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Contemporary Mathematics

Curves, Surfaces, and Syzygies

David Cox

ABSTRACT. This article surveys recent work with Sederberg, Chen, Goldman,
Zhang, Schenck, Busé and D’Andrea on how syzygies can be used to implicitize
rational curves and surfaces. There are also non-technical discussions of local
complete intersections, regularity, and saturation.

Introduction

The purpose of this paper is to survey some recent work on the use of syzygies to
give determinantal formulas for the equations of parametrized curves and surfaces.
The paper is organized into five sections as follows, where the parentheses indicate
the joint authors involved.

1. Curves (with Sederberg and Chen [8])

2. Surfaces without Base Points (with Goldman and Zhang [6])
3. Base Points (with Schenck [5])

4. Saturation and Regularity

5. Surfaces with Base Points (with Busé and D’Andrea [2])

One of my goals is to illustrate how the geometric modeling community is asking
interesting and nontrivial questions which involve some surprisingly sophisticated
commutative algebra. Sections 1 and 2 are based on [4] while Sections 3 and 5
report on subsequent developments. Section 4 is devoted to a discussion of the
concepts of saturation and regularity.

1. Curves

For curves, the goal is to find the implicit equation of a parametrized curve in
the projective plane P?. This means that we want to implicitize a parametrization
of the form

¢ Pl — P2
o(s,t) = (a(s,t),b(s,1),c(s,1)),

where a, b, c are homogeneous of degree n and ged(a, b, ¢) = 1. In this paper, we will
work over the complex numbers C. Thus a,b,c lie in the polynomial ring C[s, ],

(1.1)
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2 DAVID COX

and the gecd condition implies that we have no base points to worry about. This is
one of the really nice features of the curve case.

In practice, implicitization of curves and surfaces can be done by any of the
three following methods:

e Grobner Bases

e Resultants

e Syzygies
This paper will concentrate on the third of these methods.

Moving Lines. A moving line in P? is an equation of the form
A(s,t)x + B(s,t)y + C(s,t)z =0,
for A, B,C are homogeneous of the same degree. We say that the moving line
follows ¢ from (1.1) if
A(s,t)a(s,t) + B(s,t)b(s,t) + C(s,t)c(s,t) =0,
where = 0 means vanishes identically. In algebraic geometry, one says that (A, B, C)
is a syzygy on (a,b, c). This is written
(A7 B7 C) E SyZ(a7 b7 C)7
where Syz(a, b, ¢) is the syzygy module of (a,b,c). Note that Syz(a, b, ¢) is a module
over the ring C[s, t]. We also let
Syz(a, b7 c)k

denote the set of syzygies (A, B,C) where A, B,C are homogeneous of degree k.
Thus Syz(a, b, ¢); is a vector space over C. We say that elements of Syz(a, b, ¢)x
are moving lines of degree k that follow ¢.

There is one degree which is especially important.

CramM 1.1. The moving lines of degree n—1 that follow ¢ determine the implicit
equation of the parametrization ¢.

To see why this is true, let R = Cl[s,t] and let Rj denote the vector space of
homogeneous polynomials in R of degree k. Then Syz(a,b,c),_1 is the kernel of
the map

(a,b,c)

(12) Ri_l — Ron 1
N—— N——
dim 3n dim 2n

given by dot product with (a, b, ¢). Later we will show that this map has maximal
rank. Assuming this, we can find n linearly independent moving lines of degree
n—1,say (4;,B;,C;),i=0,...,n—1. Since each A;, B;, C; is a polynomial in s, t,
we can write this moving line as

n—1

A+ By + Ciz = Y Lij(w,y,2)st" 1,

j=0
where L;j(z,y,z) is a linear form in the homogeneous coordinates z,y,z of P?.
Then we have the following result proved in [8].

THEOREM 1.2. The implicit equation of ¢ is F' = 0, where
F* = det(Lyj(x,y, 2))
and h is the generic degree of ¢ : P1 — P2,
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Note that (L;;(z,y, 2)) is an n xn matrix of linear forms, so that its determinant
has degree n in x,y, z. This is exactly the degree that we would expect in this case.

The Hilbert Syzygy Theorem. The next step is to look a little more deeply
into the commutative algebra involved in this situation. Let I = {(a,b,c¢) C R =
Cls,t]. Then I is an ideal of R and we have an exact sequence

1.3 0 — Syz(a,b,c) — —n)’ — 1 — 0.
(1.3) Syz(a,b,c) — R(—n)* {22 1

This is standard notation in commutative algebra. Since R(—n)®> — I sends
(A, B, C) to Aa+Bb+Cec, the exactness of (1.3) simply restates the known facts that
I is generated by a,b,c and that Syz(a, b, c) is the kernel of the map R(—n)® — I,
i.e., Syz(a,b,c) is the syzygy module.

The notation R(—n) in (1.3) means that we are shifting degrees by —n to
compensate for the fact that multiplication by a,b, ¢ shifts degrees by +n. Thus
R(—n)r = Rg_n, so that in (1.3), (4,B,C) € R(—n)} means that A4, B,C have
degree k —n and hence Aa+ Bb+ Cc has degree k. It follows that dot product with
(a,b,c) maps R(—n); to Iy, i.e., this map preseves degrees. This is why notation
like R(—n) is standard in commutative algebra.

The Hilbert Syzygy Theorem describes the structure of free resolutions of ho-
mogeneous ideals in polynomial rings. In the case of two variables, the Syzygy
Theorem implies that the syzygy module Syz(a,b,c) in (1.3) is free, meaning that
every element of the module can be expressed uniquely as a sum of basis elements
multipled by elements of R. Furthermore, using the Hilbert polynomial, one can
show that

(1.4) Syz(a,b,c)  R(—n — 1) ® R(—n — p2), p1 + p2 = n.

