
Werner Vogels
Cornell University

IEEE INTERNET COMPUTING 1089-7801/03/$17.00©2003 IEEE Published by the IEEE Computer Society NOVEMBER • DECEMBER 2003 59

W
eb

 S
er

vi
ce

s
Tr

ac
k

Web Services Are Not
Distributed Objects

The hype surrounding Web services has generated many

common misconceptions about the fundamentals of this

emerging technology.

Web services are frequently
described as the latest incar-
nation of distributed object

technology. This misconception, perpetu-
ated by people from both industry and
academia, seriously limits broader accep-
tance of the true Web services architec-
ture. Although the architects of many dis-
tributed and Internet systems have been
vocal about the differences between Web
services and distributed objects, dispelling
the myth that they are closely related
appears difficult.

Many believe that Web services is a dis-
tributed systems technology that relies on
some form of distributed object technolo-
gy. Unfortunately, this is not the only com-
mon misconception about Web services. In
this article, I seek to clarify several widely
held beliefs about the technology that are
partially or completely wrong.

Fundamental Errors
At the International World Wide Web
Conference in May 2003, a smart and

gifted Internet architect I will call Peter
asked me, “Don’t you think Web services
will fail like all the other wide-area dis-
tributed object technologies that people
have tried to build?”

I was baffled. How could someone like
Peter still view Web services as distributed
object technology? Yet, he is not alone in
his stubbornness: many developers,
architects, managers, and academics still
see Web services as the next episode in a
saga that includes Corba, DCOM, and
remote method invocation (RMI).

Web services are distributed systems
technologies, but that is where the com-
mon ground ends. The only possible rela-
tion is that Web services are now some-
times deployed in areas where distributed
object applications have failed in the past.
Within the distributed technology world,
it is probably more appropriate to associ-
ate Web services with messaging tech-
nologies because they share a common
architectural view, although they address
different application types.

Given that Web services are based on XML
documents and document exchange, we could
say their technological underpinning is docu-
ment-oriented computing. However, exchanging
documents is very different from requesting an
object’s instantiation, requesting a method’s
invocation on the basis of the specific object
instance, receiving that invocation’s result in a
response, and releasing the object instance after
several such exchanges.

I frequently encounter about a dozen other
statements that fall into the same basic category. I
hear people say, for example, that “Web services are
just remote procedure calls for the Internet,” or
“You need HTTP to make Web services work.”
Before addressing several of the more common
misconceptions, we should define a Web service in
its purest form in order to begin with a clear model.

Minimalist Web Services Model
I believe much of the confusion surrounding Web
services comes from press and vendor hype, which
lacks the technical depth to make clear the foun-
dational concepts. Of course, the political bicker-
ing among standards bodies such as the W3C
(www.w3.org), OASIS (www.oasis-open.org), and
the Web Services Interoperability Organization
(www.ws-i.org) doesn’t help clarify the simple,
interoperable nature of Web services. One of the
key architects in the W3C’s Web Services Architec-
ture working group stated quite bluntly that they
did not have the luxury of describing Web services
in a simple manner because none of the participat-
ing vendors could agree on a single definition.

To understand the misconceptions, we must first
cut through the hype. If we get back to the core, we
see that Web services comprise three components:

• The service is software that can process an
XML document it receives through some com-
bination of transport and application protocols.
We don’t care how this component is con-
structed, whether object-oriented techniques
are used, or if it operates as a stand-alone
process, as part of a Web or application server,
or as a thin front end for a massive enterprise
application. The only requirement is that the
service be able to process certain well-defined
XML documents.

• The XML document is the Web service’s key-
stone because it contains all the application-
specific information that a service consumer
sends to the service for processing. The docu-
ments a Web service can process are described

using an XML schema; two processes engaged
in a Web services conversation must have
access to the same description to ensure that
they can validate and interpret the documents
they exchange. This information is commonly
described using the Web Services Description
Language (WSDL).

• The address, also called a port reference, is a
protocol binding combined with a network
address that a requester can use to access the
service. This reference basically identifies
where the service can be found using a partic-
ular protocol (for example, TCP or HTTP).

