

Bernstein's Theorem in Affine Space*

B. Huber¹ and B. Sturmfels²

¹ Department of Mathematics, Cornell University, Ithaca, NY 14853, USA birk@math.cornell.edu

² Department of Mathematics, University of California, Berkeley, CA 94720, USA bernd@math.berkeley.edu

Abstract. The stable mixed volume of the Newton polytopes of a polynomial system is defined and shown to equal (generically) the number of zeros in affine space \mathbb{C}^n . This result refines earlier bounds by Rojas, Li, and Wang [5], [7], [8]. The homotopies in [4], [9], and [10] extend naturally to a computation of all isolated zeros in \mathbb{C}^n .

Our object of study is a system $F = (f_1, \ldots, f_n)$ of polynomial equations of the form

$$f_i = \sum_{\mathbf{q} \in \mathcal{A}_i} c_{i,\mathbf{q}} \cdot \mathbf{x}^{\mathbf{q}}, \quad \text{where} \quad c_{i,\mathbf{q}} \in \mathbf{C}^* \quad \text{and} \quad \mathbf{x}^{\mathbf{q}} = x_1^{\mathbf{q}_1} \cdots x_n^{\mathbf{q}_n}.$$
 (1)

Here A_i is a finite subset of \mathbb{N}^n , called the *support* of f_i , and $Q_i = \operatorname{conv}(A_i)$ is the *Newton polytope* of f_i . The *mixed volume* $\mathcal{M}(A_1, \ldots, A_n)$ is the coefficient of $l_1 l_2 \cdots l_n$ in the homogeneous polynomial $\operatorname{Vol}(l_1 Q_1 + \cdots + l_n Q_n)$, where Vol is the Euclidean volume, and

$$Q_1 + \dots + Q_n := \{x_1 + \dots + x_n \in \mathbb{R}^n : x_i \in Q_i \text{ for } i = 1, \dots, n\}$$
 (2)

denotes the Minkowski sum of polytopes [2]. The following toric root count is well known.

Theorem 1 (Bernstein's Theorem [1]). The number of isolated zeros of F in $(\mathbb{C}^*)^n$ is bounded above by $\mathcal{M}(\mathcal{A}_1,\ldots,\mathcal{A}_n)$. This bound is exact for generic choices of the coefficients $c_{i,\mathbf{q}}$.

^{*} This research was supported by the David and Lucile Packard Foundation and the National Science Foundation.

B. Huber and B. Sturmfels

In many situations, studying all zeros of F in affine space \mathbb{C}^n , not just those in the algebraic torus $(\mathbb{C}^*)^n$, is preferred. Li and Wang [5] have shown that the number of isolated roots in \mathbb{C}^n is bounded above by $\mathcal{M}(\mathcal{A}_1 \cup \{0\}, \ldots, \mathcal{A}_n \cup \{0\})$. Rojas [7] has given an alternative bound on the number of roots in $\mathbb{C}_I = \{\mathbf{x} \in \mathbb{C}^n : x_i = 0 \text{ only if } i \in I\}$, where $I \subseteq \{1, \ldots, n\}$. Note that $\mathbb{C}_I \cong (\mathbb{C}^*)^{n-\#I} \times \mathbb{C}^{\#I}$. Our result sharpens the bounds given in [5], [7], and [8].

Theorem 2. The number of isolated zeros of F in \mathbb{C}_1 is bounded above by the I-stable mixed volume $SM_I(A_1, \ldots, A_n)$. This bound is exact for generic choices of coefficients $c_{i,\mathbf{q}}$, provided F has only finitely many roots in \mathbb{C}_I (see Lemma 5).

To define the *I-stable mixed volume* we modify the process of computing the Li-Wang bound $\mathcal{M}(\mathcal{A}_1 \cup \{0\}, \dots, \mathcal{A}_n \cup \{0\})$ by subdivisions as in [4]. Let $P_i = \text{conv}(\mathcal{A}_i \cup \{0\})$ and $\hat{P}_i = \text{conv}(\{(\mathbf{q}, \omega_i(\mathbf{q})) \in \mathbf{N}^{n+1}: \mathbf{q} \in \mathcal{A}_i \cup \{0\}\})$, where ω_i is the function which maps each point of \mathcal{A}_i to zero and, if $0 \notin \mathcal{A}_i$, lifts the zero vector 0 to one. A *lower face* of a polytope in \mathbf{R}^{n+1} is a face which has an inner normal with positive (n+1)st coordinate. The lower facets \hat{C} of the Minkowski sum $\hat{P}_1 + \dots + \hat{P}_n$ are themselves sums $\hat{C} = \hat{C}_1 + \dots + \hat{C}_n$, where each \hat{C}_i is a lower face of \hat{P}_i . Let $(\gamma^C, 1) = (\gamma_1^C, \dots, \gamma_n^C, 1)$ be the unique inner normal of \hat{C} whose last coordinate is equal to one, and set $C_i := \pi(\hat{C}_i)$, where π is the projection from \mathbf{R}^{n+1} onto \mathbf{R}^n deleting the last coordinate. The collection

