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ABSTRACT
Semi-mixed algebraic systems are those where the equations
can be partitioned into subsets with common Newton poly-
topes. We are interested in counting roots of semi-mixed
multihomogeneous systems, where both variables and equa-
tions can be partitioned into blocks, and each block of equa-
tions has a given degree in each block of variables. Our moti-
vation is counting the number of totally mixed Nash equilib-
ria in games of several players. We observe that MacMahon’s
Master theorem can be applied to the multihomogeneous Bé-
zout bound for such systems. Even for more general systems,
we obtain a generating function for the maximal number of
common roots.

The main contributions of this paper are in relating and
unifying the BKK and multivariate Bézout bounds for semi-
mixed systems, through mixed volumes and permanents. In
particular, we show that certain BKK bounds are directly
obtained as a matrix permanent, which offers a faster com-
putation and better approximation. This holds for all mul-
tihomogeneous systems, without any requirement of semi-
mixed structure, as well as arbitrary systems whose Newton
polytopes are products of polytopes in complementary sub-
spaces. The complexities of computing permanents and of
computing terms of generating functions are juxtaposed to
that of a combinatorial geometric algorithm for semi-mixed
volumes, by means of a novel asymptotic analysis of the lat-
ter.
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1. INTRODUCTION
Multihomogeneous polynomial systems are algebraic sys-

tems on a product

Pn1 × Pn2 × · · · × PnS (1)

of projective spaces. The variables are partitioned into S
subsets, or blocks, so that each equation is homogeneous of
given degree in each block of nj + 1 homogeneous variables
parameterizing the projective spaces Pnj , j ∈ {1, . . . , S}.
In contrast, semi-mixed algebraic systems are those where
some equations have the same structure of involved mono-
mials. In the context of sparse systems, the equations can
be partitioned into subsets with the same Newton polytope,
e.g. [4, 10, 23]. In the case of semi-mixed multihomogeneous
systems, the equations in each block are homogeneous of the
same degree per block of variables.

An important example of a semi-mixed multihomogeneous
system appears in game theory. Consider a game of S play-
ers, each with m1, . . . ,mS options respectively. The jth
player plays a totally mixed strategy when he chooses his

option randomly with nonzero probabilities p
(j)
1 , . . . , p

(j)
mj . A

totally mixed Nash equilibrium (TMNE) is a combination
of players’ totally mixed strategies such that no player can
improve his payoff by unilaterally choosing other (pure or
mixed) strategy. The equation system for the TMNE is

P1 =
∑

k2,...,kS

a
(1)
i,k2,...,kS

p
(2)
k2
· · · p(S)kS

, 1 6 i 6 m1, (2)

P2 =
∑

k1,...,kS

a
(2)
k1,i,...,kS

p
(1)
k1
· · · p(S)kS

, 1 6 i 6 m2, (3)

· · ·

PS =
∑

k1,...,kS−1

a
(S)
k1,...,kS−1,i

p
(1)
k1
· · · p(S−1)

kS−1
, 1 6 i 6 mS (4)

Here a
(j)
k1,k2,...,kS

denotes the pre-defined payoff of the jth
player, under the scenario when each player chooses the pure
option k` ∈ {1, . . . ,m`}, resp. The equations imply that the
payoff Pj of each player j does not depend on his own strat-
egy i, as long as other players do not change their strategies.
Eliminating the Pj ’s leads to a multihomogeneous (multilin-
ear, actually) system with nj = mj − 1 in (1). Actual prob-
abilities are determined from the normalizing conditions

p
(j)
1 + p

(j)
2 + . . .+ p(j)mj

= 1 for j ∈ {1, 2, . . . , S}. (5)

We are interested only in the real solutions that yield the

numbers p
(j)
i ∈ (0, 1] ⊂ R after the normalization.



The generic number of complex solutions of algebraic sys-
tems is the Bernstein-Khovanski-Koushnirenko (BKK) bound
[1]. If the equation system is dense with respect to some
multihomogeneous structure, this number coincides with the
multihomogeneous Bézout bound, or m-Bézout bound, see
§ 3.1. For sparse systems, the BKK bound may be tighter
and, in this sense, it generalizes the classic Bézout bounds.
This paper relates characterization and computation of the
BKK and m-Bézout bounds.

Furthermore, we relate these root counts to matrix per-
manents: for the system (2)–(4), the BKK bound was es-
sentially related to the permanent [14, thm 2] More gener-
ally, we show that, for any multihomogeneous system, the
m-Bézout (and the equal BKK bound) reduces to a matrix
permanent, with no requirement on semi-mixed structure. A
major result is that the reduction of BKK to permanents can
be generalized to systems that are not multihomogeneous,
provided their Newton polytopes are products of polytopes
in complementary subspaces. The reduction to the perma-
nent offers faster ways of computing root bounds and better
accuracy in approximating them.

The BKK bound for the system (2)–(4) was established in
[15], in terms of a combinatorial count. It is automatically
an upper bound for the number of proper real solutions that
give TMNE (when this number is finite). The upper bound
is sharp, as [15, § 4] established families of games with as
many TMNE. In [19], it is observed that MacMahon’s Mas-
ter theorem [13] can be applied to a standard expression of
the m-Bézout bound for multilinear system (2)–(4), where
the number of equation blocks equals the number S of vari-
able blocks.

