search tree. In this case, the function 4(0) is not a
lower bound, but the exact value of the optimal costs.
Whether or not heuristics %(+) are used to manage the search
tree traversal process, the cost is exponential in the number
of vertices of involved graphs [17].

Algorithm 1 GED computation with the A* Algorithm

Input: The data graph G1 = (V1, &1, p1,v1) and the model graph Go = (Va, €2, 2, 12)
Output: The minimum edit path 0,,;, from G to G2
1: OPEN =0

2: Yw € Vs, insert the vertex substitution {u; — w} into OPEN
3: insert vertex deletion {u; — ¢} into OPEN

4: loop

5 Remove current o,,i, = arg min,coppn{9(0) + h(o)} from OPEN
6 if 0;min is a complete edit path then

7 return opin

8 else

9: Let omin = {u1 = viy, .., up = vi, }

10: if k < |V1| then

11: Yw € Vo \ {viy, ..., viy }, insert opmin U {ugs1 — w} into OPEN
12: Insert omin U{uk41 — €} into OPEN

13: else

14: Insert 0,,in U Uwe\)g\(n,]. . _Uik}{s — w} into OPEN

15: end if

16:  end if

17: end loop

A* Beamsearch The first approximation method of the
original A* algorithm is based on beam search [90]. Instead
of expanding all successor nodes in the search tree, only a
fixed number s of nodes to be processed are kept in the
OPEN set at all steps. Whenever a new partial edit path is
added to the OPEN set, only the first s partial edit paths
with the lowest costs, given by g(o) + h(o), are kept, and
the remaining partial edit paths in OPEN are simply
removed. This means that only those vertices that belong to
the most promising partial matches are expanded. If only
the partial edit paths with the lowest costs are considered, a
suboptimal edit path will be obtained which yields a sub-
optimal distance, almost close to the exact edit distance.

A Pathlength The second variant [90] of the original
A" algorithm follows the empirical observation that if we
are considering graphs with a rather large number of ver-
tices, it is likely that a considerable part of an optimal edit
path o, is constructed in the first few steps of the tree
traversal, because most substitutions between similar
graphs have small costs. Whenever the first significantly
more expensive edit operation occurs (in the optimal edit
path), this vertex will prevent the tree search algorithm
from quickly reaching a leaf node and unnecessarily make
it expand to a large part of the OPEN search tree. An
additional weighting factor r > 1 is proposed, aiming to
favor longer partial edit paths. Practically, the evaluation of

the edit path (line 5 of Algorithm 1) is changed in 82"}

o]
where lol stands for the length of the current edit path o.

3.1.2 Neighborhood subgraph

In [89],a totally new and fast suboptimal algorithm based
on the inexact matching of neighborhood subgraphs has

been proposed . The main objective is to propose a poly-
nomial-time algorithm that uses only local information. We
can represent a neighborhood subgraph as a sequence of its
vertices [89]. The matching is then performed as a cyclic
strings matching algorithm [18, 93] based on standard
string edit distance that is known to be resolvable in qua-
dratic time. The proposed algorithm is a greedy iterative
algorithm that adds a sequence of edit operations calculated
on the neighborhood graph matching to the global edit
path. If the maximum degree of the considered graphs is
d, the alignment task has a complexity of O(d”) and the
approximate algorithm terminates after O(n) iterations,
with n=|V;|+|V2|. So the total complexity of this
algorithm is O(nd?). This simple method is suboptimal, but
it was shown that it is substantially faster than the exact
computation of GED [89]. The pseudo-code of the algo-
rithm can be found in [89, Algorithm 3.2]. The type of
graphs that can be analyzed with this method depends of
the capability of the employed string edit distance algo-
rithm of dealing with data from the set £y. However, the
edges labels are not considered in this scheme. This simple
heuristic method does not depends on parameters different
from the usual edit costs.

3.1.3 Quadratic programming approach

In [87], a strategy has been proposed that bypasses the
standard A*-based algorithms by addressing the graph edit
distance problem by means of quadratic programming [16,
91]. This approach is based on the definition of a fuzzy edit
path between two labeled graphs that allows vertices and
edges of one graph to be simultaneously assigned to several
vertices and edges of another graph. A fuzzy edit path is
defined by assigning a weight to each possible vertex
substitution. Let G, G’ be two labeled graphs with |V| = n
and [V'| = ', then there exists n -’ distinct substitutions
of a vertex u € V with a vertex v € V. Formally, a fuzzy
edit path between G and G’ is a function w:V x V' —
[0, 1] satisfying the conditions

Zw(u,v) =1,VueV and Zw(u,v) =1,weV.

veV ucy
(19)

If two vertices, say u, v, have a large value of w(u, v),
then they are assumed to correspond to a good structural
match. As we will see, this value is determined in the
optimization process, assigning a high value to this
substitution if the involved edit costs, considering also
the edges costs, are relatively low.

The algorithm employs a cost matrix Q € R™>™ o
encode vertex and edge edit costs and minimizes the
overall edit costs corresponding to a fuzzy edit path. The
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matrix Q is constructed such that the rows and columns are
indexed by the same substitutions # — v, with u € VV and
v € V. Diagonal entries hold the costs of vertex substitu-
tions, while off-diagonal entries correspond to edge edit
costs. For instance, the entry of Q at position (¥ — v,u —
v) is set to the vertex substitution costs of u — v and the
entry at position (u — v,p — ¢) is set to the edge edit costs
resulting from substituting u — v and p — ¢, if the edges
e; = (u,p) and ¢; = (v, gq) exist. The n- n’-dimensional
vector of fuzzy weights x (the solution), satisfying the
conditions listed in Eq. 19, is determined as the one that
minimizes the expression x'Qx, considering every possible,
and valid, vector of weights X. Once the optimal vector X is
determined, it follows a defuzzification stage, where a
standard edit path is eventually obtained from x, and from
which is derived the edit distance from G to G’ [87].

The time complexity of this method depends on the
complexity of the particular quadratic programming algo-
rithm adopted in the optimization. This method is appli-
cable to virtually any kind of labeled graphs. For what
concerns the parameters, the edit costs must be defined or
learned.

3.1.4 Assignment problem approach

A recent method, proposed in [98], is based on a polyno-
mial time optimization procedure to solve the GED prob-
lem as an assignment problem, on the base of the Munkres’
algorithm [81]. In practice, it is an optimization problem
with the aim of finding the lowest cost assignment between
objects from two different sets. The Munkres’ algorithm is
known to solve optimally the assignment problem in cubic
time, but actually it provides a fast suboptimal solution to
the exact GED computation shown in Eq. 2.

