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Contemporary Mathemati
s

Curves, Surfa
es, and Syzygies

David Cox

Abstra
t. This arti
le surveys re
ent work with Sederberg, Chen, Goldman,

Zhang, S
hen
k, Bus�e and D'Andrea on how syzygies 
an be used to impli
itize

rational 
urves and surfa
es. There are also non-te
hni
al dis
ussions of lo
al


omplete interse
tions, regularity, and saturation.

Introdu
tion

The purpose of this paper is to survey some re
ent work on the use of syzygies to

give determinantal formulas for the equations of parametrized 
urves and surfa
es.

The paper is organized into �ve se
tions as follows, where the parentheses indi
ate

the joint authors involved.

1. Curves (with Sederberg and Chen [8℄)

2. Surfa
es without Base Points (with Goldman and Zhang [6℄)

3. Base Points (with S
hen
k [5℄)

4. Saturation and Regularity

5. Surfa
es with Base Points (with Bus�e and D'Andrea [2℄)

One of my goals is to illustrate how the geometri
 modeling 
ommunity is asking

interesting and nontrivial questions whi
h involve some surprisingly sophisti
ated


ommutative algebra. Se
tions 1 and 2 are based on [4℄ while Se
tions 3 and 5

report on subsequent developments. Se
tion 4 is devoted to a dis
ussion of the


on
epts of saturation and regularity.

1. Curves

For 
urves, the goal is to �nd the impli
it equation of a parametrized 
urve in

the proje
tive plane P

2

. This means that we want to impli
itize a parametrization

of the form

(1.1)

� : P

1

�! P

2

�(s; t) =

�

a(s; t); b(s; t); 
(s; t)

�

;

where a; b; 
 are homogeneous of degree n and g
d(a; b; 
) = 1. In this paper, we will

work over the 
omplex numbers C . Thus a; b; 
 lie in the polynomial ring C [s; t℄,

1991 Mathemati
s Subje
t Classi�
ation. Primary 14Q10; Se
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0000 (
opyright holder)

1



2 DAVID COX

and the g
d 
ondition implies that we have no base points to worry about. This is

one of the really ni
e features of the 
urve 
ase.

In pra
ti
e, impli
itization of 
urves and surfa
es 
an be done by any of the

three following methods:

� Gr�obner Bases

� Resultants

� Syzygies

This paper will 
on
entrate on the third of these methods.

Moving Lines. A moving line in P

2

is an equation of the form

A(s; t)x +B(s; t)y + C(s; t)z = 0;

for A;B;C are homogeneous of the same degree. We say that the moving line

follows � from (1.1) if

A(s; t)a(s; t) +B(s; t)b(s; t) + C(s; t)
(s; t) � 0;

where� 0 means vanishes identi
ally. In algebrai
 geometry, one says that (A;B;C)

is a syzygy on (a; b; 
). This is written

(A;B;C) 2 Syz(a; b; 
);

where Syz(a; b; 
) is the syzygy module of (a; b; 
). Note that Syz(a; b; 
) is a module

over the ring C [s; t℄. We also let

Syz(a; b; 
)

k

denote the set of syzygies (A;B;C) where A;B;C are homogeneous of degree k.

Thus Syz(a; b; 
)

k

is a ve
tor spa
e over C . We say that elements of Syz(a; b; 
)

k

are moving lines of degree k that follow �.

There is one degree whi
h is espe
ially important.

Claim 1.1. The moving lines of degree n�1 that follow � determine the impli
it

equation of the parametrization �.

To see why this is true, let R = C [s; t℄ and let R

k

denote the ve
tor spa
e of

homogeneous polynomials in R of degree k. Then Syz(a; b; 
)

n�1

is the kernel of

the map

(1.2) R

3

n�1

| {z }

dim 3n

(a;b;
)

����! R

2n�1

| {z }

dim 2n

given by dot produ
t with (a; b; 
). Later we will show that this map has maximal

rank. Assuming this, we 
an �nd n linearly independent moving lines of degree

n� 1, say (A

i

; B

i

; C

i

), i = 0; : : : ; n� 1. Sin
e ea
h A

i

; B

i

; C

i

is a polynomial in s; t,

we 
an write this moving line as

A

i

x+B

i

y + C

i

z =

n�1

X

j=0

L

ij

(x; y; z)s

j

t

n�1�j

;

where L

ij

(x; y; z) is a linear form in the homogeneous 
oordinates x; y; z of P

2

.

Then we have the following result proved in [8℄.

Theorem 1.2. The impli
it equation of � is F = 0, where

F

h

= det(L

ij

(x; y; z))

and h is the generi
 degree of � : P

1

! P

2

.
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Note that (L

ij

(x; y; z)) is an n�nmatrix of linear forms, so that its determinant

has degree n in x; y; z. This is exa
tly the degree that we would expe
t in this 
ase.

The Hilbert Syzygy Theorem. The next step is to look a little more deeply

into the 
ommutative algebra involved in this situation. Let I = ha; b; 
i � R =

C [s; t℄. Then I is an ideal of R and we have an exa
t sequen
e

(1.3) 0 �! Syz(a; b; 
) �! R(�n)

3

(a;b;
)

����! I �! 0:

This is standard notation in 
ommutative algebra. Sin
e R(�n)

3

! I sends

(A;B;C) toAa+Bb+C
, the exa
tness of (1.3) simply restates the known fa
ts that

I is generated by a; b; 
 and that Syz(a; b; 
) is the kernel of the map R(�n)

3

! I ,

i.e., Syz(a; b; 
) is the syzygy module.

The notation R(�n) in (1.3) means that we are shifting degrees by �n to


ompensate for the fa
t that multipli
ation by a; b; 
 shifts degrees by +n. Thus

R(�n)

k

= R

k�n

, so that in (1.3), (A;B;C) 2 R(�n)

3

k

means that A;B;C have

degree k�n and hen
e Aa+Bb+C
 has degree k. It follows that dot produ
t with

(a; b; 
) maps R(�n)

3

k

to I

k

, i.e., this map preseves degrees. This is why notation

like R(�n) is standard in 
ommutative algebra.

The Hilbert Syzygy Theorem des
ribes the stru
ture of free resolutions of ho-

mogeneous ideals in polynomial rings. In the 
ase of two variables, the Syzygy

Theorem implies that the syzygy module Syz(a; b; 
) in (1.3) is free, meaning that

every element of the module 
an be expressed uniquely as a sum of basis elements

multipled by elements of R. Furthermore, using the Hilbert polynomial, one 
an

show that

(1.4) Syz(a; b; 
) ' R(�n� �

1

)�R(�n� �

2

); �

1

+ �

2

= n:

The details of this argument 
an be found in [8℄. In more down-to-earth terms,

the above isomorphism means that if we set � = �

1

� �

2

= n � �, then there are

syzygies p; q 2 Syz(a; b; 
) su
h that

Syz(a; b; 
) = R p

|{z}

deg �

� R q

|{z}

deg n��

:

We 
all p; q a �-basis of the parametrization (1.1).

