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Efficient Inverse Kinematics
for General 6R Manipulators

Dinesh Manocha and John F. Canny

Abstract—The inverse kinematics of serial manipulators is a
central problem in the automatic control of robot manipulators.
The main interest has been in inverse kinematics of a six revolute
(6R) jointed manipulator with arbitrary geometry. It has been
recently shown that the joints of a general 6 R manipulator can
orient themselves in 16 different configurations (at most), for
a given pose of the end-effector. However, there are no good
practical solutions available that give a level of performance
expected of industrial manipulators. In this paper, we present
an algorithm and implementation for efficient inverse kinematics
for a general 6 R manipulator. When stated mathematically, the
problem reduces to solving a system of multivariate equations.
We make use of the algebraic properties of the system and the
symbolic formulation used for reducing the problem to solving a
univariate polynomial. However, the polynomial is expressed as a
matrix determinant and its roots are computed by reducing to an
eigenvalue problem. The other roots of the multivariate system
are obtained by computing eigenvectors and substitution. The
algorithm involves symbolic preprocessing, matrix computations
and a variety of other numerical techniques. The average running
time of the algorithm, for most cases, is 11 milliseconds on an
IBM RS/6000 workstation. This approach is applicable to inverse
kinematics of all serial manipulators.

I. INTRODUCTION

HE INVERSE kinematics problem for general serial ma-

nipulators is fundamental for computer controlled robots.
Given the pose of the end effector (the position and ori-
entation), the problem corresponds to computing the joint
displacements for that pose. The most interesting case has been
that of serial manipulators with six joints. The complexity of
inverse kinematics of a general six jointed manipulator is a
function of its geometry. While the solution can be expressed
in closed form for a variety of special cases, such as when
three consecutive axes intersect in a common point, no such
formulation is known for the general case. The main interest
has been in a 6 R manipulator, that has six revolute joints, the
links are of arbitrary length and no constraints are imposed
on the geometry of various links. Iterative solutions (based on
numerical techniques) to the inverse kinematics for general 6 R
manipulators have been known for quite some time. However,
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they suffer from two drawbacks. Firstly, they are slow for
practical applications, and secondly they are unable to find
all the solutions. As a result, most industrial manipulators are
designed sufficiently simply so that a closed form solution
exists.

In the absence of a closed form solution, [26] claim that the
problem of inverse kinematics for a general 6 R manipulator
is considered solved under the following conditions.

1) A tight upper bound on the number of solutions has

been established.

2) An efficient, numerically sound method for computing

all solutions has been developed.
At the same time, we feel it is important that the solution be
able to provide a level of performance expected of industrial
manipulators.

The need for fast algorithms for inverse kinematics of
general manipulators has been felt in kinematic design, kine-
matic calibration and goal-directed computer animation as
well. Kinematic design corresponds to generating appropriate
configuration of manipulators given a set of kinematic task
specifications [16], [17]. Given the kinematic requirements as
workspace volume, maximum reach and maximum positional
error the problem is reduced to manipulating algebraic equa-
tions, whose variables are the manipulator parameters [17].
The current solutions are restricted to 6 R manipulators with
closed form solutions, which limits the class of manipulators
that can be used for kinematic design [17].

The need for kinematic calibration arises due to manufac-
turing errors in machining and assembly of manipulators. This
results in discrepancies between the design parameters and
physical structure and can produce significant errors between
the actual and predicted positions and orientations of the end
effector. The solution to this problem involves identification
of the individual kinematic parameters and incorporating them
into manipulator’s controller to improve positional accuracy.
Given the accurate kinematic parameters, a number of methods
have been proposed to calibrate and compensate for the
kinematic errors in robot manipulators with closed form solu-
tions [8], [25]. However, a practical solution for the inverse
kinematics of general manipulators eliminates the need for any
algorithms for compensation of kinematic errors.

The inverse kinematics problem for six revolute joints has
been studied for more than two decades. The earlier work
includes that of Pieper [18] and Roth et al. [22]. The first
constructive solution to the problem was given by [1], in the
form of determinant of a 12 x 12 matrix, whose entries were
quartic polynomials in the tangent of the half-angle of one of
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the joint variables. Later [5] provided a 32 degree polynomial
in the tangent of the half-angle of one of the joint variables.
Tsai and Morgan used a higher-dimensional approach to the
inverse kinematics problem [24]. In particular, they cast the
problem as eight second-degree equations and solved them
numerically using polynomial continuation. This is in contrast
with the earlier approaches, where a single polynomial in the
tangent of the half-space of one of the joint variables was
derived (referred as the lower dimensional approach). Based
on their implementation, [24] conjectured that this problem
has at most 16 solutions. The first conclusive proof of the
fact that the problem can have at most 16 solutions was given
by [19], based on the fact that the remaining 16 solutions to
the 32 degree polynomial in [5] have purely imaginary parts.
Finally, [9], [10] gave the exact solution in lower dimensions
by reducing the problem to a 16 degree polynomial. More
recently, [20], [21] used dialytic elimination to derive a 16
degree polynomial in the tangent of the half-angle of a joint
variable. In [18], [15], examples of a 6R manipulator and
a pose of the end effector are given such that the inverse
kinematics problem has 16 solutions. As a result, 16 is a tight
bound on the number of solutions.

