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What is a Tori
 Variety?David CoxAbstra
t. This paper is a tutorial in the basi
 theory of tori
 varieties. Itdis
usses their de�nition using fans, homogeneous 
oordinates, and polytopes.Numerous examples are in
luded.Introdu
tionTori
 varieties were �rst de�ned in the 1970s and have be
ome an importantpart of algebrai
 geometry. They 
an be used in many di�erent geometri
 situationsyet also have interesting 
onne
tions with 
ombinatori
s and 
onvex polytopes.This arti
le is an introdu
tion to tori
 varieties for non-spe
ialists. Many ex-amples are given to illustrate the various de�nitions. The paper is organized into14 se
tions as follows:1. Varieties2. Tori
 Varieties3. Examples of Tori
 Varieties4. Cones5. AÆne Tori
 Varieties6. Coordinate Rings7. Normality8. Fans and Tori
 Varieties9. Properties of Tori
 Varieties10. Homogeneous Coordinates11. Examples of Homogeneous Coordinates12. The Tori
 Variety of a Polytope13. Polytopes and Homogeneous Coordinates14. Bibliography 1. VarietiesWe will work over the 
omplex numbers C . Basi
 examples of varieties are:� AÆne spa
e C n and aÆne varietiesV = V(f1; : : : ; fs) � C n1991 Mathemati
s Subje
t Classi�
ation. 14M25. 
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2 DAVID COXde�ned by the polynomial equations f1 = � � � = fs = 0.� Proje
tive spa
e Pn and proje
tive varietiesV = V(F1; : : : ; Fs) � Pnde�ned by the homogeneous equations F1 = � � � = Fs = 0.In this arti
le, most varieties will be either aÆne or proje
tive.Example 1.1. Let C � = C n f0g = fz 2 C j z 6= 0g. Then (C � )n � C n is anaÆne variety sin
e the map (t1; : : : ; tn) 7! (t1; : : : ; tn; 1=t1 � � � tn) gives(C � )n ' V(x1x2 � � �xn+1 � 1) � C n+1 :In the theory of algebrai
 groups, (C � )n is 
alled the n-dimensional 
omplex torus.This is where the \tori
" in \tori
 variety" 
omes from. �Given varieties W � V , we 
all the 
omplement V nW = fv 2 V j v =2 Wga Zariski open subset of V . These are the points of V where one or more of thede�ning equations of W don't vanish.Example 1.2. Noti
e that (C � )n � C nis a Zariski open sin
e (C � )n = C n nV(x1 � � �xn). �A variety V is irredu
ible if it 
annot be written as union V = V1 [ V2 whereV1 6= V and V2 6= V are varieties.2. Tori
 VarietiesDefinition 2.1. A tori
 variety is an irredu
ible variety V su
h that(1) (C � )n is a Zariski open subset of V , and(2) the a
tion of (C � )n on itself extends to an a
tion of (C � )n on V .We will see later that the theory of tori
 varieties works best when V is normal(we defer the de�nition of normality sin
e it is somewhat te
hni
al). Here are themost basi
 examples of tori
 varieties.Example 2.2. (C � )n and C n are 
learly tori
 varieties. As for Pn, supposethat x0; : : : ; xn are homogeneous 
oordinates on Pn. The map(C � )n �! Pnde�ned by (t1; : : : ; tn) 7! (1; t1; : : : ; tn) allows us to identify (C � )n with the Zariskiopen subset Pn nV(x0x1 � � �xn). Then setting(t1; : : : ; tn) � (a0; a1; : : : ; an) = (a0; t1a1; : : : ; tnan)shows that Pn is a tori
 variety. �In studying tori
 varieties, points a = (a1; : : : ; an) 2 Zn play two importantroles: � First, a Laurent monomial is de�ned byta = ta11 � � � tann :Note that ta gives a fun
tion (C � )n ! C � . In the theory of algebrai
groups, this is 
alled a 
hara
ter. The C -linear span of all Laurent mono-mials is the ring C [t1 ; t�11 ; : : : ; tn; t�1n ℄ of Laurent polynomials.



WHAT IS A TORIC VARIETY? 3� Se
ond, a 1-parameter subgroup �a : C � ! (C � )n is de�ned by�a(t) = (ta1 ; : : : ; tan):In general, a tori
 variety V 
onsists of (C � )n plus some \extra stu�." WhenV is aÆne, we will see that the \extra stu�" is determined by whi
h Laurentmonomials tm are de�ned on V . Here is an example.Example 2.3. Consider the tori
 variety C n . The one easily sees that theLaurent monomial tm = tm11 � � � tmnn determined bym = (m1; : : : ;mn) 2 Zn extendsto a fun
tion C n ! C if and only if mi � 0 for all i. Below we will 
onstru
t C nusing only these Laurent monomials in Zn. �3. Examples of Tori
 VarietiesBesides the basi
 examples of tori
 varieties given above, we also have thefollowing.Example 3.1. If V and W are tori
 varieties, then so is V �W . This shows,for instan
e, that P1 � P1 is a tori
 variety. �Example 3.2. Consider the 
uspidal 
ubi
 C = V(y2�x3) � C 2 . This 
ontainsC � via the map t 7! (t2; t3), and C � a
ts on C via t � (u; v) = (t2u; t3v). �The previous example is interesting be
ause it is a non-normal tori
 variety. Indimension one, the only normal tori
 varieties are C � , C and P1.Example 3.3. Consider V = V(xy� zw) � C 4 . This 
ontains the torus (C � )3via the map (t1; t2; t3) 7! (t1; t2; t3; t1t2t�13 ):Question: Whi
h Laurent monomials tm extend to fun
tions V ! C ? If m =(a; b; 
) 2 Z3, then we get the fun
tion on V de�ned by xaybz
. If a; b; 
 � 0, thenthis 
ertainly extends. However, suppose that 
 < 0 and a + 
; b + 
 � 0. Then,sin
e xy = zw on V , we havexaybz
 = xayb�xyw �
 = xa+
yb+
w�
;whi
h shows that tm extends to a fun
tion V ! C . We will see below that theinequalities(3.1) a � 0; b � 0; a+ 
 � 0; b+ 
 � 0de�ne the dual 
one 
orresponding to the normal aÆne tori
 variety V . �Example 3.4. Let's show that (C � )2 � P2 gives the following pi
ture in R2 :
(3.2) ������



4 DAVID COXA 1-parameter subgroup u 2 Z2 gives a map �u : C � ! P2. Sin
e P2 is 
ompa
t,the limit limt!0 �u(t)exists in P2. If u = (a; b) 2 Z2, then�u(t) = (1; ta; tb):It is then straightforward to 
ompute that
(3.3) limt!0�u(t) = limt!0(1; ta; tb) = 8>>>>>>>>>><>>>>>>>>>>:

(1; 0; 0) a; b > 0(1; 0; 1) a > 0; b = 0(1; 1; 0) a = 0; b > 0(1; 1; 1) a = b = 0(0; 0; 1) a > b; b < 0(0; 1; 0) a < 0; a < b(0; 1; 1) a < 0; a = b:The �rst four 
ases are trivial. To see how the �fth 
ase works, note thatlimt!0(1; ta; tb) = limt!0(t�b; ta�b; 1)sin
e these are homogeneous 
oordinates. Then a > b and b < 0 imply that thelimit is (0; 0; 1), as 
laimed. The last two 
ases are similar.Now observe that (3.2) de
omposes the plane into 7 disjoint regions:� The open sets a; b > 0; a < 0; a < b; and a > b; b < 0.� The open rays a > 0; b = 0; a = 0; b > 0; and a < 0; a = b.� The point a = b = 0.The 
orresponds perfe
tly with (3.3). We will see below that (3.2) is the fan 
or-responding to the tori
 variety P2. �4. ConesA rational polyhedral 
one � � Rn is a 
one generated by �nitely many elementsof Zn: � = ��1u1 + � � �+ �`u` 2 Rn j �1; : : : ; �` � 0	;where u1; : : : ;u` 2 Zn. Then:� � is strongly 
onvex if � \ (��) = f0g.� The dimension of � is the dimension of the smallest subspa
e of Rn 
on-taining �.� A fa
e of � is the interse
tion f` = 0g \ �, where ` is a linear form whi
his nonnegative on �.� The edges of � are its 1-dimensional fa
es. Edges are denoted by �. Theprimitive element n� of an edge � is the unique generator of � \Zn. The
one � is generated by the primitive elements n� of its edges �.� The fa
ets of � are its 
odimension-1 fa
es. When dim � = n, ea
h fa
ethas an inward pointing normal whi
h is an element of Rn . We get a uniqueinward normal by requiring that it is in Zn and has minimal length.



WHAT IS A TORIC VARIETY? 5Definition 4.1. If � � Rn be a strongly 
onvex rational polyhedral 
one, thenits dual 
one �_ � Rn is�_ = �m 2 Rn j hm;ui � 0 for all u 2 �	;where hm;ui is the usual dot produ
t on Rn . This is a rational polyhedral 
one ofdimension n.Here is an example of a 
one and its dual.Example 4.2. Consider the 
one � � R3 pi
tured below:
c

b

aThis 
one is generated by the primitive elements(4.1) n1 = (1; 0; 0); n2 = (0; 1; 0); n3 = (1; 0; 1); n4 = (0; 1; 1)in Z3, and the inward pointing normals of the fa
ets of � are(4.2) m1 = (1; 0; 0); m2 = (0; 1; 0); m3 = (0; 0; 1); m4 = (1; 1;�1)in Z3. It follows that these generate the dual 
one �_ in R3 . Thus (a; b; 
) 2 �_ ifand only if a � 0; b � 0; a+ 
 � 0; b+ 
 � 0These are pre
isely the inequalities (3.1). �5. AÆne Tori
 VarietiesLet � � Rn be a strongly 
onvex rational polyhedral 
one with dual 
one�_ � Rn . Our goal is to show that this determines a normal aÆne tori
 varietyU�. The basi
 idea is as follows. We 
all m 2 �_ \ Zn a latti
e point of �_. Ea
hlatti
e point m 2 �_ \ Zn gives a Laurent monomial tm. Then U� should be thethe smallest variety on whi
h these Laurent monomials are de�ned everywhere.We will 
onstru
t U� using Gordan's Lemma, whi
h implies that �_ \ Zn is�nitely generated. In other words, there are m1; : : : ;m` 2 �_ \Zn su
h that everyelement of �_ \Zn is of the form(5.1) a1m1 + � � �+ a`m`; ai 2 Z; ai � 0:



6 DAVID COXThe generators m1; : : : ;m` determine the aÆne variety U� � C ` as follows. Con-sider(5.2) ' : (C � )n �! C `de�ned by '(t1; : : : ; tn) = �tm1(t1; : : : ; tn); : : : ; tm`(t1; : : : ; tn)�:Then U� � C ` is the Zariski 
losure of the image of this map. This means that U�is the smallest variety 
ontaining the image of (5.2).One 
an prove that the map (C � )n ! U� indu
ed by (5.2) is an in
lusion andmakes U� into a tori
 variety. Furthermore:� By (5.2), tmi extends to the fun
tion U� ! C given by the proje
tion ofU� � C ` onto the ith 
oordinate. Thus tmi is de�ned on all of U�.� Sin
e every m 2 �_ \ Zn is of the form (5.1), it follows that tm extendsto a fun
tion on U� .� U� is the smallest variety where the tm are de�ned sin
e it is the Zariski
losure of (5.2).We say that U� is the normal aÆne tori
 variety determined by the stri
tly 
onvexrational polyhedral 
one �. Normality will be explained in Se
tion 7.Here is an easy example.Example 5.1. First 
onsider the n-dimensional 
one � generated by the stan-dard basis e1; : : : ; en of Zn. Thus � is the \�rst orthant" of Rn where all 
oordi-nates are nonnegative. Then �_ has the same des
ription in Rn , so that e1; : : : ; engenerate �_ \ Zn over Z�0. Sin
e tei = ti, it follows that (5.2) is the in
lusion(C � )n � C n . This gives U� = C n . �By (5.2), U� � C ` is the variety of C ` whose de�ning equations are determinedby the algebrai
 relations among the tmi . Here is an example to illustrate whatthis means.Example 5.2. Consider the 
one � � R3 pi
tured in Example 4.2. It is easyto see that that the generators of �_ \Z3 are the ve
torsm1 = (1; 0; 0); m2 = (0; 1; 0); m3 = (0; 0; 1); m4 = (1; 1;�1):from (4.2). Thus (5.2) is de�ned by(5.3) (t1; t2; t3) 7! (tm1 ; tm2 ; tm3 ; tm4) = (t1; t2; t3; t1t2t�13 ) 2 C 4 :If x; y; z; w are variables on C 4 , then tm1tm2 = t1t2 = t3(t1t2t�13 ) = tm3tm4 impliesthat xy� zw vanishes on the image of (5.3). It follows that U� � V(xy� zw), andin fa
t, one 
an show that U� = V(xy � zw) � C 4 :This gives the tori
 variety from Example 3.3.The vanishing of xy � zw on U� follows from the relation m1 +m2 = m3 +m4 between the generators of �_ \ Z3. Thus the ideal hxy � zwi de�ning U� isdetermined by the integer linear relations among the mi. This is true in generaland is related to the theory of tori
 ideals to be dis
ussed in the arti
le [24℄ byFrank Sottile in this volume. �



WHAT IS A TORIC VARIETY? 76. Coordinate RingsIn algebrai
 geometry, the ring of polynomial fun
tions on an aÆne variety is
alled the 
oordinate ring of the aÆne variety. For example, the 
oordinate ring ofC n is C [x1 ; : : : ; xn℄.For an aÆne tori
 variety U�, we 
an give an espe
ially ni
e des
ription ofthe 
oordinate ring. Namely, ea
h m 2 �_ \ Zn gives the Laurent monomialtm 2 C [t1 ; t1�1; : : : ; tn; t�1n ℄. Then 
onsider(6.1) Span(tm jm 2 �_ \ Zn) � C [t1 ; t�11 ; : : : ; tn; t�1n ℄:This is a ring sin
e m;m0 2 �_ \ Zn implies m+m0 2 �_ \Zn, so that if tm andtm0 are in (6.1), then the produ
t tmtm0 = tm+m0 is too.In the language of semigroup algebras, the ring (6.1) is denotedC [�_ \ Zn℄:This is the notation used in the literature on tori
 varieties. The previous se
tionshows that every Laurent monomial in this ring gives a polynomial fun
tion on U�and hen
e lies in the 
oordinate ring of U�. In fa
t, one 
an prove thatC [�_ \Zn℄ = the 
oordinate ring of U�:Also note that if m1; : : : ;m` 2 �_ \Zn generate �_ \Zn in the sense of (5.1), thenC [�_ \ Zn℄ = C [tm1 ; : : : ; tm` ℄ � C [t1 ; t�11 ; : : : ; tn; t�1n ℄:Thus the 
oordinate ring 
onsists of all polynomial expressions in the Laurent mono-mials tmi . Here is an example.Example 6.1. For the 
one � of Example 5.2, the Laurent monomials appear-ing in (5.3) show thatC [�_ \Z3℄ = C [t1 ; t2; t3; t1t2t�13 ℄ � C [t1 ; t�11 ; t2; t�12 ; t3; t�13 ℄:This gives an expli
it representation of the 
oordinate ring of U� in this 
ase. �7. NormalityA variety is normal if its lo
al rings are integrally 
losed in their �elds offra
tions. This de�nition is unlikely to be helpful to the nonexpert. Our goal hereis to des
ribe what normality means for aÆne tori
 varieties. The key point is thatthe aÆne tori
 variety U� de�ned in the previous se
tion is always normal.To motivate our dis
ussion, 
onsider the following example.Example 7.1. Here is a 
one and its dual:
The cone σ The cone σ∨



8 DAVID COXThe generators of �_ \ Z2 are mi = (1; i) for i = 0; : : : ; 4. It follows that U� � C 5is the Zariski 
losure of the image of the parametrization (C � )2 ! C 5 de�ned by(7.1) (t; u) 7! (t; tu; tu2; tu3; tu4):What happens if we only use some of these monomials? Here are two things whi
h
an o

ur.First, suppose we use only m0 = (1; 0) and m4 = (1; 4). Over R�0 , thesegenerate �_ and give the map (C � )2 ! C 2 de�ned by(7.2) (t; u) 7! (t; tu4):The Zariski 
losure of the image is C 2 , but (7.2) is 4-to-1. One 
an show that thishappens be
ause m0 and m4 do not generate Z2 over Z. The point is, an aÆnetori
 variety involves both a 
one and a latti
e. So m0 and m4 don't work be
ausethey mess up the latti
e, even though they do generate the dual 
one.Se
ond, suppose we use m0 = (1; 0), m1 = (1; 1) and m4 = (1; 4). Theygenerate the dual 
one over R�0 and give the map (C � )2 ! C 3 de�ned by(7.3) (t; u) 7! (t; tu; tu4):This map is 1-to-1, whi
h is easy to see dire
tly and also be
ause m0, m1 and m4generate the latti
e Z2. However, one 
an 
ompute that the Zariski 
losure of theimage of (7.3) is y4 = x3z. It is also straightforward to show that the singular lo
usof this surfa
e is the line x = y = 0. Sin
e the singular lo
us of a normal varietyhas 
odimension at least 2, it follows that this variety is not normal. Thus we havean example of a non-normal tori
 variety. �In the above example, the normal tori
 variety U� determined by the 
one �and latti
e Z2 was 
onstru
ted as the Zariski 
losure of the map (7.1) from (C � )2to C 5 . Then (7.2) and (7.3) are other tori
 varieties obtained by proje
ting U� toC 2 and C 3 respe
tively. These proje
tions are not the normal tori
 variety for �and Z2, be
ause:� In (7.2), we kept the dual 
one but 
hanged the latti
e.� In (7.3), we kept the latti
e and the dual 
one, but lost normality.As we will see below, the key reason for the se
ond bullet is that m0, m1 and m4do not generate �_ \Z2 over Z�0.To generalize this example, let � � Rn be a strongly 
onvex rational polyhedral
one, and suppose that we have emi 2 �_ \Zn for i = 1; : : : ; s. Then, using the t emias in (5.2), we get a map(7.4) (C � )n �! C s :Theorem 7.2. The Zariski 
losure of the image of (7.4) is the normal aÆnetori
 variety U� determined by � and Zn if and only if �_ \ Zn is generated overZ�0 by emi for i = 1; : : : ; s.Thus an aÆne tori
 variety is normal pre
isely when you use all latti
e pointsin the dual 
one. 8. Fans and Tori
 VarietiesWe next 
reate more general normal tori
 varieties by gluing together aÆnetori
 varieties 
ontaining the same torus (C � )n. This brings us to the 
on
ept of a