The existen
e of a �-basis has some strong 
onsequen
es. For example, it

implies that every syzygy of degree n� 1 
an be written uniquely as

(1.5) h

1

|{z}

deg n���1

p + h

2

|{z}

deg ��1

q:

Sin
e there are n � � (resp. �) linearly independent 
hoi
es for h

1

(resp. h

2

), it

follows that there are pre
isely n linearly independent moving lines of degree n� 1

that follow �. Thus (1.2) has maximal rank, as 
laimed earlier.

Another interesting aspe
t of (1.5) is that if we let h

1

(resp. h

2

) range over all

monomials of degree n��� 1 (resp. �� 1), then the matrix (L

ij

(x; y; z)) be
omes

the Sylvester matrix of p and q. Thus we get the following 
orollary of Theorem 1.2.

Corollary 1.3. If p; q is a �-basis of the parametrization �, then

Res(p; q) = F

h

;

where F = 0 is the impli
it equation of the 
urve and h is the generi
 degree of �.
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As explained in [8℄, it is also possible to express F

h

as a (n � �) � (n � �)

determinant with

n� 2� linear rows built from p; and

� quadrati
 rows built from the Bezoutian of p; q:

More generally, expressing impli
it equations and resultants as \mixed" determi-

nants of the above type is an a
tive area of resear
h.

Regularity. We should also mention that the existen
e of a �-basis tells us

about the regularity of the ideal I = ha; b; 
i. Here, the regularity of I , denoted

reg(I), means the following. Sin
e a; b; 
 2 R = C [s; t℄ have no 
ommon zeros, then

setting t = 1 gives polynomials ~a(s) = a(s; 1);

~

b(s) = b(s; 1); ~
(s) = 
(s; 1) in C [s℄

with no 
ommon zeros. By the Nullstellensatz, it follows that ~a;

~

b; ~
 generate the

unit ideal of C [s℄, i.e., h~a;

~

b; ~
i = C [s℄.

In the homogeneous 
ase, I = ha; b; 
i 
an't equal R = C [s; t℄ sin
e elements of

I have degree at least n. However, it is true that I

k

= R

k

for k suÆ
iently large

(this follows from the proje
tive Nullstellensatz). But what does \suÆ
iently large"

mean? For ideals without base points, this is exa
tly what regularity tells us. In

other words, reg(I) is the smallest integer k

0

su
h that I

k

= R

k

for all k � k

0

.

Using (1.3) and (1.4), one 
an show that the regularity of I = ha; b; 
i is

reg(I) = 2n� �� 1:

Thus the �-basis determines the regularity in our situation.

In general, the regularity of a homogeneous ideal I is a subtle number reg(I)


omputed from the minimal free resolution of the ideal. The intuition is that the

regularity of I measures how big k needs to be in order for I

k

to behave ni
ely. In

Se
tion 3, we will explain what \behave ni
ely" means when I has �nitely many

base points.

Some History. In 1997, Sederberg and Chen 
onje
tured the existen
e of

�-bases and asked if I had any ideas for how to prove their 
onje
ture. I worked

out an elementary proof (whi
h appears in [8℄), but I had a nagging suspi
ion that

something more was involved. To my embarrassment, it was over six months before

I realized that the Hilbert Syzygy Theorem was the answer.

As indi
ated above, the Syzygy Theorem does a wonderful job of revealing the

underlying stru
ture of what's going on. This led me to believe that I wasn't the

�rst person to look at this 
ase. Che
king the literature led me to an 1887 paper

of Franz Meyer, where he proves the existen
e of a �-basis p; q. More generally, he


onje
tured that for a 
olle
tion of m homogeneous polynomials a

1

; : : : ; a

m

2 R

n

=

C [s; t℄

n

without 
ommon fa
tors, the syzygy module Syz(a

1

; : : : ; a

m

) should be a

free module with m � 1 generators of degrees �

1

; : : : ; �

m�1

whi
h sum to n. He

tried very hard to prove the 
ase m = 4 but failed.

In 1890, just three years after Meyer's paper, Hilbert published his amazing

paper whi
h proves the Syzygy Theorem and de�nes Hilbert polynomials. This pa-

per is a 
ornerstone of modern 
ommutative algebra. And the very �rst appli
ation

given by Hilbert is to prove Meyer's 
onje
ture! (Referen
es to the papers of Meyer

and Hilbert 
an be found in [8℄.)

For 
urves, the moral of the story is that 
ommutative algebra provides pre-


isely the tools needed to understand syzygies and how they relate to the impli
it

equation. As we will soon see, surfa
es are more 
ompli
ated.



CURVES, SURFACES, AND SYZYGIES 5

2. Surfa
es

We now 
onsider surfa
e parametrizations in P

3

. We will begin with the tensor

produ
t 
ase, where the parametrization is given by

(2.1)

� : P

1

� P

1

��! P

3

�(s; t; u; v) =

�

a(s; t; u; v); b(s; t; u; v); 
(s; t; u; v); d(s; t; u; v)

�

:

Here a; b; 
; d 2 R = C [s; u; t; v℄ are homogeneous polynomials of bidegree (m;n)

and g
d(a; b; 
; d) = 1. Unlike the 
urve 
ase, the g
d 
ondition still allows for the

possibility of �nitely many base points, whi
h are points of P

1

� P

1

where a; b; 
; d

vanish simultaneously. The possible presen
e of base points is why we use the

broken arrow ��! in (2.1); it means that � might not be de�ned on all of P

1

�P

1

.

In this se
tion, we will assume that the map � of (2.1) has no base points and

is generi
ally one-to-one. Thus we 
an write � as

� : P

1

� P

1

�! S � P

3

;

where S is the image of �. Our goal is to 
ompute the impli
it equation

F = 0

of the surfa
e S. The degree of F is 2mn sin
e the generi
 degree is 1.

Moving Planes and Quadri
s. In analogy with the moving lines used in

the study of 
urves, a 4-tuple (A;B;C;D) 2 R

4

of homogeneous polynomials of the

same bidegee gives a moving plane

Ax+By + Cz +Dw = 0

in P

3

, and this moving plane follows � if

A(s; t; u; v) a(s; t; u; v) +B(s; t; u; v) b(s; t; u; v)

+ C(s; t; u; v) 
(s; t; u; v) +D(s; t; u; v) d(s; t; u; v) � 0:

The set of all moving planes that follow � is the syzygy module Syz(a; b; 
; d).

Similarly, a moving quadri
 is an equation

Ax

2

+Bxy + � � �+ Jw

2

= 0

where (A; : : : ; J) 2 R

10

are homogeneous of the same bidegree, and a moving

quadri
 follows � if

A(s; t; u; v) a(s; t; u; v)

2

+ � � �+ J(s; t; u; v) d(s; t; u; v)

2

� 0:

The moving quadri
s that follow � form the syzygy module Syz(a

2

; ab; : : : ; d

2

).