The details of this argument can be found in [8]. In more down-to-earth terms,
the above isomorphism means that if we set p = p; < ps = n — p, then there are
syzygies p, q € Syz(a, b, ¢) such that
Syz(a,b,c) =R p ® R ¢
~~ —~—
deg n deg n—p
We call p,q a p-basis of the parametrization (1.1).
The existence of a p-basis has some strong consequences. For example, it
implies that every syzygy of degree n — 1 can be written uniquely as
(1.5) hi p+ h2 g
~— ~—
deg n—p—1 deg p—1
Since there are n — p (resp. p) linearly independent choices for hy (resp. hs), it
follows that there are precisely n linearly independent moving lines of degree n — 1
that follow ¢. Thus (1.2) has maximal rank, as claimed earlier.
Another interesting aspect of (1.5) is that if we let hy (resp. h2) range over all

monomials of degree n — p— 1 (resp. pr — 1), then the matrix (L;;(x,y, 2)) becomes
the Sylvester matrix of p and gq. Thus we get the following corollary of Theorem 1.2.

COROLLARY 1.3. If p,q is a p-basis of the parametrization ¢, then
Res(p,q) = F",

where F' = 0 is the implicit equation of the curve and h is the generic degree of ¢.
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As explained in [8], it is also possible to express F* as a (n — u) x (n — )
determinant with

n — 2p linear rows built from p, and
u quadratic rows built from the Bezoutian of p, g.

More generally, expressing implicit equations and resultants as “mixed” determi-
nants of the above type is an active area of research.

Regularity. We should also mention that the existence of a u-basis tells us
about the regularity of the ideal I = (a,b,c). Here, the regularity of I, denoted
reg(I), means the following. Since a,b,c € R = (C[s, t] have no common zeros, then
setting t = 1 gives polynomials a(s) = a(s,1),b(s) = b(s,1),&(s) = ¢(s,1) in C[s]
with no common zeros. By the Nullstellensatz, it follows that a, b,¢ generate the
unit ideal of C[s], i.e., (a,b, &) = C[s].

In the homogeneous case, I = (a,b,c) can’t equal R = C[s, t] since elements of
I have degree at least n. However, it is true that I, = R;, for k sufficiently large
(this follows from the projective Nullstellensatz). But what does “sufficiently large”
mean? For ideals without base points, this is exactly what regularity tells us. In
other words, reg(I) is the smallest integer ko such that I}, = Ry, for all k > k.

Using (1.3) and (1.4), one can show that the regularity of I = (a,b,¢) is

reg(I) =2n—p— 1.

Thus the p-basis determines the regularity in our situation.

In general, the regularity of a homogeneous ideal I is a subtle number reg(I)
computed from the minimal free resolution of the ideal. The intuition is that the
regularity of I measures how big k£ needs to be in order for I to behave nicely. In
Section 3, we will explain what “behave nicely” means when I has finitely many
base points.

Some History. In 1997, Sederberg and Chen conjectured the existence of
p-bases and asked if I had any ideas for how to prove their conjecture. I worked
out an elementary proof (which appears in [8]), but I had a nagging suspicion that
something more was involved. To my embarrassment, it was over six months before
I realized that the Hilbert Syzygy Theorem was the answer.

As indicated above, the Syzygy Theorem does a wonderful job of revealing the
underlying structure of what’s going on. This led me to believe that I wasn’t the
first person to look at this case. Checking the literature led me to an 1887 paper
of Franz Meyer, where he proves the existence of a p-basis p,q. More generally, he
conjectured that for a collection of m homogeneous polynomials a1, ...,a, € R, =
Cls, t], without common factors, the syzygy module Syz(as,...,a,,) should be a
free module with m — 1 generators of degrees py,..., ft;,—1 which sum to n. He
tried very hard to prove the case m = 4 but failed.

In 1890, just three years after Meyer’s paper, Hilbert published his amazing
paper which proves the Syzygy Theorem and defines Hilbert polynomials. This pa-
per is a cornerstone of modern commutative algebra. And the very first application
given by Hilbert is to prove Meyer’s conjecture! (References to the papers of Meyer
and Hilbert can be found in [8].)

For curves, the moral of the story is that commutative algebra provides pre-
cisely the tools needed to understand syzygies and how they relate to the implicit
equation. As we will soon see, surfaces are more complicated.
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2. Surfaces
We now consider surface parametrizations in P2. We will begin with the tensor
product case, where the parametrization is given by
¢:PLx P ——— P3
21) (s, t,u,v) = (a(s,t,u,v),b(s,t,u,v),c(s,t,u,v),d(s,t,u,v)).

Here a,b,c,d € R = (C[s, u;t,v] are homogeneous polynomials of bidegree (m,n)
and ged(a, b, ¢,d) = 1. Unlike the curve case, the gcd condition still allows for the
possibility of finitely many base points, which are points of P! x P! where a,b,c,d
vanish simultaneously. The possible presence of base points is why we use the
broken arrow ——— in (2.1); it means that ¢ might not be defined on all of P* x P*.

In this section, we will assume that the map ¢ of (2.1) has no base points and
is generically one-to-one. Thus we can write ¢ as

¢ :P' x P — S C P?,
where S is the image of ¢. Our goal is to compute the implicit equation
F=0
of the surface S. The degree of F' is 2mn since the generic degree is 1.

Moving Planes and Quadrics. In analogy with the moving lines used in
the study of curves, a 4-tuple (A4, B,C, D) € R* of homogeneous polynomials of the
same bidegee gives a moving plane

Ar+By+Cz+Dw =0
in P?, and this moving plane follows ¢ if
A(S, t7 u? ,U) a(87 t? ’U/, U) + B(S7 t? ’U/, U) b(s7 t7 u? ,U)
+ C(s,t,u,v) (s, t,u,v) + D(s, t,u,v)d(s, t,u,v) = 0.
The set of all moving planes that follow ¢ is the syzygy module Syz(a, b, ¢, d).
Similarly, a moving quadric is an equation
Az® + Bry + -+ Jw? =0
where (4,...,J) € R are homogeneous of the same bidegree, and a moving
quadric follows ¢ if
A(s, t,u,v) als, t,u,v)? + -+ J(s,t,u,v) d(s, t,u,v)* =
The moving quadrics that follow ¢ form the syzygy module Syz(a?, ab,...,d?).
Given a bidegree (k,1), we will let
Ry resp. Syz(a,b,c,d)i; resp. Syz(a®,ab,...,d*)k,
denote the vector spaces of polynomials resp. moving planes that follow ¢ resp.
moving quadrics that follow ¢ of this bidgree.