WHAT IS A TORIC VARIETY? 9fan, whi
h is de�ned to be a �nite 
olle
tion � of 
ones in Rn with the followingthree properties:� Ea
h � 2 � is a strongly 
onvex rational polyhedral 
one.� If � 2 � and � is a fa
e of �, then � 2 �.� If �; � 2 �, then � \ � is a fa
e of ea
h.Ea
h � 2 � gives an aÆne tori
 variety U� , and if � is a fa
e of �, then U� 
an beregarded as a Zariski open subset of U� . This leads to the following de�niton.Definition 8.1. Given a fan � in Rn , X� is the variety obtained from theaÆne varieties U�, � 2 �, by gluing together U� and U� along their 
ommon opensubset U�\� for all �; � 2 �.The in
lusions (C � )n � U� are 
ompatible with the identi�
ations made in 
re-ating X�, so that X� 
ontains the torus (C � )n as a Zariski open set. Furthermore,one 
an show that X� is a normal tori
 variety and that all normal tori
 varietiesarise in this way, i.e., every normal tori
 variety is determined by a fan.The tori
 variety X� is an example of an abstra
t variety. In parti
ular, it 
anhappen that X� is neither aÆne nor proje
tive.Here are some examples of tori
 varieties.Example 8.2. Given � � Rn , we get a fan by taking all fa
es of � (in
luding� itself). The tori
 variety of this fan is the aÆne tori
 variety U�. �Example 8.3. The fan for P1 is as follows:tThe 
ones �1 = [0;1) and �2 = (�1; 0℄ give U�1 with 
oordinate ring C [t℄ andU�2 with 
oordinate ring C [t�1 ℄, whi
h pat
h in the usual way to give P1. �Example 8.4. Let e1; : : : ; en be the standard basis of Zn, and set e0 = �e1 �� � � � en. Then we get a fan by taking the 
ones generated by all proper subsetsof fe0; e1; : : : ; eng. You should 
he
k that the asso
iated tori
 variety is Pn. Whenn = 2, this gives the fan (3.2). �Example 8.5. The fan for P1 � P1 is as follows:
In this �gure, the 1-dimensional 
ones are four rays emanating from the origin andthe 2-dimensional 
ones are the four quadrants. Thus the fan for P1 � P1 has four2-dimensional 
ones �1; : : : ; �4. The aÆne tori
 varieties U�i ' C 2 glue together inthe usual way to give P1 � P1. �There are many other ni
e examples of tori
 varieties. Later in this arti
le wewill see that every latti
e polytope in Rn determines a proje
tive tori
 variety.



10 DAVID COX9. Properties of Tori
 VarietiesThe fan � has a 
lose relation to the stru
ture of tori
 variety X�. The basi
idea is that there are one-to-one 
orresponden
es between the following obje
ts:� The limits limt!0 �u(t) for u 2 j�j = S�2� � (j�j is the support of �).� The 
ones � 2 �.� The orbits of the torus a
tion on X�.The 
orresponden
es is as follows: an orbit 
orresponds to a 
one � if and only iflimt!0 �u(t) exists and lies in the orbit for all u in the relative interior of �. Foran orbit orb(�), we have:� dim� + dimorb(�) = n.� orb(�) � orb(�) if and only if � � �.In parti
ular, the �xed points of the torus a
tion 
orrespond to the n-dimensional
ones in the fan. It is a good exer
ise verify all of this for P2 and the fan drawn inExample 8.5.We next dis
uss some basi
 properties of tori
 varieties. First, we need someterminology:� A 
one is smooth if it is generated by a subset of a basis of Zn.� A 
one is simpli
ial if it is generated by a subset of a basis of Rn .Then we have the following result.Theorem 9.1. Let X� be the tori
 variety determined by a fan � in Rn . Then:(1) X� is 
ompa
t () its support j�j = S�2� � is all of Rn .(2) X� is smooth () every � 2 � is smooth.(3) X� has at worst �nite quotient singularities () every � is simpli
ial.(Su
h tori
 varieties are 
alled simpli
ial.)Sin
e 2-dimensional 
ones are simpli
ial, tori
 surfa
es have at worst �nitequotient singularities. Furthermore, the �nitely many singular points 
orrespondto 2-dimensional 
ones whose minimal generators do not span Z2 over Z.10. Homogeneous CoordinatesWe next des
ribe homogeneous 
oordinates for tori
 varieties. Homogeneous
oordinates on Pn give not only the graded ring C [x0 ; : : : ; xn℄ but also the quotient
onstru
tion Pn ' (C n+1 n f0g)=C � . Given a tori
 variety X�, we generalize thisas follows. Let �1; : : : ; �r be the 1-dimensional 
ones of � and let ni 2 Zn denotethe primitive element of �i (= generator of �i \ Zn). Then introdu
e variables xifor i = 1; : : : ; r. The goal is to represent X� as the quotient(10.1) X� = (C r n Z)=Gfor some variety Z � C r and some group G � (C � )r.We de�ne Z as follows. For ea
h 
one � 2 �, we get the monomialx�̂ =Qni =2�xiwhi
h is the produ
t of all variables not 
oming from edges of �. Then de�neZ = V(x�̂ j � 2 �) � C r :In fa
t, Z 
an be de�ned using only those x�̂ whi
h 
orrespond to maximal 
onesof � (= those 
ones not 
ontained in any larger 
one).