Given a bidegree (k; l), we will let

R

k;l

resp. Syz(a; b; 
; d)

k;l

resp. Syz(a

2

; ab; : : : ; d

2

)

k;l

denote the ve
tor spa
es of polynomials resp. moving planes that follow � resp.

moving quadri
s that follow � of this bidgree.

As in the 
urve 
ase, there is one bidegree whi
h is espe
ially interesting. First,

the moving planes of bidegree (m� 1; n� 1) that follow � are the kernel of

(2.2) MP : R

4

m�1;n�1

| {z }

dim 4mn

(a;b;
;d)

�����! R

2m�1;2n�1

| {z }

dim 4mn

:

If this map has maximal rank, then Syz(a; b; 
; d)

m�1;n�1

= f0g, i.e., there are no

moving planes of bidegree (m� 1; n� 1) that follow �.
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Se
ond, moving quadri
s of bidegree (m� 1; n� 1) are the kernel of

(2.3) MQ : R

10

m�1;n�1

| {z }

dim 10mn

(a

2

;ab;:::;d

2

)

��������! R

3m�1;3n�1

| {z }

dim 9mn

:

If this map has maximal rank, then Syz(a

2

; ab; : : : ; d

2

)

m�1;n�1

has dimension mn,

i.e., there are mn linearly independent moving quadri
s of bidegree (m� 1; n� 1)

that follow �.

Let's assume that MQ has maximal rank. This gives mn moving quadri
s of

degree (m� 1; n� 1) that follow �, say Q

1

; : : : ; Q

mn

. Let u = v = 1 and write

Q

i

= A

i

x

2

+ � � �+ J

i

w

2

=

�

X

j;k

A

i;jk

s

j

t

k

�

x

2

+ � � �+

�

X

j;k

J

i;jk

s

j

t

k

�

w

2

=

X

j;k

�

A

i;jk

x

2

+ � � � + J

i;jk

w

2

| {z }

Q

i;jk

(x; y; z; w)

�

s

j

t

k

:

For ea
h 0 � j � m � 1 and 0 � k � n � 1, this gives a quadri
 polynomial

Q

i;jk

(x; y; z; w). So for a �xed i, we get mn quadri
s, and sin
e i ranges from 1 to

mn, we get a square matrix of quadri
s

M = (Q

i;jk

(x; y; z; w)):

Here is the �rst main result of [6℄.

Theorem 2.1. If � : P

1

� P

2

! P

3

has no base points, is generi
ally one-to-

one, and MP has maximal rank, then the impli
it equation of the surfa
e S � P

3

paramatrized by � is

F = det(M);

where M is the matrix des
ribed above.

The Role of Commutative Algebra. We won't prove Theorem 2.1 in detail,

but we will explain how 
ommutative algebra is used in the argument. The proof

begins by 
hanging 
oordinates in P

3

if ne
essary so that a; b; 
 have no base points.

Then 
onsider the matrix

MQ

0

: R

9

m�1;n�1

| {z }

dim 9mn

(a

2

;ab;:::;
d)

��������! R

3m�1;3n�1

| {z }

dim 9mn

given by a

2

; ab; : : : ; 
d. If we 
an show that det(MQ

0

) 6= 0, then MQ will have

maximal rank, whi
h will in turn enable us to 
onstru
t M . Furthermore, as

explained in [6℄, det(MQ

0

) 6= 0 enables us to prove that det(M) is not identi
ally 0.

It follows that det(M) is a polynomial of degree 2mn and vanishes on the surfa
e

S (sin
e the moving quadri
s used to 
onstru
t M all follow the parametrization).

This proves that det(M) = 0 is the impli
it equation of S.

Hen
e, to 
omplete the proof, we only need to show that det(MQ

0

) 6= 0. Let

us sket
h two proofs.

First Proof of det(MQ

0

) 6= 0. Suppose we 
ould prove that

(2.4) det(MQ

0

) = det(MP )

3

Res(a; b; 
):

We are assuming det(MP ) 6= 0, and Res(a; b; 
) 6= 0 sin
e a; b; 
 have no base

points. Then (2.4) immediately implies that det(MQ

0

) 6= 0. The formula (2.4) was
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onje
tured in Goldman and Zhang in [6℄ and proved by D'Andrea in [9℄. Thus

(2.4) gives a very qui
k proof that det(MQ

0

) 6= 0.

Se
ond Proof of det(MQ

0

) 6= 0. If det(MQ

0

) = 0, then the 
olumns of MQ

0

are

linearly dependent. This gives a relation of the form

Aa

2

+Bab+ � � �+ I
d = 0;

where A; : : : ; I have bidegree (m� 1; n� 1). We 
an write this as

(2.5) 0 = (Aa+Bb+ C
+Dd)a+ (Eb+ F
+Gd)b+ (H
+ Id)
:

This is a syzygy on a; b; 
 of degree (2m � 1; 2n � 1). I remember Ron Goldman

asking me if (2.5) implies that

(2.6) H
+ Id = �h

1

a� h

3

b

for some polynomials h

1

and h

3

of bidegree (m � 1; n � 1). If this is true, then

(2.6) gives a nontrivial syzygy of bidegree (m � 1; n � 1) among a; b; 
; d, whi
h


ontradi
ts our assumption that MP has maximal rank.

So how do we prove that (2.5) implies (2.6)? The solution (whi
h fortunately

didn't take me six months to �gure out) uses an obje
t in 
ommutative algebra

known as the Koszul 
omplex. The basi
 idea is that some obvious syzygies on

a; b; 
 are given by


 � a+ 0 � b+ (�a) � 
 = 0

b � a+ (�a) � b+ 0 � 
 = 0

0 � a+ 
 � b+ (�b) � 
 = 0:

Furthermore, if we multiply the �rst equation by h

1

, the se
ond by h

2

, and the

third by h

3

, then we get the Koszul syzygy Aa+Bb+ C
 = 0, where

(2.7)

A = h

1


+ h

2

b

B = �h

2

a+ h

3




C = �h

1

a� h

3

b:

So a natural question is whether all syzygies on a; b; 
 are Koszul syzygies.

If we are in the triangular 
ase and a; b; 
 2 C [s; t; u℄ are homogeneous of

the same degree, then having no base points implies (by standard arguments in


ommutative algebra) that the entire Koszul 
omplex is exa
t, so that in parti
-

ular, all syzygies on a; b; 
 are Koszul. But in the tensor produ
t 
ase, even if

a; b; 
 2 C [s; u; t; v℄ have no base points, it is no longer true that the Koszul 
om-

plex is exa
t. In general, 
ommutative algebra works best in the triangular 
ase,

where one deals with ordinary homogeneous polynomials.