As in the curve case, there is one bidegree which is especially interesting. First,
the moving planes of bidegree (m — 1,n — 1) that follow ¢ are the kernel of

4 (a,b,c,d)
(22) MP: Rmflynfl R2m7172n71 .
————
dim 4mn dim 4mn

If this map has maximal rank, then Syz(a,b, ¢, d)m—1,n—1 = {0}, i-e., there are no
moving planes of bidegree (m — 1,n — 1) that follow ¢.
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Second, moving quadrics of bidegree (m — 1,n — 1) are the kernel of

(a®,ab,...,d%)
(23) MQ : R}r?—l,n—l _— R3m7173n71 .
—_———— —_———
dim 10mn dim 9mn
If this map has maximal rank, then Syz(a?,ab,...,d*),, 1,1 has dimension mn,

i.e., there are mn linearly independent moving quadrics of bidegree (m — 1,n — 1)
that follow ¢.

Let’s assume that M@ has maximal rank. This gives mn moving quadrics of
degree (m — 1,n — 1) that follow ¢, say Q1,...,Qmn. Let u =v =1 and write

Qi = A’ + -+ Jw®

= (ZAi7ijjtk)ﬂf2 + -+ (Z Ji,jksjtk)’wQ
Jik

ik

=2 (Aigra® + - + Jigrw® ) st
ik ™ ~
Qi,jk (:I/.a Y,z, w)
Foreach 0 < 7 < m—1and 0 < k < n — 1, this gives a quadric polynomial
Qi,jr(z,y, z,w). So for a fixed i, we get mn quadrics, and since ¢ ranges from 1 to
mn, we get a square matrix of quadrics

M = (Qi,jk (:I/.a Y, =z, w))
Here is the first main result of [6].

THEOREM 2.1. If ¢ : P! x P2 — P3 has no base points, is generically one-to-
one, and MP has mazimal rank, then the implicit equation of the surface S C P?
paramatrized by ¢ is

F = det(M),
where M is the matrixz described above.

The Role of Commutative Algebra. We won’t prove Theorem 2.1 in detail,
but we will explain how commutative algebra is used in the argument. The proof
begins by changing coordinates in P? if necessary so that a, b, ¢ have no base points.
Then consider the matrix

2
MQ":R) ., 4 Lenabed), R3m—1,3n—1
—— N———’

dim 9mn dim 9mn

given by a?,ab,...,cd. If we can show that det(MQ') # 0, then MQ will have
maximal rank, which will in turn enable us to construct M. Furthermore, as
explained in [6], det(M Q') # 0 enables us to prove that det(M) is not identically 0.
It follows that det(M) is a polynomial of degree 2mn and vanishes on the surface
S (since the moving quadrics used to construct M all follow the parametrization).
This proves that det(M) = 0 is the implicit equation of S.

Hence, to complete the proof, we only need to show that det(M Q') # 0. Let
us sketch two proofs.

First Proof of det(M Q") # 0. Suppose we could prove that
(2.4) det(MQ') = det(M P)? Res(a, b, c).

We are assuming det(MP) # 0, and Res(a,b,¢) # 0 since a,b, ¢ have no base
points. Then (2.4) immediately implies that det(M Q') # 0. The formula (2.4) was
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conjectured in Goldman and Zhang in [6] and proved by D’Andrea in [9]. Thus
(2.4) gives a very quick proof that det(MQ') # 0.

Second Proof of det(MQ') # 0. If det(M@Q') = 0, then the columns of M Q' are
linearly dependent. This gives a relation of the form

Aa® + Bab+ -+ Ied = 0,
where A, ..., I have bidegree (m — 1,n — 1). We can write this as
(2.5) 0=(Aa+ Bb+ Cc+ Dd)a+ (Eb+ Fc+ Gd)b + (He + Id)c.
This is a syzygy on a,b, ¢ of degree (2m — 1,2n — 1). I remember Ron Goldman
asking me if (2.5) implies that
(26) Hc+Id:—h1a—h3b
for some polynomials h; and hs of bidegree (m — 1,n — 1). If this is true, then
(2.6) gives a nontrivial syzygy of bidegree (m — 1,n — 1) among a,b, ¢,d, which
contradicts our assumption that M P has maximal rank.

So how do we prove that (2.5) implies (2.6)? The solution (which fortunately
didn’t take me six months to figure out) uses an object in commutative algebra
known as the Koszul complex. The basic idea is that some obvious syzygies on
a, b, c are given by

c-a+0-b+(—a)-c=0

b-a+(—a)-b+0-c=0

O-a+c-b+(=b)-c=0.
Furthermore, if we multiply the first equation by h;, the second by hs, and the
third by hg, then we get the Koszul syzygy Aa + Bb+ Cc = 0, where

A= h16+h2b
(27) B = _h2a + h3C
C = —hla - h3b

So a natural question is whether all syzygies on a, b, ¢ are Koszul syzygies.

If we are in the triangular case and a,b,c € C[s,t,u] are homogeneous of
the same degree, then having no base points implies (by standard arguments in
commutative algebra) that the entire Koszul complex is exact, so that in partic-
ular, all syzygies on a,b,c are Koszul. But in the tensor product case, even if
a,b,c € C[s,u;t,v] have no base points, it is no longer true that the Koszul com-
plex is exact. In general, commutative algebra works best in the triangular case,
where one deals with ordinary homogeneous polynomials.

The solution to this difficulty in the tensor product case is to realize that
while the Koszul complex is not exact in all bidegrees, it is exact in some. This
is proved using sheaf cohomology, and the result is that every syzygy of bidegree
(2m —1,2n — 1), including (2.5), is Koszul. Hence (2.6) follows, which completes
the second proof of det(MQ') # 0.