In principle, these three components are enough to
build a Web service; in practice, however, there is
a fourth component: the envelope. It could be con-
sidered optional, but it provides an extremely use-
ful framework for managing the message
exchange. The envelope is a message-encapsula-
tion protocol that ensures that the XML document
to be processed is clearly separated from other
information the two communicating processes
might want to exchange. For example, an inter-
mediary could use the envelope to add routing and
security information to the message without mod-
ifying the XML document.

The protocol used for almost all Web services is
SOAP, which originally stood for “Simple Object
Access Protocol.” This naming was a mistake, how-
ever, because the protocol has nothing to do with
accessing objects. Since the SOAP 1.2 specifica-
tion’s completion,1 Internet architects have used the
protocol without expanding the acronym. The
SOAP message itself, also called the soap envelope,
is XML and consists of two possible elements:

• The soap header holds all system information.
• The soap body contains the XML document that

the Web service is to process.

Web service protocols and extensions use the
header element to carry their protocol-specific
information — a security signature, for example —
while the body element remains untouched.

Whether you use your text editor to construct a
SOAP message to send in an email or use an auto-
matically generated proxy client from within your
favorite programming language, the three core
components are all it takes to make a Web services
interaction work.

This minimalist model represents only the basic
core of Web services technology. I do not include
service-description techniques, service registration,

60 NOVEMBER • DECEMBER 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Web Services Track

or other technologies that are necessary to make
Web services work in more complex settings. The
simple framework presented here lets us examine
several common misconceptions from a more
principled view. For a more extensive look at Web
services, see the Web Service Architecture draft
from the W3C Web Services Architecture working
group (www.w3.org/2002/ws/arch/).

Web Services Really Are Simple
At its core, Web services technology is quite sim-
ple; it is designed to move XML documents
between service processes using standard Internet
protocols. This simplicity helps Web services
achieve the primary goal of interoperability.

The simplicity also means that we must add
other technologies to build complex distributed
applications. Over time, we will see that the
issues vendors are now bickering about — relia-
bility, transactions, asynchronous processing,
and so on — will become reality in an interoper-
able manner. The process surrounding security
extensions, for example, gives us reasonable
hope that vendors can reach agreement on a set
of interoperable primitives. For the other areas,
such as asynchronous messaging, we can expect
that either market forces will drive the selection
of one particular proposal or that vendors will
work out their differences in a standards forum.
The goal of Web services is to provide an inter-
operable platform, so the market will not toler-
ate proprietary solutions.

On the other hand, the process surrounding reli-
able messaging has many distributed-system spe-
cialists scared that vendors’ irrational behavior will
produce major obstacles on the road to interoper-
ability. The greatest threat to Web services’ large-
scale success will be vendor politics. In an attempt
to preempt the reliable messaging specification’s
release by IBM, Microsoft, BEA, and Tibco,2 a con-
sortium led by Sun Microsystems and Oracle recent-
ly published a reliable messaging specification3 that
was little more than a cut-and-paste effort from the
reliability section of ebXML. This specification was
clearly released too early as a result of political
pressures. The document does a disservice to the
community; it is ambiguous in many places, incom-
plete in others, and riddled with errors throughout.
Indeed, any company that implemented it would
end up with an unreliable system.

Common Misconceptions
The distributed computing world of Web services
centers around XML document design. Protocols

and addresses are necessary only as glue — sup-
port technologies for getting the document to the
right place in the right manner. In contrast to the
simplicity of basic Web services, these XML doc-
uments can be extremely rich and complex. For
example, a Web services system I worked on for
the US Air Force publishes flight plans that can
easily be a megabyte or more in size. Encoding
these rich documents in XML ensures that they are
extensible at predefined places without disrupting
existing document consumers.

The lack of understanding that Web services pri-
marily support the document-exchange contract is
one of the root causes for many of the misconcep-
tions about them. These document-centric principles
can help dispel the most common misconceptions.

