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What is a Toric Variety?

David Cox

ABSTRACT. This paper is a tutorial in the basic theory of toric varieties. It
discusses their definition using fans, homogeneous coordinates, and polytopes.
Numerous examples are included.

Introduction

Toric varieties were first defined in the 1970s and have become an important
part of algebraic geometry. They can be used in many different geometric situations
yet also have interesting connections with combinatorics and convex polytopes.

This article is an introduction to toric varieties for non-specialists. Many ex-
amples are given to illustrate the various definitions. The paper is organized into
14 sections as follows:

1. Varieties
. Toric Varieties
. Examples of Toric Varieties
. Cones
Affine Toric Varieties
. Coordinate Rings
. Normality
. Fans and Toric Varieties
9. Properties of Toric Varieties
10. Homogeneous Coordinates
11. Examples of Homogeneous Coordinates
12. The Toric Variety of a Polytope
13. Polytopes and Homogeneous Coordinates
14. Bibliography

1. Varieties

We will work over the complex numbers C. Basic examples of varieties are:
e Affine space C" and affine varieties

V:V(fl,...,fs)C(C"
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2 DAVID COX

defined by the polynomial equations f; =--- = fs = 0.
e Projective space P and projective varieties

V=V(F,...,Fs) CP"
defined by the homogeneous equations F} = --- = Fy = 0.
In this article, most varieties will be either affine or projective.
EXaMPLE 1.1. Let C* = C\ {0} = {# € C| z # 0}. Then (C*)” C C" is an
affine variety since the map (t1,...,t,) = (t1,...,tn, 1/t -+ -t,) gives
(CY* ~ V(212 -y — 1) C C¥L

In the theory of algebraic groups, (C*)™ is called the n-dimensional complex torus.
This is where the “toric” in “toric variety” comes from. O

Given varieties W C V, we call the complement V\W ={v eV |v ¢ W}
a Zariski open subset of V. These are the points of V' where one or more of the
defining equations of W don’t vanish.

EXAMPLE 1.2. Notice that
(cH*ccr
is a Zariski open since (C*)" =C" \ V(1 - - - zy). O
A variety V' is irreducible if it cannot be written as union V = V; U V4 where

Vi #V and Vi, # V are varieties.

2. Toric Varieties

DEFINITION 2.1. A toric variety is an irreducible variety V such that
(1) (C*)™ is a Zariski open subset of V', and
(2) the action of (C*)™ on itself extends to an action of (C*)™ on V.

We will see later that the theory of toric varieties works best when V' is normal
(we defer the definition of normality since it is somewhat technical). Here are the
most basic examples of toric varieties.

ExampLE 2.2. (C*)" and C" are clearly toric varieties. As for P", suppose
that o, ..., z, are homogeneous coordinates on P"”. The map
cHm —rp
defined by (t1,...,t,) — (1,t1,...,t,) allows us to identify (C*)™ with the Zariski
open subset P\ V(zozy - -+ xp). Then setting

(tl,. .. ,tn) . (ao,al, .. .,an) = (ao,tlal, e ,tnan)
shows that P™ is a toric variety. d
In studying toric varieties, points a = (a1, ...,a,) € Z"™ play two important

roles:
e First, a Laurent monomial is defined by
t2 =t

Note that t* gives a function (C*)® — C*. In the theory of algebraic
groups, this is called a character. The C-linear span of all Laurent mono-
mials is the ring C[t1, ¢, ... s, t, '] of Laurent polynomials.
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e Second, a 1-parameter subgroup \® : C* — (C*)™ is defined by
A2 () = (%, ... %),

In general, a toric variety V' consists of (C*)" plus some “extra stuff.” When
V is affine, we will see that the “extra stuff” is determined by which Laurent
monomials t™ are defined on V. Here is an example.

ExamMpLE 2.3. Consider the toric variety C*. The one easily sees that the

Laurent monomial t™ = ¢]"* - - -t~ determined by m = (m1,...,m,) € Z" extends
to a function C* — C if and only if m; > 0 for all ;. Below we will construct C*
using only these Laurent monomials in Z". O

3. Examples of Toric Varieties

Besides the basic examples of toric varieties given above, we also have the
following.

ExampPLE 3.1. If V and W are toric varieties, then so is V' x W. This shows,
for instance, that P! x P! is a toric variety. d

ExAMPLE 3.2. Consider the cuspidal cubic C = V(y?—=?*) C C%. This contains
C* via the map t — (t%,t%), and C* acts on C via t - (u,v) = (t?u, t3v). ad
The previous example is interesting because it is a non-normal toric variety. In

dimension one, the only normal toric varieties are C*, C and P!.

EXAMPLE 3.3. Consider V = V(zy — zw) C C*. This contains the torus (C*)3
via the map
(t1,ta,t3) = (t1,t2, t3, titats ).
Question: Which Laurent monomials t™ extend to functions V' — C? If m =
(a,b,c) € Z3, then we get the function on V defined by x%yz¢. If a,b,c > 0, then
this certainly extends. However, suppose that ¢ < 0 and a + ¢,b + ¢ > 0. Then,
since zy = zw on V', we have

2oyb e = wayb(ﬂ)c — gotegbtey e
which shows that t™ extends to a funuc)tion V — C. We will see below that the
inequalities
(3.1) a>0,6>0,a+¢>0,b+c>0
define the dual cone corresponding to the normal affine toric variety V. g

EXAMPLE 3.4. Let’s show that (C*)? C P? gives the following picture in R?:
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A 1-parameter subgroup u € Z? gives a map A\ : C* — P2. Since P? is compact,
the limit

A
exists in P2, If u = (a,b) € Z?, then
\U() = (1,82, t0).