Algorithms based on the higher as well lower dimensional
approach have been implemented. It turns out that the problem
of computing roots of polynomials of degree 16 can be ill-
conditioned [27]. As a result, in many cases extra precision is
required to accurately compute the solutions to the inverse
kinematics problem. Moreover, implementations based on
continuation methods are rather slow for practical applications.
In particular, the best known algorithm takes about 10 seconds
on an average of CPU time on an IBM 370 — 3090 using
double precision arithmetic [26], which falls short of what is
expected of industrial manipulators.

In this paper we present an algorithm and implementation
for efficient inverse kinematics for a general 6 R manipulator.
The algorithm makes use of symbolic manipulation used in
deriving a univariate polynomial and matrix computations.
In particular, we use the symbolic formulation presented by
Raghavan and Roth [20]. However, the algorithm can also be
used along with the formulations given in [1], [9]. The main
contribution of our algorithm lies in the fact that we use matrix
operations and reduce the problem to an eigenvalue problem as
opposed to finding roots. These matrix operations correspond
to manipulating matrix polynomials, constructing equivalent
companion matrices and computing their eigendecomposition.
The main advantage of this technique lies in its efficiency and
numerical stability. The algorithms for computing eigenvalues
and eigenvectors of a matrix are backward stable' and fast
implementations are available as part of linear algebra pack-
ages [2], [7]. This is in contrast with expanding a symbolic
determinant to compute a degree 16 polynomial and thereby,
computing its roots. For almost all instances of the problem
we are able to compute accurate solutions using 64 bit IEEE
floating point arithmetic. The average running time of the
algorithm is 11 milliseconds on an IBM RS/6000.

! An eigendecomposition algorithm is backward stable if it computes the
exact eigendecomposition of a slightly perturbed matrix.

The rest of the paper is organized in the following manner.
In Section II, we review the inverse kinematics problem
and reduce the problem to solving a system of multivariate
polynomials. Section III introduces matrix polynomials and
discusses their properties, which are used in finding solutions
of non-linear polynomial equations. In Section IV we discuss
the algorithm for real time inverse kinematics for general 6 R
manipulators. We highlight the symbolic-numeric interface in
the implementation of the algorithm. The symbolic preprocess-
ing is performed once for a given class of manipulators and the
numeric computation is performed in real time for a given pose
of the end-effector. The numerical accuracy, implementation
and performance of the algorithm are discussed in Section V.
In Section VI we discuss extensions of the algorithm to general
serial manipulators. A preliminary version of this paper had
appeared in [13].

II. INVERSE KINEMATICS

A. Problem Formulation

We use Denavit-Hartenberg formalism, [4], to model a 612
manipulator. Each link is represented by the line along its joint
axis and the common normal to the next joint axis. In the case
of parallel joints, any of the common normals can be chosen.
The links of the 6 R manipulator are numbered from 1 to 7.
The base link is 1, and the outermost link or hand is 7. A
coordinate system is attached to each link for describing the
relative arrangements among the various links. The coordinate
system attached to the ¢th link is numbered :. More details of
the model are given in [23], [24]. The 4 x 4 transformation
matrix relating ¢ 4+ 1 coordinate system to ¢ coordinate system
is [23]:

Ci —Sihi Sl GG
L S; Ci)\'i —Cilt;  QiS;
Ai = 0 p A d; M
0 0 0 1

where

s; = sind;, ¢; = cosf;, 6; is the ith joint rotation angle,
b = sinay, A; = cosq;, « : twist angle,

a; : length of link ¢ + 1, d; : offset distance at joint 4.

For a given robot with revolute joints we are given the a;’s,
d;’s, p;’s and A;’s and the pose of the end-effector, attached
to link 7. This pose is described with respect to the base link.
We represent it as:

e my 12 g
Ly my ny gy
. m, n, q.
0 0 0 1

Ahand =

The problem of inverse kinematics corresponds to comput-
ing the joint angles, 6, 65,83, 04, 85 and f¢ such that

A1 A2 A3 A3 A5 Ag = Apand- (2)
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The left hand side entries of the matrix equation given above
are functions of the sines and cosines of the joint angles.
Furthermore, this matrix equation corresponds to 12 scalar
equations. Since the matrix formed by the first 3 rows and 3
columns of Ap,rg is orthonormal, only 6 of the 12 equations
are independent. Thus, the problem of inverse kinematics of
general 6R manipulators corresponds to solving 6 equations
for 6 unknowns.

B. Raghavan and Roth Solution

We briefly describe the lower dimensional approach de-
scribed by Raghavan and Roth [20]. They reduce the mul-
tivariate system to a degree 16 polynomial in tan(%"), such
that the joint angle #3 can be computed from its roots. The
other joint angles are computed from substitution and solving
for some intermediate equations.