The solution to this diÆ
ulty in the tensor produ
t 
ase is to realize that

while the Koszul 
omplex is not exa
t in all bidegrees, it is exa
t in some. This

is proved using sheaf 
ohomology, and the result is that every syzygy of bidegree

(2m � 1; 2n � 1), in
luding (2.5), is Koszul. Hen
e (2.6) follows, whi
h 
ompletes

the se
ond proof of det(MQ

0

) 6= 0.

We should also mention that in [9℄, D'Andrea has generalized Theorem 2.1 to

the 
ase when � is not generi
ally one-to-one. More pre
isely, he proves that if a

parametrization � as in (2.1) has no base points and the matrix MP has maximal

rank, then the impli
it equation F = 0 of the surfa
e satis�es

F

h

= det(M);
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where h is the generi
 degree of � and M is the matrix of Theorem 2.1.

Triangular Surfa
es. We next des
ribe brie
y what happens when we swit
h

from P

1

� P

1

to P

2

. This means that we have

(2.8)

� : P

2

��! P

3

�(s; t; u) =

�

a(s; t; u); b(s; t; u); 
(s; t; u); d(s; t; u)

�

;

where a; b; 
; d 2 C [s; t; u℄ are homogeneous of degree n and g
d(a; b; 
; d) = 1. As

in the tensor produ
t 
ase, we will assume that � has no base points. Then the

image S � P

3

is a surfa
e de�ned by an equation

F = 0

of degree n

2

. In this situation, one 
an de�ne moving planes and quadri
s that

follow �, and as in the 
urve 
ase, the moving planes and quadri
s of degree n� 1

are those of interest. In this degree, we get matri
es

(2.9) MP : R

4

n�1

(a;b;
;d)

�����! R

2n�1

and

(2.10) MQ : R

10

n�1

(a

2

;ab;:::;d

2

)

��������! R

3n�1

similar to (2.2) and (2.3) whose kernels give the moving planes and quadri
s of

degree n� 1 that follow �. One surprise is that in the triangular 
ase, the kernel of

MP has dimension at least n, whi
h means that there are always at least n linearly

independent moving planes of degree n� 1 that follow �.

In the 
ase when MP and MQ both have maximal rank, we get

� n linearly independent moving planes of degree n� 1.

� (n

2

+ 7n)=2 linearly independent moving quadri
s of degree n� 1.

However, ea
h moving plane gives four moving quadri
s by multiplying by x; y; z; w.

Thus, in the se
ond bullet, we have

(n

2

+ 7n)=2� 4n = (n

2

� n)=2

linearly independent moving quadri
s of degree n�1 whi
h don't 
ome from moving

planes. Using these moving quadri
s, we 
an 
onstru
t a (n

2

+ n)=2� (n

2

+ n)=2

matrix M built from

� n rows 
oming from moving planes of degree n� 1.

� (n

2

� n)=2 rows 
oming from moving quadri
s of degree n� 1.

Then we 
an des
ribe the impli
it equation F = 0 of the surfa
e as follows.

Theorem 2.2. Assume � as in (2.8) has no base points and has pre
isely n

linearly independent moving planes of degree n� 1 that follow �. Then:

F

h

= det(M);

where h is the generi
 degree of �.

This is proved in [6℄ when � is generi
ally one-to-one. The general 
ase is due

to D'Andrea in [9℄.

Regularity. In the triangular 
ase, Theorem 2.2 has an interesting relation to

the regularity of the ideals I = ha; b; 
; di and I

2

= ha

2

; ab; : : : ; d

2

i of R = C [s; t; u℄.

Sin
e we are assuming that a; b; 
; d don't vanish simultaneously, it follows that
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both I and I

2

have no base points. As explained in the last se
tion, this implies

that regularity has the following meaning for these ideals:

reg(I) = the smallest integer k

0

su
h that I

k

= R

k

for k � k

0

reg(I

2

) = the smallest integer k

0

su
h that (I

2

)

k

= R

k

for k � k

0

:

We 
an relate this to the proof of Theorem 2.2 as follows. Similar to what we did

in Theorem 2.1, the key step of the proof is to show that

(2.11) MP has maximal rank)MQ has maximal rank;

where MP and MQ are de�ned by (2.9) and (2.10).

Sin
e the image of MP is I

2n�1

, it follows that

MP has maximal rank () I

2n�1

= R

2n�1

() 2n� 1 � reg(I):

Similarly, the image of MQ is (I

2

)

3n�1

, so that

MQ has maximal rank () (I

2

)

3n�1

= R

3n�1

() 3n� 1 � reg(I

2

):

It follows that (2.11) is equivalent to the regularity result

reg(I) � 2n� 1) reg(I

2

) � 3n� 1:

when I = ha; b; 
; di has no base points. In general, one area of resear
h in 
ommu-

tative algebra 
on
erns how the regularity of an ideal relates to the regularity of its

powers. See, for example, [3℄.

As already noted, Se
tion 3 will explain what regularity means for triangular

surfa
es when base points are present. Then, in Se
tion 5, we will use regularity

results for su
h ideals to prove a version of Theorem 2.2 for triangular surfa
es with


ertain kinds of base points.

A �nal 
omment is that the above dis
ussion is spe
ial to the 
ase of homo-

geneous ideals in C [s; t; u℄. What about the bihomogeneous ideal I = ha; b; 
; di �

C [s; u; t; v℄ that we get from a tensor produ
t parametrization su
h as (2.1)? What

does regularity mean in this 
ase? The answer is that the study of regularity for

P

1

� P

1

is just beginning. Some preliminary results, su
h as the forth
oming work

of Ho�man and Wang [11℄, indi
ate that regularity may be a useful tool in studying

tensor produ
t surfa
es.

3. Base Points

Now suppose that a triangular parametrization

� : P

2

��! P

3

�(s; t; u) =

�

a(s; t; u); b(s; t; u); 
(s; t; u); d(s; t; u)

�

has base points. As in (2.8), we assume that a; b; 
; d 2 C [s; t; u℄ are homogeneous of

the same degree and g
d(a; b; 
; d) = 1. Hen
e there are at most �nitely many base

points in P

2

where a; b; 
; d all vanish simultaneously. We will work with triangular

surfa
es sin
e 
ommutative algebra works best in this 
ase.

The goal of this se
tion is to explain why 
ertain base points 
alled lo
al 
om-

plete interse
tions are espe
ially ni
e. We also dis
uss regularity and saturations.

Lo
al Complete Interse
tion Base Points. Let I � R = C [s; t; u℄ and

assume V(I) � P

2

is �nite. Elements of V(I) are 
alled the base points of I . Then

I is a lo
al 
omplete interse
tion (LCI) if for every base point p 2 V(I), I 
an be

generated by two elements in a neighborhood of p.
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Example 3.1. The ideal I = hs

2

u; stu; t

2

u; t

3

i has base points (1; 0; 0); (0; 0; 1).