With computational aspects in mind, this paper gener-
alizes the results in [15, 19] to broader algebraic systems.
In particular, we start with semi-mixed multihomogeneous
systems where the number of equation blocks equals the
number S of variable blocks as in (1), and we have a vary-
ing number of equations per block; more importantly, the
degree per block is arbitrary. The total number of equa-
tions equals the total number of (dehomogenized) variables,
hence generically this system has a finite number of solu-
tions. MacMahon’s master theorem can be applied yielding
a multivariate generating function for the m-Bézout bound
of these systems. It is computed via a matrix of dimension
S, instead of handling a matrix of dimension equal to that
of the system.

Our approach applies to more general systems, thus yield-
ing the generating function of the root count, which is im-
portant when we seek root counts for a family of systems.
In fact, connection of MacMahon’s master theorem to per-
manents is under active investigation [12], yet apparently it
has not been applied to computation of root counts.

The following complexity question is raised: What are
“threshold” families of algebraic systems whose BKK bound
can be computed in polynomial time? The general problem
of computing this bound is #P-hard by reduction of the
permanent, e.g. [4, 9]. We juxtapose the various methods
examined in this paper in terms of asymptotic complexity,
and we also compare them to a general method, relying on
mixed subdivisions, which computes semi-mixed volumes.
Mixed subdivisions offer the fastest way to compute mixed
volumes; for the first time, the method’s complexity is ana-
lyzed for semi-mixed systems.

Algebraic systems of considered types already occurred in

expressing conformation search in robotics and structural
bioinformatics. In particular, cyclic mechanisms with 3 de-
grees of freedom [7] give rise to (sparse) multihomogeneous
systems that fit the setting of Cor. 4.4.

Last but not least, a theoretical motivation comes from
systems for which optimal determinantal formulae are known
for the sparse resultant. These are precisely multihomoge-
neous systems where each Newton polytope is the product
of standard unit simplices and segments, see [3, 6, 18, 20].

This paper is organized as follows. In § 2, we detail the
problem of TMNE. We unify root counts in § 3, where we
relate the m-Bézout bound, the BKK bound and mixed
volume, and the permanent. Generating functions of root
bounds are derived in § 4. Complexity issues are studied in
§ 5, including some open questions.

2. NASH EQUILIBRIA
Game theory offers mathematical modeling of strategic

decision making. A key concept is that of Nash equilibrium:
it is a combination of strategies of participating players, such
that no player can improve his payoff by unilaterally chang-
ing his strategy. The strategies can be pure (when a player
chooses a single option) or mixed (when a player makes a
choice randomly, by assigning probabilities to his options).
Totally mixed strategies play any available strategy with a
nonzero probability.

Nash equilibria always exist, but it is not easy to compute
or enumerate them even for games of two players [16]. The
equations (2)–(3) for the TMNE are then linear, but one of
the two subsystems is overdetermined generically if m1 6=
m2. If m1 = m2, there is at most one TMNE generically.
But sharp bounds for the total number of Nash equilibria are
not known when max(m1,m2) > 4. A loose upper bound
for the total number of Nash equilibria is

min(m1,m2)∑
`=1

(
m1

`

)(
m2

`

)
,

which counts pairs of subsets of pure strategies (to be played
with nonzero probability) of equal size `. If a Nash equilib-
rium is not totally mixed, we have inequalities > instead of

= in (2), (3) for those i with p
(1)
i = 0, p

(2)
i = 0, respectively.

In games of S > 2 players, even the bound for the maximal
number of TMNE (in terms of m1, . . . ,mS) is a non-trivial
question. In [15] they answered it in the form of a combina-
torial count, by counting certain partitions of

N =m1 + . . .+mS − S (6)

elements into S sets with nj = mj − 1 elements each. We
have N = n1 + . . .+ nS .

The combinatorial count can be eloquently formulated as
follows: Consider a card recreation of S players, each with
n1, n2, . . . , nS cards originally. All cards are shuffled to-
gether, and then each player j receives the same number
nj of cards as originally. Let E(n1, n2, . . . , nS) denote the
number of ways to deal the cards in such a way that no
player receives a card that he held originally. The maximal
number of TMNE in a generic (i.e., regular [15]) game with
m1,m2, . . . ,mS pure options equals

E(m1 − 1,m2 − 1, . . . ,mS − 1). (7)

As established in [15], this number is the BKK bound for
the system (2)–(4), hence the generic number of complex



solutions. This is also a sharp upper bound for the number
of TMNE (when this number is finite), as [15, § 4] gives a

family of real payoffs a
(j)
k1,k2,...,kS

such that all complex (mul-

tihomogeneous) solutions normalize by (5) to proper real so-
lutions representing TMNE. In [11], the systems whose roots
represent TMNE are parametrized. In [2], system solving is
applied to compute TMNE. In [5, Ch. 5] Sylvester-type re-
sultant matrices are computed for such systems.