It is then straightforward to compute that

((1,0,0) a,b> 0
(1,0,1) a>0,b=0
(1,1,0) a=0,b>0
: u 1 a 4by _ I A
(3.3) }1_1)1(1))\ (t)—}l_[)l(l)(l,t,t)— (1,1,1) a=b=0
(0,0,1) a>bb<0
(0,1,0) a<0,a<b
L(0,1,1) a<0,a=0.

The first four cases are trivial. To see how the fifth case works, note that
lim (1,t%,¢%) = lim (¢=°, 2970, 1)
t—0 t—0

since these are homogeneous coordinates. Then a > b and b < 0 imply that the
limit is (0,0, 1), as claimed. The last two cases are similar.
Now observe that (3.2) decomposes the plane into 7 disjoint regions:

e The open sets a,b > 0; a < 0,a < b; and a > b,b < 0.
e The open rays a > 0,b=0;a=0,b>0; and a < 0,a =D.
e The point a =b = 0.

The corresponds perfectly with (3.3). We will see below that (3.2) is the fan cor-
responding to the toric variety PZ2. O

4. Cones

A rational polyhedral cone o C R™ is a cone generated by finitely many elements
of Z™:
o= {)\1u1 +oAu R A, N ZO},
where uy,...,uy € Z™ Then:
e o is strongly convez if o N (—o) = {0}.
e The dimension of o is the dimension of the smallest subspace of R” con-
taining o.
e A face of o is the intersection {¢ = 0} N o, where £ is a linear form which
is nonnegative on o.
e The edges of o are its 1-dimensional faces. Edges are denoted by p. The
primitive element n, of an edge p is the unique generator of p N Z". The
cone o is generated by the primitive elements n, of its edges p.
e The facets of o are its codimension-1 faces. When dim o = n, each facet
has an inward pointing normal which is an element of R”. We get a unique
inward normal by requiring that it is in Z" and has minimal length.
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DEFINITION 4.1. If 0 C R™ be a strongly convex rational polyhedral cone, then
its dual cone c¥ C R" is

UV:{mERn | (m,u) >0 for alluEa},

where (m,u) is the usual dot product on R™. This is a rational polyhedral cone of
dimension n.

Here is an example of a cone and its dual.

ExAMPLE 4.2. Consider the cone ¢ C R® pictured below:

Cc

b
a
This cone is generated by the primitive elements
(4]‘) n; = (17070)7 nz = (07 170)7 ng = (17071)7 ng = (0717 1)

in Z3, and the inward pointing normals of the facets of o are
(42) m; = (17070)7 my = (07 170)7 ms = (0707 1)7 my = (]-7 ]-7 _]-)

in Z3. It follows that these generate the dual cone ¢¥ in R®. Thus (a,b,c) € o if
and only if

a>0,6>0,a+c>0,b+c>0
These are precisely the inequalities (3.1). O

5. Affine Toric Varieties

Let ¢ C R™ be a strongly convex rational polyhedral cone with dual cone
oV C R". Our goal is to show that this determines a normal affine toric variety
U,. The basic idea is as follows. We call m € o¥ NZ" a lattice point of o¥. Each
lattice point m € 0¥ N Z™ gives a Laurent monomial t™. Then U, should be the
the smallest variety on which these Laurent monomials are defined everywhere.

We will construct U, using Gordan’s Lemma, which implies that oV N Z" is
finitely generated. In other words, there are mi,...,m; € 0¥ NZ" such that every
element of 0¥ N Z" is of the form

(5.1) aimy + -+ +aymy, a; € Z, a; > 0.
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The generators my, ..., m, determine the affine variety U, C C’ as follows. Con-
sider

(5.2) p: (CH)" —

defined by

ltr, .. ootn) = (8™ (t1, ..o tn), - 8™ (B, o b))

Then U, C C¢ is the Zariski closure of the image of this map. This means that U,
is the smallest variety containing the image of (5.2).

One can prove that the map (C*)" — U, induced by (5.2) is an inclusion and
makes U, into a toric variety. Furthermore:

e By (5.2), t™ extends to the function U, — C given by the projection of
U, C C¢ onto the ith coordinate. Thus t™: is defined on all of U,,.

e Since every m € g¥ NZ" is of the form (5.1), it follows that t™ extends
to a function on U,.

e U, is the smallest variety where the t™ are defined since it is the Zariski
closure of (5.2).

We say that U, is the normal affine toric variety determined by the strictly convex
rational polyhedral cone o. Normality will be explained in Section 7.
Here is an easy example.

ExaMPLE 5.1. First consider the n-dimensional cone o generated by the stan-
dard basis eq,...,e, of Z". Thus o is the “first orthant” of R™ where all coordi-
nates are nonnegative. Then ¢V has the same description in R”, so that ey, ..., e,
generate oV N Z™ over Z>o. Since t% = t;, it follows that (5.2) is the inclusion
(C*)™ C C™. This gives U, = C". O

By (5.2), U, C C* is the variety of C* whose defining equations are determined
by the algebraic relations among the t™:. Here is an example to illustrate what
this means.