1. Web Services Are
Just Like Distributed Objects
Given the strong similarities between Web services
and distributed objects, it is understandable that
many people believe they are the same. After all,
both have some sort of description language, well-
defined network interactions, and similar mecha-
nisms for registering and discovering available
components. Contributing to the misconception is
that many tool vendors provide simple object-ori-
ented techniques for implementing Web services,
thus giving them the appearance of distributed
objects. Several of these vendors have long histo-
ries with distributed object technologies, which
gives them strong motivation to make Web ser-
vices seem to be an evolutionary step in distrib-
uted object systems.

One thing to remember, however, is that Web ser-
vices technology is currently very limited. For exam-
ple, unlike well-established distributed object sys-
tems, which have numerous support tools, Web
services toolkit vendors have only just begun to look
at the reliability and transactional guarantees that
distributed object systems have supported for years.

An important notion at the core of distributed
object technology is the object life cycle:

• Upon request, a factory instantiates the objects.
• The consumer who requested the instantia-

tion performs various operations on the ob-
ject instance.

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2003 61

Not Distributed Objects

The greatest threat to Web services’

large-scale success is vendor politics.

• Sometime later, either the consumer releases
the instance or the runtime system garbage-
collects it.

A special case is the singleton object, which does
not go through the instantiate–release cycle. In
both the standard and specialized cases, however,
the object is identified through a reference that can
be passed between processes to provide a unique
access mechanism for it. Objects frequently con-
tain references to other objects, and distributed
object technology comes with extensive reference-
handling techniques to support correct object-life-
time management.

This notion of object reference is essential;
without it, there is no distributed object system.
This reference also gives the caller a mechanism
for returning to a given object repeatedly and

accessing the same state. Distributed object sys-
tems enable stateful distributed computing. A con-
sumer accesses an object’s state through a well-
defined interface that is typically described in an
interface definition language.

Web services share none of the distributed
object systems’ characteristics. They include no
notion of objects, object references, factories, or
life cycles. Web services do not feature interfaces
with methods, data-structure serialization, or ref-
erence garbage collection. They deal solely with
XML documents and document encapsulation.

With a bit of a stretch, we could force an analo-
gy between a Web service and a singleton object or
a stateless JavaBean from the Java2 Enterprise Edi-
tion (J2EE) world, but we would need to make such
an object very restrictive to make the comparison
work. Web services cannot offer any of the stateful
distributed computing facilities that most distrib-
uted object systems support as basic functionality.

Major differences between the two technologies
are also obvious when we look at how information
flows between client and server or producer and
consumer. In the distributed object system, the
information flow’s richness is encapsulated in the
interfaces an object supports; in a Web services
system, it comes from the design of the XML doc-
uments that are passed around. Both technologies
try to achieve the same goal — to provide the

application designer with rich facilities for encap-
sulating application functionality — but they use
very different techniques.

At the basic level, Web services do not define
relationships between service invocations at the
same or related services, but we can build only
very limited distributed systems without identify-
ing relationships between components in a com-
putation. One of the first advanced Web service
specifications released dealt with coordination4 to
enable multiple services and their consumers to
establish contexts for their interactions. This con-
text is not just a weak form of object references; it
identifies an ongoing conversation rather than any
states at the services.

Distributed object technology is very mature
and robust, especially if you restrict its usage to
the environment for which it was designed: the
corporate intranet, which is often characterized by
platform homogeneity and predictable latencies.
Web services’ strength is in Internet-style distrib-
uted computing, where interoperability and sup-
port for platform and network heterogeneity are
essential. Over time, Web services will need to
incorporate some of the basic distributed systems
technologies that also underpin object systems,
such as guaranteed, in-order, exactly-once mes-
sage delivery. It is unlikely, however, that Web ser-
vices can simply adapt the existing technology to
achieve the same properties, given that they try to
address interoperability on a scale at which other
technologies have failed.