This ideal has four generators, but if we work lo
ally near the base points, then

fewer generators are needed:

s = 1 ) I = hu; tu; t

2

u; t

3

i = hu; t

3

i near (1; 0; 0)

u = 1 ) I = hs

2

; st; t

2

; t

3

i = hs

2

; st; t

2

i near (0; 0; 1):

Thus I 
an be generated by two elements in a neighborhood of (1; 0; 0), so that this

base point is LCI. However, (0; 0; 1) is not LCI be
ause I is minimally generated

by three elements near this base point. Sin
e not all base points are LCI, we see

that I is not LCI. �

Syzygies of LCI Base Points. Suppose that a; b; 
 2 R = C [s; t; u℄ are

homogeneous of degree n with g
d(a; b; 
) = 1, and suppose that I = ha; b; 
i has

base points (ne
essarily �nite in number). What 
an we say about syzygies in this

situation? As in (2.7), a Kozsul syzygy is a syzygy of the form

A = h

1


+ h

2

b

B = �h

2

a+ h

3




C = �h

1

a� h

3

b:

The observation is that a Koszul syzygy vanishes at the base points (be
ause a; b; 


vanish at the base points by de�nition). This leads to the question:

(3.1) Is every syzygy vanishing at the base points a Koszul syzygy?

To see the relevan
e of this question, observe that in (2.5), we had the syzygy

(3.2) 0 = (Aa+Bb+ C
+Dd)a+ (Eb+ F
+Gd)b+ (H
+ Id)
:

Assuming that a; b; 
; d and a; b; 
 have the same base points, it follows that this

syzygy vanishes at the base points. Hen
e, if the answer to (3.1) is \yes", then (3.2)

is a Koszul syzygy, whi
h as in (2.6) gives the equation

H
+ Id = �h

1

a� h

3

b

used in the proof of Theorem 2.1. So if we want to adapt the proof to the 
ase

when base points are present, then question (3.1) arises naturally.

Be
ause of multipli
ities, we need a 
areful de�nition of what it means to vanish

at the basepoints.

Definition 3.2. A syzygy Aa+Bb+C
 = 0 vanishes at the basepoints of

I = ha; b; 
i if A;B;C lo
ally lie in I.

In Se
tion 4, we will explain how the phrase \lo
ally lie in" is related to the

saturation of the ideal I .

It is easy to show that any Koszul syzygy vanishes at the basepoints. Then

(3.1) asks if this ne
essary 
ondition is also suÆ
ient. Here is a result proved in [5℄.

Theorem 3.3. Let I = ha; b; 
i � R = C [s; t; u℄ with V(I) � P

2

�nite. Then

the following are equivalent:

(1) I is LCI.

(2) Every syzygy of a; b; 
 that vanishes at the base points of I is Koszul.

For me, the interesting feature of this theorem is that it is a result in pure


ommutative algebra yet its underlying idea was suggested by questions raised by

geometri
 modelers.



CURVES, SURFACES, AND SYZYGIES 11

Multipli
ities and LCI Base Points. Base points of parametrized surfa
es

are interesting be
ause of their e�e
t on the degree of the surfa
e. For example,

suppose that

� : P

2

��! P

3

is given by homogeneous polynomials a; b; 
; d 2 R = C [s; t; u℄ of degree n with

g
d(a; b; 
; d) = 1. If � is generi
ally one-to-one, then its image S � P

3

has degree

n

2

�

X

p2V(I)

e(I; p);

where e(I; p) is the multipli
ity of I at p. Re
all that e(I; p) is de�ned as follows.

One lo
alizes I at p to get an ideal I

p

in the lo
al ring R

p

(see Chapter 4 of [7℄ for

a dis
ussion of lo
al rings). Then

e(I; p) = dimR

p

=hf; gi

for generi
 linear 
ombinations f; g of the generators of I

p

.

Another important invariant of I

p

� R

p

is its degree, whi
h is de�ned to be

(3.3) deg(I; p) = dimR

p

=I

p

:

Sin
e hf; gi � I

p

, it follows that we always have the inequality

(3.4) e(I; p) � deg(I; p):

Here is an example to show that the inequality 
an be stri
t.

Example 3.4. Suppose that I = hs

2

; st; t

2

i � C [s; t; u℄. The only base point is

p = (0; 0; 1), and lo
alizing at p is (essentially) done by setting u = 1. This gives

R

p

=I

p

' C [s; t℄=hs

2

; st; t

2

i. A basis of R

p

=I

p

is given by 1; s; t, so that

deg(I; p) = 3:

To 
ompute e(I; p), one 
an show that we 
an use f = s

2

and g = t

2

in this 
ase.

Then a basis of R

p

=hf; gi = R

p

=hs

2

; t

2

i is given by 1; s; t; st, so that

e(I; p) = 4:

Thus e(I; p) > deg(I; p) in this 
ase. �

The interesting observation is that when we 
ompute e(I; p) as the dimension

of R

p

=hf; gi, the ideal hf; gi is LCI at p sin
e it is generated by 2 elements. So the

multipli
ity is 
omputed using the best approximation of I

p

by an ideal whi
h is

LCI at p. This means that whenever you 
onsider the multipli
ity of a base point,

there is an LCI ideal lurking in the ba
kground.

In parti
ular, if I is LCI, then we 
an let hf; gi = I

p

for ea
h p, so that

(3.5) e(I; p) = deg(I; p) for all p 2 V(I):

In fa
t, I is LCI if and only if (3.5) is true.

Moving Planes and LCI Base Points. We next dis
uss how base points

a�e
t the number of moving planes that follow the parametrization. The goal

is to show that LCI base points arise naturally when one tries naively to extend

Theorem 2.2 to the 
ase when base points are present.
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Assume that we have � : P

2

��! P

3

given by a; b; 
; d of degree n. When �

has no base points, Theorem 2.2 
omputes the impli
it equation of the image of �

using a matrix M with

n rows 
oming from moving planes of degree n� 1

(n

2

� n)=2 rows 
oming from moving quadri
s of degree n� 1.

Now introdu
e base points. The hope is that when a base point drops the impli
it

degree by 1, one row of M should swit
h from quadrati
 to linear. Thus ea
h base

point should give a new moving plane that follows �.

To make this intuition more pre
ise, we need to study 
arefully how base points

a�e
t the number of moving planes that follow �. Given an integer `, the moving

planes of degree ` are given by the kernel of the matrix

MP

`

: R

4

`

(a;b;
;d)

�����! R

`+n

:

(hen
e MP

n�1

is the matrix MP of (2.9)). The image of this map is I

`+n

, so that

the number of moving planes of degree ` that follow � is determined by the size

I

`+n

. A Hilbert polynomial 
al
ulation implies that

(3.6) dimR

`+n

= dim I

`+n

+ deg(I);

for `� 0, where

deg(I) =

X

p2V(I)

deg(I; p)

is the degree of I and deg(I; p) = dimR

p

=I

p

is from (3.3).

Now suppose that (3.6) holds when ` = n� 1. We will see in the next se
tion

that this is equivalent to assuming that reg(I) � 2n�1. Then we have the following.