EXAMPLE 5.2. Consider the cone o C R® pictured in Example 4.2. It is easy
to see that that the generators of 0¥ N Z3 are the vectors

m; = (1,0,0), my = (0,1,0), m3 = (0,0,1), my = (1,1, —1).
from (4.2). Thus (5.2) is defined by
(5.3) (t1, b2, t3) > (£, 82 673 £74) = (t) ty, ts, t1tat5 ") € CL

If z,y, z,w are variables on C*, then t™1t™2 = ¢t; = tg(tltgtgl) = t™3t™4 implies
that zy — zw vanishes on the image of (5.3). It follows that U, C V(zy — zw), and
in fact, one can show that

Uy, = V(zy — zw) C C*.

This gives the toric variety from Example 3.3.

The vanishing of zy — zw on U, follows from the relation m; + my = m3 +
my between the generators of oV N Z3. Thus the ideal (zy — zw) defining U, is
determined by the integer linear relations among the m;. This is true in general
and is related to the theory of toric ideals to be discussed in the article [24] by
Frank Sottile in this volume. O
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6. Coordinate Rings

In algebraic geometry, the ring of polynomial functions on an affine variety is
called the coordinate ring of the affine variety. For example, the coordinate ring of
C"is Clzy, ..., xy).

For an affine toric variety U,, we can give an especially nice description of
the coordinate ring. Namely, each m € oV N Z" gives the Laurent monomial
t™ € Clt1,t1—1,...,tn, ;" ]. Then consider
(6.1) Span(t™ |m € 0¥ NZ") C Clt1,t; ", ... tn, 5]

This is a ring since m,m’ € ¥ N Z" implies m + m’' € ¢¥ NZ", so that if t™ and
t™ are in (6.1), then the product t™t™ = t™*™ is too.

In the language of semigroup algebras, the ring (6.1) is denoted

Cle¥ NnZ".

This is the notation used in the literature on toric varieties. The previous section
shows that every Laurent monomial in this ring gives a polynomial function on U,
and hence lies in the coordinate ring of U,. In fact, one can prove that

Clo¥ NZ"] = the coordinate ring of U,.
Also note that if my,...,my € 0¥ NZ" generate ¥ NZ™ in the sense of (5.1), then
Clo¥ NZ" = Ct™, ..., t™] C Clty, 7", . sty ]

Thus the coordinate ring consists of all polynomial expressions in the Laurent mono-
mials t™¢. Here is an example.

EXAMPLE 6.1. For the cone o of Example 5.2, the Laurent monomials appear-
ing in (5.3) show that

Clo¥ NZ3 = Clty, ta, tz, titatz ] C Clty, t7 5 ta, 15" 13,151

This gives an explicit representation of the coordinate ring of U, in this case. O

7. Normality

A variety is normal if its local rings are integrally closed in their fields of
fractions. This definition is unlikely to be helpful to the nonexpert. Our goal here
is to describe what normality means for affine toric varieties. The key point is that
the affine toric variety U, defined in the previous section is always normal.

To motivate our discussion, consider the following example.

EXAMPLE 7.1. Here is a cone and its dual:

The cone o The cone o”
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The generators of o NZ2 are m; = (1,i) for i = 0,...,4. It follows that U, C C°
is the Zariski closure of the image of the parametrization (C*)? — C° defined by

(7.1) (t,u) = (t, tu, tu®, tu® tut).

What happens if we only use some of these monomials? Here are two things which
can occur.

First, suppose we use only my = (1,0) and my = (1,4). Over R>¢, these
generate 0¥ and give the map (C*)? — C? defined by

(7.2) (t,u) = (t,tu*).

The Zariski closure of the image is C?, but (7.2) is 4-to-1. One can show that this
happens because my and my do not generate Z2 over Z. The point is, an affine
toric variety involves both a cone and a lattice. So mg and m, don’t work because
they mess up the lattice, even though they do generate the dual cone.

Second, suppose we use my = (1,0), m; = (1,1) and my = (1,4). They
generate the dual cone over R>¢ and give the map (C*)? — C* defined by

(7.3) (t,u) — (t,tu, tu).

This map is 1-to-1, which is easy to see directly and also because mg, m; and my
generate the lattice Z2. However, one can compute that the Zariski closure of the
image of (7.3) is y* = 232z. It is also straightforward to show that the singular locus
of this surface is the line x = y = 0. Since the singular locus of a normal variety
has codimension at least 2, it follows that this variety is not normal. Thus we have
an example of a non-normal toric variety. d

In the above example, the normal toric variety U, determined by the cone o
and lattice Z? was constructed as the Zariski closure of the map (7.1) from (C*)?
to C*. Then (7.2) and (7.3) are other toric varieties obtained by projecting U, to
C? and C3? respectively. These projections are not the normal toric variety for o
and Z2, because:

e In (7.2), we kept the dual cone but changed the lattice.
e In (7.3), we kept the lattice and the dual cone, but lost normality.
As we will see below, the key reason for the second bullet is that mg, m; and my

do not generate o¥ N Z? over Z .
To generalize this example, let ¢ C R" be a strongly convex rational polyhedral

cone, and suppose that we have m; € 0¥ NZ" fori = 1,...,s. Then, using the t™:
as in (5.2), we get a map
(7.4) CcH" — C.

