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Big Questions for 2016

• Can we efficiently solve (nonlinear) polynomial systems by

linear algebra?

• Can combinatorics accelerate polynomial system solving?

• Do polynomials model effectively problems in 3D modeling?



Reading

coefficients ≡ values

matrices faster than Gauss

real solving by remainders (Euclid)

[Yap: Fundamental Problems in Algorithmic algebra]

varieties vs ideals (Hilbert) [Cox-L-O:Ideals,Varieties,Algorithms]

system solving by linear algebra [CLO:Using algebraic geometry,ch.3]

polynomials ≡ polytopes (Gelfand) [CLO:Using. . . ,ch.7]

[Sturmfels: Solving Systems of polynomial equations]

[Dickenstein-E: Solving polynomial equations: Foundations, Algorithms. . . ]



Arithmetic operations [Yap, ch.1]



Computational model

Real RAM (Random Access Machine):

provides O(1) storage/access time/space for reals,

requires O(1) time for arithmetic operations on reals, performed ex-

actly.

Hence counts arithmetic complexity, notation OA(·).

Boolean RAM (or Turing machine):

provides O(1) storage/access time/space for bits,

requires O(1) time for operations on bits, performed exactly.

Hence counts bit/Boolean complexity, notation OB(·).



Integers

Integers with n bits:
sum/difference with ≤ n+ 1 bits, in ΘB(n).

Product with ≤ 2n bits, naive algorithm in OB(n2).
Question: Is multiplication really harder? is it O(n) additions?

Theorem. The asymptotic complexities of multiplication, division with
remainder, inversion, and squaring are connected by constants.

Theorem [Karatsuba]

Divide+Conquer yields OB(nlg 3) = OB(n1.585...).

Pf. a = a0 + 2n/2a1, ab = a0b0 + 2n/2(a0b1 + b0a1) + 2na1b1,
(a0b1 + b0a1) = (a0 + a1)(b0 + b1)− a0b0 − a1b1.

M(n) = 3M(n/2) + 4A(n/2) + 2A(n) = 3M(n/2) +O(n) = O(nlg 3),

where complexities M(n) of multiplication, A(n) of addition.

Theorem. Fast Fourier Transform yields OB(n logn log logn).



Univariate polynomials

p1(x), p2(x) ∈ Z[x], degrees d1, d2, and t1, t2 terms. Let d =

max{d1, d2}.

The sum has degree ≤ d, ≤ t1 + t2 terms, cost Θ(d).

Product of degree d1 + d2, ≤ t1t2 terms, cost depending on the algo-

rithm:

OA(d1d2), OA(dlg 3), OA(d log2 d), OA(d log d),

by school, D+C, evaluate/interpolate, FFT (no carry needed) algo-

rithms. In sparse representation: OA(t1t2), OA(tlg 3).

The arithmetic complexities of multiplication, squaring, division with

remainder are connected with constants.

Integers to polynomials: Given binary integer [cn−1 cn−2 · · · c0],

∃! polynomial cn−1x
n−1 + cn−2x

n−2 + · · ·+ c0 ∈ Z2[x].



Evaluation

Horner’s rule p(a) = (· · · (cna+ cn−1)a+ · · ·) + c0.

Requires n additions, n products, which is optimal.

Equivalent: p(a) = p(x) mod (x− a),

since p(x) = q(x)(x− a) + r(x),deg(r(x)) = 0.

General Problem: Given k points/values x0, . . . , xk−1, and n+ 1 coef-

ficients of p(x), i.e. deg(p) = n, compute k values p(x0), . . . , p(xk−1).

Horner yields OA(kn), we’ll see a quasi-linear algorithm.



Quasi-linear multi-evaluation

[ Note: this can be avoided if you go directly to FFT. ]

Theorem. D+C algorithm = OA(n lg2 n), for k = Θ(n).

Lem. a, b, c ≥ 0⇒ (a mod (bc)) mod b = a mod b.

Lem.

p(x) mod (x−xi) = [p(x) mod
∏
j∈J

(x−xj)] mod (x−xi), i ∈ J ⊂ N.



Quasi-linear algorithm: fan-in

Assume we have k = n points. We compute
∏
j(x − xj), j = 2i −

1, . . . ,2i+1, using fan-in, for appropriate i (see next page).

Leaves: Compute n/2 products of degree=2:

(x− x2i)(x− x2i+1), i = 0, . . . ,
n

2
− 1.

Then n/4 products of degree 4, then n/2j products of degree 2j in

OA((n/2j)M(2j−1)) = OA(nj), j = 1, . . . , lgn,

M(t) = O(t log t) corresponds to FFT multiplication.

Total O(n(1 + · · ·+ lgn)) = O(n lg2 n).



Quasi-linear algorithm: Fan-out

Given q(x) = p(x) mod
∏n−1
i=0 (x− xi), compute

p(x) mod
n/2−1∏
i=0

(x− xi) = q(x) mod
n/2−1∏
i=0

(x− xi),

and q(x) mod
∏n−1
i=n/2(x − xi), i.e. 2 polynomials of degree n/2 − 1, in

O(n logn) by FFT. Then, 4 mod operations in 4(n− 2)/2 ·O(logn).

Stage k: compute 2k remainders with divisor∏
i

(x− xi), i =
mn

2k
, . . . ,

(m+ 1)n

2k
− 1, m = 0, . . . ,2k − 1.

Divisor degree = n/2k, remainder degree = n/2k−1, k = 0,1, . . . , lgn.

Cost per level = 2kn/2k ·O(lgn).

Total T (n) = 2T (n/2) + 2O(n lgn) = 2nkO(lgn) = O(n lg2 n).



Example

p(x) = 5x3 + x2 + 3x− 2, xi = −1,0,3,9.

q0(x) = p(x) mod (x+ 1)x = 7x− 2,

q1(x) = p(x) mod (x− 3)(x− 9) = 600x− 1649.

p(x) mod (x+ 1) = q0(x) mod (x+ 1) = −9,

p(x) mod x = q0(x) mod x = −2,

p(x) mod (x− 3) = q1(x) mod (x− 3) = 151,

p(x) mod (x− 9) = q1(x) mod (x− 9) = 3751.



Interpolation

Def.: compute n + 1 coefficients of p(x) given n + 1 values ri =

p(xi), i = 0, . . . , n for distinct xi’s, assuming the degree n is known.

Lagrange: L(x) :=
∏
i=0,...,n(x− xi), L′(x) =

∑n
i=0

∏
j 6=i(x− xj).

Then L′(xk) =
∏
j 6=k(xk − xj). Now define:

Li(x) :=
∏

j=0,...,n,j 6=i

x− xj
xi − xj

.

Hence the solution is:

p(x) = L(x)
n∑
i=0

ri
L′(xi)(x− xi)

=
n∑
i=0

ri
L′i(xi)

∏
j 6=i

(x− xj) =
n∑
i=0

riLi(x).

Clearly p satisfies the data; it is also unique with degree ≤ n.

Fan-in computes L(x), L′(x), L′(x0), . . . , L′(xn), and p(x) in OA(n lg2 n)



FFT

Given polynomial

p(x) = cn−1x
n−1 + · · ·+ c0,

compute values at the complex n-th roots of unity:

{1, ω = e2πi/n, ω2 = e4πi/n, . . . , ωn−1 = e2πi(n−1)/n}.
Assume n is a power of 2:

p(x) = (c0 + c2x
2 + · · ·+ cn−2x

n−2) + x(c1 + c3x
2 + · · ·+ cn−1x

n−2) =

= q(x2) + xs(x2),

and set y = x2, where q(y), s(y) of degree (n− 2)/2.

Property 1. x = ωj, j = 0, . . . , n − 1, then y = ω2j takes only n/2
values.
Property 2. ωj = −ωj+n/2 reduces half of q(y) + . . . to q(y)− . . . .

Complexity:

T (n) = 1.5n+2T (
n

2
) = 1.5kn+2kT (

n

2k
) = 1,5n lgn+O(n) = OA(n lgn)



Inverse Fourier Transform

Def. Interpolate (n − 1)-degree polynomial from values at n-th roots

of 1

Let n× n Vandermonde matrix Ω with Ωij = [ωij/
√
n], 0 ≤ i, j < n.