Given two labeled graphs G, G,, with |V(G})| = n and
[V(G,)| = m, a square cost matrix C of order n + m is
defined with the aim of encoding all the possible edit
operations costs, considering all the vertices of the two
graphs. The cost matrix C is defined as a square matrix of
the form

_C171 et Cim Cl,s 00 00
Cl2 C22 -+ Cm 0 Cle
o0
c— Cla =+ " Cam OO i 00 Cpp
g oo - o0 0 0 0 O ’
00 Cep 0O 0 0 O
0O 0 0 O
| o0 - 00 Ccm 0 0 0 0 |

where the symbols c¢;j,c;,,c;; denote, respectively, sub-
stitution, deletion and insertion costs of vertices for Gj.
The left upper corner of the cost matrix C represents the
costs of all possible vertex substitutions, the diagonal of the
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right upper corner the costs of all possible vertex deletions,
and the diagonal of the bottom left corner the costs of all
possible vertex insertions. The edit operation costs of the
involved edges can be added directly inside the vertices
ones. That is, the information used by this algorithm is
properly local. The optimization algorithm, with the cost
matrix C, produces a permutation p = py,..., Py, Of the
integers 1,...,n + m that minimizes Y 71" [C] ip,» Which is
equivalent to the minimum cost assignment of vertices of
G, to the vertices of G, represented, respectively, by the
rows and columns of the matrix C.

The computational complexity of this method is O(n?),
where n = [V(G1)| + |V(G2)|. This method is applicable to
virtually any kind of labeled graphs. As usual, edit cost

parameters must be determined.

3.1.5 Edit cost estimation strategies

One of the most important task in any GED-based algo-
rithm is the definition of the edit costs c(0;). These costs
can be known a priori in some application domain, but in
general their definition remains a problem. The first and
most intuitive way to define these costs is to directly esti-
mate the distance between labels. The standard Euclidean
distance could be employed for this purpose when
Ly CR" and L¢ C R™. Given two graph G, G, and four
nonnegative  weighting parameters  Gyerrex> Oledges Pver-
tex> Pedge> the edit costs for all vertices u € Vi,v € V, and
edges p € £1,q € &, could be defined as [89]:

C(I/t - ‘L') = ﬂvertex
C(S - v) = ﬁvertex
c(u—v) = oyerex || 1 (1) — (v) |2

c(p—e)
) = ﬁedge

c(e —q
c(p = q) = teage” || vi(p) —v2(q) |2

Note that the Euclidean distance in Eq. 20 can be
generalized to any dissimilarity measure defined over the
vertex and edge labels sets. Edit costs depend on weighting
parameters that can be defined as predefined values, based
on the application at hand. If a set of graphs G is available,
we can estimate the edit costs from the information
contained in G in a supervised or unsupervised manner. In
the first case, a cost function must be defined to guide the
estimation procedure. It is worth stressing that this cost
function is strictly application dependent. If, for example,
the GED is used in a classification system, this cost
function can be the generalization capability of the
classification model. Two unsupervised edit cost
estimation methods [83, 84] are briefly discussed in the
following two paragraphs.

= ﬁedge
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Probabilistic estimation In [83], it is proposed to auto-
matically derive edit costs from an estimation of the
(unknown) probability distribution of the edit operations in
a sample set of labeled graphs G. For each pair of graph,
say G1, G, in G, two initially empty graphs are constructed
in a stochastic fashion. That is, each vertex or edge inser-
tion is interpreted as a random event, transforming the data
graph into the model graph through edit operations. For
instance, a simultaneous vertex or edge insertion in both
graphs is equivalent to a substitution operation, and an
insertion in one single graph is equivalent to an insertion or
deletion operation. Weighted Gaussian mixture densities
are used for the approximation of every type of edit event-
operation cost (normally three types for the vertices and
three for the edges). Given a multivariate Gaussian density
(MGD) f(-|pt, X) with mean yu and covariance matrix X, the
probability of an edit path (o1, ...,0;) is given by

k My
p(017---70k) :Hﬁtiza;/f(oﬂlu;ﬂzij)? (21)
=1 =

where ﬁt/, is a model weight for the type of edit operation
tj, and, for each component i€ {I,...,m,}, a mixture
weight ocﬁ/_ , a mean vector uﬁj, and a covariance matrix Z;j
The estimation of the parameters @ of the MGD is then
performed using the well-known EM algorithm [30].
Assuming W(Gy, G») as the set of all edit paths between
G and Gy, the joint probability p(Gy, G,) of two graphs is
defined as

p(G1,Gy) = max

P(oy, ..
(01,...,01)€Y(G1,G2) ( !

., 07| D). (22)
A dissimilarity measure d(-,-) is obtained as d(Gy, G,) =
log(p(Gy, G»)).

SOMs-based estimation In [84], a procedure based on
self-organizing maps (SOM) [65] is proposed to infer the
edit costs of graphs with labels in R". The idea is to rep-
resent the distribution of the vertex and edge labels
occurring in a set of fully labeled graphs through an SOM
model, where distances of mapped labels in the sampling
grid of neurons of the SOM correspond to the inferred edit
operation costs. The initial sampling grid is built with
equidistantly labeled neurons, with weights of the same
size as the ones of the labels. In practice, a mapping
between the labels space of the graphs and the grid of the
SOM is performed. Given two graphs, say G and G,, the
spatial distance in the sampling grid of two mapped ele-
ments (vertex or edge labels), say x € R" and y € R",
whose edit operations X — y occur frequently in the GED
computation, is iteratively reduced during the learning
process of the SOM. Thus, the sampling grid is deformed
according to the labels distribution frequency in the input
set of graphs, with the aim of minimizing the resulting edit

cost of the GED. Actually, a set of SOMs, one for each edit
operation, is employed in this learning model, assigning to
each edit operation o; the respective SOM.

Once an SOM, one for each type of edit operation, has
been trained, the cost of a substitution of two labels is
defined to be proportional to the deformed distance
between the respective neurons in the trained grid. Simi-
larly, the cost of an insertion (deletion) operation is pro-
portional to the average deformed distance from the winner
grid neuron to its connected neighbors.

3.2 Graph kernels based

In this section, we will describe some polynomial time
algorithms concerning graph kernels. They are based on the
well known kernel tricks, that is, given a valid graph kernel
function k(-,-), an implicitly defined high-dimensional
features space H; exists, where graphs are represented and
the recognition task is (indirectly) performed.

3.2.1 Exact matching direct product kernel

The idea, described in [43, Section 5.4.2], is to define a
graph kernel on the basis of the number of exact matching
walks in the two involved graphs, taking into account the
label sequences of both vertices and edges.

This method employs a tensor product graph G, that
considers also the labels, that is, two vertices are consid-
ered adjacent in G, if the related labels are exactly the
same in the two input graphs. This is a seminal work
concerning this approach, and we will see that, regardless
the clear limitations implied by the exactness of the con-
straints imposed on the labels, it has spawn many other
similar approaches. Considering that the number of walks
in the product graph is equal to the product of the number
of walks in the two original input graphs [56], it is possible
to define the direct product kernel as follows:

Definition 31 (Direct product kernel) Let G, G, be two
graphs. For a given sequence of weighting parameters

MyAay ooy (A €ER; 4, >0Vn € N), the direct product
kernel is defined as
|V><| oo
K(G1,Ga) =Y | AL, (23)
ij=1|n=0 i

if the limit exists.

By definition, the power of the adjacency matrix A, of
G, encodes the information of the number of walks
between the two input graphs. The computation of the
matrix power series shown in Eq. 23 is carried out via the
eigendecomposition of A, that also binds the overall
computational complexity in the polynomial class [43,
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Section 5.2.4]. However, the precise time complexity cost
is dependent on the particular type of eigendecomposition
algorithm (that can be thought as roughly cubic in the order
of the matrix A,).