THEOREM 7.2. The Zariski closure of the image of (7.4) is the normal affine
toric variety U, determined by o and Z™ if and only if oV NZ™ is generated over
Zso bym; fori=1,...,s.

Thus an affine toric variety is normal precisely when you use all lattice points
in the dual cone.
8. Fans and Toric Varieties

We next create more general normal toric varieties by gluing together affine
toric varieties containing the same torus (C*)™. This brings us to the concept of a
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fan, which is defined to be a finite collection ¥ of cones in R® with the following
three properties:

e Each o € ¥ is a strongly convex rational polyhedral cone.

e If o € ¥ and 7 is a face of o, then 7 € X.

e If 0,7 € ¥, then o N7 is a face of each.

Each o € ¥ gives an affine toric variety U,, and if 7 is a face of o, then U, can be
regarded as a Zariski open subset of U,. This leads to the following definiton.

DEFINITION 8.1. Given a fan ¥ in R, Xy, is the variety obtained from the
affine varieties U,, 0 € &, by gluing together U, and U, along their common open
subset Uyn, for all o,7 € X.

The inclusions (C*)™ C U, are compatible with the identifications made in cre-
ating Xy, so that Xy, contains the torus (C*)™ as a Zariski open set. Furthermore,
one can show that Xy is a normal toric variety and that all normal toric varieties
arise in this way, i.e., every normal toric variety is determined by a fan.

The toric variety Xy is an example of an abstract variety. In particular, it can
happen that Xy is neither affine nor projective.

Here are some examples of toric varieties.

ExaMPLE 8.2. Given o C R", we get a fan by taking all faces of o (including
o itself). The toric variety of this fan is the affine toric variety U,. O

ExAMPLE 8.3. The fan for P! is as follows:

The cones o7 = [0,00) and o3 = (—00,0] give U,, with coordinate ring C[t] and
Uy, with coordinate ring C[t ], which patch in the usual way to give P O

ExAMPLE 8.4. Let eq,...,e, be the standard basis of Z", and set eg = —e; —
--+ —ep. Then we get a fan by taking the cones generated by all proper subsets

of {eg,e1,...,e,}. You should check that the associated toric variety is P". When
n = 2, this gives the fan (3.2). O

ExaMPLE 8.5. The fan for P! x P! is as follows:

In this figure, the 1-dimensional cones are four rays emanating from the origin and
the 2-dimensional cones are the four quadrants. Thus the fan for P' x P! has four
2-dimensional cones o1, ...,04. The affine toric varieties U,, ~ C? glue together in
the usual way to give P! x P!, O

There are many other nice examples of toric varieties. Later in this article we
will see that every lattice polytope in R™ determines a projective toric variety.
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9. Properties of Toric Varieties

The fan ¥ has a close relation to the structure of toric variety Xx. The basic
idea is that there are one-to-one correspondences between the following objects:
e The limits lim; ,o A"(t) for u € [3] = U,cx 0 (|X] is the support of X).
e The cones o € X.
e The orbits of the torus action on Xs.

The correspondences is as follows: an orbit corresponds to a cone ¢ if and only if
lim;_,o A¥(t) exists and lies in the orbit for all u in the relative interior of o. For
an orbit orb(c), we have:

e dimo + dimorb(o) = n.

e orb(o) C orb(7) if and only if 7 C 0.
In particular, the fixed points of the torus action correspond to the n-dimensional
cones in the fan. It is a good exercise verify all of this for P? and the fan drawn in
Example 8.5.

We next discuss some basic properties of toric varieties. First, we need some

terminology:

e A cone is smooth if it is generated by a subset of a basis of Z".

e A cone is simplicial if it is generated by a subset of a basis of R™.

Then we have the following result.

THEOREM 9.1. Let Xy, be the toric variety determined by a fan ¥ in R™. Then:
(1) Xs is compact <= its support |X| = J,cy, 0 is all of R™.
(2) Xx is smooth <= every o € X is smooth.
(3) Xsx has at worst finite quotient singularities <= every X is simplicial.
(Such toric varieties are called simplicial.)

Since 2-dimensional cones are simplicial, toric surfaces have at worst finite
quotient singularities. Furthermore, the finitely many singular points correspond
to 2-dimensional cones whose minimal generators do not span Z? over Z.

10. Homogeneous Coordinates

We next describe homogeneous coordinates for toric varieties. Homogeneous
coordinates on P" give not only the graded ring C[zy, ..., z,] but also the quotient
construction P ~ (C**1 \ {0})/C*. Given a toric variety Xy, we generalize this
as follows. Let pi,...,p, be the 1-dimensional cones of ¥ and let n; € Z™ denote
the primitive element of p; (= generator of p; N Z™). Then introduce variables x;
for i =1,...,7r. The goal is to represent Xy as the quotient

(10.1) Xy = (C"\ 2)/G

for some variety Z C C" and some group G C (C*)".
We define Z as follows. For each cone o € ¥, we get the monomial

% = ngzcrxi
which is the product of all variables not coming from edges of . Then define
Z=V(E’|oex)cC.