Note that the combinatorial count gives the correct generic
number of TMNE (that is, 1 iff m1 = m2, and 0 otherwise)
for games of 2 players. More generally, E(n1, n2, . . . , nS) = 0
for n1 > n2 + . . .+ nS , as then the first player cannot avoid
his own cards. For n1 = n2 + . . .+ nS we have

E(n1, n2, . . . , nS) =
n1!

n2!n3! · · ·nS !
. (8)

E(1, 1, . . . , 1) equals the number of derangements of S ele-
ments, i.e., the number of permutations without fixed ele-
ments. As well-known, the number of derangements is

E(1, 1, . . . , 1) = S!

S∑
j=0

(−1)j

j!
.

This is the maximal number of TMNE for S players when
each has 2 options.

3. ROOT COUNTS
This section explores relations between root counts, mixed

volumes, and permanents. To bound the number of common
roots, we start with the classic tool of m-Bézout bound. Here
is its most general statement.

Theorem 3.1 (m-Bézout bound). Consider a system
of N equations in N affine variables, partitioned into S sub-
sets so that the j-th subset includes nj affine variables, and
N = n1 + · · ·+nS. Let dij be the degree of the i-th equation
in the j-th variable subset, for i = 1, . . . , N and j = 1, . . . , S.
Then, the coefficient of xn1

1 · · ·x
nS
S in

N∏
i=1

(di1x1 + · · ·+ diSxS) (9)

bounds the number of the system’s complex roots in (1). For
generic coefficients this bound is tight.

In the TMNE system (2)–(4), let Pj(i) denote the expres-
sion of Pj with the specified i. A full sequence of multiho-
mogeneous equations is

P1(1) = P1(2), P1(1) = P1(3), . . . , P1(1) = P1(m1),

P2(1) = P2(2), P2(1) = P2(3), . . . , P2(1) = P2(m2),

etc.

With mj = nj + 1, we have

dij =

{
0, if

∑j−1
`=1 n` < i 6

∑j
`=1 n`,

1, otherwise.

If we set X = x1 + x2 + . . .+ xS , the product in (9) can be
written as

S∏
j=1

(X − xj)nj . (10)

We are looking for the coefficient to xn1
1 · · ·x

nS
S in the ex-

pansion of this product. As noticed in [19], MacMahon’s
Master theorem [13] can be applied here immediately. We
discuss the application and its generalization in §4 here.

We shall consider semi-mixed systems whose Newton poly-
topes have standard shapes, such as parallelotopes and prod-
ucts of simplices. We show that their mixed volume is re-
duced to computing a permanent. Reducing mixed volume
to computing a matrix permanent is useful for approximat-
ing the mixed volume, since the permanent admits fast and
accurate approximations.

3.1 Mixed volume
The BKK bound is defined via mixed volumes by estab-

lishing a powerful connection between convex and algebraic
geometry. We start with convex geometric notions and al-
gorithms, then state the BKK bound.

Let vol(·) denote Euclidean N -dimensional volume that
assigns the unit volume to the hypercube of unit edge length.

Definition 3.2. Let MV(Q1, . . . , QN ) denote the mixed
volume of convex polytopes Q1, . . . , QN ⊂ RN , defined as the
unique real-valued function which is invariant under permu-
tation of the Qi, and multilinear with respect to scalar mul-
tiplication and Minkowski addition on the Qi, such that

MV(Q1, . . . , Q1) = N ! vol(Q1).

Multilinearity is formally written as follows: For µ, ρ ∈
R>0 and a convex polytope Q′k ⊂ RN ,

MV(Q1, . . . , µQk + ρQ′k, . . . , QN ) =

µMV(Q1, . . . , Qk, . . . , QN ) + ρMV(Q1, . . . , Q
′
k, . . . , QN ).

Let us generalize our discussion to the case of repeated poly-
topes. Given a system of N polytopes in RN , if there are
only S distinct polytopes, then the mixed volume is called
semi-mixed volume and is denoted by

MV(Q1, k1; . . . ;QS , kS), k1 + · · ·+ kS = N,

where polytope Qi is repeated ki > 1 times, 1 6 i 6 S. To
stress the different cases, we refer to the case S = N as fully
mixed.

Equivalently, these notions can be defined via mixed sub-
divisions, which have offered the most efficient means of
computing mixed volumes. A different, randomized algo-
rithm appeared in [4], but requires one polytope to be re-
peated a number of times close to N .

Suppose we are given polytopes Q1, . . . , QS ⊂ RN . Let Ai
be their respective vertex set. We first lift the Ai to RN+1,

thus defining pointsets Âi. by taking S sufficiently generic
linear forms li : RN → R, 1 6 i 6 S. This is implemented
by randomly picking the li with bitsize which depends on
the error probability ε (see § 5). For reducing the bitsize of
the li, see [23]. Then, apply each li to the respective Qi thus
defining lifted pointsets

Âi = {(ai, li(ai)) : ai ∈ Ai} ⊂ RN+1, i = 1, . . . , S.