Proposition 3.5. Equation (3.6) holds when ` = n� 1 if and only if

dimSyz(a; b; 
; d)

n�1

= n+ deg(I):

Proof. Sin
e MP

n�1

has kernel Syz(a; b; 
; d)

n�1

and image I

2n�1

, we have

dim Syz(a; b; 
; d)

n�1

= 4dimR

n�1

� dim I

2n�1

:

If (3.6) holds with ` = n� 1, then dimR

2n�1

= dim I

2n�1

+ deg(I). Thus

dimSyz(a; b; 
; d)

n�1

= 4dimR

n�1

� (dimR

2n�1

� deg(I)) = n+ deg(I);

where we have used dimR

k

=

�

k+2

2

�

. The 
onverse is equally easy. �

It follows that if (3.6) holds for ` = n � 1, then the number of moving planes

that follow � in
reases from n to n+ deg(I). If we use all of these moving planes

to 
onstru
t a new matrix M , then deg(I) quadrati
 rows shift to linear rows, so

that the degree of det(M) will drop by

deg(I) =

X

p2V(I)

deg(I; p):

However, the degree of the impli
it equation drops by the sum of the multipli
ities

X

p2V(I)

e(I; p):
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It follows that if det(M) = 0 is to be the impli
it equation of the surfa
e, then

these drops must mat
h, i.e., we must have

X

p2V(I)

e(I; p) =

X

p2V(I)

deg(I; p):

By (3.4), this means

e(I; p) = deg(I; p) for all p 2 V(I);

whi
h by (3.5) happens if and only if I is LCI. So our naive strategy of extending

Theorem 2.2 
an only hope to su

eed when the base points are LCI! As we will

explain in Se
tion 5, this strategy 
an be made rigorous in 
ertain 
ases. But �rst,

we need to learn about regularity and saturation.

4. Saturation and Regularity

In Se
tion 3, we noted that (3.6) is true for ` suÆ
iently large. Here, we will

show that the meaning of \suÆ
iently large" is 
losed related to the regularity of

the ideal I . But before we 
an understand this, we need to dis
uss saturation.

Saturation. Given a homogeneous ideal I � R = C [s; t; u℄ with any number

of generators, its saturation is de�ned to be

sat(I) = ff 2 R j there is k � 0 su
h that s

k

f; t

k

f; u

k

f 2 Ig:

One 
an show that sat(I) is a homogeneous ideal of R. Furthermore:

� I � sat(I). This follows by using k = 0 in the above de�nition. Below we

will give an example to show that sat(I) 
an be stri
tly bigger than I .

� I and sat(I) give the same ideal on every aÆne pie
e of P

2

. For example,

suppose we dehomogenize by setting s = 1. If f 2 sat(I), then s

k

f 2 I

for some k � 0. Sin
e s

k

f and f have the same dehomogenization when

s = 1, it follows that I and sat(I) dehomogenize to the same ideal in

C [t; u℄. The aÆne pie
es where t = 1 and u = 1 are handled similarly.

� It follows that I and sat(I) have the same base points whi
h have the

same degree and the same multipli
ity. (In more te
hni
al language, I

and sat(I) de�ne the same subs
heme of P

2

.)

One important observation is that sat(I) is the largest ideal that gives the same

ideal as I on every aÆne pie
e of P

2

. This follows from the above de�nition and

justi�es the statement that sat(I) 
onsists of all polynomials that lo
ally are in I .

Here is an example of a saturation.

Example 4.1. Let I = hs

5

; t

5

; su

4

; st

2

u

2

i � R = C [s; t; u℄. This is generated

by polynomials of degree 5. Note that

s � s

5

2 I

s � u

5

= u � su

4

2 I

s � t

5

2 I:

It follows that s 2 sat(I), so that sat(I) is stri
tly bigger than I . Using the

saturate 
ommand of Ma
aulay 2 [10℄, one 
an show that

sat(I) = hs; t

5

i:

The ideal hs; t

5

i 
learly has the single base point (0; 0; 1) whi
h is LCI of degree 5

and multipli
ity 5. By the third of the above bullets, the same is true for I . �
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Conditions Imposed by Base Points. We next interpret saturation in terms

of 
onditions imposed by base points. To see what this phrase means, 
onsider

(4.1) R

k

�!

M

p2V(I)

R

p

=I

p

;

where I

p

� R

p

is as in Se
tion 3. This map is given by dehomogenization followed

by the map to the quotient ring. Note that the dimension of the right-hand side is

P

p2V(I)

dimR

p

=I

p

=

P

p2V(I)

deg(I; p) = deg(I). This is the degree of I de�ned

in Se
tion 3

The phrase \
onditions imposed by base points" refers to the kernel of (4.1)

and thus des
ribes those polynomials of degree k whi
h lo
ally belong to I . But

this is the saturation! Hen
e we have the following result.

Proposition 4.2. The 
onditions imposed in degree k by the base points of I

des
ribe sat(I)

k

. Thus

I

k

= sat(I)

k

() the 
onditions imposed in degree k by

the basepoints of I des
ribe I

k

exa
tly.

The next question to ask is whether the base point 
onditions are independent.

This leads to the following de�nition.

Definition 4.3. We say that the 
onditions imposed by the base points of I

are independent in degree k if the map (4.1) is onto.

We then get the following basi
 result.

Proposition 4.4. The 
onditions imposed by the base points of I are indepen-

dent in degree k if and only if

dim sat(I)

k

+ deg(I) = dimR

k

:

Proof. Let W �

L

p2V(I)

R

p

=I

p

be the image of (4.1). Sin
e the kernel is

sat(I)

k

, the dimension theorem from linear algebra implies that

dim sat(I)

k

+ dimW = dimR

k

:

The result follows immediately sin
e deg(I) = dim

L

p2V(I)

R

p

=I

p

. �

Here is an example.

Example 4.5. Consider I = hs

2

u; stu; t

2

u; t

3

i � C [s; t; u℄ from Example 3.1.

In this 
ase, the map (4.1) be
omes

R

k

�! C [t; u℄=hu; t

3

i � C [s; t℄=hs

2

; st; t

2

i;

where f 2 R

k

is sent to (f(1; t; u); f(s; t; 1)). Noti
e also that deg(I) = 6. Sin
e

R

1

has dimension 3, it follows that the base points do not impose independent


onditions in degree 1. However, one 
an easily 
he
k that the base point 
onditions

are independent in degrees 2 and higher. For later purposes, we note that I is

saturated, i.e., I = sat(I). This is easily 
he
ked using Ma
aulay 2. �

Regularity. We are now ready to dis
uss regularity. We begin with the spe
ial


ase of a homogeneous ideal I � R with no base points. In this 
ase, sat(I) = R

sin
e an empty base point lo
us means that lo
ally I generates the whole ring. But

now re
all that when I has no base points, the regularity reg(I) of I is the smallest

integer su
h that I

k

= R

k

for k � reg(I). Sin
e R

k

= sat(I)

k

, we get the following

ni
e result.
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Proposition 4.6 (Regularity without base points). Let I � C [s; t; u℄ be a

homogenous ideal with no base points. Then, for any integer k � 0, we have

reg(I) � k () I

k

= R

k

() I

k

= sat(I)

k

:

One useful 
onsequen
e of this proposition is that if we know a single degree k

su
h that I

k

= R

k

, then we automati
ally have I

`

= R

`

for all ` � k.