We should also mention that in [9], D’Andrea has generalized Theorem 2.1 to
the case when ¢ is not generically one-to-one. More precisely, he proves that if a
parametrization ¢ as in (2.1) has no base points and the matrix M P has maximal
rank, then the implicit equation F' = 0 of the surface satisfies

F" = det(M),
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where h is the generic degree of ¢ and M is the matrix of Theorem 2.1.

Triangular Surfaces. We next describe briefly what happens when we switch
from P! x P! to P2. This means that we have

¢ P2 ———P3

28) (s, t,u) = (a(s,t,u),b(s,t,u),c(s,t,u),d(s,t,u)),

where a, b, c,d € C[s,t,u] are homogeneous of degree n and gecd(a,b,c,d) = 1. As
in the tensor product case, we will assume that ¢ has no base points. Then the
image S C IP? is a surface defined by an equation

F=0
of degree n?. In this situation, one can define moving planes and quadrics that
follow ¢, and as in the curve case, the moving planes and quadrics of degree n — 1
are those of interest. In this degree, we get matrices

a,b,c,d)
e

(2.9) MP: R Rop1
and

2 2
(2.10) MQ:RY ) p

similar to (2.2) and (2.3) whose kernels give the moving planes and quadrics of
degree n — 1 that follow ¢. One surprise is that in the triangular case, the kernel of
M P has dimension at least n, which means that there are always at least n linearly
independent moving planes of degree n — 1 that follow ¢.
In the case when M P and M both have maximal rank, we get

e 1 linearly independent moving planes of degree n — 1.

e (n? + 7n)/2 linearly independent moving quadrics of degree n — 1.
However, each moving plane gives four moving quadrics by multiplying by x, v, z, w.
Thus, in the second bullet, we have

(n® +7n)/2 —4n = (n* —n)/2

linearly independent moving quadrics of degree n—1 which don’t come from moving
planes. Using these moving quadrics, we can construct a (n? +n)/2 x (n® +n)/2
matrix M built from

e n rows coming from moving planes of degree n — 1.
e (n? —n)/2 rows coming from moving quadrics of degree n — 1.

Then we can describe the implicit equation F' = 0 of the surface as follows.
THEOREM 2.2. Assume ¢ as in (2.8) has no base points and has precisely n
linearly independent moving planes of degree n — 1 that follow ¢. Then:
F" = det(M),
where h is the generic degree of ¢.
This is proved in [6] when ¢ is generically one-to-one. The general case is due

to D’Andrea in [9].

Regularity. In the triangular case, Theorem 2.2 has an interesting relation to
the regularity of the ideals I = (a,b,c,d) and I? = (a?,ab,...,d*) of R = C[s, t,u].
Since we are assuming that a,b,c,d don’t vanish simultaneously, it follows that
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both I and I? have no base points. As explained in the last section, this implies
that regularity has the following meaning for these ideals:

reg(I) = the smallest integer ko such that Iy = Ry for k > ko
reg(I?) = the smallest integer ko such that (I%), = Ry, for k > k.

We can relate this to the proof of Theorem 2.2 as follows. Similar to what we did
in Theorem 2.1, the key step of the proof is to show that

(2.11) M P has maximal rank = M (@ has maximal rank,

where M P and M@ are defined by (2.9) and (2.10).
Since the image of M P is I5,_1, it follows that

M P has maximal rank <= Ir,—1 = Rop—1 < 2n —1 > reg(l).
Similarly, the image of M@ is (I%)3,_1, so that
MQ has maximal rank <= (I%)3, 1 = R3,_1 <= 3n— 1> reg(I?).
It follows that (2.11) is equivalent to the regularity result
reg(I) < 2n — 1 = reg(I?) < 3n — 1.

when I = {a, b, ¢,d) has no base points. In general, one area of research in commu-
tative algebra concerns how the regularity of an ideal relates to the regularity of its
powers. See, for example, [3].

As already noted, Section 3 will explain what regularity means for triangular
surfaces when base points are present. Then, in Section 5, we will use regularity
results for such ideals to prove a version of Theorem 2.2 for triangular surfaces with
certain kinds of base points.

A final comment is that the above discussion is special to the case of homo-
geneous ideals in C[s, t,u]. What about the bihomogeneous ideal I = {a,b,c,d) C
Cls, u;t,v] that we get from a tensor product parametrization such as (2.1)7 What
does regularity mean in this case? The answer is that the study of regularity for
P! x P! is just beginning. Some preliminary results, such as the forthcoming work
of Hoffman and Wang [11], indicate that regularity may be a useful tool in studying
tensor product surfaces.

3. Base Points

Now suppose that a triangular parametrization
¢:P>———P3
o(s,t,u) = (a(s,t,u),b(s,t,u),c(s,t,u),d(s,t,u))

has base points. Asin (2.8), we assume that a, b, c,d € C[s, t, u] are homogeneous of
the same degree and gcd(a, b, ¢,d) = 1. Hence there are at most finitely many base
points in P2 where a, b, ¢, d all vanish simultaneously. We will work with triangular
surfaces since commutative algebra works best in this case.

The goal of this section is to explain why certain base points called local com-
plete intersections are especially nice. We also discuss regularity and saturations.

Local Complete Intersection Base Points. Let I C R = (C[s,t,u] and
assume V(I) C P? is finite. Elements of V(I) are called the base points of I. Then
I is a local complete intersection (LCI) if for every base point p € V(I), I can be
generated by two elements in a neighborhood of p.
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ExAMPLE 3.1. The ideal I = (s?u, stu, t>u, t3) has base points (1,0,0), (0,0, 1).
This ideal has four generators, but if we work locally near the base points, then
fewer generators are needed:

s=1 = I=(u,tu,t?u,t®) = (u,t*) near (1,0,0)
u=1 = I=/(s%stt*t*) = (5% st,t*) near (0,0,1).