$$\Delta_{\omega} = \{C_1 + \dots + C_n : \hat{C} \text{ is a lower } facet \text{ of } \hat{P}_1 + \dots + \hat{P}_n \}$$
 (3)

is the polyhedral subdivision of $P_1 + \cdots + P_n$ induced by the lifting function ω . An element of Δ_{ω} is called a cell. A cell C of Δ_{ω} is called *I-stable* if the vector γ^C is nonnegative, and in addition $\gamma_i^C > 0$ only if $i \in I$. We define the *I-stable mixed volume* $SM_I(A_1, \ldots, A_n)$ to be the sum of the mixed volumes $M(C_1, \ldots, C_n)$ where $C = C_1 + \cdots + C_n$ runs over all *I-stable* cells of Δ_{ω} .

Since the points of A_i remain unlifted under ω , the sum $\operatorname{conv}(A_1) + \cdots + \operatorname{conv}(A_n)$ appears as a cell C in the subdivision Δ_{ω} . In fact, it is the unique cell C with $\gamma^C = 0$. Thus the \emptyset -stable mixed volume $\mathcal{SM}_{\emptyset}(A_1, \ldots, A_n)$ is just the mixed volume $\mathcal{M}(A_1, \ldots, A_n)$ in Theorem 1. On the other extreme, summing the mixed volumes $\mathcal{M}(C_1, \ldots, C_n)$ over all cells of Δ_{ω} yields $\mathcal{M}(A_1 \cup \{0\}, \ldots, A_n \cup \{0\})$. It follows that, for all I,

$$\mathcal{M}(\mathcal{A}_1, \dots, \mathcal{A}_n) < \mathcal{SM}_I(\mathcal{A}_1, \dots, \mathcal{A}_n) \leq \mathcal{M}(\mathcal{A}_1 \cup \{0\}, \dots, \mathcal{A}_n \cup \{0\}) . \tag{4}$$

Example 3. The inequalities in (4) are generally strict. Consider the bivariate system

$$ay + by^{2} + cxy^{3} = dx + ex^{2} + fx^{3}y = 0,$$
 (5)

whose support sets (solid points) are pictured in Fig. 1 along with the subdivision Δ_{ω} tabulated in Table 1. There are, in fact, $SM_{\{1,2\}}(\mathcal{A}_1, \mathcal{A}_2) = 6$ isolated roots in \mathbb{C}^n , while the Li-Wang bound, $\mathcal{M}(\mathcal{A}_1 \cup \{0\}, \mathcal{A}_2 \cup \{0\}) = 8$, overcounts by two roots. Finally the $\{1\}$ - and $\{2\}$ -stable mixed volumes are both 4, and the \emptyset -stable mixed volume $\mathcal{M}(\mathcal{A}_1, \mathcal{A}_2) = 3$. The geometric process of inducing the mixed subdivision in Fig. 1 is depicted in Fig. 2.

Fig. 1. An example in two dimensions.

Proof of Theorem 2. We deform the given system $F = (f_1, \ldots, f_n)$ by a homotopy

$$h_i(\mathbf{x},t) := \begin{cases} c_{i,0} \cdot t + f_i(\mathbf{x}) & \text{if } 0 \notin \mathcal{A}_i \\ f_i(\mathbf{x}) & \text{if } 0 \in \mathcal{A}_i \end{cases} \quad (i = 1, 2, \dots, n). \tag{6}$$

All coefficients $c_{i,0}$ and $c_{i,q}$ are assumed to be sufficiently generic in the sense of Theorem 1. By Bernstein's theorem, for all but finitely many t, the system (6) has $\mathcal{M}(\mathcal{A}_1 \cup \{0\}, \ldots, \mathcal{A}_n \cup \{0\})$ zeros in the torus $(\mathbb{C}^*)^n$. For $t \neq 0$ it has no zeros in $\mathbb{C}^n \setminus (\mathbb{C}^*)^n$. We study the zeros of (6) as algebraic functions $\mathbf{x}(t)$ as the parameter t tends to zero [6]. As was shown in Lemma 2.2 of [5], every isolated zero \mathbf{x} of F in \mathbb{C}^n is the limit $\mathbf{x} = \lim_{t \to 0} \mathbf{x}(t)$ of one of the branches $\mathbf{x}(t)$. Hence to prove Theorem 2, we must count how many of the branches $\mathbf{x}(t)$ converge as $t \to 0$.

In Lemma 3.1 of [4] it was shown that the Puiseux expansion about t = 0 for each of the branches of the algebraic function $\mathbf{x}(t)$ has the form

$$\mathbf{x}(t) = (z_1 \cdot t^{\gamma_1^c}, \dots, z_n \cdot t^{\gamma_n^c}) + \text{higher-order terms in } t, \tag{7}$$

where $\gamma^C \in \mathbf{Q}^n$ is the normal vector for some cell C of Δ_{ω} , and $\mathbf{z} = (z_1, \dots, z_n) \in (\mathbf{C}^*)^n$ is a solution of the restriction of (6) to C. In other words, the vector \mathbf{z} is a root of

$$\sum_{\mathbf{q}\in C_i\cap\mathcal{A}_i}c_{i,\mathbf{q}}\cdot\mathbf{z}^{\mathbf{q}}=0 \qquad (i=1,2,\ldots,n)$$
(8)

Table 1. Cells of Δ_{ω} .