Their Minkowski sum is an (N + 1)-dimensional polyhedral
complex, and its lower hull is an N -dimensional polyhedral
complex defined as the union of all N -dimensional faces, or
facets whose inner normal vector has positive last compo-
nent. The genericity of the li ensures that the lower hull
projects bijectively onto the Minkowski sum

∑S
i=1Qi of the



original polytopes. A subdivision of this Minkowski is in-
duced by the subdivision of the lower envelope by projecting
each k-face onto a k-dimensional cell.

The induced subdivision is called regular. Maximal cells
are those with dimension equal to the dimension of the sub-
division. The subdivision is mixed since its cells are ex-
pressed (or, can be written) as Minkowski sums of convex
hulls of point subsets from the Ai’s; equivalently, this expres-
sion is read off the lower hull. The genericity of the li ensures

that every lower hull facet is a unique sum of faces F̂i from

the Q̂i for i = 1, . . . , S such that
∑S
i=1 dim F̂i = N . Fine

(or tight) cells are those whose dimension equals the sum of
its summands’ dimensions. The constructed subdivision is
fine (or tight) since all its cells are fine. More precisely, due

to the linearity of the lifting functions li, dimFi = dim F̂i
therefore

∑S
i=1 dimFi = j, if

∑S
i=1 Fi define a k-dimensional

cell.
We have thus defined a regular fine mixed subdivision of∑
iQi, to which we refer as mixed subdivision. We define

the cells of type (j1, . . . , jS) to be precisely those where the
i-th summand is ji-dimensional.

Lemma 3.3. For fully mixed systems where S = N , the
mixed volume is

MV(Q1, . . . , QN ) =
∑

mixed σ

vol(σ),

where the sum ranges over all mixed cells σ, i.e. all cells
of type (1, . . . , 1), in a (fine regular) mixed subdivision of
Q1 + · · ·+QN .

This could be used as a definition of mixed volume. More
generally, the semi-mixed volume is obtained from a mixed
subdivision of the Minkowski sum Q1 + · · · + QS . The fol-
lowing lemma subsumes Lem. 3.3.

Lemma 3.4. [10, Thm.2.4] The semi-mixed volume, for
k1 + · · ·+ kS = N , ki > 1, is

MV(Q1, k1; . . . ;QS , kS) =

S∏
i=1

ki!
∑

type(σ)=(k1,...,kS)

vol(σ),

where the sum ranges over all cells σ of type (k1, . . . , kS) in
a mixed subdivision of Q1 + · · ·+QS.

To apply these notions to root counting, let us consider a
system of N Laurent polynomials in N variables:

fi =

ki∑
j=1

cijx
aij , cij 6= 0, 1 6 i 6 N, (11)

where x = (x1, . . . , xN ), xe =
∏
i x

ei
i , and {ai1, . . . , aiki} ⊂

Zn is the support of fi. Let Qi be the Newton polytope of fi
defined as the convex hull of the support.

Let us examine the Newton polytopes corresponding to
the TMNE system (2)–(4). It is an important example be-
cause no Newton polytope is fully dimensional and they are
defined by simplices, namely

Qi = ∆n1×· · ·∆ni−1×∆ni+1×· · ·×∆nS , 1 6 i 6 S, (12)

where ∆nj is the unit simplex in Rnj , and all such simplices
lie in complementary subspaces. Equivalently, the Qi the
following Minkowski sum:

Qi = ∆n1 +· · ·+∆ni−1 +∆ni+1 +· · ·+∆nS , 1 6 i 6 S. (13)

We can now state the most general root count.

Theorem 3.5 (BKK). For f1, . . . fN ∈ C[x±1
1 , . . . , x±1

N ]
with Newton polytopes Q1, . . . , QN , the number of common
isolated solutions, multiplicities counted, in the correspond-
ing toric variety, which contains (C∗)N as a dense subset,
does not exceed MV(Q1, . . ., QN ) (independently of the cor-
responding variety’s dimension).

In the case of homogeneous systems, the corresponding
toric variety equals PN . For multihomogeneous systems, the
toric variety equals Pn1 × · · · × PnS , see Thm 3.1.

When the coefficients corresponding to vertices of the Qi
are generic, then the BKK bound is tight.

3.2 Permanent
Let SN denote the group ofN ! permutations ofN integers.

Recall that the permanent of a square matrix

A =


a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN

 (14)

is defined similarly as the determinant but without multi-
plying by the sign sgn(%) of permutation %:

perm A =
∑
%∈SN

N∏
i=1

ai%(i), detA =
∑
%∈SN

sgn(%)

N∏
i=1

ai%(i).

A standard and very useful property states that the perma-
nent equals the coefficient of x1 · · ·xN in

N∏
i=1

(ai1x1 + . . .+ aiNxN ). (15)

Ryser [17] derived the formula

perm A = (−1)N
∑

Z⊆{1,...,N}

(−1)|Z|
N∏
i=1

∑
j∈Z

aij . (16)

The degree structure of the TMNE system (2)–(4) is rep-
resented by the N ×N matrix

L =


0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
. . .

. . .
...

1 1 · · · 1 0

 , (17)

shown here in the form of S × S blocks. The diagonal 0’s
are square blocks of size nj × nj with all entries equal to
0, while the 1’s are blocks of size ni × nj (i 6= j) with all
entries equal to 1. The columns represent N equations of
the multihomogeneous system, and the rows represent de-
homogenized variables on Pn1 , . . . ,PnS . The equations for
Pj in (2)–(4) contain no probabilities of the jth player (hence
the 0’s) and are multilinear in the other variables (hence
the 1’s). The BKK bound and the permanent are related as
follows.