WHAT IS A TORIC VARIETY? 11Example 10.1. For Pn, the ni 
onsist of the standard basis e1; : : : ; en pluse0 = �Pni=1. This gives variables x0; : : : ; xn. Furthermore, the maximal 
ones ofthe fan are generated by the n-element subsets of fe0; : : : ; eng. It follows thatZ = V(x0; : : : ; xn) = f(0; : : : ; 0)g � C n+1 :This of 
ourse is what we want for Pn. �There is another des
ription of Z due to Batyrev whi
h is useful in pra
ti
e.We say that a set of edge generators fni1 ; : : : ;nisg is primitive if they don't lie inany 
one of � but every proper subset does. Then one 
an show thatZ = [fni1 ;:::;nisg primitiveV(xi1 ; : : : ; xis):This shows that Z is a union of 
oordinate subspa
es.Example 10.2. Consider the fan for P1 � P1, where we have indi
ated theminimal generators n1 = e1;n2 = �e1;n3 = e2;n4 = �e2.n2r n1rrrn4n3The only primitive sets are fn1;n2g and fn3;n4g. It follows thatZ = V(x1; x2) [V(x3; x4) = �f(0; 0)g � C 2� [ �C 2 � f(0; 0)g� � C 4 :This will be useful shortly. �We next des
ribe the group G. This is the subgroup of (C � )r de�ned byG = f(�1; : : : ; �r) 2 (C � )r jQri=1�hm;niii = 1 for all m 2 Zng:However, it suÆ
es to let m be the standard basis elements e1; : : : ; en. Thus(�1; : : : ; �n) 2 G if and only if(10.2) Qri=1�he1;niii =Qri=1�he2;niii = � � � =Qri=1�hen;niii = 1:Here are some examples.Example 10.3. For Pn, Example 10.1 showed that the ni are given by e0 =�Pni=1 ei, e1; : : : ; en. By (10.2), it follows that (�0; : : : ; �n) 2 G if and only if��10 �1 = ��10 �2 = � � � = ��10 �n = 1:Thus G = f(�; : : : ; �) 2 (C � )n+1g ' C � . This gives the usual a
tion of C � on C n+1 .Sin
e we know Z from Example 10.1, the quotient representation (10.1) be
omesPn = (C n+1 n f0g)=C � ;whi
h is the usual way of expressing Pn as a quotient. �



12 DAVID COXExample 10.4. For P1�P1, Example 10.2 showed that n1 = e1;n2 = �e1;n3 =e2;n4 = �e2. By (10.2), it follows that (�1; �2; �3; �4) 2 G if and only if�1��12 = �3��14 = 1:Hen
e G = f(�; �; �; �) 2 (C � )4g ' (C � )2. Sin
e we know Z from Example 10.2,the quotient representation (10.1) be
omes(10.3) P1 � P1 = �C 4 n �f(0; 0)g � C 2� [ �C 2 � f(0; 0)g��Æ(C � )2:This might look 
ompli
ated, but sin
e P1 = (C 2 n f(0; 0)g)=C � , we haveP1 � P1 = �(C 2 n f(0; 0)g)=C ��� �(C 2 n f(0; 0)g)=C ��:This easily redu
es to the quotient (10.3). �Here is a pre
ise statement of the quotient representation (10.1).Theorem 10.5. If X� is a tori
 variety where n1; : : : ;nr span Rn , then:(1) X� is the universal 
ategori
al quotient (C r n Z)=G.(2) X� is a geometri
 quotient (C r n Z)=G if and only if X� is simpli
ial.This result was dis
overed independently by several people in the early 1990s(see [20℄). Also note that the theorem uses the terms \universal 
ategori
al quo-tient" and \geometri
 quotient". The latter is the algebro-geometri
 analog of theusual idea of the quotient under a group a
tion. As we will see in the next se
tion,universal 
ategori
al quotient are not as well-behaved. Tori
 surfa
es are alwayssimpli
ial, so that (C r n Z)=G is always a geometri
 quotient in this 
ase.While we won't prove Theorem 10.5, we should at least explain why the quotient(C r n Z)=G 
ontains the torus (C � )n. For this, 
onsider the map(10.4) (C � )r �! (C � )nwhi
h sends (�1; : : : ; �r) to (t1; : : : ; tn), where(10.5) tj = rYi=1�hej ;niii ; ej = jth standard basis ve
tor:Then one 
an show that (10.4) is onto when n1; : : : ;nr span Rn as in Theorem 10.5.Furthemore, (�1; : : : ; �r) is in the kernel of (10.4) pre
isely when tj = 1 for all j.Comparing (10.5) and (10.2), it follows that the kernel is the group G. Thus wehave an isomorphism (C � )n ' (C � )r=G;so that the in
lusion (C � )r � C r n Z indu
es(C � )n ' (C � )r=G � (C r n Z)=G = X�:This explains why the quotient 
ontains (C � )n. Furthermore, sin
e the \big" torus(C � )r a
ts naturally on C r n Z, it follows that (C � )n a
ts on the quotient. Thus(C r nZ)=G is a tori
 variety, and it is also normal sin
e 
ategori
al quotients preservenormality. In fa
t, one 
an de�ne X� to be the quotient (C r n Z)=G.We 
on
lude this se
tion with a dis
ussion of the polynomial ringS = C [x1 ; : : : ; xr℄:



WHAT IS A TORIC VARIETY? 13The key observation is that the a
tion of G indu
es a natural grading on this ring.If f = f(x1; : : : ; xr) 2 S and (�1; : : : ; �r) 2 G, then (�1; : : : ; �r) a
ts on f via(�1; : : : ; �r) � f = f(�1x1; : : : ; �rxr):As we will see, this indu
es a grading on S.Example 10.6. For Pn, the a
tion of G on a monomial is given by(�; : : : ; �) � xa00 � � �xann = (�x0)a0 � � � (�xn)an = �a0+���+anxa00 � � �xann :We say that xa00 � � �xann has degree a0 + � � � + an, so that in parti
ular, the xi allhave degree 1. This is the usual grading on S = C [x0 ; : : : ; xn℄. �Example 10.7. For P1 � P1, the a
tion of G on a monomial is given by(�; �; �; �) � xa1xb2x
3xd4 = (�x1)a(�x2)b(�x3)
(�x4)d = �a+b�
+dxa1xb2x
3xd4:We say that xa1xb2x
3xd4 has degree (a + b; 
 + d), so that in parti
ular, x1; x2 havedegree (1; 0) and x3; x4 have degree (0; 1). This is the usual bigrading on S =C [x1 ; x2; x3; x4℄. �In general, S = C [x1 ; : : : ; xr℄ has a grading so that two monomials have thesame degree if and only if G a
ts on them in the same way. One 
an prove thatdeg(xa11 � � �xarr ) = deg(xb11 � � �xbrr ) ()there is m 2 Zn su
h that ai = bi + hni;mi for all i:With this grading, we 
all S = C [x1 ; : : : ; xr℄ the homogeneous 
oordinate ring ofX�, and f 2 S is homogeneous if all monomials appearing in f have the samedegree in the above sense.We will give some surprising examples of degrees in the next se
tion.11. Examples of Homogeneous CoordinatesOur �rst example shows that variables 
an have negative degree.Example 11.1. We will 
onstru
t global 
oordinates for the blow-up of 0 2 C n .Let e1; : : : ; en be the standard basis of Zn and let � = Rn�0 be the 
one theygenerate. The resulting aÆne tori
 variety is C n . Then set e0 = e1 + � � �+ en and
onsider the fan � whose 
ones are generated by all proper subsets of fe0; : : : ; eng,ex
luding fe1; : : : ; eng. We will prove that X� is the blow-up of 0 2 C n using thequotient representation (10.1). Let xi be the variable 
orresponding to the edgegenerated by ei for i = 0; : : : ; n.We begin with Z. The only primitive set is fe1; : : : ; eng, so thatZ = V(x1; : : : ; xn) = C � f0g � C � C n = C n+1 :As for G, the methods of the previous se
tion show that (�0; : : : ; �n) 2 G if andonly if �0�1 = �0�2 = � � � = �0�n = 1:sin
e e0 = e1 + � � �+ en. Hen
e G = f(��1; �; : : : ; �) 2 (C � )n+1g ' C � , so that C �a
ts on C n+1 = C � C n by � � (x0;x) = (��1x0; �x):



14 DAVID COXIt follows that the homogeneous 
oordinate ring of X� is C [x0 ; : : : ; xn℄ wheredeg(x0) = �1 and deg(xi) = +1 for 1 � i � n. Furthermore, we get the quo-tient representationX� = �(C � C n ) n (C � f0g)�=C � = �C � (C n n f0g)�=C � ;where C � a
ts as above.To analyze this quotient, take (x0;x) 2 C � (C n nf0g. We 
an a
t on this pointusing G to obtain x�10 � (x0;x) = (1; x0x) if x0 6= 0� � (0;x) = (0; �x) if � 6= 0:In the �rst line, x0x 6= 0, so the part of the quotient where x0 6= 0 is 
learly C n nf0g.In the se
ond line, we see that the part of the quotient where x0 = 0 is Pn�1. Notealso that the map X� ! C n given by (x0; x1; : : : ; xn) 7! (x0x1; : : : ; x0xn) is well-de�ned sin
e x0xi has degree 0 and hen
e is invariant under the group a
tion. Itfollows that X� is the blow-up of 0 2 C n . �If � is an n-dimensional 
one in Rn , then the representation of U� given by(10.1) is of the form C r=G, where r is the number of edges of �. This followsbe
ause Z = ; sin
e a single 
one has no primitive sets. Furthermore, there aretwo 
ases where G 
an be determined expli
itly:� For � smooth, G = f1g, so that (10.1) gives U� = C n .� For � simpli
ial, G ' Zn=(Zn1+ � � �+ Zn`), so that a

ording to (10.1),U� = C n=G is the quotient of C n by the �nite group G.Here is an example of the se
ond bullet.Example 11.2. Let � � R2 be the 
one generated by n1 = (1; 0) and n2 =(1; 2). What is the tori
 variety U�? As above, we know that Z = ;, and by (10.2),(�1; �2) 2 G if and only if �1�2 = �22 = 1:Thus G = f�(1; 1)g � (C � )2, so that G ' f�1g a
ts on a monomial via�1 � xa1xb2 = (�1x1)a(�1x2)b = (�1)a+bxa1xb2:It follows that the homogeneous 
oordinate ring is C [x1 ; x2℄, where x1; x2 havedegree 1 mod 2. Thus x21; x1x2; x22 have degree 0 mod 2. Furthermore, one 
anshow the following:1. U� = V(xz � y2) � C 3 .2. G a
ts on C 2 by multipli
ation by �1.3. The ring of invariants is C [x1 ; x2℄G = C [x21 ; x1x2; x22℄.4. The quotient map � : C 2 ! U� is given by (x1; x2)! (x21; x1x2; x22).Note that C 2 ! U� is 2-to-1. This is a 
lassi
 example of a �nite quotient singu-larity. �In the nonsimpli
ial 
ase, things 
an be more 
ompli
ated.Example 11.3. Consider the 
one � of Example 4.2. By Example 5.2, weknow that U� = V(xy � zw) � C 4 . The edge generators (4.1) of � give variablesx1; x2; x3; x4. We leave it as an exer
ise for the reader to verify the following:1. G = C � a
ts on C 4 via � � (x1; x2; x3; x4) = (�x1; ��1x2; ��1x3; �x4).