Raghavan and Roth rearrange the matrix equation, (2), as

A3AsAs = A7 AT Apana AL 3)

As a result the entries of the left hand side matrix are functions
of 63,0, and 5 and the entries of the right hand side matrix
are functions of 61, 63 and 0. This lowers their degrees and
reduces the symbolic complexity of the resulting expressions.
On equating the corresponding entries of the matrix equation,
(3), and after simplification, these equations are expressed in
a linear formulation given as:

wy (o
s1c2 C485
c1s2 C4Cs5
cic2 | _
@[22 | =) 5 @
1 s
(55} s5
S2 cs
C2 1

where @ is a 14 x 8 matrix, whose entries are functions of the
parameters of the manipulator and the pose of the end effector.
P is a 14 x 9 matrix, whose entries are linear functions of s3
and c¢3 and their coefficients are functions of the manipulator
parameters and the pose. The relationship expressed in (4)
helps us in eliminating four of the five variables.

Raghavan and Roth use 8 of the 14 equations in (4) to
eliminate the left hand side terms, expressed as functions of §;
and 6, in terms of the right hand side, expressed as functions
of 03, 04 and 5. After substituting

1- 22

T 1442

i

2.73,'

8 =
7 1+"Iff’

Ci

where z; = tan(%), and taking power products, the system

is represented as:

Ay
Ay

A
2
A22 A23 o Ty
2
A Aps T4T5

A23

=0 )

where A;; is a 3 x 3 matrix and o is the 3 x 3 null
matrix. The entries of A;; are quadratic polynomial in z3.
Let us represent the left hand side 12 x 12 matrix by X. Its
determinant is a polynomial of degree 24 in z3. It turns out
that (1 + z2)* divides the determinant and the rest of the 16
roots corresponding to 3 component of the inverse kinematics
solution. In the next section we show the equivalence between
this formulation and the non-linear eigenvalue problem. Given
63, other angles are computed by solving a system of linear
equations [20].

III. MATRIX POLYNOMIALS

In this section, we review some literature on matrix polyno-
mials and present techniques to solve the non-linear eigenvalue
problem. If Ag, Ay, -, Ag are m x m numeric matrices, then
the matrix-valued function defined by

L)) =Tk AN

is called a matrix polynomial of degree k. When Ay = I, the
identity matrix, the matrix polynomial is said to be monic.
More details on matrix polynomials and their properties are
given in [6]. In our application we will be dealing with matrix
polynomials in the context of solving non-linear polynomial
equations (as shown in (5)). Our main interest is in finding
roots of the polynomial equation

P(A) = Determinant(L(\)) = 0. (6)

A simple solution to this problem is expand the determinant
and compute the roots of the resulting polynomial. However,
the resulting approach is numerically unstable and expensive
in practice.

Let us consider the case when Ay, is a non-singular and well
conditioned matrix. As a result computation of A;l does not
introduce severe numerical errors. Let

L)) =A'L()), and 4; = A;'A;, 0<i<k.

L()) is a monic matrix polynomial. Its determinant has the
same roots as that of P()X). Let A = Ao be a root of the
equation

Determinant(Z())) = 0.
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As a result L()g) is a singular matrix and there is at least
one non trivial vector in its kemnel. Let us denote that m x 1
vector as v. That is

L\ v =o, ©)

where o is a m x 1 null vector.

Theorem I: Given the matrix polynomial, L(}) the roots
of the polynomial corresponding to its determinant are the
eigenvalues of the matrix

o I, 1) cee )
o o I, 0
c= : : : (®)
o o o I,
-4, -A; -4 —Apy

where o and I,,, are m x m null and identity matrices, respec-
tively. Furthermore, the eigenvectors of C corresponding to
the eigenvalue A = Ao are of the form:

[v dov Mv - AE1y)T

where v is the vector in the kernel of L(\) as highlighted
in (7).
Proof: The eigenvalues of C correspond to the roots of

Determinant(C — sI) = 0.

C is a matrix of order mk. Let s = so be an eigenvalue of
C. As a result there is a non-trivial vector V' in the kernel of
C — sol. Furthermore, we represent V' as

V=[v vy o]

and each v; is an m X 1 vector. The relationship between C,
so and V can be represented as

o I, - o v v
o o - o v vy
: =so| : |- O
o o I k-1 k—1
Ay —A —Ap_ Ui v,

Multiplying the submatrices of C' with the vectors in V and
equating them with the vectors on the right hand side results in:

V2 = SoV1; U3 = S0V2; " Uk = SoUk—1
and
—ngl - leg — ngg — e = Zk_lvk = SoUk.-
These relations imply
v; = 36"11)1. for 1 < 7 < k.

and
—(Zo + soAq + S%Zg + -4 S’g_lzk_l + Sglk)‘vl =o.

Equating the above relation with (7) results in the fact that sg
is a solution of L(A\) = 0 and w; is a vector in the kernel of
L(so) = 0. Thus, every eigenvalue of C is a root of P()).
Since the leading matrix of L()\) is non-singular, P()\) is a

polynomial of degree mk. Furthermore, C is a matrix of order

mk and therefore, has mk eigenvalues. Thus, all the roots of
P()) correspond to the eigenvalues of C. Q.E.D.