Theorem 3.6. Given the Newton polytopes Qi of the sys-
tem expressing TMNE as in (12), and matrix L in (17),

MV(Q1, n1; . . . ;QS , nS) =
1

n1! · · ·nS !
perm L.



Proof. Let us write the Qi as Minkowski sums following
equations (13). By multilinearity, MV(Q1, n1; . . . ;QS , nS)
equals the sum of mixed volumes of the form

MV(∆n1 , k1; . . . ; ∆nS , kS), ki > 0,

S∑
i=1

ki = N,

since mixed volume is invariant under reordering of its argu-
ments. If some ki = 0, the mixed volume vanishes, following
Lem. 3.3, because the Minkowski sum of all arguments is not
full-dimensional. If some ki < ni, then there exists some j
such that kj > nj . Hence the cells contributing to the mixed
volume must contain a summand of dimension kj from ∆nj ,
which is infeasible. Therefore all ki = ni. Each such mixed
volume is 1, namely

MV(∆n1 , n1; . . . ; ∆nS , nS) = 1. (18)

It equals the volume of a single mixed cell of type (n1, . . . , nS).
It remains to show that the number of terms of the form (18)

equals permL/
∏
i ni!. Recall L is a S × S block matrix,

whose block at position (i, j) if of size ni × nj . Let us asso-
ciate the rows of L to the Qi, each repeated ni times, and
the columns to the ∆nj , each repeated nj times.

Every mixed volume in expression (18) is specified by pick-
ing a cover of row and column blocks, i.e. a permutation of
(1, . . . , S). For every such choice, there are n1! · · ·nS ! per-
manent terms that pick the same blocks, hence give rise to
the same mixed volume in expression (18). All terms in the
expansion of permL equal to 1, hence the claim follows.

The relation between mixed volumes and permanents gen-
eralizes to equations of arbitrary degrees aij in the variable
blocks, thus trivializing the semi-mixed structure. The fol-
lowing generalized formulation applies to any multihomo-
geneous system, including the fully mixed. It reduces any
m-Bézout bound to a permanent.

Theorem 3.7. Consider an algebraic system on (1) of
N = n1 + . . . + nS equations. Assume that the i-th equa-
tion has degree aij in the j-th variable block. Let A be an
N×N matrix with the entries aij, with the columns repeated
nj times. Then:

• The Newton polytopes are Qi =
∑S
j=1 aij∆nj , for i ∈

{1, 2, . . . , N}.

• The corresponding m-Bézout bound equals

MV(Q1, n1; . . . ;QS , nS) =
1

n1! · · ·nS !
perm A.

Proof. The first claim specifying the Qi is clear. The
second claim follows mutatis mutandis from the proof of
Thm 3.6. The main difference is that the mixed volume is
the sum of quantities of the form

MV(. . . , ai1j∆nj , . . . , ainj
j∆nj , . . . ) (19)

where we showed precisely the nj arguments that equal to
scalar multiples of ∆nj , for j = 1, . . . , S. The union of all

indices ∪Sj=1{i1, . . . , inj} equals set {1, . . . , N}. The various
mixed volumes correspond to choices of indices which range
over all permutations of (1, . . . , N), corresponding to the
terms in the expansion of permA. For each mixed volume,

MV(. . . , ai1j∆nj , . . . , ainj
j∆nj , . . . ) =

S∏
j=1

nj∏
k=1

aikj ,

by multilinearity and the value of (18), which yields the
value of a term in permA.

An important special case is nj = 1 for j ∈ {1, . . . , S}.
Then we have a multihomogeneous system on P1× · · · ×P1.
The Newton polytopes are then cuboids, or axis-aligned par-
allelotopes: the i-th cuboid is the direct product of axis-
aligned segments with one endpoint at the origin:

∏N
j=1(0, aij),

for 1 6 i 6 N. It is known [9] that their mixed volume equals
the permanent of matrix A = [aij ]. A direct extension in-
cludes parallelotopes that are not necessarily axis aligned,
namely the mixed volume of Qi =

∑N
j=1 aijej , 1 6 i 6 N,

equals permanent of A = [aij ], where the vectors e1, . . . , eN
∈ RN span RN .

The broadest generalization to arbitrary (nonhomogeneous)
systems follows. For each block of variables there is a nj-
dimensional polytope Γj , each in a separate complementary
space, 1 6 j 6 S. Assume the Newton polytopes are direct
products of scalar multiples (by aij) of the Γj ’s. We obtain
an algebraic system on the product of toric varieties corre-
sponding to Γj , of dimension nj . The proof follows from
that of Thm 3.7.

Theorem 3.8. Let A be the matrix of aij’s, with columns
repeated nj times. If the number of equations is N =

∑
nj,

then

MV(Q1, . . . , QN ) =

S∏
j=1

vol(Γj) permA, Qi =

S∏
j=1

aijΓj .