Thus I can be generated by two elements in a neighborhood of (1,0, 0), so that this
base point is LCI. However, (0,0,1) is not LCI because I is minimally generated
by three elements near this base point. Since not all base points are LCI, we see
that I is not LCI. O

Syzygies of LCI Base Points. Suppose that a,b,c € R = C[s,t,u] are
homogeneous of degree n with ged(a, b, ¢) = 1, and suppose that I = {a,b,c) has
base points (necessarily finite in number). What can we say about syzygies in this
situation? As in (2.7), a Kozsul syzygy is a syzygy of the form

A= hlc + h2b
B = —hza + h3C
C = —hla — hgb

The observation is that a Koszul syzygy vanishes at the base points (because a, b, ¢
vanish at the base points by definition). This leads to the question:

(3.1) Is every syzygy vanishing at the base points a Koszul syzygy?
To see the relevance of this question, observe that in (2.5), we had the syzygy
(3.2) 0= (Aa+ Bb+ Cc+ Dd)a+ (Eb+ Fc+ Gd)b+ (Hc + Id)c.

Assuming that a,b,c,d and a,b,c have the same base points, it follows that this
syzygy vanishes at the base points. Hence, if the answer to (3.1) is “yes”, then (3.2)
is a Koszul syzygy, which as in (2.6) gives the equation

Hc+Id=—hia— hsb

used in the proof of Theorem 2.1. So if we want to adapt the proof to the case
when base points are present, then question (3.1) arises naturally.

Because of multiplicities, we need a careful definition of what it means to vanish
at the basepoints.

DEFINITION 3.2. A syzygy Aa+ Bb+ Cc =0 vanishes at the basepoints of
I ={a,b,c)if A,B,C locally lie in I.
In Section 4, we will explain how the phrase “locally lie in” is related to the
saturation of the ideal I.
It is easy to show that any Koszul syzygy vanishes at the basepoints. Then
(3.1) asks if this necessary condition is also sufficient. Here is a result proved in [5].
THEOREM 3.3. Let I = (a,b,c) C R = C[s,t,u] with V(I) C P? finite. Then
the following are equivalent:
(1) Iis LCL
(2) Every syzygy of a,b,c that vanishes at the base points of I is Koszul.
For me, the interesting feature of this theorem is that it is a result in pure
commutative algebra yet its underlying idea was suggested by questions raised by
geometric modelers.
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Multiplicities and LCI Base Points. Base points of parametrized surfaces
are interesting because of their effect on the degree of the surface. For example,
suppose that

¢:P> ———P3

is given by homogeneous polynomials a,b,c,d € R = (C[s,t,u] of degree n with
ged(a, b, c,d) = 1. If ¢ is generically one-to-one, then its image S C P? has degree

n2_ Z e(Iap)a
peEV(I)

where e(I,p) is the multiplicity of I at p. Recall that e(I,p) is defined as follows.
One localizes I at p to get an ideal I, in the local ring R, (see Chapter 4 of [7] for
a discussion of local rings). Then

e(I,p) = dim Rp/(f, 9)

for generic linear combinations f, g of the generators of Ip,.
Another important invariant of I, C R, is its degree, which is defined to be

(3.3) deg(I,p) = dim R, /I,.
Since (f, g) C Ip, it follows that we always have the inequality

(3.4) e(I,p) > deg(I,p).
Here is an example to show that the inequality can be strict.
EXAMPLE 3.4. Suppose that I = (s%, st,t?) C C[s,t,u]. The only base point is

p = (0,0,1), and localizing at p is (essentially) done by setting © = 1. This gives
R,/I, ~ C[s,t]/(s?, st,t?). A basis of R, /I, is given by 1,s,t, so that

deg(1,p) = 3.

To compute e(I,p), one can show that we can use f = s? and g = ¢? in this case.

Then a basis of R,/(f,g) = R,/(s?,t*) is given by 1, s,t, st, so that
e(I,p) =4.
Thus e(I,p) > deg(l,p) in this case. O

The interesting observation is that when we compute e(I,p) as the dimension
of R,/(f,g), the ideal (f,g) is LCI at p since it is generated by 2 elements. So the
multiplicity is computed using the best approximation of I, by an ideal which is
LCI at p. This means that whenever you consider the multiplicity of a base point,
there is an LCI ideal lurking in the background.

In particular, if I is LCI, then we can let (f, g) = I, for each p, so that

(3.5) e(I,p) =deg(I,p) forall pe V().
In fact, I is LCI if and only if (3.5) is true.

Moving Planes and LCI Base Points. We next discuss how base points
affect the number of moving planes that follow the parametrization. The goal
is to show that LCI base points arise naturally when one tries naively to extend
Theorem 2.2 to the case when base points are present.
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Assume that we have ¢ : P2 — —— P given by a,b, c,d of degree n. When ¢
has no base points, Theorem 2.2 computes the implicit equation of the image of ¢
using a matrix M with

n rows coming from moving planes of degree n — 1

2

(n” — n)/2 rows coming from moving quadrics of degree n — 1.

Now introduce base points. The hope is that when a base point drops the implicit
degree by 1, one row of M should switch from quadratic to linear. Thus each base
point should give a new moving plane that follows ¢.

To make this intuition more precise, we need to study carefully how base points
affect the number of moving planes that follow ¢. Given an integer ¢, the moving
planes of degree ¢ are given by the kernel of the matrix

MP, R YD Ry

(hence M P,,_; is the matrix M P of (2.9)). The image of this map is Iy4,, so that
the number of moving planes of degree ¢ that follow ¢ is determined by the size
Iyt . A Hilbert polynomial calculation implies that

(3.6) dim R4, = dim Iy, + deg(l),
for £ > 0, where

deg(I) = > deg(I,p)
peEV(I)

is the degree of I and deg(I,p) = dim R, /I, is from (3.3).
Now suppose that (3.6) holds when ¢ = n — 1. We will see in the next section
that this is equivalent to assuming that reg(l) < 2n—1. Then we have the following.