The matrix polynomials have been used to solve general
systems of non-linear polynomial equations. More details are
given in [11], [12]. The relationship between the eigenvalues
of C and the roots of P(A) has also been proved using
similarity transformations in [6]. Many a time the leading
matrix Ay is singular or close to being singular (due to high
condition number). It may still be possible to reduce the
problem to an eigenvalue problem using linear transformations
(explained in detail in Section IV-C). However, this technique
may not work at times and in these cases we reduce the
problem to a generalized eigenvalue problem.

Theorem 2: Given the matrix polynomial, L()\) the roots
of the polynomial corresponding to its determinant are the
eigenvalues of the generalized system C1 A — Cq, where

m O o
o I, o
Cr = z
o I, o
o o A
0 I, 0
o o 0
C; = :
o 0 I,
Ay —A —Ay_

where o and I,, are m X m null and identity matrices,
respectively.
The proof of this theorem is similar to that of Theorem 1.

IV. ALGORITHM

In this section we describe our algorithm in detail. The
initial steps in our algorithm make use of the results presented
in [20]. However, we perform symbolic preprocessing and
make certain checks for condition numbers and degeneracy
to improve the accuracy of the overall algorithm. The overall
algorithm proceeds in the following manner:

1) Symbolic Compuration: For any class of serial manipu-
lators we perform symbolic preprocessing for simplifica-
tion, minimizing numerical errors and the computation
at run time. In particular, we treat the a;’s, d;’s, A;’s,
1;’s and the entries of the right hand side matrix Apq,4
as symbolic constants. As a result, express the entries
of the 14 x 9 matrix P and 14 x 8 matrix @, as
shown in equation (4), as functions of these symbolic
constants. Many geometric properties of manipulators
can be interpreted from the linear algebra structure of
these matrices. It corresponds to symbolic elimination
and is performed using the properties highlighted in
[20]. However, it is performed only once for general 6 R
manipulators. An equivalent symbolic elimination can
be performed for a serial manipulator with prismatic
and revolute joints.

2) Substitution of Manipulator Parameters: Given a par-
ticular 6 R manipulator, substitute the numerical values
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corresponding to the link lengths, offset distances and
twist angles in the symbolic formulations derived above.
The substitution results in numerical matrices P and @,
as shown in (4).

3) Numerical Conditioning: Compute the rank of @ using
SVD (singular value decomposition). If @ has rank 8
then this manipulator can have up to 16 solutions for
any pose of the end-effector. However, the rank may be
less than 8 and as a result we obtain an over-constrained
system. In this case the upper bound on the number of
solutions may be less than 16. For example, a PUMA
manipulator has a total of at most 8 solutions for any
pose of the end-effector [23].

4) Numeric Elimination: Eliminate the variables #; and 8,
from (4). This elimination is performed by computing a
minor of maximum rank of ) and using that minor to
represent f; and 6, as functions of 8, and 65.

5) Rank Computation: After eliminating #; and 6, we
obtain a matrix Y. The actual number of rows in X is
equal to R = (14—rank(Q))) > 6. Take any of the 6 rows
of X' (among R) and substitute for sines and cosines of
03,04 and 05 in terms of z3,z4 and x5, respectively. In
case there are more than 6 rows we recommend taking
6 distinct linear combinations.

6) Reduction to Eigenvalue Problem: Reduce the problem
of computing roots of Determinant(X) = 0 to an
eigenvalue problem. The eigenvalues of the resulting
24 X 24 matrix correspond to the root z3 and the
corresponding eigenvectors are used to compute the
values of z4 and x5. Substitute these relations in (4)
and (3) to compute the joint angles 6;, 6, and .
The algorithm also involves clustering eigenvalues to
accurately compute eigenvalues of multiplicity greater
than one. Depending upon the condition number of the
matrices involved, the problem may be reduced to a
generalized eigenvalue problem.

7) Improving the Accuracy: Compute the condition number
of the eigenvalues. In case the condition number is
high, improve the accuracy of resulting solution by
Newton’s method. The solutions computed above are
the starting points for Newton’s method and its quadratic
convergence gives us high accuracy in a few steps.

These steps are explained in detail in the following sections.

A. Symbolic Preprocessing

The algorithm performs symbolic preprocessing for the
inverse kinematics solution. It treats the Denavit-Hartenberg
parameters and the entries of Apg,g as symbolic constants.
These symbolic constants along with the variables 6; are
used in the symbolic derivation of the equations. We use
the computer algebra system, MAPLE, for the derivation
and simplification of the expressions. The coefficients of the
equations are used to compute the entries of the matrices P
and Q. As a result, we are able to express the entries of P and
@ as polynomial functions of the symbolic constants. In the
case of P, each entry is of the form fsin(f3) + ycos(63) + &,
where 3.~ and 6 are functions of the symbolic constants.