3.3 TMNE counting
Now let us unify the discussion, using our running exam-

ple, namely the TMNE system (2)–(4).

(i) The BKK bound is equal to the mixed volume of the
Newton polytopes Qi of the N equations. The New-
ton polytopes are products of simplexes ∆k, with k ∈
{n1, . . . , nS}, as in (12). This polytope is repeated
ni times, so the root bound is given by the following
semi-mixed volume:

MV(Q1, n1; . . . ;QS , nS), n1 + · · ·+ nS = N.

(ii) The mixed volume is expressed by the permanent, by
Thm 3.6. Expansion of the permanent gives the combi-
natorial count in [15]. The factors 1/nj ! reflect group-
ing the permanent terms into the partitions of N cards
(of the formulated card recreation).

(iii) Let Y = (y11 + . . .+ y1n1) + · · ·+ (yS1 + . . .+ ySnS ),
the sum of N distinct variables. With reference to
(15), the bound equals the coefficient of (y11 · · · y1n1)
· · · (yS1 · · · ySnS ) in

1

n1! · · ·nS !

S∏
j=1

(Y − yj1 − . . .− yjnj )nj . (20)

This follows from the characterization of the perma-
nent in terms of the product in (15). This bound is
recognizable in [15, Cor. 3.2].

(iv) Let X = x1+. . .+xS . The m-Bézout bound equals the
coefficient of xn1

1 · · ·x
nS
S in (10). This directly follows

by grouping yj1 + . . .+ yjnj = xj in (20).



The relation between these four items generalizes to general
multihomogeneous systems (preferably semi-mixed), and to
the systems described at the end of the previous subsection.

When applying the BKK bound to count TMNE, we must
note that the bound is not the exact number of relevant
solutions under the following conditions:

• a(1)i,k2,...,kS = a
(1)
j,k2,...,kS

for i 6= j, or a similar equality
of payoffs for other player. Then a Newton polygon
“loses” a corner vertex, and the mixed volume might
be smaller.

• The system is not generic, so that it either has an
infinite family of solutions (including some at toric in-
finity), or some solutions coalesce into a solution with
multiplicity.

• Not all solutions are real.

• Not all real solutions give proper probabilities p
(j)
i ∈ (0, 1].

Real representatives
(
p
(j)
1 : p

(j)
2 : . . . : p

(j)
mj

)
of a homo-

geneous solution must be either all positive or all neg-
ative in each block j ∈ {1, 2, . . . , S}.

4. GENERATING FUNCTIONS
MacMahon’s master theorem [13] has powerful applica-

tions to counting restricted partitions and proving binomial
identities. Interestingly, the m-Bézout bound (9) for prop-
erly semi-mixed systems begs for application of this theorem.

Theorem 4.1 (MacMahon’s master Theorem). Let
A be a complex S × S matrix as in (14). Let x1, . . . , xS be
formal variables, and let V denote the diagonal matrix with
the nonzero entries x1, . . . , xS. The coefficient of xn1

1 . . . xnS
S

in

S∏
j=1

(aj1x1 + . . .+ ajSxS)nj (21)

equals the coefficient of xn1
1 . . . xnS

S in the multivariate Tay-
lor expansion of

f(x1, . . . , xS) =
1

det(I − V A)
(22)

around (x1, . . . , xS) = (0, 0, . . . , 0).

Theorem 4.2. Consider a multihomogeneous system on
Pn1 × · · · × PnS of N = n1 + . . . + nS equations, where the
equations are partitioned into S subsets of exactly n1, . . . , nS
equations. We assume that for any i, j ∈ {1, 2, . . . , S}, the
polynomial equations in the i-th subset have degree aij in
the variables of the j-th variable subset. Let A be the S × S
matrix defined by the aij’s. Then the m-Bézout bound for
the for the multihomogeneous system equals the coefficient
of xn1

1 · · ·x
nS
S in the multivariate Taylor expansion of

1/det(I − V A)

around (x1, . . . , xS) = (0, 0, . . . , 0).

Proof. The expression (9) becomes (21) for the semi-
mixed system under consideration. MacMahon’s master the-
orem immediately applies.

For the TMNE system (2)–(4), we have aii = 0, and aij =
1 for i 6= j. Thus A has the same shape as the matrix L in
expression (17), with blocks of minimal 1× 1 size:

A =


0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
. . .

. . .
...

1 1 · · · 1 0

 , (23)

The function in (22) is then the generating function for the
numbers E(n1, . . . , nS). Let M := I − V A, then

M =


1 −x1 −x1 · · · −x1
−x2 1 −x2 · · · −x2

...
...

. . .
. . .

...
−xS −xS · · · −xS 1

 .
In order to compute detM , we start with some definitions.
Let σj denote the j-th elementary symmetric polynomial in
the variables x1, . . . , xS :

σ1 =

S∑
i=1

xi, σ2 =

S∑
i=2

i−1∑
h=1

xhxi, . . . , σS =

S∏
i=1

xi.

Lemma 4.3. Let σ1, σ2, . . . , σS be the elementary symmet-
ric polynomials. Then,

detM = 1− σ2 − 2σ3 − . . .− (S − 1)σS .