3.2.2 Similarity-based random walk kernel

The original random walk kernel is defined by means of the
transition matrix T of the direct product graph [44]. The
kernel can be interpreted as a measure of the probability of
exact-matching labeled random walks in both graphs. Note
that A, and T, can be used independently in Eq. 23, but
inducing a different, yet valid, meaning for the matching.
The main limitation of this kind of kernel is certainly that it
is only applicable in contexts where the strict exact match
of the labels is meaningful.

To overcome this limitation, a new random walk kernel
has been proposed in [14], with good results to the problem
of protein function prediction. The idea is not to evaluate if
two walks are identical, but rather if they are similar. To
this aim, the adjacency matrix of the direct product graph
G, is modified as follows:

k((u, ') (v, 1))

- (u,u'), (v,V') € &,
[AX](u‘u’),(v,v’)_ {0

otherwise.
(24)

where the kernel (-, -) measures the similarity of two pair
of vertices of G, considering both vertex and edge labels
of the two input graphs. To this aim, it is possible to
convolute different specialized valid kernels ky (-, -), ke(-, *)
as follows:

k((u,u), v,V') = ky(u, ) - keEx ((u, v), (', V)
ckyp(v,V). (25)

Note that different convolution schemes can be adopted,
such as taking the minimum or the average. For example,
ky(-,-) and kg(-,-) can be evaluated as Gaussian RBF
kernels of the form:

N2

ky(u,u') = exp <— M) , (26)
203,

where d(-,-) is a suitable dissimilarity function for the

specific labels set (i.e., £y or L¢). Note that the matrix A

is by definition a weighted adjacency matrix. As usual, to

obtain a valid random walk kernel, we just need to use the
transition matrix Ty instead.

When using the Gaussian RBF kernels in the product
scheme, as shown in Equations 26 and 25, respectively, the
matching algorithms become dependent on three parame-
ters, namely the two gy and the g¢. These parameters must
be adapted for each specific dataset. With regard to the
computational complexity, it is easy to understand that,
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asymptotically, it is equal to the one of the methods studied
in Sect. 3.2.1, with additional constant-time costs associ-
ated to the labels dissimilarity computations. However,
these costs associated with the labels dissimilarities are not
in general cost free. Indeed, this method can be applied
virtually to any kind of labeled graphs. Hence, the sets Ly
and L¢ can be defined as sets of any complex composite
types, such as text excerpts and chemical formulas.

3.2.3 Random walk edit kernel

The aim of the method proposed in [86] is to use together
the GED and a graph kernel. The basic idea is to enhance
the random walk kernel shown in Sect. 3.2.2 with an edit
distance matching at the global level, reducing the size of
resulting direct product graph G, . Assume that an optimal
edit path from G to G’ has been computed with a GED-
based method (see for example Sect. 3.1), and let S =
(vi = v|,va =V}, ...) denote the set of vertex substitu-
tions in the optimal edit path. The adjacency matrix of the
direct product graph G, is then defined as

k((u,u), (v,v')) if holds ((u,u'), (v,V)) € &,

u—u €S,
Ay ) = and v — v/ €8,

0 otherwise.

(27)

The walks are restricted to vertices that satisfy the
optimal vertex-to-vertex correspondences identified by the
edit distance computation by the GED. This adjacency
matrix is then used with the direct product kernel described
in Definition 31. It is possible to observe that this method is
actually a hybridized algorithm employing a GED-based
algorithm with the convolution scheme based on tensor
product operator. Consequently, the method as a whole
becomes dependent on the particular GED design and in
the convolution scheme adopted in the tensor product (i.e.,
the particular convolution scheme of kernel functions
shown in Egs. 25 and 26, respectively). Moreover, also its
complexity is dependent on the particular GED algorithm.
As a whole, this algorithm is applicable to any kind of
labeled graphs, considering the same observations given in
Sect. 3.2.2.

3.2.4 Marginalized graph kernel

Another error-tolerant random walk graph kernel for
labeled graphs, based on the convolution operation briefly
introduced in Sect. 2.2.1, is described in [63]. Let
h=(h,...,ly),h € L¢, be the labels sequence of a ran-
dom walk of length k over a given graph G. In a scenario
where both vertex and edge labels must be considered, the
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sequence of labels h of a random walk of length k is
defined as h = (hy,... ,hy_1), ie., as a sequence of
alternating vertex and edge labels. Let the starting and
stopping probability vectors be p and q, respectively.
Assuming dealing only with the labels of the edges, it is
possible to compute the probability of the random walk
i1,...,0r+1 (sequences of vertex indices) of length f, with

the associated labels sequence h = (hy, ..., A;) as

t
p(G) = gi.., [[ 7121, (28)

J=1

A valid kernel for the computation of the similarity of
two sequences of labels, belonging to two different graphs
G and G, can be defined as

t t

.(h,h) = HK hi, i) = H<¢(hi)7¢(h;)>’ (29)

1 i=1

if h and lj have the same length, and otherwise zero. In
Eq. 29, (-, -) is a valid kernel defined over the labels of the
edges (e.g., an RBF kernel). The marginalized kernel [63]
between graphs is then obtained as the expectation of
k(-,-) over every possible labels sequences,

k(G,G') = ZZk (h,h)p(h|G)p(W|G'). (30)

The worst case time complexity for computing k(G, G'),
when both G and G’ are DAG, is O(c - ¢’ - |V(G)| - |[V(G")))
where ¢ and ¢’ are the maximum out degree of G and G,
respectively. This computational complexity can be
achieved because, in this case, it is possible to perform a
topological sort of the graphs, employing the one-pass
dynamic programming algorithm for DAGs. When G and
G’ are general direct graphs, the time complexity is given
by the inversion of a matrix of order |[V(G)| - |V(G)] [112,
Chapter 7].

3.2.5 Generalized random walk graph kernel

In [123], a generalized method for random walk graph
kernels computation is shown. For simplicity, only edge-
labeled graphs are considered. With this assumption, let L
and L be the edge-labels matrix and the set of edge labels,
respectively. Let H, be an RKHS induced by the kernel
K: L x L — R, and let the feature map ¢ : £L — H, that
also maps the element { to the zero element of the induced
Hilbert space H,. An extension of tensor algebra to RKHS
is defined in [123, Appendix A] to deal with the definition
of features map for matrices as @ : L — H™", with
[D(L)]; = d(Ly)-

Let G,G’ be two graphs. Let the initial distribution of
the product graphbep =p ® p’ and the relative stopping

probability vectorq =g ® q'. One of the most important
concepts introduced in [123] is the weight matrix of the
direct product graph W’;”/X”"/, that encodes edge-labels
similarity, and is defined, in the most general case, as:

W, = ®(L) @ ®(L'). (31)

Each entry of W, is non-zero iff the corresponding edge

exists in G . If H=R, then ®(L)=T (or A) and
consequently

W, =T,. (32)
If £ ={1,...,d} is a finite set, then H = R’ and we have

that

(3 .
o= (L;) = Gy iftheedgee; € EA label(e;) =1,
0 otherwise.

(33)

where ¢, is a d dimensional vector with only a one in the
position /. Practically, the weight matrix W has a nonzero
entry iff there is an edge in G, and the labels of the two
original graphs are the same.