Fourier Transofrm computes

√
nΩ

 c0
...

cn−1

 =
[
ωij

]
i,j

 c0
...

cn−1

 =

 p(ω0)
...

p(ωn−1)

 =: pT .

Inverse Transform: solve for c, given p: c = 1√
n

Ω−1 pT .

Lem. Ω−1 = [ω−ij/
√
n].

Pf.
∑
k ω
−ikωkj =

∑
k ω

k(j−i) = n, if i = j; otherwise 0.

Cor. Since ω−1 is n–th root of 1, c is obtained by FFT.



Idea: Matrices faster than Gauss [Aho-Hopcroft-Ullman]



Matrices

Dense matrices n×m: add/subtract in ΘA(nm)

(as opposed to sparse or structured matrices)

Square matrices n× n: Multiplication = ΩA(n2).

Question: Is this tight?

Algorithms: school = OA(n3).

D+C [Strassen’69] OA(nlg 7) = OA(n2.81).

[Coppersmith-Winograd’90] OA(n2.376).

Record bound still holds, also achieved (2010) by other approach.

New bounds achieved by tensor algebra, extending CW, see

e.g. [Vassilevska-Williams].



Strassen’s algorithm

Given 2× 2 matrices [aij], [bij], i, j = 1,2, let the product be [cij].

Set: m1 = (a12 − a22)(b21 + b22), m2 = (a11 + a22)(b11 + b22),

m3 = (a11 + a12)b22, m4 = a22(b21 − b11), m5 = a11(b12 − b22),

m6 = (a21 + a22)b11, m7 = (a11 − a21)(b11 + b12)

⇒ (cij) =

[
m1 +m2 −m3 +m4 m3 +m5

m4 +m6 m2 +m5 −m6 −m7

]

General dimension: replace aij, bij, cij by n
2×

n
2 submatrices Aij, Bij, Cij.

Then,

M(n) = 7M(
n

2
) +O(n2) ≤ · · · ≤ 7kM(n/2k) + kcn2 = O(nlg 7).



Matrix operations

Let T (n) be the asymptotic arithmetic complexity of multiplication.

Inversion, determinant, solving Mx = b, factoring M = LU , and fac-

toring with permutation M = LUP (Gaussian elimination), all lie in

Θ(T (n)).

Compute the kernel {x : Mx = 0} and the rank: both in O(T (n)).

Compute the characteristic polynomial in O(T (n) log2 n).

Numeric approximation of eigen-vectors/values in 25n3.



Integer Determinant

Given is integer matrix [aij], max entry length L = maxij{lg |aij|}:
Worst-case optimal bound on value [Hadamard]:

|detA| ≤
n∏
i=1

‖ai‖2 ≤ nn/2 max{|aij|}n.

1. Chinese remaindering avoids intermediate swell: O∗(nL) evalua-
tions modulo constant-length primes, each in O∗(n2.38); Lagrange in
O∗B(n2L2).

Total: O∗B(n3.38L).

2. Avoid rationals [Bareiss’68] in
∑n
i=1 n

2iL = O∗B(n4L).

Let [12k] = |aij : i = 1,2,3, j = 1,2, k|: Multiply by a11 rows 2 . . . , n, eliminate: a11 a12 · · ·
0 a11a22 − a12a21 a11a23 − a13a21

0 a11a32 − a12a31 a11a33 − a13a31

→
 a11 a12 · · · · · ·

0 a11a22 − a12a21 · · · · · ·
0 0 a11[123] a11[124]



3. Baby steps / giant steps OB(n3.2L) [Kaltofen-Villard’01]



n× n linear system

rank(M) = r ≤ n:

• r = n ⇒ ∃! solution.

• r < n ⇒ system defined by r equations.

remaining equations trivial (0=0) implies ∞ roots.

existence of incompatible equation (0=b) implies no roots.

rank(M) also defined for rectangular M .



Structured matrices

Defined by O(n) elements, matrix-vector product is quasi-linear.

Two important examples:

• Vandermonde: matrix-vector multiply and solving in OA(n log2 n).

• Rectangular matrix is Toeplitz iff M(a + i, b + i) = M(a, b), i > 0,

when defined, i.e. constant diagonals. Lower triangular * vector is

polynomial multiplication, hence in O∗A(n); same for vector * upper

triangular.

◦ More types: Hankel (constant anti-diagonals), Cauchy, Hilbert.

Thm [Wiedemann (Lanszos)]. Matrix determinant reduced to O∗(n)

matrix-vector products.

Proof. Krylov sequence M iv computed as M(M i−1v),

charpoly χ(λ) = det(M − λI) = (−1)±1λn ± tr(M)λn−1 + · · · ± detM .

Caley-Hamilton thm: χ(M) = 0, so χ(M)v = 0.

Berlekamp-Massey: finds k-recurrence from 2k (vector) elements.



Toeplitz example

P1(x) = x4 − 2x3 + 3x+ 5, P2(x) = 5x3 + 2x− 11.

Upper triangular Toeplitz T has rows corresponding to P2 multiples:
5 0 2 −11 0

5 0 2 −11
5 0 2 −11

5 0 2 −11
0 5 0 2 −11


x4P2
x3P2
x2P2
xP2
P2

Row vector v = [1,−2,0,3,5] expresses P1, then Vector-matrix multi-

plication vT is equivalent to polynomial multiplication

(P1P2)(x) = 5x7 − 10x6 + 2x5 + 47x3 + 6x2 − 23x− 55.

If multiplying polynomials of degree d costs F (d), then multiplying

d× d Toeplitz matrix by vector is in O(F (d)).



Real numbers



Univariate real solving



Univariate solving

• Counting / Exclusion

◦ Interval arithmetic (cf. Matlab)

◦ Descartes’ rule, Bernstein basis (fast)

• Sturm sequences

◦ Thom’s encoding (good asymptotics)

• Approximation

◦ Numeric solvers O(d3L)

◦ Continued Fractions [E-Tsigaridas] (fast)

Polynomial in Z[x] of degree d and bitsize L.

Input size in O(dL), output in Ω(dL).



Bit complexity of exact solvers

Cont.Frac. Sturm Descartes Bernstein

O∗(2L) O∗(d7L3) O∗(d6L2)
[Uspensky48] [Heidel’71] [Collins,Akritas’76] [LaneReisenfeld81]
O(d5L3) O∗(d6L3) O∗(d5L2) O∗(d6L3)

[Akritas’80] [Davenport’88] [Krandick’95] [MourrainVrahatis]
[Johnson’98] [-Yakoubson’04]

O∗(d8L3) O∗(d4L2)
[Sharma07] [DuSharmaYap05] [EigenwilligSharmaYap06] [E,Mourrain,T’06]

+ square-free + multiplicities
[E,Mourrain,Tsigaridas’06]

O∗(d4L2) O∗(r d2L2) O∗(d3L2)
[ET’06] [E,Tsigaridas]

Polynomial in Z[x] of degree d and bitsize L.
Best numerical algorithm in O(d3L), input = O(dL).
Worst-case vs. average-case complexities, r = #real-roots.



Sturm theory



Sturm sequences

Definition. Given univariate polynomials P0, P1 ∈ R[x], their
Sturm sequence is any (pseudo-remainder) sequence of polynomials
P0, P1, . . . , Pn ∈ R[x], n ≥ 1 such that

αiPi−1 = QPi + βiPi+1, i = 1, . . . , n− 1,

for some Q ∈ R[x], αi, βi ∈ R, and αiβi < 0.

Remember Eυκλει
′
δηs



Example of Sturm sequence

Input: fi = αix
2 − 2βix+ γi, i = 1,2.

Hypothesis: the fi are relatively prime, αi,∆i 6= 0.