Now let I � R be a homogeneous ideal with �nitely many base points. What

does regularity mean in this 
ase? The de�nition of regularity given in [1℄ 
an be

stated in various ways using either sheaf 
ohomology or minimal free resolutions.

Fortunately, for the ideals of interest to us, regularity 
an be formulated as follows.

Proposition 4.7 (Regularity with base points). Let I � C [s; t; u℄ be a ho-

mogenous ideal with a �nite positive number of base points. Then, for any integer

k � 0, we have

reg(I) � k () I

k

= sat(I)

k

and dim sat(I)

k�1

+ deg(I) = dimR

k�1

() the 
onditions imposed by the base points of I des
ribe

I

k

in degree k and are independent in degree k � 1:

The se
ond equivalan
e of the proposition uses Propositions 4.2 and 4.4. One


onsequen
e is that if we know one degree k where the 
onditions imposed by the

base points of I des
ribe I

k

and are independent in degree k � 1, then the same is

true for all larger degrees. Here is an example of Proposition 4.7.

Example 4.8. Consider I = hs

2

u; stu; t

2

u; t

3

i � C [s; t; u℄. In Example 4.5,

we noted that this ideal was saturated and that the base point 
onditions were

independent in degrees 2 and higher. By Proposition 4.7, it follows that reg(I) = 3.

This 
an be 
on�rmed using the regularity 
ommand in Ma
aulay 2. �

When dealing with a triangular surfa
e with base points, Proposition 4.7 
an

be simpli�ed as follows.

Theorem 4.9 (Regularity for triangular surfa
es with base points). Consider

an ideal I = ha; b; 
; di � C [s; t; u℄, where a; b; 
; d have degree n and g
d(a; b; 
; d) =

1. Also assume that n � 2 and that a; b; 
; d are linearly independent. Then, if

k � 2n� 2, we have

reg(I) � k () dim I

k

+ deg(I) = dimR

k

() the 
onditions imposed by the basepoints of I are

independent in degree k and des
ribe I

k

exa
tly.

This is proved in Appendix B of [2℄. Here is a 
orollary of Theorem 4.9 relevant

to the dis
ussion at the end of Se
tion 3.

Corollary 4.10. Let I be as in Theorem 4.9. Then:

reg(I) � 2n� 1 () dim I

2n�1

+ deg(I) = dimR

2n�1

() (3.6) holds for ` = n� 1

() dimSyz(a; b; 
; d)

n�1

= n+ deg(I):

Proof. Set k = 2n� 1 in Theorem 4.9 and use Proposition 3.5. �

Thus the naive idea of extending Theorem 2.2 dis
ussed in Se
tion 3 leads

naturally to the notion of regularity. We will say more about this in Se
tion 5.

The intuition behind regularity is that I

k

\behaves ni
ely" when k � reg(I).

We now have a better idea of what this means!
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5. Surfa
es with Base Points

In this �nal se
tion we will show that in 
ertain 
ases, the methods of Se
tion 2


an be extended to the triangular surfa
e 
ase when base points are present. Details


an be found in [2℄.

Base Point Conditions. Let I = ha; b; 
; di � R = C [s; t; u℄ give the rational

map � : P

2

��! P

3

. Assume the following base point 
onditions :

BP1: a; b; 
; d are homogeneous of degree n and linearly independent over C .

BP2: g
d(a; b; 
; d) = 1 and I is LCI.

BP3: dimSyz(a; b; 
; d)

n�1

= n+ deg(I).

BP4: d 2 sat(ha; b; 
i).

BP5: Syz(a; b; 
)

n�1

= f0g.

These 
onditions give the following result proved in [2℄.

Theorem 5.1. Assume the base point 
onditions BP1{BP5. Then there is a

(n

2

+ n)=2� (n

2

+ n)=2 matrix M with

n+ deg(I) rows 
oming from moving planes of degree n� 1

(n

2

� n)=2� deg(I) rows 
oming from moving quadri
s of degree n� 1;

su
h that the impli
it equation F = 0 of the image of � satis�es

F

h

= det(M);

where h is the generi
 degree of �.

Rather than give the proof, we will instead explain what the �ve base point


onditions mean.

Explain BP1. This is fairly obvious. Noti
e that if a; b; 
; d are linearly dependent,

then the image of � lies in a plane.

Explain BP2. The g
d 
ondition implies that V(I) is �nite. To see why we need

LCI base points, note that the determinant of the matrix M of Theorem 5.1 has

degree n

2

�deg(I), while F

h

has degree n

2

�

P

p2V(I)

e(I; p). These are equal sin
e

the base points are LCI.

Explain BP3. This 
ondition is needed to ensure that M has the 
orre
t number of

linear rows. Also, by Corollary 4.10, BP3 implies that reg(I) � 2n�1. In the proof

of Theorem 5.1, we use reg(I), together with a result of Chandler [3℄, to bound

the regularity of I

2

. This is needed to understand how the base points a�e
t the

number of moving quadri
s that follow �.

Explain BP4. We need d 2 sat(ha; b; 
i) so that I and ha; b; 
i have the same LCI

base points. Then we 
an use Theorem 3.3 to show that (2.5) implies (2.6) just as

in the proof of Theorem 2.1. We 
an always arrange d 2 sat(ha; b; 
i) by a suitable


hange of 
oordinates on P

3

. So this assumption is harmless.

Explain BP5. An important step in the proof is to show that det(M) doesn't vanish

identi
ally. This is done by showing that the 
oeÆ
ient of w

n

2

�deg(I)

is nonzero.

However, a syzygy of degree n � 1 on a; b; 
 gives a row of M with no w, whi
h

means that w

n

2

�deg(I)

does not appear det(M). Hen
e this messes up the proof that

det(M) is nonzero. One 
an sometimes avoid this problem by 
hanging 
oordinates

on P

3

. However, there are examples where Syz(a; b; 
)

n�1

6= f0g no matter whi
h


oordinates we use on P

3

. Hen
e we are stu
k with this assumption.

Here are two examples of Theorem 5.1 in a
tion.
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Example 5.2. Let � be given by a = s

3

, b = t

2

u, 
 = s

2

t + u

3

, and d = stu.

One 
an 
he
k that the base point 
onditions are satis�ed, and the only base point

is (0; 1; 0), whi
h is LCI of multipli
ity 2. Sin
e n = 3 and deg(I) = 2, we have

(n

2

+ n)=2 = 6. Thus M is a 6� 6 matrix (5 linear rows, one quadrati
 row) and

det(M) has degree n

2

� deg(I) = 7.