PROPOSITION 3.5. Equation (3.6) holds when £ =n — 1 if and only if
dim Syz(a, b, ¢,d)p_1 = n + deg(I).

ProOF. Since M P,_; has kernel Syz(a, b, ¢,d),,—1 and image I»,,_1, we have
dim Syz(a, b, ¢,d),—1 = 4dim R,,_1 — dim I5,,_1.
If (3.6) holds with £ = n — 1, then dim Ry,,_; = dim I5,,_1 + deg(I). Thus
dim Syz(a, b,¢,d)p—1 = 4dim R,,_; — (dim Ry,,—1 — deg(I)) = n + deg(I),
)

where we have used dim Ry, = ( . The converse is equally easy. O

It follows that if (3.6) holds for £ = n — 1, then the number of moving planes
that follow ¢ increases from n to n + deg(l). If we use all of these moving planes
to construct a new matrix M, then deg(l) quadratic rows shift to linear rows, so
that the degree of det(M) will drop by

deg(I) = Y deg(I,p).
pEV(I)
However, the degree of the implicit equation drops by the sum of the multiplicities

> e,

peEV(I)
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It follows that if det(M) = 0 is to be the implicit equation of the surface, then
these drops must match, i.e., we must have

> ell,p)= ) deg(I,p).

pPEV(I) peV(l)
By (3.4), this means
e(I,p) =deg(I,p) forall p e V(I),

which by (3.5) happens if and only if I is LCI. So our naive strategy of extending
Theorem 2.2 can only hope to succeed when the base points are LCI! As we will
explain in Section 5, this strategy can be made rigorous in certain cases. But first,
we need to learn about regularity and saturation.

4. Saturation and Regularity

In Section 3, we noted that (3.6) is true for ¢ sufficiently large. Here, we will
show that the meaning of “sufficiently large” is closed related to the regularity of
the ideal I. But before we can understand this, we need to discuss saturation.

Saturation. Given a homogeneous ideal I C R = Cls, t,u] with any number
of generators, its saturation is defined to be
sat(I) = {f € R | there is k > 0 such that s*f, t*f, u* f € I}.
One can show that sat(I) is a homogeneous ideal of R. Furthermore:

e I Csat(I). This follows by using k = 0 in the above definition. Below we
will give an example to show that sat(I) can be strictly bigger than I.

e [ and sat(I) give the same ideal on every affine piece of P2. For example,
suppose we dehomogenize by setting s = 1. If f € sat([), then s*f € I
for some k > 0. Since s*f and f have the same dehomogenization when
s = 1, it follows that I and sat(I) dehomogenize to the same ideal in
Cl[t,u]. The affine pieces where ¢t = 1 and u = 1 are handled similarly.

e It follows that I and sat(l) have the same base points which have the
same degree and the same multiplicity. (In more technical language, I
and sat(I) define the same subscheme of P2.)

One important observation is that sat(l) is the largest ideal that gives the same
ideal as I on every affine piece of P2. This follows from the above definition and
justifies the statement that sat(I) consists of all polynomials that locally are in I.
Here is an example of a saturation.
ExAMPLE 4.1. Let I = (s°,° su*, st?u?) C R = C[s,t,u]. This is generated
by polynomials of degree 5. Note that

s-s°el
s-ud =u-sut €l
s-t°el.
It follows that s € sat(l), so that sat(l) is strictly bigger than I. Using the
saturate command of Macaulay 2 [10], one can show that
sat(I) = (s,t°).
The ideal (s,t®) clearly has the single base point (0,0,1) which is LCI of degree 5
and multiplicity 5. By the third of the above bullets, the same is true for I. O
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Conditions Imposed by Base Points. We next interpret saturation in terms
of conditions imposed by base points. To see what this phrase means, consider

(4.1) Ry — P R/l
pEV(I)

where I, C R, is as in Section 3. This map is given by dehomogenization followed
by the map to the quotient ring. Note that the dimension of the right-hand side is
Ypevin dim Rp/Iy =37 vy deg(l,p) = deg(l). This is the degree of I defined
in Section 3

The phrase “conditions imposed by base points” refers to the kernel of (4.1)
and thus describes those polynomials of degree k£ which locally belong to I. But
this is the saturation! Hence we have the following result.

PROPOSITION 4.2. The conditions imposed in degree k by the base points of I
describe sat(I)g. Thus
I, = sat(I), <= the conditions imposed in degree k by
the basepoints of I describe Iy, exactly.
The next question to ask is whether the base point conditions are independent.
This leads to the following definition.
DEFINITION 4.3. We say that the conditions imposed by the base points of I
are independent in degree k if the map (4.1) is onto.
We then get the following basic result.
PROPOSITION 4.4. The conditions imposed by the base points of I are indepen-
dent in degree k if and only if
dimsat(I); + deg(I) = dim Ry,.

Proor. Let W C @,cv () Bp/Ip be the image of (4.1). Since the kernel is
sat(I)g, the dimension theorem from linear algebra implies that

dimsat(I); + dim W = dim Ry,.
The result follows immediately since deg(I) = dim ®pEV(1) R,/ 1. O

Here is an example.

ExampPLE 4.5. Consider I = (s%u, stu, t?u,t*) C C[s,t,u] from Example 3.1.
In this case, the map (4.1) becomes

Ry — C[tau]/<u7t3> 2 C[Sat]/<8278t7t2>7

where f € Ry, is sent to (f(1,t,u), f(s,t,1)). Notice also that deg(I) = 6. Since
R; has dimension 3, it follows that the base points do not impose independent
conditions in degree 1. However, one can easily check that the base point conditions
are independent in degrees 2 and higher. For later purposes, we note that I is
saturated, i.e., I = sat(I). This is easily checked using Macaulay 2. O

Regularity. We are now ready to discuss regularity. We begin with the special
case of a homogeneous ideal I C R with no base points. In this case, sat(l) = R
since an empty base point locus means that locally I generates the whole ring. But
now recall that when I has no base points, the regularity reg(I) of I is the smallest
integer such that I, = Ry for k > reg(l). Since Ry = sat(I)g, we get the following
nice result.
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PROPOSITION 4.6 (Regularity without base points). Let I C C[s,t,u] be a
homogenous ideal with no base points. Then, for any integer k > 0, we have

reg(l) <k < I = Ry < I} =sat(I);.