The Sturm sequence (Pi) of f1, f
′
1f2 :

P0(x) = f1(x)

P1(x) = f ′1(x)f2(x)

P2(x) = −f1(x)

P3(x) = 2α1[−(α1K + 2α2∆1)x+ (γ1J − α1J
′)]

P4(x) = −α1∆1(α1K + 2α2∆1)2(G2 − 4JJ ′)

= −α1∆1(α1G− 2β1J)2(G2 − 4JJ ′)



Root counting

Theorem [Tarski]. Suppose that

◦ f0, f1 ∈ R[x] are relatively prime,

◦ f0 is square-free, and

◦ p < q are not roots of f0.

Then, for any Sturm sequence P = (f0, f
′
0f1, . . .),

VP (p)− VP (q) =
∑

f0(ρ)=0,p<ρ<q

sign(f1(ρ)),

where VP (p) := #sign variations in P0(p), . . . , Pn(p).

The Sturm sequence here may be (f0, f
′
0f1,−f0, . . .).



More uses of Sturm sequences

Corollary. For p < q non-roots of f ∈ R[x], the number of distinct real

roots of f in (p, q) equals Vf,f ′(p)− Vf,f ′(q).

Proof. Let f0 = f, f1 = 1 in Tarski’s theorem.

Theorem [Schwartz-Sharir]. For square-free f0, f1 ∈ R[x] and p < q

non-roots of f0,

Vf0,f1
(p)− Vf0,f1

(q) =
∑

f0(ρ)=0,p<ρ<q

sign(f ′0(ρ)f1(ρ)).

• Yields previous theorem by using f0, f
′
0f1.

[Yap: Fundamental Problems of Algorithmic Algebra, 2000]



Generalizations of Sturm theory



Systems of univariate polynomials

Recall [Tarski]. For f0, f1 ∈ R[x] relatively prime, f0 square-free and

p < q not roots of f0, consider the Sturm sequence (f0, f
′
0f1, . . .). Then

V (p)− V (q) =
∑

f0(ρ)=0,p<ρ<q

sign(f1(ρ)).

This equals

# {ρ ∈ (p, q) : f0(ρ) = 0, f1(ρ) > 0}−# {ρ ∈ (p, q) : f0(ρ) = 0, f1(ρ) < 0} .

Algorithm [Ben-Or,Kozen,Reif], [Canny]. Compute

n∑
i=1

# {ρ ∈ (p, q) : P0(ρ) = 0, Pi(ρ)⊗i 0} , ⊗i ∈ {<,>}.



Generalized Sturm sequences

Definition. Given univariate polynomials P0, P1 ∈ R[x], where P0

is square-free, their generalized Sturm sequence over an interval

[a, b] ⊂ R ∪ {−∞,+∞} is any sequence P0, P1, . . . , Pn ∈ R[x], n ≥ 1

s.t.

1. P0(a)P0(b) 6= 0,

2. ∀ c ∈ [a, b], Pn(c) 6= 0,

3. ∀ c ∈ [a, b], Pj(c) = 0⇒ Pj−1(c)Pj+1(c) < 0,

4. ∀c ∈ [a, b] : P0(c) = 0 ⇒ ∃ [c1, c), (c, c2] s.t. u ∈ [c1, c) ⇒
P0(u)P1(u) < 0 and u ∈ (c, c2]⇒ P0(u)P1(u) > 0.

Corollary (Existance). For any P0, P1 ∈ R[x], the previously-defined

Sturm sequence, using the pseudo-remainders and starting with

P0/gcd(P0, P
′
0) and P1 is “generalized” over an interval [a, b] such

that P0(a)P0(b) 6= 0.



Further generalization

Corollary. It is possible to omit [1. P0(a)P0(b) 6= 0 ] provided that,

(4) is stated only in the appropriate subinterval of [a, b], when c = a

or c = b.

Corollary. Relax (4) to require that the number of roots of P0(x) is

odd between any two roots of P1(x).



Real Closed fields generalize R

Definition. An ordered field K contains a positive subset P ⊂ K, ie.

a ∈ K − {0} ⇒ a ∈ P xor −a ∈ P .

Examples: Q,R,Q(ε),R(x),Q( 3√2) ≡ Q[x]/〈x3 − 2〉.
Counter-example: C.

Definition. A real closed field K is

• ordered (hence contains positive P ⊂ K),

• a ∈ P ⇒
√
a ∈ P (ie. x2 = a has a root in P ),

• equations of odd degree have a root in P .

Examples: R,R(ε),R(ε1, ε2).

Counter-example: Q, algebraic closure Q, Q( 3√2).

Sturm sequences are defined, and all stated properties hold, for

polynomials over real closed fields.



Descartes’ rule



Descartes’ rule of sign

Theorem. The number of sign variations in the coefficients of a uni-

variate polynomial exceeds the number of positive real roots by an

even non-negative integer.

Proof by induction, using Sturm sequences.

Step: V [(x− a)f ] = V [f ]+ odd natural number.

Corollary. If all roots of the univariate polynomial are nonzero and

real, then the number of sign variations in the coefficient sequence

gives precisely the number of positive roots.

Proof by induction on the degree: the number of variations in the

coefficients of f(−x) bounds the number of negative roots.



Notions of Algebraic geometry



Introduction



Single polynomial

f(x) = c0 + c1x+ c2x
2 + · · ·+ cdx

d ∈ K[x].

• Fundamental theorem of algebra: There are d roots in K.

E.g. Q = Algebraic numbers.

• Fundamental problem of real algebra: How many roots are real?

• Fundamental problem of computational real algebra: Isolate all real

roots of a given polynomial equation.

• Fundamental problem of computational algebraic geometry: Iso-

late/approximate all complex roots of a given polynomial system.

• Fundamental problem of computational real algebraic geometry:

Isolate all real roots of a given polynomial system.



Algebraic varieties

f1, . . . , fm ∈ Q[x1, . . . , xn].

Defn. The polynomial system’s variety (or zero-set) is

V (f1, . . . , fm) := {x ∈ Cn : f1(x) = · · · = fm(x) = 0} .

Examples.

• V (x2 + 1) = {±
√
−1},

• V (Q[x1, . . . , xn]) = ∅,
• V (∅) = Cn.

Properties.

• S ⊂ T ⇒ V (T ) ⊂ V (S)



Dimension of a variety

Def. dim(V ) = #degrees of freedom of V = #parameters for covering

V

• dim(point) = 0, dim(line) = 1, dim(surface) = 2.

• dim(V ) = n⇔ V = Cn.

• dimV (fi) = n− 1 generically.

Def. Dimension dim(V ) := maxC {dim(C) : component C ⊂ V } .

• dim(V ) = 0⇔ V = point set (iff finite cardinality).

• dim(V ) = 1 ⇔ V contains a curve (possibly straight line), may

contain points, but no component of dim ≥ 2.

• dim(V ) = 2⇔ V contains a surface (possibly planar), may contain

0-dim or 1-dim components, but no higher-dim component.



Algebraic varieties (cont’d)

System f1, . . . , fm ∈ K[x1, . . . , xn].

• Well-constrained: m = n, generically 0-dim variety.

• Over-constrained: m > n, generically no roots (empty).

• Under-constrained: m < n, generically ∞ roots.

Lemma.

• V (f1, . . . , fm) = V (f1) ∩ · · · ∩ V (fm) ⊂ Cn.

• dim(V ∩W ) = dim(V )− codim (W ),

where codim(W ) = n− dim(W );

clearly, dim(V ∩W ) = dim(W )− codim (V ).

E.g. C2: V,W =curves, dim(W ∩ V ) = 0 (points).

E.g. C3: V,W surfaces, dim(W ∩ V ) = 1 (curve).

E.g. C3: V =surface, W =curve, dim(W ∩ V ) = 0.



n× n linear system

rank(M) = r ≤ n:

• r = n ⇒ ∃! solution.

• r < n ⇒ system defined by r equations.

remaining equations trivial (0=0) implies ∞ roots.

existence of incompatible equation (0=b) implies no roots.