WHAT IS A TORIC VARIETY? 152. In the homogeneous 
oordinate ring C [x1 ; x2; x3; x4℄, the variables havedegreesdeg(x1) = deg(x4) = 1; deg(x2) = deg(x3) = �1:3. The ring of invariants isC [x1 ; x2; x3; x4℄G = C [x1x2; x3x4; x1x3; x2x4℄:4. The quotient map � : C 4 ! C 4=G = U� is�(x1; x2; x3; x4) = (x1x2; x3x4; x1x3; x2x4):In this example, the quotient C 4=G is a 
ategori
al quotient. To see how this 
andi�er from an ordinary quotient, let p 2 U� . Then one 
an show the following:� p 6= (0; 0; 0; 0) ) ��1(p) is a G-orbit.� p = (0; 0; 0; 0) ) ��1(p) = (C � f0g � f0g � C ) [ (f0g � C � C � f0g).The �rst bullet shows that most of the time, the 
ategori
al quotient C 4=G behaveslike an ordinary quotient. However, things mess up over (0; 0; 0; 0) sin
e the se
ondbullet shows that the stu� mapping to (0; 0; 0; 0) has dimension 2 and hen
e 
onsistsof in�nitely many G-orbits. �In general, quotients are not easy to 
onstru
t in algebrai
 geometry. Theabove example gives one way of 
onstru
ting a 
ategori
al quotient via the ringof invariants (item 3 above) under the group a
tion. The idea is that the ring ofinvariants gives the 
oordinate ring of the quotient, and then one 
onstru
ts thevariety from its 
oordinate ring.12. The Tori
 Variety of a PolytopeA latti
e polytope � in Rn is the 
onvex hull of a �nite subset of Zn. We willshow that an n-dimensional latti
e polytope � determines a proje
tive tori
 varietyX� of dimension n.To do this, we �rst represent � as an interse
tion of halfspa
es. For ea
h fa
etF of �, there is an inward normal primitive ve
tor nF 2 Zn and integer aF su
hthat(12.1) � = \F is a fa
etfm 2 Rn j hm;nF i � �aF g:Given any fa
e F of �, let �F be the 
one generated by nF for all fa
ets F 
ontainingF . Then �� = f�F j F is a fa
e of �gis a fan whi
h is 
alled the normal fan of �. This gives a tori
 variety denoted X�.Example 12.1. The unit square 2 with verti
es (0; 0); (1; 0); (1; 1); (0; 1) 
anbe represented 2 = fa � 0g \ fa � 1g \ fb � 0g \ fb � 1g= fa � 0g \ f�a � �1g \ fb � 0g \ f�b � �1g:



16 DAVID COXIt follows that the inward normals are �e1 and �e2 in Z2. These 
an be pi
turedas follows (not drawn to s
ale):
-
-

6 6�
�? ?

(0; 0)
(0; 1)

(1; 0)
(1; 1)

s s
s s

Ea
h inward normal appears twi
e to show that ea
h vertex gives a 2-dimensional
one in the normal fan. For example, the vertex (1; 1) gives the 2-dimensional 
one� ?The other verti
es are handled similarly, and the resulting normal fan is the oneappearing in Example 8.5. Hen
e X2 = P1 � P1. �In general, we 
an 
hara
terize these fans as follows.Theorem 12.2. The normal tori
 variety of a fan � in Rn is proje
tive if andonly if � is the normal fan of an n-dimensional latti
e polytope in Rn .This is proved as follows. Let m1; : : : ;m` be the latti
e points of �, so that` = j� \Znj. In the next se
tion we will show that the map(12.2) '(t1; : : : ; tn) = �tm1(t1; : : : ; tn); : : : ; tm`(t1; : : : ; tn)� 2 P`�1from (C � )n to P`�1 extends to a map X� ! P`�1. Noti
e that this is a proje
tiveversion of (5.2). Then Theorem 12.2 is proved by showing that for � � 0, the
orresponding map for �� is an embedding.An important 
onsequen
e of the previous paragraph is that it gives a 
om-pletely elementary way to de�ne the tori
 variety X�. Namely, given � and � > 0,the analog of (12.2) is the map'� : (C � )n �! P`��1de�ned by the latti
e points of �� (so that `� = j�� \ Znj). Then, provided � issuÆ
iently large (we will explain how large in the next se
tion), one 
an de�ne X�to be the Zariski 
losure of the image of '� . Noti
e how this is analogous to thede�nition of the aÆne tori
 variety U� given in Se
tion 5.A useful observation is that the polytope � is 
ombinatorially dual to its normalfan ��. This means that there is a one-to-one in
lusion reversing 
orresponden
e�F 2 ��  ! F � �
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ones of �� and fa
es of � (provided we 
ount � as a fa
e of itself) su
hthat(12.3) dim �F + dim F = nfor all fa
es F of �. Combining this with the 
orresponden
e between 
ones in ��and torus orbits in X� from Se
tion 9, we get a one-to-one dimension preserving
orresponden
e between fa
es of � and torus orbits of X�. Thus � determines the
ombinatori
s of the tori
 variety X�.There is also a dual 
onstru
tion of X�. Suppose that P � Rn is an n-dimensional polytope whi
h 
ontains the origin as an interior point and whoseverti
es lie in Qn . Then we get a fan �P in Rn by taking 
ones (relative to theorigin) over the fa
es of P . The resulting tori
 variety is denoted XP .Example 12.3. Consider the tilted square P in the plane:
����������������

The fan �P obtained by taking 
ones over fa
es is the fan of Example 8.5. It followsimmediately that XP = P1 � P1. �To relate this to our earlier 
onstru
tion, we de�ne the polar or dual of P � Rnto be P Æ = fm 2 Rn j hm;ui � �1 for all u 2 Pg:Sin
e P has rational verti
es, so does P Æ, whi
h means that � = `P Æ is a latti
epolytope for some positive integer `. Then one 
an show that �P is the normal fanof �, so that XP is the proje
tive tori
 variety X�.13. Polytopes and Homogeneous CoordinatesAs in the previous se
tion, we �x a latti
e polytope � � Rn . The homogeneous
oordinates ofX� have a ni
e des
ription as follows. By (12.3), 1-dimensional 
onesof the normal fan 
orrespond to fa
ets of �. It follows that variables 
orrespond tofa
ets. If we label the fa
ets F1; : : : ; Fr and the inner normals n1; : : : ;nr, then we
all x1; : : : ; xr the fa
et variables of the polytope �.Also, the ex
eptional set Z = V(x�̂ j � 2 ��; dim(�) = n) � C r has a ni
edes
ription. By (12.3), n-dimension 
ones in the normal fan 
orrespond to verti
esv 2 �. Thus we set xv̂ = x�̂ . We 
all this the vertex monomial of v sin
e it isthe produ
t of those variables whose fa
ets miss the vertex v. It follows that Z isde�ned by the vanishing of the vertex monomials, so that C r nZ 
onsists of pointsin C r where at least one vertex monomial is nonvanishing.