One useful consequence of this proposition is that if we know a single degree k
such that Iy = Ry, then we automatically have I, = Ry for all £ > k.

Now let I C R be a homogeneous ideal with finitely many base points. What
does regularity mean in this case? The definition of regularity given in [1] can be
stated in various ways using either sheaf cohomology or minimal free resolutions.
Fortunately, for the ideals of interest to us, regularity can be formulated as follows.

PRrOPOSITION 4.7 (Regularity with base points). Let I C Cls,t,u] be a ho-
mogenous ideal with a finite positive number of base points. Then, for any integer
k >0, we have

reg(l) <k < I =sat(I); and dimsat(I),—1 + deg(l) = dim Ry,
<= the conditions imposed by the base points of I describe
Iy, in degree k and are independent in degree k — 1.
The second equivalance of the proposition uses Propositions 4.2 and 4.4. One
consequence is that if we know one degree k where the conditions imposed by the

base points of I describe I}, and are independent in degree k — 1, then the same is
true for all larger degrees. Here is an example of Proposition 4.7.

ExXAMPLE 4.8. Consider I = (s?u, stu,t*u,t3) C C[s,t,u]. In Example 4.5,
we noted that this ideal was saturated and that the base point conditions were
independent in degrees 2 and higher. By Proposition 4.7, it follows that reg(l) = 3.
This can be confirmed using the regularity command in Macaulay 2. a

When dealing with a triangular surface with base points, Proposition 4.7 can
be simplified as follows.

THEOREM 4.9 (Regularity for triangular surfaces with base points). Consider
an ideal I = (a,b,c,d) C Cls,t,u], where a,b,c,d have degree n and gcd(a,b,c,d) =
1. Also assume that n > 2 and that a,b,c,d are linearly independent. Then, if
k> 2n — 2, we have

reg(l) <k <= dim I + deg(l) = dim Ry
<= the conditions imposed by the basepoints of I are
independent in degree k and describe I, exactly.
This is proved in Appendix B of [2]. Here is a corollary of Theorem 4.9 relevant
to the discussion at the end of Section 3.
COROLLARY 4.10. Let I be as in Theorem 4.9. Then:
reg(l) <2n—1 <= dim Ir,—; + deg(l) = dim Rap—1
< (3.6) holds for t =n —1
< dimSyz(a,b,c,d),—1 = n + deg(I).
PROOF. Set k = 2n — 1 in Theorem 4.9 and use Proposition 3.5. g

Thus the naive idea of extending Theorem 2.2 discussed in Section 3 leads
naturally to the notion of regularity. We will say more about this in Section 5.

The intuition behind regularity is that I “behaves nicely” when k > reg([).
We now have a better idea of what this means!
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5. Surfaces with Base Points

In this final section we will show that in certain cases, the methods of Section 2
can be extended to the triangular surface case when base points are present. Details
can be found in [2].

Base Point Conditions. Let I = (a,b,c,d) C R = (C[s, t,u] give the rational
map ¢ : P2 ——— P3. Assume the following base point conditions:

BP1: a,b,c,d are homogeneous of degree n and linearly independent over C.

BP2: gcd(a,b,c,d) =1 and I is LCL

BP3: dim Syz(a, b, ¢, d)p—1 = n + deg(I).

BP4: d € sat((a, b, c)).

BP5: Syz(a,b,c)n—1 = {0}.
These conditions give the following result proved in [2].

THEOREM 5.1. Assume the base point conditions BP1-BP5. Then there is a
(n? +n)/2 x (n? +n)/2 matriz M with

n + deg(I) rows coming from moving planes of degree n — 1
(n? —n)/2 — deg(I) rows coming from moving quadrics of degree n — 1,
such that the implicit equation F' = 0 of the image of ¢ satisfies
F" = det(M),
where h is the generic degree of ¢.

Rather than give the proof, we will instead explain what the five base point
conditions mean.

Ezxplain BP1. This is fairly obvious. Notice that if a, b, ¢, d are linearly dependent,
then the image of ¢ lies in a plane.

Ezplain BP2. The ged condition implies that V(I) is finite. To see why we need
LCI base points, note that the determinant of the matrix M of Theorem 5.1 has
degree n? —deg(I), while F" has degree n* — > pev(n) €(I;p). These are equal since
the base points are LCI.

Explain BP3. This condition is needed to ensure that M has the correct number of
linear rows. Also, by Corollary 4.10, BP3 implies that reg(l) < 2n—1. In the proof
of Theorem 5.1, we use reg(I), together with a result of Chandler [3], to bound
the regularity of I2. This is needed to understand how the base points affect the
number of moving quadrics that follow ¢.
Ezplain BP4. We need d € sat({(a,b,c)) so that I and (a,b,c) have the same LCI
base points. Then we can use Theorem 3.3 to show that (2.5) implies (2.6) just as
in the proof of Theorem 2.1. We can always arrange d € sat({(a, b, c)) by a suitable
change of coordinates on P2. So this assumption is harmless.
Ezplain BP5. An important step in the proof is to show that det(M) doesn’t vanish
identically. This is done by showing that the coefficient of w™*—4es() is nonzero.
However, a syzygy of degree n — 1 on a,b,c gives a row of M with no w, which
means that w™ ~9¢8() does not appear det(M ). Hence this messes up the proof that
det(M) is nonzero. One can sometimes avoid this problem by changing coordinates
on P3. However, there are examples where Syz(a,b,c),—1 # {0} no matter which
coordinates we use on P?. Hence we are stuck with this assumption.