Hilbert’s Nullstellensatz



Algebraic ideals

Given a polynomial ring R = K[x1, . . . , xn],

• a subring S ⊂ R is closed under addition and multiplication: a, b ∈
S ⇒ a+ b, ab ∈ S;

• an (algebraic) ideal I ⊂ R is closed under addition and multiplication

by any ring element: a, b ∈ I, p ∈ R⇒ a+ b, ap ∈ I.

E.g. 〈x2, x5〉 = 〈x2〉, 〈x, x+ y〉 = 〈x, y〉.

Fact. Given a set of polynomials, all elements in the generated (alge-

braic) ideal vanish at the set’s variety.

Corollary. The ideal is the largest set of polynomials vanishing precisely

at this variety.



Varieties vs Ideals

Definition. Given set X ⊂ Cn, J(X) := {f ∈ Q[x] : f(x) = 0, ∀x ∈ X}.
Fact. J(X) is an ideal.

Properties.

• J(Cn) = ∅, J(∅) = Q[x],

• X ⊂ Y ⇒ J(Y ) ⊂ J(X),

• X = V (J(X))

• S ⊂ J(V (S)): when is it tight?

◦ Counter-example: 〈x2〉 6= J({0}) = 〈x〉:
How do the roots of x and x2 differ?



Hilbert’s Nullstellensatz

Recall definition J(X) := {f ∈ Q[x] : f(x) = 0, ∀x ∈ X ⊂ Cn}.

Defn. Given an ideal I in a commutative ring R, its radical ideal is
√
I := { r ∈ R | rn ∈ I, ∃n > 0}.

Property. I ⊂
√
I.

Intuition: taking the radical removes the multiplicities.

Eg. In ring Z:
√
〈8〉 = 〈2〉,

√
〈12〉 = 〈6〉,

In a polynomial ring:
√
〈x3〉 = 〈x〉,

√
〈x2, x− 2y, y3〉 = 〈x, y〉.

Hilbert’s zeroes theorem. J(V (I)) =
√
I.

Specifies the algebra-geometry dictionary.



Polynomial Degree



Degree

Defn: (total) degree of polynomial F (x1, . . . , xn) is the maximum sum

of exponents in any monomial (term).

E.g. deg(x2 − xy2 + z) = 3.

We also talk of degree in some variable(s).

E.g.: degx(F ) = 2, degy(F ) = 2, degz(F ) = 1.

The polynomial is homogeneous (wrt to all n variables) if all monomials

have the same degree.

E.g. x2w − xy2 + zw2.

Here w 6= 0 is the homogenizing variable. So, for every (affine) root

(x, y, z) ∈ C3 there is now a (projective) root (x : y : z : 1) ∈ P3.



Intersection theory

Geometrically, deg f(x1, . . . , xn) equals the number of intersection

points of f(x1, . . . , xn) = 0 with a generic line in Cn.

Defn. The degree of a variety V is #points in the intersection of V

with a generic linear subspace L of dimension = codim(V ):

degV = #(V ∩ L) : dimL = codimV.

E.g. curve V ⊂ C3 defined by f(x, y, z) = g(x, y, z). L is a generic

plane.



Number of roots

Defn. The complex projective space PnC or Pn or P(C)n is the following
set of equivalence classes:{

(α0 : · · · : αn) ∈ Cn+1 − {0n+1} | α ∼ λα, λ ∈ C∗
}

=

= {(1 : β) | β ∈ Cn} ∪ {(0 : β) | β ∈ Cn − {0n} , β ∼ λβ} .

E.g. n = 1: P1 ' C ∪ {(0 : 1)}.

Theorem [Bézout,1790]. Given (homogeneous) f1, . . . , fn ∈
K[x1, . . . , xn], the number of its common roots (counting multiplic-
ities) in P(K)n is bounded by

n∏
i=1

deg fi,

where deg(·) is the polynomial’s total degree.
The bound is exact for generic coefficients.
Note: The theorem considers dense polynomials.



Polynomial system solving



A perspective. . . on La Boca



A perspective. . . on system solving

Input: n polynomial equations in n variables, coefficients in a ring (e.g. Z, R, C).
Output: All n-vectors of values s.t. all polynomials evaluate to 0.



Type Algebraic Analytic

Approach Combine constraints Use values (or signs)
Computation Exact (+ possibly numerical) Numerical mostly

Methods Matrix-based: resultant
symbolic-numeric computation
+ exploit structure
+ continuity w.r.t. coefficients
− high-dimensional components
O∗b(d

n)

Newton-like, optimization,
discretization
+ simple, fast
− local, may need initial point

Gröbner bases
+ complete information
− discontinuity w.r.t. coefficients
dimension=0: O∗b(d

n2

), else O∗b(d
2n

)
Characteristic sets
dimension=0: O∗b(d

n), else O∗b(d
n2

)
Normal forms, boundary bases

Exclusion, interval,
topological degree
+ simple, flexible, robust
+ focuses on given domain
− costly for large n

O∗b(log D
ε
)

Straight-line programs
express evaluation

Homotopy continuation
+ exploit structure
− divergent paths



Resultants



Resultant definition

Given n+ 1 Laurent polynomials f0, . . . , fn ∈ K[x1, . . . , xn, x
−1
1 , . . . , x−1

n ]

with indeterminate coefficients ~c, their projective, resp. toric / sparse,

resultant is the unique (up to sign) irreducible polynomial R(~c) ∈ Z[~c]

such that

R(~c) = 0⇔ ∃ ξ = (ξ1, . . . , ξn) ∈ X : f0(ξ) = · · · = fn(ξ) = 0

where the variety X equals:

• the projective space Pn over the algebraic closure K,

• resp. the toric variety X, (K∗)n ⊂ X ⊂ PN .

[van der Waerden, Gelfand-Kapranov-Zelevinsky, Cox-Little-O’Shea]



Resultant degree

The projective, resp. toric, resultant polynomial R ∈ Z[~c] is sepa-

rately homogeneous in the coefficients of each fi, with degree equal

to
∏
j 6=i deg fj (Bézout’s number), resp. the n-fold mixed volume:

MV−i := MV(f0, . . . , fi−1, fi+1, . . . , fn),

provided the supports of the fi generate Zn.

Generalizations

The toric resultant reduces to:

• the determinant of the coefficient matrix of a linear system,

• the Sylvester or Bézout determinant of 2 univariate polynomials,

• the projective resultant for n+1 dense polynomials, where the toric

variety equals Pn and MV−i =
∏
j 6=i deg fj.



Matrix formulae

• Resultant matrix: The resultant divides the determinant.

• Rational, Macaulay-type formula: The resultant equals the ratio

of two determinants.

• Determinantal (optimal) formula: the resultant equals a determi-

nant

• Polynomial formula: A power of the resultant equals the determi-

nant, Pfaffian when R =
√

detM .

• Poisson formula.

• Determinantal from rational formula [Kaltofen-Koiran’08]

• Matrix formulae allow system solving by: an eigenproblem, u-

resultant, primitive/separating element (RUR).



Resultant matrices

• n = 1: Bézout 1779, Sylvester 1840.

• Bézout: [Chtcherba-Kapur’00], [Kapur et.al], [Cardinal-Mourrain],

[Busé et al.].

• Homogeneous: Macaulay, [GKZ’94], [Jouanolou’97], [D’Andrea-

Dickenstein’01], [CoxMatera08], complexes [Eisenbud-Schreyer’03].

• Toric: [Canny-E’93], [E-Canny’93]∗, generalized [Sturmfels’94],

Jacobian [Cattani-Dickenstein-Sturmfels], [D’Andrea-E’01], com-

plexes [Khetan’02], rational [D’Andrea’02], [E-Konaxis’09].

• m-homogeneous: Dixon, [GKZ], [Chionh-Goldman-

Zhang98,ZG00], [Dickenstein-E’03, E-Mantzaflaris’09], [Awane-

Chkiriba-Goze’05].



A bilinear example



Example: Bilinear surface

A bilinear surface in R3 is the set of values (x1, x2, x3):

xi = ci0 + ci1s+ ci2t+ ci3st, i = 1,2,3, for s, t ∈ [0,1],

as well as the set of roots of some polynomial equation

H(x1, x2, x3) = 0.