In this case, we can redefine Eq. 31 as:

d

W, =) T()aT() (34)

=1

where T(!) is the filtered matrix defined as:
n.
T(lij) = { Oj

Generally speaking, each entry of ka represents the
similarity between simultaneous random walks of length &
on G and G', using the kernel x(-,-) on the edge labels,
considering different possible scenarios about the graphs
definitions. Given the starting and stopping probability
vectors p_and q_, the generalized graph kernel is defined

if Ly =1,

otherwise. (35)

as:

o0

k(G,G) =" u(k)

k=1

)q! Wip (36)

where p(k) is a nonnegative function of k needed for
convergence assurance and for generalize the behavior of
the kernel.

The authors of [123] show different optimized methods
for the computation of graph kernel shown in Eq. 36, stating
that this formulation can be seen as a bridge between dif-
ferent seminal formulations, such as the ones shown in
Sects. 3.2.1, 3.2.2 and 3.2.4. However, these optimizations
are graph specific, that is they exploit particular character-
izations of the input graphs, such as the type of labels and if
they are fully vertex or edge labeled graphs [123].
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3.2.6 Convolution edit kernel

This algorithm is known as convolution edit kernel [85]
and can be seen as a hybrid method defined by a decom-
position of pairs of graphs into edit paths, based on the
convolution property discussed in Sect. 2.2.1. Given the
(arbitrarily ordered) sequence of all vertices and edges of a
graph, any non-empty subsequence can be considered as a
decomposition of the graph. If two sequences, representing
two different graph G and G, have the same length and at
each position there are either vertices or edges in both
sequences, then the two sequences can be interpreted as a
partial valid edit path. It is possible to establish the validity
of each derived edit path checking the validity of the
substitutions (vertex—vertex, edge—edge) with a positive
definite function. Given two vertices u € V(G) and ' €
V(G'), the similarity of the (label) substitution u — u' is
given by the Gaussian RBF kernel shown in Eq. 26. The
same function, with a different parameter o¢, is also used
to evaluate the similarity of edge labels. If R~'(G) is the set
of edit decompositions of G and k(") is the function
evaluating whether or not two edit path decompositions are
equivalent to a valid edit path, it is possible to check the
structural similarity employing the convolution property.
For x € R"!(G) and X' € R"!(G') we obtain

(37)

~ _ J 1 if theyare valid edit paths,
ka0, ') = {0 otherwise.

The convolution edit kernel as a whole is defined as

kG, G)= > ke, x) [ koim((x);; &);). (38)
X€ER'(G) i
YER(G)

The kernel function assigns high values to similar
graphs and low values to dissimilar graphs in terms of the
similarity of the involved elements in the edit substitutions.
Unfortunately, the number of valid decomposition, IR™Y, is
exponential in the number of edges. Consequently, this
number must be carefully controlled limiting the number of
decompositions taken into account. For what concerns the
applicability, this method can deal with any kind of labeled
graph, provided, as usual, that suitable dissimilarity
functions (i.e., each specific d(-,-) in Eq. 26), tailored for
the specific nature of £y and Lg¢, are given.

3.3 Graph embedding-based

An embedding for a graph consists in explicitly define a
mapping function ¢ : G — D, such that a graph G is rep-
resented into a n-dimensional space, say D C R", bringing
back the problem to a space rich of established recognition
and learning methods. These methods are very interesting,
because the embedding space can be directly modeled and

@ Springer

explicitly analyzed. Indeed, once the embedding D is
computed, different post-processing techniques can be
applied to transform and analyze data, such as PCA-like
analysis.

3.3.1 GED embedding

The approach, broadly described in [100], consists in
producing a dissimilarity representation (see Sect. 2.3.2)
for the input graphs G using a GED as a basic dissimilarity
scheme. Consequently, the dissimilarity between two given
input graphs is defined as the (minimum) cost needed to
transform the data graph into the model graph. The dis-
similarity function d(-, -) is then employed as a key element
in the following embedding procedure.

Definition 32 (Graph embedding with GED) Given a set
of labeled graphs G = {Gy,...,G,}, a GED-based dissim-
ilarity function d:G x G — R", a prototypes set P =
{P1,...,P,}, P C G, the embedding vector is defined as

¢"(G) = [d(G,Py),....d(G,P,)]", VGeg, (39)

where the superscript P remarks that the embedding is
relative to the chosen set of prototypes P.

The first importantly derived property is that any two
graphs that have a relatively low GED in the input space
are mapped into close points in the embedding space. The
maximum distance between any pair of graphs is bounded
by a positive constant /n, where n = |P| [100]. That is,
this embedding can be seen as a Lipschitz continuous
mapping since ¢’ (G) — ¢"(G') <+/n-d(G,G') holds
VG, G’ € G. Note that the equality is easily obtained if the
components of the vectors in the embedding space are
scaled by a factor equal to /n, that depends only on the
number of prototypes. However, in order to assert that
¢ (-) is a Lipschitz mapping function, the pair (G, d) must
form a metric space.

The most critical issue is the selection of P. Assuming
to deal with classification and clustering problems over G,
the authors of [100] distinguish between two types of
selection: class-wise and class-independent. In the first
case we need to select /; prototypes for k classes with
Zi‘ — 1 [; = n. In the latter case, we simply need to select n
prototypes from the set G. Different strategies are proposed
to deal with this issue. For example, the Random Prototype
Selector (RPS), that just randomly selects n prototypes.
The Spanning Prototype Selector (SPS) approach is aimed
to cover the set G with equally distanced prototypes,
starting from the set median graph [4, 61].

Being basically a hybrid algorithm, its behavior
depends also on the particular design of the GED algo-
rithm. That is, the optimization effort should be devoted to
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the determination of the optimal P and at the same time to
the learning of the GED-related parameters (i.e., the edit
costs). The applicability of this method depends, in turn, on
the kind of labeled graphs that the particular GED can deal
with. Usually, any kind of labeled graphs can be processed.

3.3.2 Symbolic histograms embedding

The methodology of the symbolic histograms, firstly pro-
posed in [28, 29, 101], consists in producing an embedding
through the identification of the frequent subgraphs (FS) of
the input dataset G [70]. Given a set of input graphs G =
{Gy,...,G,}, the first (non-obvious) problem to solve is the
determination of the set of frequent subgraphs A =
{S1,...,Su} onG. Once obtained A, the embedding consists
in a mapping function qu : G — R™ that assigns an integer
valued vector h; to each graph G;, defined as follows,

¢*(G) = Joce(S1), .. .,0cc(Sn)]", VG; € G, (40)

where the function occ : A — N counts the occurrences of
each subgraphs S; € A in each given input graph G;. The
subgraphs S; € A are called symbols, and the set A is
called the symbols alphabet. Each vector representation h,
is then called the symbolic histogram of the graph G;. The
occurrence of a subgraph §; into a graph G; is evaluated
with a weighted GED-based inexact graph matching pro-
cedure d(-,-) [28]. If the matching score reaches a symbol-
dependent threshold t;, the occurrence is considered.
Hence, the developed embedding space can be thought as a
dissimilarity representation of G, using A as the represen-
tation set. The values of the components of h; can be
normalized or modified with some transformation function.