The matrix @ has a special structure. In particular many of
its entries are zero and as a result the system of equations,
(4), can be expressed as two different systems of equations of
the form [20]:

8485
84Cs5
C485
C4Cs5
84
Cq
EH

(Ql)(ii) = (P1) (10)

Cs
8485
840
S$1C2 CaCs
C182

(@) =(P2)| s4

C1C2 c
4
89 55
C2 cs
1

where Q,Q,, P1, P are 6 X 2,8 x 6,6 x 9,8 X 9 matrices,
respectively. In particular, we break the set of the 14 equations
into sets of 6 and 8 equations. Q;, @, are submatrices of @
and P;, P, are submatrices of P.

an

B. Numerical Substitution and Rank Computation

The symbolic preprocessing is performed offline. Given the
manipulator geometry and the pose of the end-effector, the
numerical computations are performed online. In particular,
given the Denavit-Hartenberg parameters of a manipulator, we
substitute the a;’s, d;’s, A;’s and p;’s into the functions used
to represent the entries of Py, Py, Q,, Q,. These computations
are only performed once for a manipulator and are independent
of the pose of the end-effector. As a result, they are categorized
under pre-processing computation. Given the pose of the
end-effector, we substitute them to compute the entries of
P, Py,Q,,Q,. Let the corresponding numerical matrices
(obtained after substitution) be P1, Py, @, Q,.

We use singular value decompositions to compute the ranks
of Q_1 and Q, [7]. The singular vectors obtained are also used
to eliminate #; and 65 from (10) and (11). In particular, let
the singular value decomposition of Q; be expressed as:

Q, =UxvT

where U, % and VT are 6 x 2, 2 x 2 and 2 x 2 matrices,
respectively. Initially we compute the singular values, a1,02
of Q,. If both the singular values are non-zero, Q, has full

rank and let Q; = Q. If cither of the singular values, o; is
close to 0.0, we conclude that Q; does not have full rank. In
this case we represent

a,— i
£ 0

where ¢ is a user defined constant to test the rank deficiency
of the matrix. Furthermore we compute the elements of U and

0’126
o; <€
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V, and represent
p— 2 1
le] = EkzlakU;ijkA

@, has the property that a small perturbation does not
decrease the rank of the matrix. It turns out that this property
has significant impact on the accuracy of the rest of the

algorithm. We use @, for eliminating 6,6, in the system
of equations (10) to obtain

85485
84C5
€485
C4Cs
84
Cq
S5
Cs

(12)

We perform Gaussian elimination with complete pivoting on
@, and corresponding row and column operations are carried

on the elements of P. Depending on the rank of Q,, whether
0.1 or 2, we obtain 6.5 or 4 equations, respectively, in sines
and cosines of 6, 65.

In a similar fashion we compute the rank of Q,, as repre-
sented in (11). In case either of thg singular values is close

to 0.0, we recompute the matrix @, from the singular value
decomposition of @,. Otherwise 6; = Q,. The modified
matrix is usec/i in eliminating ¢,,6; from (11). Depending on
the rank of @,, we may obtain anywhere from 2 to 8 equations
after elimination.

C. Reduction to Eigenvalue Problem

In this section, we reduce the problem of root finding to an
eigenvalue problem. Moreover, we exploit the structure of the
resulting matrix for efficiently computing its eigenvalues.

We are given a 12 x 12 matrix, X, whose entries are
quadratic polynomials in x3. Our problem is to solve the
system of equations

T3}

Jv=DX| ", | = (13)

OO OO O OO OOCO

We express the matrix as
3 = Az} + Bz3;+C (14)

where A. B and C are 12x 12 matrices consisting of numerical
entries. We compute the condition number of A. If the matrix

is singular, its condition number is infinity. Let us consider
the case, when the matrix A is well conditioned. We take the
matrix equation, (14), and multiply it by A=1. Let

Y =1Iz3+ A"'Bzy + A7'C.

In practice A“lg and A™'C are computed by linear equation
solvers. Given X/, we use Theorem | to construct a 24 x 24
matrix M of the form

o 1
M= (—A—lc —A‘lB>'

It follows from the structure of M that the eigenvalues of
M correspond exactly to the roots of Determinant(X)) = 0.
Furthermore, the eigenvectors of M, corresponding to the
eigenvalue z3 have the structire

v=(%)

where v is the vector corresponding to the variables in (13).
Thus, the eigenvectors of M can be used to compute the roots
of the equations in (13).

In many instances the matrix A in (14) may be ill-
conditioned. One example of such a case occurs, when one of
the solution of inverse kinematics has 65 ~ 180. As a result,
T3 = ttm(%) ~ oc. Therefore, A is nearly singular. We
take the matrix equation, (14), and reduce it to a generalized
eigenvalue problem by constructing two matrices, M1 and M

I I
M=o 4= (% )

where o and I are 12 x 12 null and identity matrices, re-
spectively. Furthermore, the roots of Determinant (X) =
0, correspond exactly to the eigenvalues of the generalized
eigenvalue problem M; — x3Mj,, according to Theorem 2.
The eigenvectors have the same structure as (15).