In fact, Z can be defined using only those 2% which correspond to mazimal cones
of ¥ (= those cones not contained in any larger cone).
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ExAmpLE 10.1. For P", the n; consist of the standard basis e, ..., e, plus
eo = — > .,. This gives variables o, ...,x,. Furthermore, the maximal cones of
the fan are generated by the n-element subsets of {ey,...,e,}. It follows that

Z =V(zg,...,z,) ={(0,...,0)} C cntt,
This of course is what we want for P". O

There is another description of Z due to Batyrev which is useful in practice.
We say that a set of edge generators {nj;,,...,n;_ } is primitive if they don’t lie in
any cone of ¥ but every proper subset does. Then one can show that

Z = U V(xila"'axis)'
{ni,,...,n;, } primitive
This shows that Z is a union of coordinate subspaces.

ExAMPLE 10.2. Consider the fan for P! x P!, where we have indicated the
minimal generators n; = e;,ny = —ej, N3 = €2,n4 = —e3.

ng

na m

14V

The only primitive sets are {n;,n»} and {n3,n4}. It follows that
Z = V(xy,x2) UV(xs,24) = ({(0,0)} x C) U (C* x {(0,0)}) c C*.
This will be useful shortly. O
We next describe the group G. This is the subgroup of (C*)" defined by

G ={(u,- . ) € (C)" | Ty ™™ = 1 for all m € 2"}

However, it suffices to let m be the standard basis elements ej,...,e,. Thus
(41, ..., pp) € G if and only if
(10.2) H;Zlul(elv“i) = H;:1H§627Hi> - = le:hul(en,ni) -1

Here are some examples.

ExampLE 10.3. For P*, Example 10.1 showed that the n; are given by ey =
— > €, €e1,...,en. By (10.2), it follows that (uo, ..., u,) € G if and only if
fo = pg == gy i =1

Thus G = {(i,...,p) € (C*)"*1} ~ C*. This gives the usual action of C* on C"*!.
Since we know Z from Example 10.1, the quotient representation (10.1) becomes

P" = (C™\ {0})/C",

which is the usual way of expressing P" as a quotient. d
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EXAMPLE 10.4. For P! x P!, Example 10.2 showed that n; = e;,ny = —e;,n3 =
e2,n4 = —es. By (10.2), it follows that (1, g, u3, ua) € G if and only if

papy ' = pspyt =1,

Hence G = {(u, 1, A, A) € (C*)*} ~ (C*)2. Since we know Z from Example 10.2,
the quotient representation (10.1) becomes

(103) P xP = (CH\ ({(0,0)} x ©) U (C x {(0,0)})) /(C)*.
This might look complicated, but since P! = (C? \ {(0,0)})/C*, we have
P! x P! = (€ \{(0,01)/C) x ((€\{(0,0))/C).

This easily reduces to the quotient (10.3). O
Here is a precise statement of the quotient representation (10.1).

THEOREM 10.5. If Xy is a toric variety where ny,...,n, span R", then:

(1) Xx is the universal categorical quotient (C" \ Z)/G.
(2) Xx is a geometric quotient (C" \ Z)/G if and only if Xx is simplicial.

This result was discovered independently by several people in the early 1990s
(see [20]). Also note that the theorem uses the terms “universal categorical quo-
tient” and “geometric quotient”. The latter is the algebro-geometric analog of the
usual idea of the quotient under a group action. As we will see in the next section,
universal categorical quotient are not as well-behaved. Toric surfaces are always
simplicial, so that (C" \ Z)/G is always a geometric quotient in this case.

While we won’t prove Theorem 10.5, we should at least explain why the quotient
(C"\ Z)/G contains the torus (C*)™. For this, consider the map

(10.4) (CH) — (CH)"
which sends (g1, ..., p) to (t1,...,t,), where
(10.5) tj = H u§ej’ni>, e; = jth standard basis vector.
i=1
Then one can show that (10.4) is onto when ny, ..., n, span R" as in Theorem 10.5.

Furthemore, (¢1,..., ) is in the kernel of (10.4) precisely when t; = 1 for all j.
Comparing (10.5) and (10.2), it follows that the kernel is the group G. Thus we
have an isomorphism
€)= (C)/aG,
so that the inclusion (C*)" C C" \ Z induces
(CH)"~(C)"'/GC(C'\2Z)/G=Xsx.

This explains why the quotient contains (C*)™. Furthermore, since the “big” torus
(C*)" acts naturally on C" \ Z, it follows that (C*)™ acts on the quotient. Thus
(C"\Z)/@G is a toric variety, and it is also normal since categorical quotients preserve
normality. In fact, one can define Xx to be the quotient (C" \ Z)/G.

We conclude this section with a discussion of the polynomial ring

S:(C[ilfl,...,xr].



WHAT IS A TORIC VARIETY? 13

The key observation is that the action of GG induces a natural grading on this ring.
If f=f(x1,...,2.) € Sand (p1,-..,pu) € G, then (u1,...,u,) acts on f via

(sspr) - f = flpazn, . prmy).

As we will see, this induces a grading on S.