C	γ^{C}	$\mathcal{M}(C)$	{1, 2}-stable
$(\{a, c, 0\}, \{f\})$	(-2, 1)	0	No
$(\{a,0\},\{d,e\})$	(0, 1)	1	Yes
$(\{a,0\},\{e,f\})$	(-1, 1)	1	No
$(\{b,c\},\{d,0\})$	(1, -1)	1	No
$(\{a,b\},\{d,0\})$	(1, 0)	1	Yes
$(\{a,0\},\{d,0\})$	(1, 1)	1	Yes
$(\{c\}, \{d, f, 0\})$	(1, -2)	0	No
$({a,b,c},{d,e,f})$	(0, 0)	3	Yes

140 B. Huber and B. Sturmfels

Fig. 2. Inducing the polyhedral subdivision Δ_{ω} .

By Bernstein's theorem, each cell C contributes $\mathcal{M}(C)$ branches of the form (7). A branch converges to an affine solution as $t \to 0$ precisely when all the exponents γ_i^C are nonnegative, while the ith coordinate of such a solution can only vanish when $\gamma_i^C > 0$. The rest of the theorem now follows by a simple deformation argument.

The construction in the proof of Theorem 2 gives rise to the following algorithm.

Algorithm 4 (Homotopy method for finding all roots of a sparse system F in C_I).

- (1) Find the *I*-stable mixed cells of Δ_{ω} and their normals γ^{C} (using the methods in [4] and [10]).
- (2) For each *I*-stable mixed cell *C*:
 - (a) Compute all solutions z of (8) (using Algorithm 4.1 of [4]).
 - (b) For each solution z in (a) set z_i to zero if $\gamma_i^C > 0$.

We close with a sufficient (but not necessary) condition for the hypothesis in the second part of Theorem 2. Lemma 5 appears in a different guise in Proposition 1.4 of [3]. The containment " $f_i \in \langle x_j : j \in J \rangle$ " is equivalent to the combinatorial condition "supp(\mathbf{q}) $\cap J \neq \emptyset$ for each $\mathbf{q} \in \mathcal{A}$." A more complicated but necessary and sufficient condition is presented in Lemma 3 of [8].

Lemma 5. The system F has only finitely many zeros in C_I if, for each subset J of I,

$$\#J \ge \#\{i \in \{1, \dots, n\}: \ f_i \in \langle x_i: \ j \in J \rangle\}.$$
 (9)

Proof. We abbreviate $O_J := \{ \mathbf{x} \in \mathbb{C}^n : x_j = 0 \text{ if and only if } j \in J \}$. Note that $O_J \simeq (\mathbb{C}^*)^{n-\#J}$ and $\mathbb{C}_I = \bigcup_{J \subseteq I} O_J$. Let n_J be the cardinality on the right-hand side of (9). The restriction of f_i to O_J is zero precisely when f_i lies in the ideal $\langle x_j : j \in J \rangle$. Thus the restriction of F to O_J is a system of $n-n_J$ nonzero Laurent polynomials in $n-\#J \leq n-n_J$ variables. Theorem 1 ensures that it has at most finitely many zeros in O_J .

References

- D. N. Bernstein: The number of roots of a system of equations, Functional Analysis and Its Applications 9 (1975), 1-4.
- 2. T. Bonnesen and W. Fenchel: Theory of Convex Bodies, BCS Associates, Moscow, ID, 1987.

- 3. D. Eisenbud and B. Sturmfels: Finding sparse systems of parameters, *Journal of Pure and Applied Algebra* **94** (1994), 143–157.
- B. Huber and B. Sturmfels: A polyhedral method for solving sparse polynomial systems, Mathematics of Computation, 64 (1995), 1541–1555.
- 5. T. Y. Li and X. Wang: The BKK root count in \mathbb{C}^n , Mathematics of Computation, to appear.
- 6. J. Maurer: Puiseux expansions for space curves, Manuscripta Mathematica 32 (1980), 91-100.
- 7. M. Rojas: A convex geometrical approach to counting the roots of a polynomial system, *Theoretical Computer Science* 133 (1994), 105-140.
- 8. M. Rojas and X. Wang: Counting affine roots of polynomial systems via pointed Newton polytopes, *Journal of Complexity*, to appear.
- J. Verschelde, P. Verlinden, and R. Cools: Homotopies exploiting Newton polytopes for solving sparse polynomial systems, SIAM Journal on Numerical Analysis, 31 (1994), 915–930.
- 10. J. Verschelde, K. Gatermann, and R. Cools: Mixed volume computation by dynamic lifting applied to polynomial system solving, *Discrete and Computational Geometry*, to appear.

Received February 21, 1995, and in revised form August 10, 1995.