Computing the eigendecomposition of a generalized eigen-
value problem is costlier than the eigenvalue problem by
a factor of 2.5 to 3. In most cases, we can perform a
linear transformation and reduce the problem to an eigenvalue
problem. In particular, we perform a transformation of the
form

(15)

(Lfg-’-b
5= 16
z3 T+ d (16)

where a,b,c,d are random numbers. As a result of this
transformation, (14) transforms into
X1 =(a®> A+ac B+ c? C)T2 + (2ab A+ an
(ad + bc) B+ 2cd C)T3 + (b A+ bd B + d2 C).

Let A = a> A+ ac B+ ¢? C. In most cases A is well
conditioned. The only exceptions arise when

G 3) (% )

is a singular pencil. A,B,C may have common singular
pencils. In the latter case, A is ill conditioned for all choices
of a,b,c,d.
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We try this transformations for a few choices of a, b, ¢, d and
compute the condition number of A. The cost of estimating
condition number is rather small as compared to computing the
eigendecomposition of the matrix. If A is well conditioned,
solve for Determinant(X;) = 0 by reducing it to an eigen-
value problem. Given T3, apply the inverse transformation to
compute z3. The eigenvectors have the same structure as (15),
except that 3 is replaced by Ts.

V. IMPLEMENTATION

We have implemented the algorithm on an IBM RS/6000.
We have used many routines from EISPACK and LAPACK for
matrix operations {2]. These routines are available in Fortran
and we interfaced them with our C programs. Many of the
algorithms for matrix computations have been specialized to
our application. The details are given below.

A. Eigendecomposition

In the previous section we reduced the problem of root
finding to an eigenvalue problem. The 24 x 24 matrix, M,
has 24 eigenvalues. However, following the properties of the
symbolic formulation in [20], 8 of the eigenvalues correspond
to the roots of the polynomial (1 + z2)* = 0. In other words,
¢ and —¢ are eigenvalues of M of multiplicity 4 each, where
¢ = v/—L. If we transform the variable 3, as shown in (16),
these eigenvalues are suitably transformed. We make use the
structure of M along with the QR algorithm for eigenvalue
computation [7]. In the double shift QR algorithm we chose
the shift value for the first few iterations corresponding to
¢ and —¢. It uses at most four iterations of the double shift
algorithm to reduce the problem to computing the eigenvalues
of a 16 x 16 matrix.

B. Clustering Eigenvalues

In many instances the solution has a root of multiplicity
greater than one. Such cases arise when the manipulator is at
a singular configuration. As such the problem of computing
multiple roots of polynomial equations can be ill-conditioned.
In other words the condition numbers for such eigenvalues
can be high and the solution therefore, is not accurate. In
most instances of the problem, we have noticed that there is a
symmetric perturbation in the multiple roots. For example, let
z3 = a be a root of multiplicity k£ of the given equation.
The floating point errors cause the roots to be perturbed
and the algorithm computes k different roots g, -, .
Moreover, | a@ — a; | may be relatively high. Let a,, =
eutartoter In many cases | o — oy, | is relatively small
and ay, is very close to the multiple roots. It turns out that
each of the perturbed eigenvalues, «;, can be ill-conditioned;
however, the arithmetic mean of the perturbed eigenvalues,
am is well-conditioned [3]. We actually verify the accuracy
of these computations by computing the condition number
of the eigenvalue and the condition number of a cluster of
eigenvalues. Routines to compute this condition number of a
cluster are available as part of LAPACK.
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C. Eigenvector Computation

The eigenvector corresponding to a real eigenvalue is com-
puted by solving a quasi-upper triangular system [7]. Given an
eigenvector V', we use its structure, (15), to accurately compute
z4 and x5 from it. However, due to floating point errors each
component of the eigenvector undergoes a slight perturbation.
Each term of the vector has the same bound on the maximum
error occurred due to perturbation [28]. As a result, terms of
maximum magnitude generally have the minimum amount of
relative error. We use this property in accurate computation of
x4 and zs5. Given the eigenvector V, let

v =7
7 V23w

Thus, v; corresponds to elements of V', whose relative error
is low. x4 and 75 can be computed from v; by solving for

|.’E3|Sl
|IE3]>1'

V1 .TEI%
(%] .'Bi!l},s
v3 11:2
V4 (EZI%
Us 25315
2
n=|% =] "%, (18)
v7 T4y
v T4Ts
Vg Ty
V10 .’IJ%
V11 Ts
V12 1

Therefore, 4 and x5 corresponds to ratio of two terms of
v1. Initially, we decide whether | z4 |> 1 or | z4 |< 1 by
comparing the magnitude of v; and ve. A similar computation
is performed for determining the magnitude of z5. Depending
upon their magnitudes, we tend to use terms of maximum
magnitude such that their ratios correspond to x4 and z5. As
a result we minimize the error.

D. Computing All Joint Angles

Given a triple (3, 24, Z5) corresponding to a solution of the
12 equations represented as the 12 x 12 matrix X, as shown
in (5). We use these solutions to compute the rest of the joint
angles. Given the values of s3, cs, s4, ¢4, S5, ¢5, solve for the
unknowns si,c; based on the linear relationship shown in
(10). Similarly solve the linear system (11) for the unknowns
s2, c2. These five joints angles, 6, - - - , 05 are substituted into
(3) to compute fg.