ExaMPLE 10.6. For P", the action of G on a monomial is given by

an

ap+ - +an .00 |
Ty n -

(1) - @g” =gt = (uwo)™ + - (uan)™™ = p T

We say that zg° - -- 2% has degree ag + - -+ + ay,, so that in particular, the z; all
have degree 1. This is the usual grading on S = Clzo, ..., Zy,]. O

EXAMPLE 10.7. For P! x P!, the action of G on a monomial is given by

(1 10, N) - 20280508 = () (u2)® () (M) = o0 AHg ataand.
We say that z{zizSzd has degree (a + b,c + d), so that in particular, z1,z> have
degree (1,0) and z3,z4 have degree (0,1). This is the usual bigrading on S =
Clzy, 2, T3, Z4]. O

In general, S = C[zy,...,z,] has a grading so that two monomials have the
same degree if and only if G acts on them in the same way. One can prove that

deg(z9 -+ 29") = deg(a?* ---abr) —=

there is m € Z" such that a; = b; + (n;, m) for all 4.

With this grading, we call S = Clzy,...,z,]| the homogeneous coordinate ring of
Xy, and f € S is homogeneous if all monomials appearing in f have the same
degree in the above sense.

We will give some surprising examples of degrees in the next section.

11. Examples of Homogeneous Coordinates
Our first example shows that variables can have negative degree.

ExaMPLE 11.1. We will construct global coordinates for the blow-up of 0 € C".
Let ei,...,e, be the standard basis of Z" and let 0 = RY, be the cone they
generate. The resulting affine toric variety is C*. Then set ey = e; + -+ + €, and
consider the fan ¥ whose cones are generated by all proper subsets of {eg, ..., e},
excluding {ey,...,e,}. We will prove that Xy is the blow-up of 0 € C* using the
quotient representation (10.1). Let z; be the variable corresponding to the edge
generated by e; for i =0,...,n.

We begin with Z. The only primitive set is {e1,...,e,}, so that

Z=V(x,...,2,) =Cx {0} cCxC"=C"".
As for G, the methods of the previous section show that (ug,...,u,) € G if and
only if
Hop = popz = -+ = popn = L.
since eg = €1 + -+ €. Hence G = {(p=t, p, ..., u) € (C*)"1} ~ C*, so that C*
acts on C"t! = C x C* by

g (20, %) = (n o, px).
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It follows that the homogeneous coordinate ring of Xx is Clxzo,...,x,] where
deg(xzog) = —1 and deg(xz;) = +1 for 1 < i < n. Furthermore, we get the quo-
tient representation

Xy = ((CxC")\(Cx{0}))/C = (Cx(C"\{0}))/C",
where C* acts as above.
To analyze this quotient, take (zg,x) € Cx (C™\ {0}. We can act on this point

using G to obtain

x5t - (w0,x) = (1,mox) if z9 #0

- (0,%) = (0, ux) if p#0.
In the first line, zox # 0, so the part of the quotient where z¢ # 0 is clearly C* \ {0}.
In the second line, we see that the part of the quotient where zo = 0 is P*~!. Note

also that the map Xy, — C" given by (z¢,z1,...,%n) = (ToZ1,...,ToTy,) is well-
defined since xgz; has degree 0 and hence is invariant under the group action. It
follows that Xy is the blow-up of 0 € C". |

If o is an n-dimensional cone in R™, then the representation of U, given by
(10.1) is of the form C" /G, where r is the number of edges of o. This follows
because Z = () since a single cone has no primitive sets. Furthermore, there are
two cases where G can be determined explicitly:

e For o smooth, G = {1}, so that (10.1) gives U, = C".
e For o simplicial, G ~ Z"/(Zn; + - - - + Zny), so that according to (10.1),
U, = C" /@ is the quotient of C" by the finite group G.

Here is an example of the second bullet.

ExaMPLE 11.2. Let ¢ C R? be the cone generated by n; = (1,0) and ny =
(1,2). What is the toric variety U,? As above, we know that Z = (), and by (10.2),
(1, p2) € G if and only if

ppe = p3 = 1.
Thus G = {£(1,1)} C (C*)?, so that G ~ {£1} acts on a monomial via

+1- 2% = (£1a1)%(£122)" = (£1)T 0205,

It follows that the homogeneous coordinate ring is Clzy, 2], where 1,22 have
degree 1 mod 2. Thus z?, 7122, 22 have degree 0 mod 2. Furthermore, one can
show the following:

1. U, =V(zz —y?) Cc C.

2. G acts on C? by multiplication by 1.

3. The ring of invariants is Clx1, z2]% = Clz?, 2172, 23].

4. The quotient map 7 : C* — U, is given by (z1,z2) — (2%, 2122, 23).
Note that C> — U, is 2-to-1. This is a classic example of a finite quotient singu-
larity. d

In the nonsimplicial case, things can be more complicated.

ExaMpPLE 11.3. Consider the cone o of Example 4.2. By Example 5.2, we
know that U, = V(zy — zw) C C*. The edge generators (4.1) of o give variables
T1,%2,x3,xs. We leave it as an exercise for the reader to verify the following;:

1. G =C* acts on C* via X - (21, 29,73, 24) = (Az1, A oo, A twg, Axy).
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2. In the homogeneous coordinate ring Clx;,x2,x3,z4], the variables have
degrees

deg(z1) = deg(z4) = 1, deg(z2) = deg(z3) = —1.
3. The ring of invariants is
C[$1,$2,$3,.’L‘4]G = Clz1 T2, X324, T1T3, T2 4]
4. The quotient map m: C* — C*/G = U, is
(X1, X2, 3, xs) = (T1X2, T3T4, T1T3, TaLy).
In this example, the quotient C* /G is a categorical quotient. To see how this can

differ from an ordinary quotient, let p € U,. Then one can show the following;:

e p#(0,0,0,0) = 7~ 1(p) is a G-orbit.