The first hard and crucial problem is certainly how to
determine the symbols alphabet A, assuming that G is a
generalized set of arbitrarily labeled graphs. Note that A, is
actually automatically determined by the following pro-
cedure. The proposed algorithm is based on an iterative
incremental strategy that builds the set A of all symbols of
order 1 < k <r, with r < ¢, where ¢ is the minimum
order in G. A clustering ensemble procedure is employed to
identify the recurrent substructures relying on d(-, -) as the
inexact graph matching evaluation between subgraphs.
This is an important difference between various FS algo-
rithms [13, 70, 118, 125, 130, 131], because they are
usually based on some exact matching scheme (e.g., iso-
morphism based approaches). Practically, a set of partitions
P={Pi,...,Pi}, with P, ={Cy,...,Cp,}, u=1—1,is
constructed over the current set A(i), i=1— r,foragiven
instance of the weighting parameters of d(-,-). The repre-
sentative subgraph S, of a cluster C;, is defined as a symbol
if it satisfies a cluster-dependent quality measure t¢,. Such
a threshold relies on size and compactness descriptors of

Ci. Note that r is actually a parameter establishing a
compromise between the computational cost and the
accuracy of graph embedding procedure as a whole.

Also, this embedding method depends on a direct dis-
similarity algorithm from the GED family, and conse-
quently the behavior as a whole is influenced by its
definition (i.e., the edit costs). Moreover, as well as stated
for the method described in Sect. 3.3.1, also the applica-
bility is strongly induced by the peculiarities of the
employed GED algorithm.

3.3.3 Structure space embedding

The theory of the structure spaces [59] has been briefly
described in Sect. 2.3.3. This is an embedding-based
methodology that represents the graphs into the so-called
T -space, considering their equivalence in terms of
weighted adjacency matrices.

The embedding into this vector space permits to extend
concepts like inner product, norm and metric, called
respectively 7 -inner product ({-,-)*), 7-norm (-,) and 7 -
metric (D) between vectors in the set X'7. The first two
functions are not strictly an inner product and a norm, as
they satisfy weaker properties (symmetry is not necessarily
satisfied). For example, (-,-)" is a maximizer of the value
assumed by the standard inner product on X. The operators
Il - ||, and D+ are minimizers of the norm and distance on X,
respectively. The dissimilarity measure between two given
graphs G| and G, is obtained as the minimum one con-
sidering each possible vector representation of them:
(G, G2) = min %=yl (41)
where the notation X € G; means a possible vector repre-
sentation X of the graph G; into X7, as defined in
Sect. 2.3.3. Unfortunately, the solution to Eq. 41 is an NP-
hard problem, since there are a factorial number of possible
representations of each involved graph.

For instance, to better understand this embedding
method, consider the two sample graphs X and Y shown
in Fig. 8. The 7 -inner product between the vector repre-
sentations of these graphs is equal to (X,Y)" = (g,z’) =
(X,X) =16. With the norm, we have

(X,X)" = X, = x = X = +/22. The distance D, (-,-) is a
metric and we have D.(X,Y) = d(x,y') = d(x,y) = V2.

Once the graphs are embedded in X', different graph-
based problems have been considered in [59], such as the
computation of the sample mean and the central clustering
of k-structures [60]. These tasks are conceived as non-
smooth continuous optimization problems on the metric
space (Xr,D), where D(-,-) is the metric distance D,(,-)
previously defined, or any other more appropriate distance

regard to
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function. For example, the sample mean of X, X5, ..., X} €

X7 is the the element X of the set X7 that minimizes the
objective function F(X) = Zf;lD(X,X[)Z. In [59, Prop.
Cl], it is shown that D(-,-) being a locally Lipschitz
function, the objective function F(-) is also locally Lips-
chitz. For instance, sub-gradient methods can be employed
to solve the optimization task. The determination of the
sample mean of a set of graphs is a well-known problem in
the context of graph-based pattern recognition, where it is
referred as the set median graph computation [4, 61].

However, from the applicability viewpoint, this method
can be used for a restricted type of labeled graphs. Indeed,
only graphs labeled with real-valued feature vectors (or
scalars) can be adopted to construct the structure space
Xr.

3.4 Seriation based

The seriation of a graph consists in finding an ordering of
the vertices, to obtain a sequence-like representation. This
family of currently available algorithms is suited for graphs
where edge labels are real numbers and the vertex labels do
not affect the seriation. Considering our taxonomy given in
Sect. 2, we should see these as both embedding and GED-
based methods, where the embedding space is (mostly)
defined by the spectrum of the graph. Given two seriated
graphs, the matching is then performed using known
methods such as string edit distance [72] or string kernels
[71, 116, 124, 132]. In the first case, various edit cost
systems can be used to learn the cost of each edit operation.
Online methods derive these costs during the algorithm
execution, adapting the underlying edit scheme. The tem-
plate of a typical seriation-based algorithm follows a three-
stage process, where firstly the graphs are transformed into
sequences of vertices, then the edit operation costs are
learned, and eventually a matching strategy is applied to
the sequences using the learned edit costs.

3.4.1 Shortest edit path

The method explained in [104] seriates a graph G using the
leading eigenvector of its matrix representation (e.g., aja-
cency matrix or transition matrix). The leading eigenvector
of its adjacency matrix contains the information about the
structural connectivity of each vertex of the graph. Simi-
larly, analyzing the (symmetric) transition matrix T"*", it
is possible to obtain information about the a priori proba-
bility of a given vertex in a random walk scenario on G.
Following this fact, the vertices are seriated performing a
random walk-like traverse of the graph, using the leading
eigenvector of T. The edit costs are learned in an online
fashion estimating an elaborated combination of the
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transition probabilities between involved vertices. The
minimum edit cost to transform the data graph into the
model graph is calculated using the Dijkstra algorithm [32]
over the edit lattice built considering the edit matrix.
Calculating the minimum edit cost using the Dijkstra’s
shortest path algorithm on the edit lattice or using the
Levenshtein distance [72] directly on the seriated graph
representations is equivalent in practice.

Firstly, a symmetric version of T is obtained as T =
D~'/2AD~'/2. Denoting with ¢ the leading eigenvector of
T, the sequence of vertices is computed with the procedure
outlined in Algorithm 2.

Algorithm 2 Graph Seriation
Input: A graph G = (V,€)

Output: A sequence of its vertices L = (vj,, ..., v, )
1: ji = arg max; ¢(j)

2: add(L1, j1)

3 k=2

4: repeat

5:  jr= argmax ¢(j)

JENG, , AIEL
add(Ly, jk)

7: until All vertices V(G) are in the list L
8: return L

=

In Algorithm 2, N , = {m|(jx_1,m) € EAm & L}
stands for the neighbors of the last selected vertex, indexed
by jr_; that are not already in the list L (line 6). The
algorithm terminates when the size of the list L, is equal to
|V|. At the end of the procedure, we have two sequences of
vertex labels, X = (xy,...,x,) for the data graph and ¥ =
(y1,-..,ym) for the model graph.