E. Improving the Accuracy

With each eigenvalue, we have the knowledge of its con-
dition number and therefore, the accuracy of the resulting
solution. If we desire further accuracy, we use these solutions
as start points for Newton’s iterations on the algebraic equa-
tions obtained from (2). In most instances we have been able
to compute the joint angles up to 10 digits of accuracy, by
using one or two Newton iterations (as it has local quadratic
convergence).
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TABLE 1
THE DENAVIT HARTENBERG PARAMETERS OF A 6 R MANIPULATOR
Number Link length Offset Twist angle

i a; d; a;

1 03 0.0 90.0
2 1.0 0.0 1.0
3 0.0 0.2 90.0
4 1.5 0.0 1.0
5 0.0 0.0 90.0
6 0.0 0.0 1.0

F. Performance

We have applied our algorithm to many examples. In
particular, we used it on 21 problem instances given in [26]
and verified the accuracy of our algorithm. All these problems
can be accurately solved using double precision arithmetic.
In many cases we are able to compute solutions up to 11-12
digits of accuracy.

For most problems, the algorithm takes about 11 millisec-
onds on an average on an IBM RS/6000. About 75-80% of the
time is spent in the QR algorithms for computing the eigen-
decomposition. Thus, better algorithms and implementations
for eigendecomposition can improve the running time even
further.

In a few cases the algorithm takes as much as 25 millisec-
onds on the IBM RS/6000. In these instances the matrices
A, B.C in (14) are ill-conditioned and have singular pencils.
As a result we reduce the resulting problem to a generalized
eigenvalue problem, which slows down the algorithm.

Example: Let us consider the manipulator presented in [26]
along with a pose of the end effector. This is problem 6 in
[26] and corresponds to a slight variation of the manipulator
presented in [15]. For this configuration the problem of inverse
kinematics has 16 real solutions. The robot parameters are
given in Table L

The position and orientation of the end effector and is given
by the matrix

—0.7601 —0.6416 0.1022 —1.1401
Apang = 0.1333 0.0 0.9910 0.0
—0.6359 0.7669 —0.0855 0.0
0 0 0 1

After substitution into the symbolic matrices, we obtain

—1.140 —0.0
0.0910 —0.990
_ —0.0  0.684
@ = —0.297 —0.027
0.0 0112
—0.110 —1.377

0.0

0.0

0.0
0.99

27 |-0.027
—0.113

0.0
1.199

0.0 0.0
0.0 —-1.14
0.99 0.0
0.0 0.091
-0.113  0.297
0.027 —0.0
1.20 0.068
0.0 —0.126

-1.14 =00
-0.0 -0.30
0.09 0.099
0.0 0.0
-0.0 1.129
—-0.297 0.0
—0.127 0.138
—~0.067 —0.062
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—0.30

0.0
0.0

—0.099

0.0

-1.129
—0.062
-0.13

The entries of P, and P, are functions of s3 and c¢3. P; is

an 6 X 9 matrix,
0 0.0 00 0.0 00 00 00 0.0 0.
0.0 0.0 0.0 00 00 00 0.0 3e4 0.0
— 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0
Py = 3+
0.0 0.99 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 -.003 —.003 0.0 0.0 0.0 0.0 —0.043 0.0
.0 —-039 -039 00 0.0 00 0.0 -=3.0 0.0
0 00 0.0 00 00 0.03 00 0.0 0.
0.0 0.017 0.017 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 00 00 00 00 00 0.0 0.0 34
0.0 0.0 0.0 00 00 00 00 -1.75 0.0
0.0 -10 -1.0 00 0.0 0.0 0.0 6.1e-5 0.0
b.O 0.11 —-0.02 0.0 0.0 0.0 0.0 0.017 0.0
0.0 0.0 0.0 0.0 1.5 0.0 0.0 00 0.2
1.0 00 00 -1.0 00 00 00 0.0 0.0
0.0 0.0 0.0 0.0 06 0.0 0.0 0.0 1.9
0.2 00 00 -020 00 00 1.5 0.0 0.10
0.017 0.0 0.0 —0.044 00 0.0 0.0 0.0 —0.03
\-1.29 0.0 0.0 -321 0.0 0.0 -0.6 0.0 0.68
Similarly, Ps is a 8 x 9 matrix
.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
— 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.017 0.0
Py = c3+
0.0 0.026 0.0 0.0 0.0 0.0 0.0 3.5e3 0.0
0.0 0.2 02 00 0.0 00 00 15 0.0
0.0 1.29 -3.21 0.0 0.0 0.0 0.0 0.6 0.0
.0 —0.017 -69e3 0.0 0.0 0.0 0.0 —0.11 0.0
0 00 00 00 00 00 00 00 O
0.0 0.0 00 00 00 -15 00 0.0 0.0
0.0 0.0 0.0 0.0 0.0 00 00 -0.02 0.0
0.0 -1.0 -10 00 00 00 0.0 0.0 0.0 s34
0.0 0.02 0.2 0.0 0.0 00 0.0 1.5 0.0
0.0 —0.044 —0.017 0.0 0.0 0.0 0.0 -35¢3 0.0
0.0 -0.01 0.0 0.0 0.0 0.0 0.0 -0.023 0.0
.0 3.29 121 0.0 00 0.0 00 —-06 0.0
0.0 0.0 0.0 0.0 00 00 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 3.5¢-3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.017 0.0 0.0 -0.017 0.0 0.0 0.0 0.0 0.0
00 00 00 00 00 00 00 0.0 0.0
-1.0 0.0 00 0.1 0.0 00 0.0 -34%3 0.0
-0.40 0.0 0.0 04 00 00 —3.0 0.0 0.0
-0.02 0.0 0.0 -0.11 0.0 0.0 —-0.01 0.0 0.0
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TABLE 11
EIGENVALUES AND THER CONDITION NUMBERS