e p=1(0,0,0,0) = 7~ 1(p) = (C x {0} x {0} x C) U ({0} x C x C x {0}).
The first bullet shows that most of the time, the categorical quotient C* /G behaves
like an ordinary quotient. However, things mess up over (0,0, 0,0) since the second
bullet shows that the stuff mapping to (0,0, 0,0) has dimension 2 and hence consists
of infinitely many G-orbits. O

In general, quotients are not easy to construct in algebraic geometry. The
above example gives one way of constructing a categorical quotient via the ring
of invariants (item 3 above) under the group action. The idea is that the ring of
invariants gives the coordinate ring of the quotient, and then one constructs the
variety from its coordinate ring.

12. The Toric Variety of a Polytope

A lattice polytope A in R™ is the convex hull of a finite subset of Z"™. We will
show that an n-dimensional lattice polytope A determines a projective toric variety
XA of dimension n.

To do this, we first represent A as an intersection of halfspaces. For each facet
F of A, there is an inward normal primitive vector ng € Z™ and integer ar such
that

(12.1) A= () {meR"|[(mnp)>—ar}.
F is a facet

Given any face F of A, let o be the cone generated by ng for all facets F' containing
F. Then

YA ={or | Fis aface of A}
is a fan which is called the normal fan of A. This gives a toric variety denoted Xa.

EXAMPLE 12.1. The unit square O with vertices (0, 0), (1,0), (1,1),(0,1) can
be represented

O={a>0}n{a<1}n{b>0}n{b<1}
={a>0N{-a>-1}n{b>0}n{-b> -1}
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It follows that the inward normals are +e; and e, in Z2. These can be pictured
as follows (not drawn to scale):

(0,1) l l (1,1)

(0,0) T T (1,0)

Each inward normal appears twice to show that each vertex gives a 2-dimensional
cone in the normal fan. For example, the vertex (1,1) gives the 2-dimensional cone

-

The other vertices are handled similarly, and the resulting normal fan is the one
appearing in Example 8.5. Hence Xy = P! x P!, O

In general, we can characterize these fans as follows.

THEOREM 12.2. The normal toric variety of a fan X in R™ is projective if and
only if ¥ is the normal fan of an n-dimensional lattice polytope in R™.

This is proved as follows. Let my,...,my; be the lattice points of A, so that
¢=]ANZ". In the next section we will show that the map

(12.2) Oty estn) = (6™ (b, ey tn)y e 8™ (. 0y t,)) € PO

from (C*)" to P‘~! extends to a map Xa — P!, Notice that this is a projective
version of (5.2). Then Theorem 12.2 is proved by showing that for » > 0, the
corresponding map for A is an embedding.

An important consequence of the previous paragraph is that it gives a com-
pletely elementary way to define the toric variety Xa. Namely, given A and v > 0,
the analog of (12.2) is the map

@, (CH" — P

defined by the lattice points of ¥A (so that ¢, = [VA N Z™|). Then, provided v is
sufficiently large (we will explain how large in the next section), one can define Xa
to be the Zariski closure of the image of ¢,. Notice how this is analogous to the
definition of the affine toric variety U, given in Section 5.

A useful observation is that the polytope A is combinatorially dual to its normal
fan ¥ A. This means that there is a one-to-one inclusion reversing correspondence

crEXA+—FCA
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between cones of ¥ a and faces of A (provided we count A as a face of itself) such
that

(12.3) dimor +dim F =n

for all faces F of A. Combining this with the correspondence between cones in 3
and torus orbits in XA from Section 9, we get a one-to-one dimension preserving
correspondence between faces of A and torus orbits of XaA. Thus A determines the
combinatorics of the toric variety Xa.

There is also a dual construction of Xa. Suppose that P C R" is an n-
dimensional polytope which contains the origin as an interior point and whose
vertices lie in @Q*. Then we get a fan ¥p in R" by taking cones (relative to the
origin) over the faces of P. The resulting toric variety is denoted Xp.

ExampLE 12.3. Consider the tilted square P in the plane:

The fan ¥ p obtained by taking cones over faces is the fan of Example 8.5. It follows
immediately that Xp = P! x PL. O

To relate this to our earlier construction, we define the polar or dual of P C R™
to be

P°={meR" | (m,u) > -1 for all u € P}.

Since P has rational vertices, so does P°, which means that A = ¢P° is a lattice
polytope for some positive integer £. Then one can show that X p is the normal fan
of A, so that Xp is the projective toric variety Xa .

13. Polytopes and Homogeneous Coordinates

As in the previous section, we fix a lattice polytope A C R™. The homogeneous
coordinates of X have a nice description as follows. By (12.3), 1-dimensional cones
of the normal fan correspond to facets of A. It follows that variables correspond to
facets. If we label the facets Fi,..., F;. and the inner normals ny,...,n,, then we
call z1,...,x, the facet variables of the polytope A.

Also, the exceptional set Z = V(2% | 0 € Za,dim(o) = n) C C” has a nice
description. By (12.3), n-dimension cones in the normal fan correspond to vertices
v € A. Thus we set 2% = x°. We call this the vertezx monomial of v since it is
the product of those variables whose facets miss the vertex v. It follows that 7 is
defined by the vanishing of the vertex monomials, so that C" \ Z consists of points
in C" where at least one vertex monomial is nonvanishing.