Given a generic edit path of & edit operations I' =
(P15 -+ 7), the edit cost of this path is obtained as

e(l') = Z’?("/k = Vks1)- (42)
k

The edit costs of each #(y, — 7,,,) are calculated
evaluating the probability of a state transition from 7, to
Yx+1, considering that each y, = (V(G1) Ue, V(Gy) Ue) is
a valid edit operation. If a state transition is highly
probable, the relative edit cost should be low, i.e., #(y, —
Ver1) = —10g(P(y; — 7441)). The probability  P(y, —
Vig1) 1s defined as

P(y, — "/k+1) = ﬁa,bﬂt,dRGl (a;¢)Rq,(b,d), (43)

where for simplicity, (a, ¢) and (b, d) are basic edit
operations of the form (V(G;) Ue, V(G,) Ue). In Eq. 43,
Pap and f., are referred to as morphological affinity
parameters of the vertices and

PGI (Cl, C)
2-abs(|v(G1)|=|¥(G2)])
(G)[+(G2)]

if (a,¢) € £(Gy),
ifa=eVec=c¢ (44)
otherwise.

RGl (a, C) =

The same holds for Rg,(b,d). So, the problem of
computing GED is posed as finding the shortest path
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through the lattice by Dijkstra’s algorithm and the GED
¢(I'*) between these two graphs is given by I'*=
argminpc(T).

3.4.2 Maximum a posteriori

The Maximum a Posteriori (MaP) approach [103] is very
similar to the one shown in Sect. 3.4.1, but the graphs are
seriated using the leading eigenvector of the adjacency
matrix A and the least expensive edit path I'* is obtained
using the Levenshtein algorithm [72] on the edit matrix. In
this method, edge density of the two graphs is used to
estimate the edit costs. The algorithm is very similar to the
one shown in Algorithm 2. The edit costs of a state tran-
sition #(y; — 7,,) is obtained as

Nk = k1) = —1og(P(vel @, (i), dg, ()
— log(P (741 |¢G, (Xit1), b, (vj+1))
— log R ye+1,
(45)

where Ry i1 = POk Vi 1)/(PG)P(Y11)) s referred to as
the edge compatibility value and is obtained as

oG if y; — 7, is adiagonal transition,
PL2pGU
(xi,Xir1) € E(G1) A (i, yir1) € E(G2)
G if (Vk — +1) is a vertical transition,
pPG2
(xi,xi41) € E(G1) A (yj = Vyje1 =)
G if (yx — 7:,1) isahorizontal transition,
pU1
(v, yj41) € E(Ga) A (x; = Vi =)
1 if ()C,‘ = VXt :) A (y, = Vyj+i :)

(46)

where pg, and pg, are the edge densities.
In Eq. 45, the conditional probabilities P(yl¢ps 1(x)),
¢G 2(y)) are calculated as

{%Mexp(—zﬁlz (¢Gi(x:) — ¢G2()’j))2) ifxi 7 €Ny 7 €
, ifx—eVy —e

(47)

where o and ¢ are two parameters which need to be set
a priori.

3.4.3 String kernels

Given two seriated graphs X = (x,...,x,) and Y =
(y1,-.-,¥ym), a kernel function for strings could be
employed to determine the similarity between these string
representations of the two graphs. For the sake of con-
ciseness, we can cite only a method based on semidefinite
programming [132] and a fast kernel techniques for strings
that employ suffix trees [116, 124].

3.5 Algorithms analysis

In this survey, three main families of algorithms have been
considered: graph edit distance based, graph kernels based,
and graph embedding based. In addition, we have consid-
ered also hybridized formulations based on graph seriation
techniques. In what follows, we summarize some of the
peculiarities associated with the algorithms we discussed in
this paper, together with a focused analysis on algorithms
comparison and parameters related issues.

Graph edit distance approaches Modern GED-based
algorithms search for a suboptimal edit path, usually
solving another task, such as the assignment (see
Sect. 3.1.4) and quadratic optimization (see Sect. 3.1.3)
problems. That is, they do not solve exactly the optimiza-
tion problem defined in Eq. 2. However, the loss, in terms
of recognition rate, is more than acceptable considering the
huge average achieved speed-up [90, 98]. The dissimilarity
is conceived as the amount of edit operations costs needed
to transform the data graph into the model graph. As a
result, these inexact graph matching functions are usually
not symmetric. Furthermore, usually algorithms of this
family focus on the vertices-related edit operations,
deriving automatically the ones on the edges. An interest-
ing characteristic of this family of algorithms is that edit
operations are intuitive and easily comprehensible, that is,
it is possible to visually understand the operations needed
to edit the data graph into the model graph. This feature can
be very helpful when domain-dependent knowledge is
required to understand the recognition problem at hand.

GED-based algorithms are usually polynomial. Indeed,
the bipartite graph matching algorithm [98], described in
this survey in Sect. 3.1.4, has a computational complexity
of O(n?). The computational complexity associated with
the quadratic optimization problem depends on the par-
ticular adopted algorithmic scheme [87], but it is always
bounded on the polynomial class. GED-based algorithms
are able to deal with virtually any kind of labels. Indeed,
usually the edit operation that corresponds to the substi-
tution is carried out just providing a suitable basic dis-
similarity function for the specific nature of the labels set.

Graph kernels approaches Graph kernels algorithms
are, in one way or another, founded on the convolution
property of valid kernel functions. These methods are able
to unify structural and semantic related analysis of the
input patterns in a single, and usually mathematically well-
founded, operation, such as the tensor product operator (see
Sect. 3.2.1). Standard computation of the tensor product
has a computational cost of 0(n4), i.e., it is an expensive
operation. Moreover, once the tensor product is computed,
further operations are required to extract the similarity
value from the output adjacency matrix A, . For example,
computing its eigendecomposition requires an additional
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cost of O(n3) (in the general case). In order to face this
issue, in [123] (see also Sect. 3.2.5) a generalized approach
to the computation of the random walk graph kernel is
depicted, together with different optimized strategies for
faster computations, although dependent on the type of
labeled graphs. Tensor product-based graph kernels suffer
a (not so penalizing) limitation. Being based on the adja-
cencies (or, in a similar way, on the transition probabilities)
of the two input graphs, these methods cannot be applied to
graphs defined with only one vertex, or graphs without
edges. Another drawback is that, usually, the resulting
matrix Ay (or Ty) becomes very big extremely fast, lim-
iting the application from the memory usage viewpoint.

The use of graph kernels can be thought as an implicit
embedding method, as discussed in Sect. 2.2. Unfortu-
nately, usually the specific embedding space Hy, induced
by the valid graph kernel function k(-, ), is unknown and
further post-processing analysis cannot be conducted on it.
Methods of this family are usually applicable to any kind of
labeled graphs. For example, considering the Gaussian
RBF (see Eq. 26), this kernel function can be applied to
any type of label, using a suitable dissimilarity function
d(-,-), tailored to the specific labels set.

Graph embedding approaches Graphs embedding
methods are very interesting, mainly because of the con-
trollable embedding space. Indeed, it is possible to perform
further post-processing analysis on the explicit embedding,
and, in the same time, inspect with PCA-like techniques the
peculiarities of the data. Moreover, they can be thought as a
two-stage algorithms, where firstly the set of prototypes,
used for embedding purpose, is determined. This stage can
be defined as the synthesis of the embedding space D.
Subsequently, the matching of graphs is performed
explicitly on D. Therefore, the set of embedding prototypes
(both P and A defined in Sects. 3.3.1 and 3.3.2, respec-
tively), can be considered pre-computed in some pattern
recognition applications. These methods are, usually,
hybridized, since their overall behavior depends on a core
inexact graph matching algorithm, such as the GED-based
one. This fact introduces more parameter dependencies and
computational complexity in the method as a whole. It is
worth stressing that also a graph kernel algorithm can be
thought as a dissimilarity measure. Indeed, it is always
possible to define a dissimilarity value starting from a
similarity measure, even when this similarity is unbounded
[92]. Consequently, in both algorithms described in
Sects. 3.3.1 and 3.3.2, also a suitable graph kernel, used as
a dissimilarity, can be adopted. Note that when a graph
kernel is used as a dissimilarity, any kernel function can be
employed in the various convolution schemes, not limiting
the choice to valid kernel functions.