Modeling/CAD use parametric AND implicit/algebraic representations

⇒ need to implicitize a (hyper)surface given a (rational) parameteri-

zation.



Bilinear system: Resultant matrix

fi = (ci0 − xi) + ci1s+ ci2t+ ci3st, i = 1,2,3.

The classical projective resultant vanishes identically.

The toric (sparse) resultant has degR = 3 · degfiR = 6.

A determinantal Sylvester-type formula for the toric resultant is:

1 s t st s2 s2t

R = det



c10 − x1 c11 c12 c13 0 0
c20 − x2 c21 c22 c23 0 0
c30 − x3 c31 c32 c33 0 0

0 c10 − x1 0 c12 c11 c13
0 c20 − x2 0 c22 c21 c23
0 c30 − x3 0 c32 c31 c33



f1
f2
f3
sf1
sf2
sf3



Sparse elimination theory



Newton polytopes

The support Ai of a polynomial fi ∈ K[x±1
1 , . . . , x±1

n ], s.t.

fi =
∑
j

cijx
aij , cij 6= 0,

is defined as the set Ai := {aij ∈ Zn : cij 6= 0}.
The Newton polytope Qi ⊂ Rn of fi is the Convex Hull of all aij ∈ Ai.

Example:
f1 = c11 + c12xy + c13x

2y + c14x

f2 = c21y + c22x
2y2 + c23x

2y + c24x+ c25xy
f3 = c31 + c32y + c33xy + c34x



Mixed volume

1. The mixed volume MV(P1, . . . , Pn) ∈ R of convex polytopes Pi ⊂ Rn

• is multilinear wrt Minkowski addition and scalar multiplication:

MV(P1, . . . , λPi + µP ′i , . . . , Pn) =

= λMV(P1, . . . , Pi, . . . , Pn)+µMV(P1, . . . , P
′
i , . . . , Pn), λ, µ ∈ R,

• st. MV(P1, . . . , P1) = n! vol(P1).

2. Equivalently, vol(λ1P1+· · ·+λnPn) is a polynomial in scalar variables

λ1, . . . , λn, with multilinear term MV(P1, . . . , Pn) λ1 · · ·λn.

3. Exclusion-Inclusion definition: MV :=
∑

I⊂{1,...,n}
(−1)n−|I| vol

∑
i∈I

Qi

 .



Mixed Volume characterization

Property MV: vtx(Qi) ⊂ Zn Generic number of isolated solutions

∈ Z≥0 MV(. . . , Qi, . . .) #{x ∈ (K
∗
)n| · · · = fi(x) = · · · = 0}

Invariance by MV(. . . , Qj, . . . , Qi, . . .) = #{x| · · · = fj(x) = · · · = fi(x) = · · · = 0} =
permutation = MV(. . . , Qi, . . . , Qj, . . .) = #{x| · · · = fi(x) = · · · = fj(x) = · · · = 0}

Linearity wrt MV(. . . , Qi +Q′i, . . .) = #{x| · · · = (fif ′i)(x) = · · · = 0} =
Minkowski = MV(. . . , Qi, . . .)+ = #{x| · · · = fi(x) = · · · = 0}+
addition +MV(. . . , Q′i, . . .) +#{x| · · · = f ′i(x) = · · · = 0}

Linearity wrt MV(. . . , λQi, . . .) = #{x| · · · = (fi(x))λ = · · · = 0} =
scalar product = λ MV(. . . , Qi, . . .) = λ #{x| · · · = fi(x) = · · · = 0}

Monotone MV(. . . , Qi ∪ {a}, . . .) ≥ #{x| · · · = fi(x) + cxa = · · · = 0} ≥
wrt volume ≥MV(. . . , Qi, . . .) ≥#{x| · · · = fi(x) = · · · = 0}

[Kushnirenko] MV(Q1, . . . , Q1) = n!V (Q1) #{x|f1(x) = · · · = fn(x) = 0} = n!V (Q1)



Bernstein (BKK) bound

Theorem [Bernstein’75,Kushnirenko’75,Khovanskii’78] [Danilov’78]:

Given polynomials f1, . . . , fn ∈ K[x±1
1 , . . . , x±1

n ], for any field K,

the number of common isolated zeros in (K − {0})n, counting mul-

tiplicities, is bounded by the mixed volume of the Newton polytopes

MV(Q1, . . . , Qn) (irrespective of the variety’s dimension).

Dense homogeneous: MV(Q1, . . . , Qn) =
∏n
i=1 di = Bézout’s bound,

where di = deg(fi) and Qi = simplex{0, (di,0, . . . ,0), . . . , (0, . . . ,0, di)}.

Dense multi-homogeneous: MV(Q1, . . . , Qn) = m-Bézout’s bound:

the coefficient of
r∏

j=1

y
nj
j in

n∏
i=1

(di1y1 + · · ·+ diryr),

where degXj fi = dij, j = 1, . . . , r, and Xj contains nj variables.



Example: mixed subdivision for well-constrained problem

Given f1 = c11 + c12xy+ c13x
2y+ c14x, f3 = c31 + c32y+ c33xy+ c34x,

• construct their Newton polytopes in R2

• compute a mixed subdivision of the Minkowski Sum (3 mixed cells)

• compute the Mixed Volume using the formula MV=
∑
σ V (σ), over

all mixed cells σ of the mixed subdivision (here MV=3).



Resultant definition

Given n+ 1 Laurent polynomials f0, . . . , fn ∈ K[x1, . . . , xn, x
−1
1 , . . . , x−1

n ]

with indeterminate coefficients ~c, their projective, resp. toric / sparse,

resultant is the unique (up to sign) irreducible polynomial R(~c) ∈ Z[~c]

such that

R(~c) = 0⇔ ∃ ξ = (ξ1, . . . , ξn) ∈ X : f0(ξ) = · · · = fn(ξ) = 0

where the variety X equals:

• the projective space Pn over the algebraic closure K,

• resp. the toric variety X, (K∗)n ⊂ X ⊂ PN .

[van der Waerden, Gelfand-Kapranov-Zelevinsky, Cox-Little-O’Shea]



Resultant degree

The projective, resp. toric, resultant polynomial R ∈ Z[~c] is sepa-

rately homogeneous in the coefficients of each fi, with degree equal

to
∏
j 6=i deg fj (Bézout’s number), resp. the n-fold mixed volume:

MV−i := MV(f0, . . . , fi−1, fi+1, . . . , fn),

provided the supports of the fi generate Zn.

Generalizations

The toric resultant reduces to:

• the determinant of the coefficient matrix of a linear system,

• the Sylvester or Bézout determinant of 2 univariate polynomials,

• the projective resultant for n+1 dense polynomials, where the toric

variety equals Pn and MV−i =
∏
j 6=i deg fj.



Lifting in the Sylvester case

f0 = c00 + c01x, f1 = c10 + c11x+ c12x
2

RC(2) = (1; 2) ie. x2 7→ x2−2f1.



Mixed subdivision of a linear system

RC(1,2) = [2, (0,1)] ie. x1x
2
2 7→ x(1,2)−(0,1)f2 = x(1,1)f2

RC(1,1) = [1, (0,0)] ie. x1x2 7→ x(1,1)−(0,0)f1 = x(1,1)f1
RC(2,1) = [0, (1,0)] ie. x2

1x2 7→ x(2,1)−(1,0)f0 = x(1,1)f0

x2
1x2 x1x

2
2 x1x2

M =

 c01 c02 c03
c11 c12 c13
c21 c22 c23

 x1x2f0
x1x2f1
x1x2f2



Example: subdivision-based matrix

f1 = c11 + c12xy + c13x
2y + c14x,

f2 = c21y + c22x
2y2 + c23x

2y + c24x,

f3 = c31 + c32y + c33xy + c34x.