Web services and distributed object technologies
can work together in two known approaches. First,
we can wrap certain objects from an object system,
such as J2EE, with a Web service. Of course, this
approach has its limitations and will not work for
just any object. (See Steve Vinoski’s article on
interaction models to learn more.5) Alternatively,
we can use Web service protocols such as SOAP as
the transport layer for the distributed object sys-
tem. This is sometimes used to tunnel object-spe-
cific interactions over HTTP. It is, however, a poor
choice because alternative solutions, such as the
general inter-ORB protocol (GIOP), are better suit-
ed for that interaction pattern.

2. Web Services Are RPC for the Internet
RPC provides a network abstraction for remotely
executing procedure calls in a programming lan-
guage. It offers mechanisms for identifying a
remote procedure, deciding which state must be
provided to the procedure at invocation time, and
what form to use to present the results to the caller

62 NOVEMBER • DECEMBER 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Web Services Track

A TCP transport is not sufficient for

end-to-end reliability of Web services.

at completion time. It also includes extensive
mechanisms for handling errors at both the run-
time and programming levels.

Basic Web services provide only a networking
abstraction for transferring XML documents and
for a remote service entity to process them. Web
services use the notion of actor or role to iden-
tify the service that should consume the docu-
ment, but they associate no predefined seman-
tics with the XML document’s content. We could
implement an RPC-style interaction using pairs
of SOAP messages and a transport such as HTTP,
but this would require certain fixed rules for
encoding the arguments in an XML document
and rules for returning the results to the caller.

We can view Web services as just XML docu-
ment processors, but this paradigm doesn’t easily
integrate with current application-development
techniques. Tool vendors will do their best to pro-
vide the infrastructure to let developers apply tra-
ditional procedure calls to simple Web services. For
example, Microsoft’s Web Service Enhancements
2.0 toolkit provides a set of object types we can
use to implement an RPC-style interaction, in
which the programming infrastructure tries to
interpret the document for the programmer. The
toolkit also includes a similar set of types that give
the programmer simple but powerful support for
receiving raw XML documents.

Internet-wide RPC has failed in the past, and
Web services are not going to be much help in
solving the issues. The Web services infrastruc-
ture provides no magic that can suddenly over-
come what excellent protocol architects were
unable to achieve with established RPC systems
or GIOP. Although Web services might solve some
of the interoperability issues, many challenges
remain. Synchronous interactions over wide-area
networks are not scalable, for example, and
large-scale versioning of procedure interfaces is
extremely difficult.

3. Web Services Need HTTP
Web services are “transport agnostic,” meaning
that we can access them over any type of trans-
port or application protocol. We can use SOAP to
transport messages over HTTP, but we can also use
it to send messages over plain TCP or UDP. With
some bindings, the messages can flow over simple
mail-transfer protocol (SMTP) by encapsulating
the SOAP messages in email, or over a traditional
messaging infrastructure such as MQ-Series or
Java messaging service (JMS). A common scenario
for the Web services architecture describes a mes-

sage flowing over multiple transport protocols
before reaching its destination.

For example, a parts-ordering application might
deliver a SOAP request to an enterprise gateway
using HTTP. The gateway could then use a load-
balancing mechanism to pick a node in a server
farm to process the request and use a persistent
TCP connection to forward the incoming docu-
ment. In another case, a purchase order encapsu-
lated in a SOAP message might be delivered using
an email message over an SMTP transport. The
receiving server could take the SOAP content,
encapsulate it in a JMS message, and then insert
it into the order-processing workflow system,
which might be based on traditional message
queuing. The service that actually consumes the
SOAP request might not be identified until the
message has visited a few intermediate processors
that determine whether the request is entitled to
“gold” priority treatment after some auditing has
occurred. The requesting process (remember that
Web services are for computer-to-computer con-
versations with no humans involved) will eventu-
ally receive an email message confirming or reject-
ing the order.

Although the Web services architecture was
developed with this transport independence in
mind, most Web services run over HTTP. One rea-
son for this is that most of the early Web services
toolkits used the existing infrastructure offered by
the major Web servers: Apache, IBM WebSphere,
and Microsoft IIS. Leaving the request parsing and
message dispatching to the Web server lets devel-
opers abstract away all the tedious work with Web
services. Web server add-ons such as Axis
(http://xml.apache.org/axis) or ASP.NET (www.asp.
net), which implement Web service runtimes, auto-
matically generate the service’s WSDL and provide
simple service exercise tools, thus creating a great
environment for prototyping and learning Web
services. For example, these simple tools let devel-
opers use Web-based interfaces to inspect and
exercise services.