Here are two examples of Theorem 5.1 in action.
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EXAMPLE 5.2. Let ¢ be given by a = s*, b = t?u, ¢ = s°t + u?, and d = stu.
One can check that the base point conditions are satisfied, and the only base point
is (0,1,0), which is LCI of multiplicity 2. Since n = 3 and deg(I) = 2, we have
(n?* +n)/2 = 6. Thus M is a 6 x 6 matrix (5 linear rows, one quadratic row) and
det(M) has degree n? — deg(I) = 7.

One can compute that the five moving planes of degree 2 that follow ¢ are

P =5w—tux

Py :stw—szy
Py =tw—sty
Pi=tuw —suy

P5:u2w+t2$—stz,

and that the single moving quadric that follows ¢ is

2

= suw —UziL“ .
Q y

If we let the columns of M correspond to the coefficients of s2, st, su, t2, tu, u?, then
we get the matrix

w 0 0 0 -z 0
—y w 0 O 0 0
0 -z 0 =z 0 w
M = 0 -y 0 w 0 0
0 0 —y O w 0
0 0 w? 0 0 —zy
Thus det(M) = w” — 22y32w + x3y* is the implicit equation of the surface. ad

EXAMPLE 5.3. Now suppose that I = (s° % su*, st?u?) C R = C[s,t,u]. In
Example 4.1, we saw that I has a single LCI base point of multiplicity 5. Thus the
corresponding surface in P has degree 5> —5 = 20. Also notice that (n*>+n)/2 = 15,
meaning that M needs to be a 15 x 15 matrix.

However, using Macaulay 2, the regularity of I is 10, yet condition BP3 means
reg(l) <2-5—1=9. In fact, one can compute that

dim Syz(a, b, ¢,d)s = 11 # 10 = n + deg(!).

If we use all moving planes of degree 4 in M, we get 11 linear rows and 4 quadratic
rows, so that det(M) has degree 19. This is clearly wrong and shows that the
method fails in this case. d

A version of Theorem 5.1 should hold for P! x P'. We don’t know how to prove
this since we don’t have a good theory of regularity (though this may change once
[11] appears).

Smaller Matrices. There is a version of Theorem 5.1 that uses n — 2 in place
of n — 1, with a matrix of size (n? —n)/2 x (n? —n)/2. The idea is that one uses
slightly different base point conditions. More precisely, the third and fifth base
point conditions are modified as follows:

BP3: dim Syz(a, b, ¢,d)p—s = deg(I) — n.
BP5: Syz(a,b,c)n—2 = {0}.
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In this case, the base point conditions imply that
F" = det(M),
where M is a (n? —n)/2 x (n? —n)/2 matrix M with
deg(I) — n rows coming from moving planes of degree n — 2
(n® +n)/2 — deg(I) rows coming from moving quadrics of degree n — 2.

Here is an example of this result.

EXAMPLE 5.4. Consider the following parametrization (taken from [12]) of a
cubic surface with 6 base points:

a = st + 2t3 + s%u + 4stu + 4t*u + 3su® + 2tu® + 2u®
b= —s>—2st? — 25%u — stu + su® — 2tu® + 2u>

c=—s® — 25 — 3st® — 35%u — 3stu + 2t7u — 2su”® — 2tu?
d=3s+ st +t3 + s2u + t*u — su® — tu® — u®.

One can check with Macaulay 2 that I is saturated and LCI of degree 6, and its
regularity is 3. As shown in [12], we have the following basis of syzygies of degree
n—2=1

s(z —y) +t(—z +2w) + u(z —y)
(5.1) s(x +w) +t(2y — 2) + uly + 2w)
sr+ty+uz.

The third syzygy shows that Syz(a,b,c); # 0, so that BP5 is not verified. But if
we consider a,b,d instead, then it is straightforward to check that all base point
conditions are satisfied.

In this case, M has deg(I) — n = 3 linear rows and (n? + n)/2 — deg(I) = 0
quadratic rows. Thus the above syzygies give the matrix

z—y —z+2w T—y
M=|-2x—w 2z2z—-2y —y—2w
x Y z

The determinant of M is computed in [12] and is the implicit equation of the
surface. 0

Special y-Bases for Surfaces. Given a rational map ¢ : P2 ——— P3, it can
happen that I = (a, b, ¢, d) is saturated. We saw an example of this in Example 4.5.
While this is a relatively rare phenomenon, it does have some nice consequences.
For example, according to [4], we know that

I ={a,b,c,d) is saturated <= Syz(a,b,c,d) is a free module.

In this situation, one can prove that Syz(a,b,c,d) has free generators p,q,r of
degrees i1, ft2, 43 such that
B+ pe + p3 =1,

where, as usual, n is the degree of a, b, ¢, d. In analogy with the curve case discussed
in Section 1, we call p,q,r a special p-basis (the adjective “special” refers to the
fact that most of the time I isn’t saturated, in which case p, q,r don’t exist).

In the curve case, the implicit equation is (up to the generic degree) given by
the resultant of the p-basis. Is the same true when a special u-basis exists? The



CURVES, SURFACES, AND SYZYGIES 19

answer is “not always” (see [2] for examples). However, when the base points are
LCI, then things work out nicely. Here is the precise result from [2].

THEOREM 5.5. Assume that I = (a,b,c,d) satisfies BP1 and BP2 (so the base
points are LCI). If I is saturated and p,q,r is a special p-basis, then

F" = Res(p, q,7),
where h is the generic degree of ¢.

We can explain the necessity for LCI base points as follows. Since p, g, have
degrees pp, po, pi3, the theory of multivariable resultants (see [7]) implies that

deg(Res(p, ¢, 7)) = papia + paps + pajis.
One the other hand, it is shown in [4] that I has degree

deg(I) = n® — (papis + papis + prapss).
It follows that

deg(Res(p, ¢,)) = n* — deg() =n? — 3 deg(I,p).
pEV(I)

Since
deg(F") =n® = Y e(l,p),
pEV(I)
we see that Theorem 5.5 holds only if the degree equals the sum of the multiplicities,
which by Section 3 happens only when the base points are LCI. Hence we get
another example where LCI base points have an interesting role to play.
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