One 
an 
ompute that the �ve moving planes of degree 2 that follow � are

P

1

= s

2

w � tu x

P

2

= stw � s

2

y

P

3

= t

2

w � st y

P

4

= tuw � su y

P

5

= u

2

w + t

2

x� st z;

and that the single moving quadri
 that follows � is

Q = suw

2

� u

2

xy:

If we let the 
olumns ofM 
orrespond to the 
oeÆ
ients of s

2

; st; su; t

2

; tu; u

2

, then

we get the matrix

M =

0

B

B

B

B

B

B

�

w 0 0 0 �x 0

�y w 0 0 0 0

0 �z 0 x 0 w

0 �y 0 w 0 0

0 0 �y 0 w 0

0 0 w

2

0 0 �xy

1

C

C

C

C

C

C

A

:

Thus det(M) = w

7

� x

2

y

3

zw + x

3

y

4

is the impli
it equation of the surfa
e. �

Example 5.3. Now suppose that I = hs

5

; t

5

; su

4

; st

2

u

2

i � R = C [s; t; u℄. In

Example 4.1, we saw that I has a single LCI base point of multipli
ity 5. Thus the


orresponding surfa
e in P

3

has degree 5

2

�5 = 20. Also noti
e that (n

2

+n)=2 = 15,

meaning that M needs to be a 15� 15 matrix.

However, using Ma
aulay 2, the regularity of I is 10, yet 
ondition BP3 means

reg(I) � 2 � 5� 1 = 9. In fa
t, one 
an 
ompute that

dimSyz(a; b; 
; d)

4

= 11 6= 10 = n+ deg(I):

If we use all moving planes of degree 4 in M , we get 11 linear rows and 4 quadrati


rows, so that det(M) has degree 19. This is 
learly wrong and shows that the

method fails in this 
ase. �

A version of Theorem 5.1 should hold for P

1

�P

1

. We don't know how to prove

this sin
e we don't have a good theory of regularity (though this may 
hange on
e

[11℄ appears).

Smaller Matri
es. There is a version of Theorem 5.1 that uses n� 2 in pla
e

of n � 1, with a matrix of size (n

2

� n)=2� (n

2

� n)=2. The idea is that one uses

slightly di�erent base point 
onditions. More pre
isely, the third and �fth base

point 
onditions are modi�ed as follows:

BP3: dimSyz(a; b; 
; d)

n�2

= deg(I)� n.

BP5: Syz(a; b; 
)

n�2

= f0g.
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In this 
ase, the base point 
onditions imply that

F

h

= det(M);

where M is a (n

2

� n)=2� (n

2

� n)=2 matrix M with

deg(I) � n rows 
oming from moving planes of degree n� 2

(n

2

+ n)=2� deg(I) rows 
oming from moving quadri
s of degree n� 2:

Here is an example of this result.

Example 5.4. Consider the following parametrization (taken from [12℄) of a


ubi
 surfa
e with 6 base points:

a = s

2

t+ 2t

3

+ s

2

u+ 4stu+ 4t

2

u+ 3su

2

+ 2tu

2

+ 2u

3

b = �s

3

� 2st

2

� 2s

2

u� stu+ su

2

� 2tu

2

+ 2u

3


 = �s

3

� 2s

2

t� 3st

2

� 3s

2

u� 3stu+ 2t

2

u� 2su

2

� 2tu

2

d = s

3

+ s

2

t+ t

3

+ s

2

u+ t

2

u� su

2

� tu

2

� u

3

:

One 
an 
he
k with Ma
aulay 2 that I is saturated and LCI of degree 6, and its

regularity is 3. As shown in [12℄, we have the following basis of syzygies of degree

n� 2 = 1:

(5.1)

s(z � y) + t(�x+ 2w) + u(x� y)

s(x+ w) + t(2y � z) + u(y + 2w)

s x+ t y + u z:

The third syzygy shows that Syz(a; b; 
)

1

6= 0, so that BP5 is not veri�ed. But if

we 
onsider a; b; d instead, then it is straightforward to 
he
k that all base point


onditions are satis�ed.

In this 
ase, M has deg(I) � n = 3 linear rows and (n

2

+ n)=2 � deg(I) = 0

quadrati
 rows. Thus the above syzygies give the matrix

M =

0

�

z � y �x+ 2w x� y

�x� w z � 2y �y � 2w

x y z

1

A

:

The determinant of M is 
omputed in [12℄ and is the impli
it equation of the

surfa
e. �

Spe
ial �-Bases for Surfa
es. Given a rational map � : P

2

��! P

3

, it 
an

happen that I = ha; b; 
; di is saturated. We saw an example of this in Example 4.5.

While this is a relatively rare phenomenon, it does have some ni
e 
onsequen
es.

For example, a

ording to [4℄, we know that

I = ha; b; 
; di is saturated () Syz(a; b; 
; d) is a free module:

In this situation, one 
an prove that Syz(a; b; 
; d) has free generators p; q; r of

degrees �

1

; �

2

; �

3

su
h that

�

1

+ �

2

+ �

3

= n;

where, as usual, n is the degree of a; b; 
; d. In analogy with the 
urve 
ase dis
ussed

in Se
tion 1, we 
all p; q; r a spe
ial �-basis (the adje
tive \spe
ial" refers to the

fa
t that most of the time I isn't saturated, in whi
h 
ase p; q; r don't exist).

In the 
urve 
ase, the impli
it equation is (up to the generi
 degree) given by

the resultant of the �-basis. Is the same true when a spe
ial �-basis exists? The
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answer is \not always" (see [2℄ for examples). However, when the base points are

LCI, then things work out ni
ely. Here is the pre
ise result from [2℄.

Theorem 5.5. Assume that I = ha; b; 
; di satis�es BP1 and BP2 (so the base

points are LCI ). If I is saturated and p; q; r is a spe
ial �-basis, then

F

h

= Res(p; q; r);

where h is the generi
 degree of �.

We 
an explain the ne
essity for LCI base points as follows. Sin
e p; q; r have

degrees �

1

; �

2

; �

3

, the theory of multivariable resultants (see [7℄) implies that

deg(Res(p; q; r)) = �

1

�

2

+ �

1

�

3

+ �

2

�

3

:

One the other hand, it is shown in [4℄ that I has degree

deg(I) = n

2

� (�

1

�

2

+ �

1

�

3

+ �

2

�

3

):

It follows that

deg(Res(p; q; r)) = n

2

� deg(I) = n

2

�

X

p2V(I)

deg(I; p):

Sin
e

deg(F

h

) = n

2

�

X

p2V(I)

e(I; p);

we see that Theorem 5.5 holds only if the degree equals the sum of the multipli
ities,

whi
h by Se
tion 3 happens only when the base points are LCI. Hen
e we get

another example where LCI base points have an interesting role to play.
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