1,0 2,0 0,1 1,1 2,1 3,1 0,2 1,2 2,2 3,2 4,2 1,3 2,3 3,3 4,3
(1,0)x c11 c14 0 0 c12 c13 0 0 0 0 0 0 0 0 0
(2,0)x c31 c34 0 c32 c33 0 0 0 0 0 0 0 0 0 0
(0,1)y 0 0 c11 c14 0 0 0 c12 c13 0 0 0 0 0 0
(1,1)xy 0 0 0 c11 c14 0 0 0 c12 c13 0 0 0 0 0
(2,1) c24 0 c21 0 c23 0 0 0 c22 0 0 0 0 0 0
(3,1)x 0 c24 0 c21 0 c23 0 0 0 c22 0 0 0 0 0
(0,2)y 0 0 c31 c34 0 0 c32 c33 0 0 0 0 0 0 0
(1,2)xy 0 0 0 c31 c34 0 0 c32 c33 0 0 0 0 0 0
(2,2)x2y2 0 0 0 0 0 0 0 0 c11 c14 0 0 0 c12 c13

(3,2)x2y 0 0 0 0 c31 c34 0 0 c32 c33 0 0 0 0 0
(4,2)x2y 0 0 0 0 0 c24 0 0 c21 0 c23 0 0 0 c22

(1,3)xy2 0 0 0 0 0 0 0 c31 c34 0 0 c32 c33 0 0
(2,3)y 0 0 0 c24 0 0 c21 0 c23 0 0 0 c22 0 0
(3,3)x2y2 0 0 0 0 0 0 0 0 c31 c34 0 0 c32 c33 0
(4,3)x3y2 0 0 0 0 0 0 0 0 0 c31 c34 0 0 c32 c33


dimM = 15, greedy [Canny-Pedersen]: 14, incremental [E-Canny]: 12.

Mixed volumes = 4,3,4⇒ degRtor = 11 while deg(classical resultant) = 26.



Polynomials of arbitrary support



Matrices of Sylvester-type

Algorithms: subdivision-based [Canny-E’93,’00], incremental [E-Canny’95]

yield a square matrix M of the sparse/toric resultant, such that:

det(M) 6≡ 0,

R | det(M),

degf0
det(M) = degf0

R,

where R is the toric resultant.

Rational form [D’Andrea’02]: R = det(M)/det(M ′),

where M ′ is a submatrix of M , generalizing Macaulay’s construction.



Matrix construction [Canny,E’93,00]

1. Pick (affine) liftings ωi : Zn → R : supp(fi)→ Q.

2. Define (tight coherent polyhedral) mixed subdivision of the

Minkowski sum Q = Q0 + · · ·+Qn of the Newton polytopes.

Maximal cells are uniquely expressed as

σ = F0 + · · ·+ Fn, with dimF0 + · · ·+ dimFn = n,

where Fi is a face of Qi. σ is i−mixed⇐⇒ ∃! i : dimFi = 0.

3. For every point p ∈ E = (Q+ δ) ∩ Zn, ∃ unique σ + δ 3 p.

Define function RC(p) = (i, Fi) : unique if σ i-mixed, else pick max i.

4. Construct resultant matrix M with rows/columns indexed by E :

for p, q ∈ E, element (p, q) is the coefficient of xq in xp−aifi :

p− δ ∈ σ = F0 + · · ·+ ai + · · ·+ Fn (max i), i.e. RC(p) = (i, ai).



Correctness

Lemma. RC(p) = (i, ai)⇒ support(xp−aifi) ⊂ E.

Proof. p ∈ σ + δ ⊂ Q0 + · · ·+ Qi−1 + ai + Qi+1 + · · ·+ Qn + δ implies

p− ai ∈
∑
i 6=jQi + δ, hence p− ai + q ⊂ E for all q ∈ supp(fi).

Corollary. The diagonal entry at the row indexed by p contains the fi
coefficient of xai.

Proof. Consider the row indexed by p, s.t. RC(p) = (i, ai).

Then, the fi coefficient of xai is the coefficient of xp in xp−aifi, hence

it appears at the column indexed by p.



Incremental algorithm [E-Canny’95]

Idea: The rows express xbfi : b ∈ Q−i ∩ Zn, where
Q−i = Q0 + · · ·+ Qi−1 + Qi+1 + · · ·+ Qn so that column monomials
⊂
∑
iQi.

1. Sort Q−i ∩ Zn on their distance distv(·) from the boundary of Q−i
along some vector v ∈ Qn.

2. Define the rows of M by points Bi = {b : distv(b) > β}, for bound
β ∈ R. The columns are indexed by ∪i ∪b∈Bi supp(xbfi).

3. Enlarge M by decreasing β until M (i) has at least as many rows
as columns and (ii) is generically of full rank.

For multihomogeneous systems: Deterministic vector v yields:
• exact matrices if possible [Sturmfels-Zelevinsky’94],
• otherwise minimum matrices [Dickenstein-E’02].

Complexity in ∼ e2n(degR)2 (by quasi-Toeplitz structure)



Unmixed multihomogeneous systems

Partition the variables to r subsets: every polynomial is homogeneous
in each subset. The i-th subset has li + 1 homogeneous variables, of
total degree di. Then the polynomial is of type (l1, . . . , lr; d1, . . . , dr).

Type (2,1; 2,1) : (x1, x2, y1) ∈ P2 × P1 : c0 + c1x1 + c2x2 + c3x1x2 +
c4x

2
1 + c5x

2
2 + c6y1 + c7x1y1 + c8x2y1 + c9x1x2y1 + c10x

2
1y1 + c11x

2
2y1.

A system is of type (l, d) iff all polynomials are of type (l, d).

[Sturmfels,Zelevinsky’94]. If li = 1 or di = 1, ∀ i, then ∃ determinantal
resultant formula i.e. detM = R.
Type (2,1; 1,1): c0 + c1x1 + c2x2 + c3y1 + c4x1y1 + c5x2y1.

[Dickenstein,E’02] find minimum (non-optimal) Sylvester-type matrix;
extended by [E-Mantzaflaris]
The incremental algorithm [E,Canny’95] constructs all these matrices.



Rational form

Recursive lifting on n, using the subdivision algorithm [D’Andrea’01].

Bilinear: fi = ai + bix1 + cix2 + dix1x2, i = 0,1,2.
Linear lift (−∞, . . .), (0,1,1,2), (0,0,7,7), δ = (2

3
, 1

2
)⇒ dimM = 16 (numerator):

M =



a1 b1 0 c1 d1 0 0 0 0 0 0 0 0 0 0 0
0 a0 b0 0 c0 d0 0 0 0 0 0 0 0 0 0 0
0 a1 b1 0 c1 d1 0 0 0 0 0 0 0 0 0 0
a2 b2 0 c2 d2 0 0 0 0 0 0 0 0 0 0 0
0 a2 b2 0 c2 d2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 a0 0 0 c0 d0 b0 0 0 0 0 0
0 0 0 a2 b2 0 c2 d2 0 0 0 0 0 0 0 0
0 0 0 0 a2 b2 0 c2 d2 0 0 0 0 0 0 0
0 0 0 0 a1 b1 0 c1 d1 0 0 0 0 0 0 0
0 0 0 0 0 a1 0 0 c1 d1 b1 0 0 0 0 0
0 0 0 0 0 a2 0 0 c2 d2 b2 0 0 0 0 0
0 0 a2 0 0 c2 0 0 0 0 d2 b2 0 0 0 0
0 0 0 0 0 0 a2 b2 0 0 0 0 c2 d2 0 0
0 0 0 0 0 0 0 a2 b2 0 0 0 0 c2 d2 0
0 0 0 0 0 0 0 0 a2 b2 0 0 0 0 c2 d2

0 0 0 0 0 0 0 0 a1 b1 0 0 0 0 c1 d1





Rational form: denominator

M ′ =



a1 0 c1 d1 0 0 0 0 0 0
0 b1 0 c1 0 0 0 0 0 0
a2 0 c2 d2 0 0 0 0 0 0
0 b2 0 c2 0 0 0 0 0 0
0 0 a2 b2 c2 d2 0 0 0 0
0 0 0 a2 0 c2 d2 0 0 0
0 0 0 a1 0 c1 d1 0 0 0
0 0 0 0 0 0 c2 b2 0 0
0 0 0 0 0 a2 b2 0 c2 d2

0 0 0 0 0 0 a2 0 0 c2


det(M) = ±R · det(M ′): M ′ is a submatrix of M ,

|M ′| = −c3
2(−c1a2 + a1c2)b2(c1d2 − d1c2)(−b2c1 + b1c2)

Main step: lifting of some b ∈ Q0 is very negative.