HTTP is also popular for implementing Web ser-
vices for a second, more strategic, reason: in con-
trast to the dot-com boom period, most enterprise
software projects now require short-term returns
on investment. This forces most production Web
service projects to focus on improving access to
corporate data and services for partners and cus-
tomers, without requiring much new infrastructure.
The logical first step is to use the Web servers that
are already functioning as front ends to, say, the
enterprise’s J2EE infrastructure. We can view this

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2003 63

Not Distributed Objects

rather successful approach as the first move toward
deeper integration of Web services in the enterprise.

Some suggest that the main reason for tunnel-
ing Web service messages through HTTP is to
bypass firewalls. Although there is sufficient evi-
dence that port-80 traffic is heavily overloaded
with various non-Web-server communications,
this has triggered the emergence in firewall devices
of more extensive content-based filtering tech-
niques for HTTP traffic. The firewall-protected sys-
tems have not become less secure because of the
tunneling of application traffic through HTTP,
whether as SOAP-encapsulated Web service docu-
ments, peer-to-peer relay messages, or Corba inter-
ORB messages. Firewall-filter techniques did, how-
ever, have to extend beyond the realm of simple
port-based protection.

4. Web Services Need Web Servers
Some have discussed whether to drop the “Web”
from Web services, as it really leads to greater con-
fusion instead of a clearer worldview. This is already
obvious in such terms as service-oriented architec-
tures, service-oriented integration, or services bus.
None of these enterprise concepts uses the term
“Web” because they are not relying on any Web
technologies, such as HTTP or Web servers.

Quite a few toolkits now let you develop and
integrate Web services without Web server infra-
structures. Examples include Simon Fell’s Pocket-
Soap, Systinet’s Web Applications and Services
Platform (WASP), IBM’s Emerging Technologies
Toolkit, and Microsoft’s Web Services Enhance-
ments (WSE). Enterprise integration systems, such
as IONA’s Artix and DocSOAP, also facilitate Web-
server-independent Web service development.

As I mentioned, most early Web services have
exploited Web servers’ application-server func-
tionality. Now that developers have made the ini-
tial business case and need a wider choice of trans-
ports, most will move away from implementing
systems inside Web servers.

Several forums such, as the W3C Web Services
Architecture working group, have witnessed a
high-profile debate over the past few months
about applying representational state transfer
(REST)6 principles to Web services architectures.
(REST principles underpin many of the scalable
Web-resource naming and access mechanisms.)
This debate about Web principles is valuable, par-
ticularly with respect to resource identification and
operation visibility, but it is quickly becoming
irrelevant to the bigger picture as transport inde-
pendence surpasses the Web’s importance to Web
services. The REST principles are relevant for HTTP
bindings, and for the Web server’s parsing of
resource names, but they are useless in the context
of TCP or message-queue bindings where the HTTP
verbs do not apply.

5. Web Services Are
Reliable Because They Use TCP
TCP guarantees reliable, in-order message deliv-
ery; it seems that Web services that use TCP
should be able to achieve the same guarantees.
However, the reliability guarantee is only par-
tially true for TCP programming. In a few sce-
narios, the protocol cannot completely deliver a
message to a remote peer, and if the local partic-
ipant closes the connection, it won’t receive an
error notification.

More importantly, as Figure 1 shows, document
and message routing for Web services provide for
the use of intermediaries. Under a network, node,
or component failure, several scenarios are possi-
ble in which the document arrives successfully at
the first station but never reaches its final destina-
tion, and thus, never gets processed by the service.