Proof. The determinant of M is a symmetric function
of x1, . . . , xS , at most linear in each variable. Hence it is
a linear combination of σ0 = 1 and σ1, . . . , σS . The linear
combination can be recovered from the diagonal specializa-
tion x1 = . . . = xS . If we set all variables equal to 1/λ,

detM =
1

λS
det(λ−A). (24)

Here det(λI −A) is the characteristic polynomial of A. The
rank of (I+A) equals 1, hence λ = −1 is an eigenvalue of A
with multiplicity S − 1. The other eigenvalue is λ = S − 1,
with an eigenvector consisting of all 1’s. Hence det(λI−A) =
(λ+ 1)S−1 (λ− S + 1) and

detM = (1 + x1)S−1 (1− (S − 1)x1) =

S∑
j=0

(1− j)

(
S

j

)
xj1

when x1 = . . . = xS . For each j ∈ {1, 2, . . . , S}, the term
with xj1 represents

(
S
j

)
summands of σj . Without the diag-

onal specialization, detM =
∑
j(1− j)σj as claimed.

As obtained in [19], the generating function for the m-
Bézout bound for the family of TMNE systems with variable
n1, . . . , nS is

F (x1, . . . , xS) =
1

1− σ2 − 2σ3 − . . .− (S − 1)σS
. (25)

In other words, the coefficient of xn1
1 · · ·x

nS
S in the multi-

variate Taylor expansion at (x1, x2, . . . , xS) = (0, 0, . . . , 0)
is equal the number E(n1, n2, . . . , nS). The same m-Bézout
bound holds for any semi-mixed multilinear system on (1),
where the equations are partitioned into the blocks of n1, n2,
. . . , nS equations, and i-th subset of equations contains none
of the variables in the i-th variable subset for i ∈ {1, 2, . . . , S}.



The total number N = n1+· · ·+nS of equations and of vari-
ables is not constant.

The generating function for the maximal number of TMNE
differs from (25) by the factor σS , due to the adjustment (7):

FN(x1, x2, . . . , xS) =
σS

1− σ2 − 2σ3 − . . .− (S − 1)σS
. (26)

The coefficient of xm1
1 xm2

2 · · ·xmS
S in the multivariate Taylor

expansion at (x1, x2, . . . , xS) = (0, 0, . . . , 0) of this function
equals the tight bound in [15] for the number of TMNE in
games of S players, each with (respectively) m1,m2, . . . ,mS

pure options. The absence of linear terms (particularly, σ1)
in the denominator implies the discussed TMNE count when
n1 > n2 + . . . + nS ; see (8). In particular, Fcard(x1, x2) =
1/(1−x1x2), consistent with the established count of TMNE
for two players.

Further generalization and applications.
The generating function in (25) is symmetric in the vari-

ables x1, x2, . . . , xS , reflecting a symmetry of blocks of equa-
tions and blocks of variables. A straightforward generaliza-
tion is the following.

Lemma 4.4. Consider a multihomogeneous system on (1)
of N = n1+. . .+nS equations, with the equations partitioned
into S subsets of exactly n1, n2, . . . , nS equations. We as-
sume that the degree of every equation in the i-th subset is
b in the variables of the ith block, and the degree is c in any
other block of variables. Then the m-Bézout bound equals
the coefficient of xn1

1 xn2
2 · · ·x

nS
S in the multivariate Taylor

expansion of

1

1 + (d− c)σ1 + (d− 2c)dσ2 + . . .+ (d− Sc)dS−1σS
,

at (x1, x2, . . . , xS) = (0, 0, . . . , 0). Here d = c− b.

Proof. The corresponding matrix A of Thm 4.2 has the
entries b on the main diagonal, and the entries c elsewhere.
The determinant of M = I −V A is a multilinear symmetric
function of x1, x2, . . . , xS , hence it is enough to consider the
specialization x1 = x2 = . . . = xS , leading to considering
(24). The rank of (b − c)I − A equals S − 1, and the other
eigenvalue is b+ (S − 1)c. Hence

det(λI −A) = (λ+ c− b)S−1(λ− b− (S − 1)c)

= (λ+ d)S−1(λ+ d− Sc).

Hence detM with specialized x1 = x2 = . . . = xS equals

(1 + dx1)S−1(1 + (d− Sc)x1) =

S∑
j=0

(d− jc)

(
S

j

)
xj1,

and the claim follows as in Lem. 4.3.

If c = 0, the multihomogeneous system has the same struc-
ture of utilized variables as the TMNE system, but the equa-
tions are of degree d = b in each block of utilized variables
(rather than multilinear). The generating function

1

1− d2σ2 − 2d3σ3 − · · · − (S − 1)dSσS

is obtained from (25) by the substitutions xj 7→ d xj for
j ∈ {1, 2, . . . , S}. An algebraic system of this type was ob-
tained [7] by solving all configurations of a cyclic mechanism

with 3 degrees of freedom or, equivalently, the conformations
of cyclohexane. This is a 3× 3 system on P1 × P1 × P1 with
degree pattern  0 2 2

2 0 2
2 2 0

 .
We can also make independent substitutions xj → djxj in

the generating function, which is equivalent to multiplying
corresponding rows of A by dj . Applied to (23), this modifies
the TMNE system by setting the degrees of all equations in
the j-th variables to dj (if the degree is not zero), or (by the
transposition symmetry) all jth equations to have degree dj
(or zero) in each block of variables.