18 DAVID COX

From A, we get some interesting monomials in the homogeneous coordinate
ring Clzy, ..., z,]. Write (12.1) as

(13.1) A=({meR"|(mn;) > —a;}.
i
Then, given m € ANZ", set

.
XM = H g{moml e
i=1

We call x™ a A-monomial. The description (13.1) of A shows that the exponents
of x™ are all > 0, so that x™ is in the homogeneous coordinate ring.

One nice observation is that the exponent of x; in x™ gives the lattice distance
from m to the facet F;. To see this, suppose that the exponent of x; is a > 0. Then
F; lies in the hyperplane {m € R" | (m,n;) + a; = 0}. To get from here to m, we
must pass through the a parallel hyperplanes, namely {m € R" | (m,n;) + a; = j}
for j =1,...,a. Here is an example.

ExaMPLE 13.1. Consider the toric variety Xa of the polytope A C R?

with vertices (1,1),(-1,1),(-1,0),(0,—-1),(1,—1). In terms of (13.1), we have
a; = -+ = as = 1, where the indices correspond to the variables z1,...,z5 shown
in the above picture. The 8 points of A N Z? give the following A-monomials:

2.2 2 .2 2.3 2
ToX3Xy, T1X523%4, T1ToT3
2 2.2
T3TyTs, T1T2X3T4T5, T{T3T3T5

2 2 2
T124T5, T1T2T5.

In this display, the position of each A-monomial x™ corresponds to the position of
the lattice point m € AN Z2. O

One nice property is all A-monomials have the same degree. To see this, let
w=(p1,-.-,ur) € G and set
pa = [ ni
i

Then, given m € A NZ", we have

r

(13.2) o x™ = [ (uaza) ™m0t = paxm
i=1
since [],_, ™) = 1 by the definition of G given in Section 10. It follows that all

A-monomials transform the same way under GG, which means that they have the
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same degree. Furthermore, one can show the A-monomials give all monomials of
this degree.
Here are three further observations:

e The lattice points in the interior int(A) of A correspond precisely to those
A-monomials which are divisible by z1 - - - ;..

e If v is a positive integer, then A and vA have the same normal fan and
toric variety. Thus XA = X, A.

e In particular, XA and X, have the same coordinate ring Clzy,...,x,].
Furthermore, in a sense that can be made precise, the vA-monomials are
the monomials whose degree is v times the degree of the A-monomials.

Lattice points in int(A) and vA play an important role in the Ehrhart polynomial
of the polytope A.

We can also use A-monomials to give a homogeneous version of the map (12.2)
which uses the quotient representation Xa = (C" \ Z)/G. As in the previous
section, let m;, 2 = 1,...,£ be the lattice points of A NZ™. Then consider the map

(13.3) X =(X1,...,¢p) — (X™, .., x™).
First observe that if v = m; is a vertex of A, then x™J and the vertex monomial
2% defined in Section 12 involve exactly the same variables. This is because v has
zero lattice distance to all facets it lies in and positive lattice distance to all the
others. It follows that since Z is defined by the vanishing of the vertex monomials,
the map (13.3) gives a well defined map

¢:C"\Z — P
Furthermore, given x € C" \ Z and p € G, (13.2) implies that

¢(p - x) = pap(x).
Since we are mapping to projective space, ¢ induces a well-defined map
(13.4) Xa=(C"\V(B))/G — P
The surprise is that if one restricts this map to (C*)™ C Xa, then the result is
ezactly the map (12.2)
Oty otn) = (8™ (b, tn), oo t™ (b, oL ty)) € PO

defined by the Laurent monomials of lattice points of ANZ™. To prove this, observe
that by (10.5), the variables t1, ..., t, on the torus (C*)" are related to the variables

Z1,...,2,. on C" via
-

tj = H$§6j7ni>.

i=1

Now let m = (1mn1,...,my,) = Y7_, mje; € Z". Then one computes that

T n r n T
a1 Gp ¢m a; tmj _ a; (ejmi) mi
Ly Ty = Ty i = Ty T
i=1 j=1 i=1 j=1 =1

r
_ H xl(m,niH-ai —xm
i=1

When restricted to a point in (C*)", it follows that as we vary m € A NZ", the
monomials t™ and x™ differ by a multiplicative factor which doesn’t depend on
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m. Hence ¢ and (13.4) give the same map on (C*)™. In particular, this proves the
claim made in the previous section that ¢ extends to all of Xa.
Finally, we note that while (13.4) is not an embedding in general, it is known
to be an embedding in the following two cases:
e XA is smooth, or
e We replace A with (n — 1)A, n = dim(A).
In particular, when A is a polygon, we have (n —1)A = (2—-1)A = A. Thus (13.4)
is always an embedding when XA is a toric surface. This is the case of greatest
interest in geometric modeling.
In our final example, we note that the map ¢ has appeared in the geometric
modeling literature.

EXAMPLE 13.2. In the paper [22] by Rimas Krasauskas, the map (13.3) appears
as equation (18) in Definition 14. Krasauskas denotes the homogeneous coordinates
by uy,...,u, and the points of ANZ"™ by myg, ..., my. He writes the A-monomials
as u™) instead of x™, d
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