The mixed subdivision provides all info.

Open: ∃ single lifting yielding both numerator and denominator?

YES if n = 2, unmixed system, or sufficiently different Newton poly-

topes [E-Konaxis’11]



Bézout matrices



The Bezoutian

Definition. For f0, . . . , fn ∈ K[x1, . . . , xn], the Bezoutian polynomial is

Θfi(x, z) = det

 f0(x) θ1(f0)(x, z) · · · θn(f0)(x, z)
... ... ... ...

fn(x) θ1(fn)(x, z) · · · θn(fn)(x, z)

 ,

θi(fj)(x, z) =
fj(z1, . . . , zi−1, xi, . . . , xn)− fj(z1, . . . , zi, xi+1, . . . , xn)

xi − zi
.

Let Θf0,...,fn(x, z) =
∑
a,b

θab x
azb, θa,b ∈ K, a, b ∈ Nn.

Then the Bezoutian matrix of f0, . . . , fn is the matrix [θab]a,b.

Theorem. [Cardinal-Mourrain’96] The resultant divides all maximal

nonzero minors of the Bezoutian matrix.

The dimension of the matrix is O(endn), d = max{deg fi}.



Polynomial system solving



Polynomial System Solving I

Given f1, . . . , fn ∈ K[x±1
1 , . . . , x±1

n ] defining a 0-dimensional radical
ideal.
Add polynomial f0 = u + r1x1 + · · ·+ rnxn, random ri, indeterminate
u.

Construct resultant matrix M(u) for f0, f1, . . . , fn. At root α, u =
−
∑
riαi, 

M11 M12

M21 M22(u)





...
αp
...
αq
...

 =



...
αafi(α)

...
αbf0(u, α)

...

 =



...
0
...
0
...

 .

If detM11 6= 0, let M ′(u) = M22(u)−M21M
−1
11 M12,

(M ′+ uI)v′α = 0, dimM ′ = MV(f1, . . . , fn).

• Ratios of the entries of eigenvectors v′α yield α, if the q span Zn.



• Otherwise, use some entries of vα = −M−1
11 M12v

′
α, where (vα, v′α)T

is the respective eigenvector of M .



Polynomial System Solving I (factoring)

For f0 = u0 + u1x1 + · · ·+ unxn, with indeterminates ui, the Poisson

formula implies

R(u0, . . . , un) = C
∏

α∈V (f1,...,fn)

(u0 + α1u1 + · · ·+ αnun)mα,

over all roots α with multiplicity mα, where C depends on the coeffi-

cients of f1, . . . , fn.

Setting ui = ri, i = 1, . . . , n, for random ri, we have

R(u0) = C
∏
α

(u0 + r1α1 + · · ·+ rnαn)mα.

Solving R(u0) for u0 yields u0 = −
∑
i riαi for all α.

R(u0) is used in the method of Rational Univariate Representation

(primitive element) [Canny,Rouillier] for isolating all real α.



Polynomial System Solving II

“Hide” a variable in the coefficient field: f0, f1, . . . , fn ∈ (K[x0])[x1, x
−1
1 , . . . , xn, x−1

n ]

Hypothesis: x0-coordinates of roots distinct, |M(x0)| 6≡ 0.

detM(x0) =

∣∣∣∣ M11 M12(x0)
M21 M22(x0)

∣∣∣∣ =

∣∣∣∣ M11 M12(x0)
0 M ′(x0)

∣∣∣∣ ,
|M ′(x0)| = |Adxd0 + · · ·+A1x0 +A0| = detAd det(xd0 + · · ·+A−1

d A1x0 +A−1
d A0).

• If detAd 6= 0, define companion matrix C:

C =


0 I 0
... . . .
0 0 I

−A−1
d A0 −A−1

d A1 · · · −A−1
d Ad−1


The eigenvalues of C are the x0-coordinates of the solutions and its eigenvectors
contain the values of the monomials indexing M ′ at the roots.

• Rank balancing improves the conditioning (of Ad) by x 7→ (t1y + t2)/(t3y + t4),
ti ∈R Z.
• If Ad remains ill-conditioned, solve the generalized eigenproblem

I
. . .

I
Ad

x+


0 −I

. . .
−I

A0 A1 · · · Ad−1

 .



Matrix-based methods for system solving

Theorem. Let {zk}k ⊂ Cn be the isolated zeros of f1, . . . , fn ∈
Q[x1, . . . , xn]. There exists matrix Ma expressing multiplication by

a mod 〈fi〉 s.t.

• the eigenvalues of Ma are a(zk), and

• the eigenvectors of M t
a are, up to a scalar, 1zk : p(x) 7→ p(zk).

Construct multiplication matrices by means of

• resultant matrices, e.g. Sylvester, Bézout, sparse, or

• normal forms, boundary bases (generalize Gröbner bases).

Stable with respect to input perturbations.

Handles multiplicities and zero sets at infinity.

Extends to over-constrained systems and 1-dimensional zero sets.

Complexity: single exponential in n.

Synaps/Mathemagix library: C++, fast univariate solvers (e.g. [E-

Tsigaridas]), connections (GMP, MPFR, LAPACK, SparseLU etc).



Multiplication maps

Consider ideal I := 〈p1, . . . , pm〉 ⊂ K[x1, . . . , xn] = K[x],

and quotient ring AK := K[x]/I.

Polynomial multiplication in AK, ie. modI, by some a ∈ K[x], is a

linear map:

Ma : K[x]/I → K[x]/I : b 7→ ab mod I,

where ordered field K ⊂ some real closed field.

Can compute Ma via Resultants, Gröbner bases, normal-form meth-

ods.



Software



Discrete geometry

• (Stable) Mixed Cells

Input: n polynomial supports in Zn (well-constrained)

Output: Monomial basis of quotient,

generic number of roots in (K∗)n,Kn,

starting system of sparse homotopy in (K∗)n,Kn.

Code: Ansi-C.

Package: MMX (SYNAPS) and stand-alone.



Symbolic algebra

Input: n+ 1 polynomial supports in Zn (over-constrained)

Output: Square toric resultant matrix, optimal size in specified polynomial

• Incremental algorithm

Features: Exact Sylvester-type matrix whenever possible

Code: Ansi-C.

Package: MMX (SYNAPS) or stand-alone.

Future work: Fast rank tests (quasi-Toeplitz matrices),

MMX (SYNAPS) sparse representations (superLU, Hewlett),

monomial set representation (+ arithmetic)

• Subdivision-based (greedy) algorithm

Features: Exact rational expression, allows linear perturbation.

Code: Maple.

Package: Multires or stand-alone.

Future work: Sparse / structured representations,

fast point-in-cell location (in implicit subdivision)



Numerical solving

• Polynomial system solving

Input: Polynomial supports and coefficients,

resultant matrix

Output: Superset of common roots

Features: Numerical linear algebra: LAPACK,

trade-off between speed and accuracy,

factors out constant submatrix: Schur factorization,

rank balancing of matrix polynomial,

regular or generalized eigenproblem.

Code: Ansi-C, some in Maple.

Package: Stand-alone.

Future work:

• MMX (SYNAPS) capabilities: Popov, quasi-Toeplitz structure,

arithmetic.

• LAPACK capabilities: condition numbers, backward-error analysis.



Application: Geometric modeling



Implicitization of parametric surfaces



Example: sphere

The sphere in R3 is the set of values (x, y, z):

x =
t21 − t

2
2 − 1

t21 + t22 + 1
, y =

2t1
t21 + t22 + 1

, z =
2t1t2

t21 + t22 + 1
, t1, t2 ∈ [0,1],

as well as the set of roots of H(x, y, z) := x2 + y2 + z2 − 1 = 0.