5. COMPLEXITY
This section analyzes mixed subdivisions to compute semi-

mixed volumes, then juxtaposes it to using permanents or
generating functions. Besides asymptotic complexity, we
consider briefly practical complexity.

To compute MV(Q1, k1; . . . ; QS , kS), by Lem. 3.4, we
sum the volumes of lower hull facets on the Minkowski sum∑
i Q̂i which project to cells of type (k1, . . . , kS). If Qi has

vi vertices, then the Minkowski sum has O(v1 · · · vS) ver-
tices. Fukuda [8] computes all Minkowski sum faces of di-
mension 6 j, 0 6 j < N , with bit complexity O(fδλ(N,m)),
where δ is the sum of the maximum vertex degrees in each
summand, f is the number of faces of dimension 6 j, and
λ(N,m) bounds the complexity of linear programming in
N variables and m constraints, where m is the number of
nonparallel edges in the Qi.

If v = maxi{vi}, then δ = O(Sv), m = O(Sv2). Apply-
ing [22] and using l to bound the bitsize of the constraint
coefficients,

λ(N,m) = O(((N+m)N2+(m+N)1.5N)l) = O(S1.5Nv3l),

assuming v > N , which holds if dimQi = N and for the
Qi of the TMNE system. The overall bit complexity for
computing all lower hull facets is

O(f S2.5N v4l).

In our setting, the coefficients are sums of vertex coordi-
nates, hence l depends on two quantities: (i) lg d, where d is
the maximum degree of any polynomial in any variable and
(ii) the bitsize of the randomized lifting functionals, which
is a function of the error probability ε; assuming the latter
as fixed, we can ignore this dependence [5]. Since cells have
integer volume, f is bounded by the semi-mixed volume V .
Applying v > N , we get

O(V S2.5v5 lg d).

Computing the permanent is a famous #P-complete prob-
lem [21]. In particular, the mixed volume (of cuboids) is
shown to be #P-hard by reduction of the permanent [9], Di-
rect application of Ryser’s formula (16) requires O(2NN2)
arithmetic operations. This number reduces to O(2NN) if
the subsets are handled in a proper order [21]. Ryser’s for-
mula for the permanent in Thm 3.6 becomes

perm L =

n1∑
k1=0

· · ·
nS∑
kS=0

(−1)N−K
S∏
j=1

(
nj
kj

)
(K−kj)nj , (27)



where K = k1 + . . . + kS . Instead of 2N =
∏
j 2nj sum

terms, we have
∏
j nj terms here. Let all nj 6 n, then

the total complexity is O∗(nS), where O∗(·) ignores polylog
factors in the arguments. Indeed, computing each product
term has amortized complexity in O(S logn). In view of the
generalized Thm 3.7, the formula is modified with general
aij ’s.

Concerning implementation, our Maple code for Ryser’s
formula yields the permanent for S = 4 and n at about 60 in
≈ 4 minutes on a Dell Laptop with four 2.4GHz processors
(Intel Core i3-2370M), whereas permanents are practically
infeasible for matrix dimension N > 20.

Generating functions.
Instead of computing permanents, MacMahon’s theorem

allows computation of the m-Bézout bound of properly semi-
mixed systems by computing the determinant of a S × S
matrix (in S variables). The determinant can be computed
in polynomial time, but (computing a coefficient of) the
multivariate Taylor expansion of the (multiplicative) inverse
of the multivariate determinant should require exponential
time in general. Nevertheless, complexity is reduced due to
replacing the size N of the system by the number of blocks
S in the exponents.

The generating function (25) promises faster ways to com-
pute the numbers E(n1, . . . , nS) than by the root bounds or
the permanent. In particular, [19] derived recurrences for
these E-numbers, and explicit formulas for the S = 3 case
in terms of terminating hypergeometric 3F2(±1) sums.

The generating function (25) can be expanded first in the
elementary symmetric polynomials. The number of terms
σ`22 . . . σ`SS of the weighted degree N =

∑S
j=2 j`j equals the

coefficient to qN in 1/
∏S
j=2(1− qj), which is asymptotically

[21, Partition]

∼ NS−2

S!(S − 2)!
as N →∞. (28)

The coefficient of σ`22 . . . σ`SS is straightforwardly

(`2 + . . .+ `S)!

`2! `3! · · · `S !

S∏
j=2

(j − 1)`j .

Computing the coefficient of xn1
1 · · ·x

nS
S in the expanded

σ`22 · · ·σ
`S
S (or just σ`k) is a combinatorial problem, leading

to counting interesting paths in multi-dimensional spaces.
If the combinatorial problem can be solved in polynomial
time, we would have a speed-up of (27) computation by a
factor such as O(N2(S − 2)!).

An interesting open question is whether E(n, . . . , n) can
be computed in polynomial time; here the input consists
of just n, S. If the answer is positive, can we compute the
numbers E(n1, . . . , nS) in polynomial time?
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