The symbolic histograms embedding, described in
Sect. 3.3.2, is founded on a clustering-based approach,
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searching for a set A of FS (called the alphabet of symbols),
using an inexact graph matching algorithm as dissimilarity
measure, introducing a tolerance parameter in the FS
identification scheme. For what concerns the embedding
synthesis stage, assuming employing a simple sequential
clustering scheme, such as the one provided by the Basic
Sequential Algorithmic Scheme (BSAS) [117], this method

has a complexity of O(|A| - GC - (Q + |C|*)), where GC is
the cost associated with each graph matching computation,
Q is the maximum number of allowed clusters and C is the
set of clusters representatives, which is kept fixed in [28, 29,
101] using a constant-size cache replacement policy [27].
Hence, it consists of a linear, in the cardinality of the set of
symbols A, number of inexact graph matching computa-
tions. It is easy to understand that this approach, considering
the matching stage, has a cost that is greater than, for
example, a direct GED-based method. Indeed, once A is
determined, the embedding procedure of an input graph G;
is performed issuing |A|-|expand(G;)| inexact graph
matching computations, where the function expand(-)
expands a graph into a (not complete) set of its subgraphs.
Given A, for what concerns the time complexity of the
matching stage, the number of inexact graph matching
evaluations for computing, say, d(G;, G,), is given by |A| -
(lexpand(Gy)| + |expand(G,)|), which is again linear in the
number of derived symbols.

Obviously, also the embedding method described in Sect.
3.3.1 is dependent on the cost associated with the direct
graph matching algorithm (i.e., to the particular GED-based
algorithm). The number of inexact graph matching evalua-
tions depends strictly on the size of P. For what concerns the
matching stage, the matching of d(G;, G,) is carried out
executing exactly 2|P| inexact graph matching computa-
tions needed to produce the embedding vectors. Prototypes
selection strategies permits also to limit the number of
computations to |P| < |G|. However, the determination of
this set of prototypes P has an important cost, subjected to
the specific selection strategy adopted [100].

The algorithm based on the embedding into the structure
space, described in Sect. 3.3.3, is not a two-stages algo-
rithm and does not require any additional core graph
matching procedure, being based on a particular interpre-
tation of the (weighted) adjacency matrix of each graph.

Graph seriation approaches The algorithms based on
seriation, discussed in this survey in Sect. 3.4, are actually
hybrid methods that rely on both edit distance performed on
sequences and embedding approaches, and also for this
reason they have been discussed separately. The reviewed
algorithms use the information provided by the edges to
produce a sequence of the vertices identifiers, according to
their importance in the graph. As used in the literature, these
algorithms are applicable only to edge-labeled graphs, with
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Le C R™. However, this characterization of the edges labels
is not mandatory, because the transition and adjacency
information on a graph can be always extracted, regardless
the specific definition of L¢. However, we stress that the
information of the edges labels should be employed in the
seriation stage, especially considering that this information
is lost once the graph has been represented by a sequence of
its vertices labels. Indeed, string edit distance algorithms are
then employed to the seriated graphs, computing the simi-
larity of the sequence of vertices identifiers. With regard to
the computational complexity of the presented algorithms
(see Sect. 3.4), the seriation stage is dominated by the eig-
endecomposition cost, that is O(°). If the alignment of the
sequences of vertices identifiers is carried out with the Le-
venshtein algorithm, we need to add a cost of O(nz). Con-
versely, if the Dijkstra algorithm is used to find the shortest
edit path on the edit lattice, the additional cost becomes
O(J€| + |V] - log(]V])), where € and V are the edges and
vertices sets of the edit lattice built for two input graphs.
To be able to apply the same inexact graph matching
scheme based on seriation to fully labeled graphs, it could
be interesting to employ a general sequence matching
procedure, such as the one provided by the Dynamic Time
Warping (DTW) [106] algorithm. In fact, the DTW can be
tailored to the specific nature of the sequence, virtually
opening the possibility to match any kind of complex labels
for the vertices. The DTW algorithm has the same scheme
of the Levenshtein distance, but its time complexity is
determined considering also the specific definition of Ly.

3.5.1 Considerations on algorithms comparison

At least for the pattern recognition and soft computing
viewpoints, it is impossible to state a priori what matching
method is better than others. This kind of information can
be inferred only through a systematic experimentation over
a benchmarking dataset that is far beyond the scope of this
paper. For this purpose, the scientific community should
agree on more shared datasets as the briefly described IAM
(see Sect. 1.2), where different research groups are already
publishing their results [38, 46, 58, 75, 98]. In addition,
although the computational complexity of the algorithms
gives an important information concerning the limit costs,
also the real computing time performances should be
verified using shared ad hoc benchmarks, since each
algorithm is characterized by many factors that influence
the time performance outcome in a benchmarking analysis
on finite-size data. For this purpose, when using fully
labeled graphs, there are constant costs associated with
each single labels matching computation, that can become
a very important bottleneck if the type is non-trivial, such
as text excerpts, digital images or any complex composite
objects.

3.5.2 Graph matching parameters tuning

Each described algorithm for the inexact graph matching
computation depends on some parameters that are in some
sense critical and deeply specific to the problem instance.
For example, in the GED-based methods, at least the edit
costs of each edit operation play a crucial role, and should
be inferred from the specific context of application. Con-
sidering the graph kernel, many of the given formulations
are founded on the convolution property of different valid
kernel functions, defined over smaller parts of the whole
object (i.e., the graph). The number of parts taken into
consideration is certainly an important parameter of this
approach, as well as the parameter ¢ in the widely adopted
RBF kernel. Note that different valid kernel functions, such
as the polynomial one, depend also on parameters (see
Table 1). As concerns the embedding of graphs consider-
ing a local reference framework, such as the one described
in Sect. 3.3.1, a critical task is the selection of the proto-
types set P, extremely relevant and specific to the domain
of application. Moreover, its cardinality is relevant to the
whole computational complexity, as indeed it determines
the number of inexact graph matching computations nee-
ded to perform the computation of the dissimilarity
between two given graphs. Not exempt from this depen-
dence is also the symbolic histogram method, described in
Sect. 3.3.2. Indeed, both the maximum subgraphs order and
the specific clustering procedure parameters (such as the
symbols alphabet set, and thus the maximum number of
allowed cluster Q in the BSAS case) influence the recog-
nition procedure as a whole.

This means that any inexact graph matching procedure,
regardless of the family it belongs, can be seen as a para-
metric (dis)similarity measure. Therefore, any inductive
modeling system, adopting such a graph matching proce-
dure as the basic dissimilarity scheme, should include a
suited meta-heuristic optimization procedure in order to
automatically determine these parameters on the basis of
the dataset at hand. Moreover, it is important to underline
that in general, besides the parameters set characterizing a
given graph matching procedure, it is needed also to con-
sider the possible parameters sets of the dissimilarity
measures adopted in the vertices and edges spaces. Each
parameter in this overall set should be optimized tailoring
their values on the application at hand, enabling adaptation
to the specific problem semantic.