Web services, and distributed systems in gener-
al, require end-to-end reliability. In the coming year,
we will see whether any of the established tech-
niques for achieving such reliability can also be
applied to Web services, or if new technologies are
needed. In general, we achieve reliability through

64 NOVEMBER • DECEMBER 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Web Services Track

SOAP
sender

Any communications
protocol

SOAP
node

SOAP message

Ultimate
SOAP

receiver

End pointClient Intermediary

Figure 1. SOAP’s transport independence. Web service documents encapsulated in a SOAP message can
be delivered directly to a destination over a single transport or via a collection of intermediaries over a
variety of transports.

message retransmission, but we must also weed out
duplicate messages in case the original was not
really lost. Estimating timeouts and handling other
potential sources of message loss in a heteroge-
neous network such as the Internet is not trivial.

When building reliable distributed systems, we
frequently want some information about the ser-
vice request’s processing state to flow back so that
the document producer can take local actions.
Feedback about the document’s arrival, the ser-
vice’s consumption of the document, and the
request processing’s completion is essential in
activities such as selecting retransmission strate-
gies or performing local garbage collection.

In addition to reliability, we also want to ensure
that the service consumes the messages in the
order they were sent, if the sender so desires. This
puts more stress on the reliability system because
it might have to delay message processing until
the producer retransmits the lost message.

These guarantees have been around for years,
working in all sorts of distributed systems, includ-
ing distributed object systems and multiparty
fault-tolerant systems. Until these technologies are
added, however, Web services should be consid-
ered unreliable — whether they use TCP or not.

6. Debugging Web Services Is Impossible
As Web services enable Internet-scale distributed
computing, in which the conversing parties fre-
quently belong to different organizations, Web
service developers and deployers confront a new
set of problems that traditional debugging and
monitoring tools cannot handle. Web services’
federated nature introduces most of these new
challenges because the developer does not “own”
both ends of the wire. Two of the most prominent
challenges are cross-vendor interoperability and
WSDL versioning.

Although traditional tools offer little help with
these problems, new diagnostic tools such as SOAP-
scope (www.mindreef.com) are emerging to address
Web services’ development and deployment issues.
SOAPscope is unique in that it focuses on “watch-
ing” the wire — logging the traffic and providing a
suite of functions to detect and resolve federation-
related and other potential problems.

With the wide variety of toolkits for developing
Web service clients and servers, it is increasingly
common to find different ones operating at either
end of a SOAP interaction. Given that each toolkit
vendor is likely to interpret the specification some-
what differently, interoperability problems are
becoming more common. When a client encounters

an obscure error from a server, the developer must
attempt to diagnose the problem without access to
the code running at the server. The only available
solution is to focus on the SOAP traffic on the wire
and the WSDL contract between services.

New diagnostic tools offer several features that
can help developers understand and fix interop-
erability problems. SOAPscope, for example, has
resend and invoke features that let the user test
“what if” scenarios against a server to isolate
problem requests. It also has “viewing” capabili-
ties that help clarify SOAP messages by visualiz-
ing them at higher abstraction levels than raw
XML. To maximize interoperability, SOAPscope
also has a WSDL analysis feature that can detect
and help resolve potential interoperability prob-
lems prior to service deployment.

Another increasingly common challenge arises
from changes to and versioning of Web services. A
small change to the XML document specification in
the WSDL contract at the server can easily break
existing clients. Clients might not even be aware that
the specification has changed, let alone know how
to accommodate that change. A Web service client
might start receiving fault messages from the server
that indicate a problem, but these are seldom useful
for resolving the issue. Tools such as SOAPscope,
shown in Figure 2, can inspect the XML document
specification in the current WSDL and compare it to
the specification used to create the client. Such
debugging and deployment tools that use historical
data and real-time views of the Web service inter-
action provide extremely powerful new tools for
Web service developers.

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2003 65

Not Distributed Objects

Figure 2. Document-versioning debugging. Dedicated Web service
monitors such as SOAPscope (shown) can detect changes in
document descriptions, thus helping to solve the major version
headaches that Web service developers encounter.