Modeling/CAD use parametric and implicit/algebraic representations
due to their complementary advantages. This is crucial in operations
such as intersecting two surfaces. ⇒ must implicitize a (hyper)surface
given a (rational) parameterization



Implicitization of rational parametric surfaces

Given is a parametrization of a rational surface:

x1 =
p1(t1, t2)

p0(t1, t2)
, x2 =

p2(t1, t2)

p0(t1, t2)
, x3 =

p3(t1, t2)

p0(t1, t2)
.

Homogenize the pi θ : P2 → P3 : (t0 : t1 : t2) 7→ (p0 : p1 : p2 : p3).

Problem: compute the smallest algebraic surface H(x1, x2, x3, x0)

containing Im(θ), including the case of base points t ∈ P2 : pi(t) = 0.

Methods: Gröbner bases, moving surfaces, resultant (perturbation,

residual, Bezoutian), residue, Newton sums, numerical methods...



Implicitization examples

[Descartes’ folium]

[1596-1650]

(x, y) =

(
3 t2

t3 + 1
,

3 t

t3 + 1

)

H = x3 + y3 − 3 x y

[Buchberger’88]

(x, y, z) = (st, st2, s2)

H = x4 − y2z

[Busé’01]

x =
s2

s3 + t3
,

y =
s3

s3 + t3
,

z =
t2

s3 + t3

H = x3 − 2x3y +

x3y2 − y2z3



Implicitization by linear algebra

S = monomials forming (a superset of) the implicit support.

C = unknown coefficients of implicit equation wrt S, |C| = |S|.

• MC = ~0, where matrix M is |S| × |S|, and contains values of S at

points (si, ti), i = 1, . . . , |S|. Try roots of unity [Sturmfels-Tevelev-Yu’07].

• (SST )C = ~0, substitute x, y, z by parametric expressions in K[s, t],

integrate over s, t; solve for C [Corless-Galligo-Kotsireas-Watt’01].

Example: supp(H) ⊂ {x3y, x3, x3y2, y2z3}, then

SST =


x6y2 x6y x6y3 x3y3z3

x6y x6 x6y2 x3y2z3

x6y3 x6y2 x6y4 x3y4z3

x3y3z3 x3y2z3 x3y4z3 y4z6

⇒ C =


−2
1
1
−1

 .

• Approximate implicitization [Dokken].



Implicit Newton polytope

Consider parameterizations with fixed supports.

• Generic coefficients:

– Compute the resultant’s Newton polytope, then specialize:

[E-Kotsireas’03] developed Maple code calling Topcom [Rambau];

[E-Konaxis-Palios’07] specify implicit Newton polygon for curves.

[E-Konaxis-Fysikopoulos-Penaranda’11] fast algorithm for projecting resul-

tant polytope in high-dim.

– Tropical geometry for varieties of codim > 1.

For curves, specified implicit polygon [Sturmfels-Tevelev-Yu’07].

• Arbitrary coefficients:

– Implicit Newton polygon for curves:

[Dickenstein-Feichtner-Sturmfels’07] study tropical discriminants;

[D’Andrea-Sombra’07] use mixed fiber polytopes [Esterov-Khovanskii’07].



Voronoi / Apollonius diagrams



Apollonius diagrams

Def. Given n objects in R2, their Voronoi diagram is a subdivision into
n cells, each comprising the points closer to one object.

Nonlinear computational geometry considers circles, spheres, and el-
lipses. So, we refer to Apollonius diagrams.

Apollonius diagram of green circles [Karavelas-E’03], code in CGAL.



Apollonius diagram of ellipses

• Standard incremental algorithm.

• Problem: predicates, under Euclidean distance.

• For now: n disjoint ellipses.

• Predicate 1. Given 2 ellipses and an external point, decide which

ellipse is closer to the point.

• Main predicate: 3 ellipses define one Apollonius circle externally

tritangent to all: decide relative position of 4th ellipse wrt circle.



Point-ellipse distance

For a point outside an ellipse, there are 2-4 normals onto the ellipse,

depending on the point’s position wrt the evolute curve.



Pencil of conics

General conic, M symmetric:

[x, y,1]M [x, y,1]T = 0

Given ellipse, and circle centered at (v1, v2) with parametric radius:

E =

 a b d
b c e
d e f

 , C(s) =

 1 0 −v1
0 1 −v2
−v1 −v2 v2

1 + v2
2 − s

 .

• Their pencil is λE + C(s),

• the characteristic polynomial is φ(s, λ) = |λE + C(s)|,
• and ∆(s) is φ’s discriminant (wrt λ).



Comparing point-ellipse distances

Thm. ∆(s) = 0⇔ E,C(s) have a multiple intersection

Given ellipse E and point v outside E, their distance is the square-root

of the smallest positive root of the discriminant ∆(s).

Deciding which ellipse is closest to an external point reduces to com-

paring two algebraic numbers of degree 4. This degree is optimal.

Implemented in SYNAPS [E-Tsigaridas’04].



Apollonius circles

Given 3 ellipses, how many (real) tritangent circles are defined?

MV [ ∆1(v1, v2, s),∆2(v1, v2, s),∆3(v1, v2, s) ] = 256.

q := v2
1 +v2

2−s ⇒ C(s) =

 1 0 −v1
0 1 −v2
−v1 −v2 q

 ⇒ MV = 184.

Arguments from real algebraic geometry yield same [Sottile].



Unmixed bivariate systems

Given: unmixed system of 3 bivariate polynomials (identical supports).

∃ hybrid determinantal formula [Khetan’02]: M =

[
B S

ST 0

]

Eliminate (v1, v2) → 58×58 matrix with Sylvester and Bézout blocks:

sparse resultant = det(M), of degree 184 in q.

Open: How many real tritangent circles, in general?

Random example yields 8 real roots.



Voronoi diagram of ellipses

• Sparse elimination, Mixed Volume: 184 complex tritangent circles
• Resultants, factoring: sparse, successive Sylvester
• Adapted Newton’s: quadratic convergece, certified
• Real solving: Complexity and software [E-Tsigaridas]

• Switch representation: implicit, parametric

• Geometric CGAL C++ software relying on algebra (Synaps, NTL).
• About 1sec per non-intersecting ellipse
• Faster than Voronoi of k-gons, k ≥ 15 edges or k ≥ 200 points.

[E-Tsigaridas-Tzoumas,SoCG’06] [E-Tz,CAD’08] [E-Ts-Tz,ACM/SIAM-GPM’09]



Parallel robots



Robot kinematics

Forward Kinematics: Compute all displacements for given configura-
tion.
Easy/hard for serial/parallel robots respectively.

Inverse Kinematics: Compute all configurations that result to given
translation – rotation (displacement).
Hard/easy for serial/parallel robots resp.

Parallel robots

Advantages: precision, rigidity, manipulation, force.
Examples: micro-surgery, flight simulation, heavy-duty objects etc.

Forward kinematics of Stewart platform: “The major outstanding
problem in all of manipulator direct and inverse kinematics” [Roth93].
Configuration defined by the lengths of 6 articulations, system of 6 to
10 equations, ≤ 40 real solutions.



Stewart platform

Two rigid bodies connected with 6 sliding joints rotating freely at

attachments: parallel mechanism.

Forward kinematics: Given joint lengths, compute pose of platform.

Rotation/translation/attachment quaternions q̇, ṫ,ȧi, ȧ
′
i

(−ȧi + ṫ+ q̇ȧ′iq̇
∗)T (−ȧi + ṫ+ q̇ȧ′iq̇

∗) = L2
i , i = 1, . . . ,6.

Bézout bound = 256, m−Bézout = 144.

Exact bound = 40 [Ronga-Vust’92] [Mourrain’93] [Husty’94].

Can have 40 real solutions) [Dietmaier’98].

6× 6 original system has MV= 160.

7× 7 system with ẋ = q̇∗ ṫ has MV= 84, degRtor = 214,dimM = 405.

10× 10 system with y0 = ‖q̇‖2, ż = q̇∗ṫq̇, has MV= 54.