Simple experiment on parameters tuning To show how
important is the learning of the inexact graph matching
algorithms parameters, we report a simple example in
which we describe a dataset of labeled graphs, together
with a relatively simple recognition system based on the k-
NN rule. We will see that the generalization capability,
with and without a parameters learning stage, drastically
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changes. Although the learning stage is fundamental in
these systems based on inexact graph matching, we will see
that there is a computational price to pay. We stress again
that the same claim holds for any inexact graph matching
algorithm, because this parameter dependence, in one way
or other, enables the wide-range applicability to different
contexts.

We have considered the Letter dataset, with the highest
level of distortions, taken from the IAM graphs database
[97]. The dataset is composed of a triplet of training, val-
idation and test sets, each of 750 patterns, equally distrib-
uted into 15 different classes. The recognition system is a
k-NN based on the inexact graph matching algorithm
known as the Graph Coverage [75]. It is a graph kernel
function based on the well-known format provided by the
tensor product computation, largely described in both the
methodological and algorithmic-related sections (see Sects.
2.2, 321, 32.2, 323 and 3.2.5). The graph coverage
algorithm is dependent on three parameters, i.e.,
oy,,0y,,0¢, of the respective RBF kernels (see Eq. 26).
Hence, in our simple experiments, we will show how the
determination of these three parameters influence consid-
erably, and reasonably, the recognition rate performance on
the test set. For simplicity, we have tested only the case for
k = 1 in the k-NN classifier. Using the default parameters,
that is setting oy, = 1,0y, =1 and ¢ = 1, we obtain a
recognition rate of 69.86 %, computed in 12 s. Repeating
the experiment with a parameters learning stage, based on a
genetic algorithm optimization scheme with (only) ten
evolutions and considering as the fitness function the
classification accuracy on the validation set, we achieve a
recognition rate on the test set of 74.66 %, but with a
computing time of 40 min. The learned parameters setup is
oy, = 0.7908, gy, = 0.4548 and oz = 1.8684.

To stress that the same fact holds for any inexact graph
matching scheme, we repeated the same experiment
substituting only the core matching procedure with a
GED-based algorithm, called weighted Best-Matching
Vertex First (weighted BMF) [29]. It is a very fast algo-
rithm (its computational complexity is O(n%), where n is
the order of the data graph) founded on the well-known
approach provided by the graph edit distance (see
Sect. 2.1), performing a greedy assignment of pairs of
vertices (i.e., the ones with lowest labels-dissimilarity
value are assigned in each iteration, without the possibility
of modifying this decision). As usual in this scenario, the
edit operations of the edges are induced by the ones per-
formed on the vertices. The weighted BMF algorithm
parameters set is defined by three weights, the substitution,
insertion and deletion, for both vertices and edges, for a
total of six parameters, each assuming value in [0, 1].
These weighting parameters define the importance of each
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kind of computed edit operation cost in the whole edit
path. For simplicity, we will denote these parameters as
sy, iy,dy (for the vertices) and sg,ig,ds (for the edges).
The achieved recognition rate on the test set, using the
default setting iy=ig=dy=ds¢=1, is
72.4 %, with a computing time of about 2 s. Performing a
stage of parameters optimization, using the same genetic
algorithm-based scheme with again ten evolutions, we
improve the recognition rate at 89.60%. The learned
parameters setup is sy = 0.4678, iy = 0.7175,dy = 0.9309,
sg = 0.1306,ic = 0.2189,ds = 0.7380. The computing
time becomes about 8 min.

As it is easy to understand from this very simple
experiment that the learning stage of inexact graph
matching algorithms parameters is crucial from the pattern
recognition viewpoint. However, a computational price
must be paid, because the learning of the parameters must
be performed using some optimization scheme, such as the
one previously described. As a consequence, the matching
method employed in the recognition system becomes
adaptable, at least in theory, to many contexts.

Sy = Sg =

4 Conclusions

Given a problem at hand, defining a suitable and flexible
graph matching procedure is a challenging problem, mainly
for two reasons: its intrinsic complexity and the heteroge-
neity of the graphs definitions. Graphs can be arbitrarily
labeled, i.e., these measures, to be fully meaningful, must
take into account both topological and labels related
information. In the fields of pattern recognition and
machine learning, everything is a matter of a compromise
between the computational cost and the quality of the
results of a given method. For this purpose, different
algorithms are conceived to focus on a particular aspect of
the data. We have classified the algorithms into three main
categories, namely graph edit distance based, graph kernels
based and graph embedding based. The first family of
algorithms relies on searching for a (suboptimal) edit path
between the data and the model graphs. As a whole, this
approach is highly adaptable to many labeled graphs types.
Graph kernels approaches are founded on the kernel trick
(see Sect. 2.2): to be able to use these kernel functions on
various kernel machines. Usually, these algorithms are
conceived using mathematically well-grounded operators,
such as the tensor product of graphs. Modern approaches of
this family are applicable to virtually any type of graph.
Finally, algorithms from the embedding-based family are
usually hybrid methods, based on some core inexact graph
matching algorithm, such as the ones from the other two
families. Consequently, they result in being more complex,
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yet providing, in general, the possibility of lookong into the
data, analyzing the produced embedding.

As discussed in Sect. 3.5, each described algorithm
depends on a set of parameters that are at the same time the
key to the adaptability to a specific dataset and a critical
problem from the learning viewpoint. Indeed, as briefly
shown in Sect. 3.5.2, the adaptation of these parameters for
the specific dataset results in a straightforward performance
improvement. The claim extends clearly to any parame-
trized inexact graph matching algorithm.

4.1 Future directions

Many approaches for the graph matching problem have
been formulated in the scientific literature. Although there
are yet a lot of possible developments in this context, we
think that a very important issue is the computational speed-
up of these methods, regardless of the specific algorithmic
scheme (i.e., GED, graph kernels or graph embedding). As a
basic building block of more complex pattern recognition
and soft computing systems, these methods should be very
efficient, to be able to effectively preserve the algorithm
adaptability to a specific dataset via parameters optimiza-
tion (see Sect. 3.5.2) in a reasonable computing time.
Moreover, the efficiency is required if we deal with very
large datasets or, even more, with very big labeled graphs.
Note that big graphs are encountered often in many fields of
high interest, such as social networks [126], biochemical
compounds and different kinds of interaction networks [47,
134], brain networks [51], smart grids [33] and so on.
Consequently, the extendability of these techniques to lar-
ger graphs is subjected critically to the capability of con-
ceiving faster matching algorithms.

One interesting possibility comes from the formulation of
parallel algorithms [76], conceived for some parallel
abstract model, such as the PRAM [39, 49] or the bulk
synchronous parallel (BSP) [122] model. The speed-up, in
this case, can be achieved also theoretically. Moreover, there
is the possibility of developing (or employ) specialized
devices such as graphic processing units (GPUs) [76] and
field programmable gate array (FPGA) [22], accelerating the
algorithms using modern parallel hardware capability.
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