66 NOVEMBER • DECEMBER 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Web Services Track

Conclusions
Web services technology is still evolving, even
at the most basic levels, but many vendors, trade
magazines, and venture capitalists have already
tagged the technology as the trigger for a new
wave of applications, enabled by federated inter-
operability. This early exposure has generated
many incomplete and incorrect publications,
toolkit releases that have little or no architectur-
al vision, and fights among different standard-
ization bodies seeking the right to control the
underpinnings of Web services. The waters are
further muddied by the fact that many of the
vendors who jumped on board to promote Web
services also have vested interests in Web and
applications servers or distributed object tech-
nologies.

Web services are going to play an important
role in the future of distributed computing, signif-
icantly impacting application and system devel-
opment. However, developers and researchers in
both industry and academia must work to clear up
common misconceptions about the technology, or
else we will end up with architectures that have

severely limited functionality and performance.
Educating system architects and developers

about Web services in a manner that is indepen-
dent of specific vendors’ solutions is an important
first step, and academia’s involvement in the
process is essential. We must cultivate broad
awareness that, although important, object-
oriented and remote-procedure-style technologies
provide just a few options for building applica-
tions and integrating them with Web services.

Web services technology will have a dramatic
enabling effect on worldwide interoperable dis-
tributed computing once everyone recognizes that
Web services are about interoperable document-
centric computing, not distributed objects.

Acknowledgments
This article improved significantly because of comments and crit-

icisms from several people: Dave Seidel, Don Box, Doug Lea, Eric

Newcomer, Felipe Cabrera, Frank McCabe, Jim Gray, Ken Birman,

Mark Baker, Mark Ericson, Mike Champion, and Ted Herman. In

addition, Steve Vinoski provided valuable editorial assistance.

References

1. N. Mitra, “SOAP Version 1.2 Part 0: Primer,” World Wide

Web Consortium recommendation, June 2003; www.w3.

org/TR/soap12-part0/.

2. C. Ferris and D. Langworthy, “Web Services Reliable Mes-

saging Protocol (WS-Reliable Messaging),” joint specifica-

tion by BEA, IBM, Microsoft and Tibco, Mar. 2003;

http://www-s106.ibm.com/developerworks/webservices/

library/ws-rm/.

3. C. Evans et al., “Web Services Reliability (WS-Reliability), ver.

1.0,” joint specification by Fujitsu, NEC, Oracle, Sonic Soft-

ware, and Sun Microsystems, Jan. 2003; http://developers.

sun.com/sw/platform/technologies/ws-reliability.html.

4. F. Cabrera et al., “Web Services Coordination (WS-Coordi-

nation),” joint specification by BEA, IBM, and Microsoft,

Aug. 2002; http://www-106.ibm.com/developerworks/

library/ws-coor/.

5. S. Vinoski, “Web Services Interaction Models, Part 1: Cur-

rent Practice,” IEEE Internet Computing, vol. 6, no 3, 2002,

pp. 89-91.

6. R. Fielding, Architectural Styles and the Design of Net-

work-based Software Architectures, doctoral dissertation,

Univ. of California, Irvine, 2000; www.ics.uci.edu/

~fielding/pubs/dissertation/top.htm.

Werner Vogels is a researcher in the computer science department

at Cornell University. He is the principal investigator in sev-

eral projects that focus on the scalability and robustness of

mission-critical enterprise computing systems. Vogels

received a PhD in computer science from Vrije Universiteit,

Amsterdam. Contact him at vogels@cs.cornell.edu.

Computing in Science & Engineering

Computing in Science & Engineering presents scientific and computational
contributions in a clear and accessible format.

http://computer.org/cise/

January/February:
Grand Challenges in Earth System Modeling
This special issue describes in greater detail the high-end computational aspects of grand
challenges in Earth system modeling. It invites experts from disciplines of computational
physics and computer sciences to join Earth system scientists in understanding and
predicting the Earth's planetary system.

March/April:
Frontiers of Computing
The range and importance of computer
simulations of complex, coupled physical
phenomena involving multiple distance and
time scales have increased dramatically
during the last decade. We highlight
multiphysics simulations including
models of the Rio Grande watershed,
swimming microbes, asteroid
impacts, explosive volcano eruptions,
air pollutant dispersion, space
weather, and complex fluid flow.