18 DAVID COXFrom �, we get some interesting monomials in the homogeneous 
oordinatering C [x1 ; : : : ; xr℄. Write (12.1) as(13.1) � =\i fm 2 Rn j hm;nii � �aig:Then, given m 2 � \ Zn, set xm = rYi=1 xhm;nii+aii :We 
all xm a �-monomial. The des
ription (13.1) of � shows that the exponentsof xm are all � 0, so that xm is in the homogeneous 
oordinate ring.One ni
e observation is that the exponent of xi in xm gives the latti
e distan
efromm to the fa
et Fi. To see this, suppose that the exponent of xi is a > 0. ThenFi lies in the hyperplane fm 2 Rn j hm;nii + ai = 0g. To get from here to m, wemust pass through the a parallel hyperplanes, namely fm 2 Rn j hm;nii+ ai = jgfor j = 1; : : : ; a. Here is an example.Example 13.1. Consider the tori
 variety X� of the polytope � � R2
���x1 x5x2 x4x3with verti
es (1; 1); (�1; 1); (�1; 0); (0;�1); (1;�1). In terms of (13.1), we havea1 = � � � = a5 = 1, where the indi
es 
orrespond to the variables x1; : : : ; x5 shownin the above pi
ture. The 8 points of � \ Z2 give the following �-monomials:x2x23x24; x1x22x23x4; x21x32x23x3x24x5; x1x2x3x4x5; x21x22x3x5x1x4x25; x21x2x25:In this display, the position of ea
h �-monomial xm 
orresponds to the position ofthe latti
e point m 2 � \ Z2. �One ni
e property is all �-monomials have the same degree. To see this, let� = (�1; : : : ; �r) 2 G and set �� =Yi �aii :Then, given m 2 � \ Zn, we have(13.2) � � xm = rYi=1(�ixi)hm;nii+ai = ��xmsin
eQri=1 �hm;niii = 1 by the de�nition of G given in Se
tion 10. It follows that all�-monomials transform the same way under G, whi
h means that they have the



WHAT IS A TORIC VARIETY? 19same degree. Furthermore, one 
an show the �-monomials give all monomials ofthis degree.Here are three further observations:� The latti
e points in the interior int(�) of � 
orrespond pre
isely to those�-monomials whi
h are divisible by x1 � � �xr.� If � is a positive integer, then � and �� have the same normal fan andtori
 variety. Thus X� = X��.� In parti
ular, X� and X�� have the same 
oordinate ring C [x1 ; : : : ; xr℄.Furthermore, in a sense that 
an be made pre
ise, the ��-monomials arethe monomials whose degree is � times the degree of the �-monomials.Latti
e points in int(�) and �� play an important role in the Ehrhart polynomialof the polytope �.We 
an also use �-monomials to give a homogeneous version of the map (12.2)whi
h uses the quotient representation X� = (C r n Z)=G. As in the previousse
tion, let mi; i = 1; : : : ; ` be the latti
e points of � \Zn. Then 
onsider the map(13.3) x = (x1; : : : ; xr) �! (xm1 ; : : : ;xm`):First observe that if v = mj is a vertex of �, then xmj and the vertex monomialxv̂ de�ned in Se
tion 12 involve exa
tly the same variables. This is be
ause v haszero latti
e distan
e to all fa
ets it lies in and positive latti
e distan
e to all theothers. It follows that sin
e Z is de�ned by the vanishing of the vertex monomials,the map (13.3) gives a well de�ned map� : C r n Z �! P`�1:Furthermore, given x 2 C r n Z and � 2 G, (13.2) implies that�(� � x) = ��p(x):Sin
e we are mapping to proje
tive spa
e, � indu
es a well-de�ned map(13.4) X� = �C r nV(B)�=G �! P`�1:The surprise is that if one restri
ts this map to (C � )n � X�, then the result isexa
tly the map (12.2)'(t1; : : : ; tn) = �tm1(t1; : : : ; tn); : : : ; tm`(t1; : : : ; tn)� 2 P`�1de�ned by the Laurent monomials of latti
e points of �\Zn. To prove this, observethat by (10.5), the variables t1; : : : ; tn on the torus (C � )n are related to the variablesx1; : : : ; xr on C r via tj = rYi=1xhej ;niii :Now let m = (m1; : : : ;mn) =Pnj=1mjej 2 Zn. Then one 
omputes thatxa11 � � �xarr tm = rYi=1xaii nYj=1 tmjj = rYi=1 xaii nYj=1 � rYi=1xhej ;niii �mj= rYi=1xhm;nii+aii = xm:When restri
ted to a point in (C � )n, it follows that as we vary m 2 � \ Zn, themonomials tm and xm di�er by a multipli
ative fa
tor whi
h doesn't depend on



20 DAVID COXm. Hen
e ' and (13.4) give the same map on (C � )n. In parti
ular, this proves the
laim made in the previous se
tion that ' extends to all of X�.Finally, we note that while (13.4) is not an embedding in general, it is knownto be an embedding in the following two 
ases:� X� is smooth, or� We repla
e � with (n� 1)�, n = dim(�).In parti
ular, when � is a polygon, we have (n�1)� = (2�1)� = �. Thus (13.4)is always an embedding when X� is a tori
 surfa
e. This is the 
ase of greatestinterest in geometri
 modeling.In our �nal example, we note that the map � has appeared in the geometri
modeling literature.Example 13.2. In the paper [22℄ by Rimas Krasauskas, the map (13.3) appearsas equation (18) in De�nition 14. Krasauskas denotes the homogeneous 
oordinatesby u1; : : : ; ur and the points of �\Zn by m0; : : : ;mN . He writes the �-monomialsas uh(mi) instead of xmi . �14. BibliographyBasi
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