Number Eigenvalue Condition number
1 3679.99 9.32215
2 -123.591 11.3508
3 -35.0237 7.71049
4 -50.794 8.82256
5 -3.45709 10.4068
6 3.33357 9.10936
7 -1.56894 7.09899
8 1.48377 6.83255
9 -0.673961 6.83255
10 0.637372 7.09899
11 -0.299978 9.10936
12 0.289261 10.4068
13 0.0285521 7.71049
14 -0.00027174 9.32215
15 0.00809121 11.3508
16 0.0196874 8.82256

The matrices @, and @, have no singular values close to
zero. In other words they are full rank matrices. As a result
after numerical elimination we obtain a 6 x 9 matrix X. ¥ is
converted into a matrix polynomial using the transformation
z3 = tan(%) and obtaining the 12 x 12 marix 3, expressed
as a matrix polynomial in z3. The estimated condition number
of the leading matrix is 5000.0.2 As a result, we reduce it
to an eigenvalue problem of a 24 x 24 square matrix. The
eigenvalues are computed using LAPACK routines. The real
eigenvalues and their condition numbers are given in Table II.

Thus, we sce that all the 16 eigenvalues are real. Fur-
thermore, they are computed up to 15 digits of accuracy.
This follows from the fact that the machine constant for
IEEE floating point arithmetic is of the order of 10~16 and
the maximum condition number is of the order of 11. As a
result, the eigenvalues have a relative error bounded by 10~15.
Given the cigenvalues, the rest of the algorithm involves
computation of rest of the corresponding eigenvectors and
joint angles. Let’s illustrate the process for the first eigenvalue,
z3 = 3679.99. As a result,

53 = 0.00054348, ¢3 = —0.999999.

Since | z3 |> 1, we make v; equal to the last 12 elements of
V the eigenvector, as shown in (18). Analyzing the elements
of vy results in | 4 |< 1 and | z5 |< 1. Elements of
maximum magnitude of v; are used to compute z4 and x5
to the best possible accuracy. It results in x4 = 0.34907 and
z5 = 0.49368. These are used to compute s1, 52, cl, 2, 56, c6
by solving a system of linear equations.

Given the sines and cosines of the joint angles, s; and ¢;,
their accuracy is improved by using a few iterations of the
Newton’s method. As a result, it is possible to obtain solutions
to 12 digits of accuracy on this example. The 16 solutions for
this position and orientation of the end-effector are given in
Table III.

2In practice we have been able to linearize matrix polynomials with leading
matrices of condition number up to 1e05 to eigenvalue problems.
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TABLE 1iI
THE JOINT ANGLES CORRESPONDING TO THE SOLUTIONS

i 01 [ 03 04 05 [

1 -96.28 -6.27 179.96  38.48 52.55 -39.40
2 -120.78 17233 -179.07 31.33  -146.71 142.82
3 88.67 -176.72 -176.72 -63.24 157.19 14043
4 113.84 5.30 -177.74  -5592  -62.98  -43.37
5 -178.12  108.19 -147.73  -5.69  -164.67 179.58
6 168.32 -103.89 146.60 -17.24 -171.87 98.16
7 -1294  -105.09 -114.97 3.02 7.41 -79.42
8 2.51 108.07 112.04 -10.52 0.00 -0.10

9 2.51 108.07 -6795 -169.47 179.99 179.89
10 -1294  -105.09  65.02 176.97 172.58  100.57
11 16832 -103.89 -33.39 -162.75 -8.12 -81.83
12 -178.12  108.19 3226 -17430 -1532 -0.41

13 88.67 -176.72 3.27 -116.75  22.80 -39.56
14 -96.28 -6.27 -0.03 14151 127.44  140.59
15 -120.78 17233 0.92 148.66  -33.28  -37.17
16 113.84 5.30 225 -124.07 -117.01  136.62

VI. GENERAL SERIAL MANIPULATORS

The techniques presented have been extended to all serial
manipulators with a finite number of solutions by making use
of the matrix structures [14]. The joints may be prismatic
or revolute. In particular, Raghavan and Roth have shown
that for many cases of manipulators with six joints (revolute
or prismatic) the problem of inverse kinematics reduces to
finding roots of a univariate polynomial [21]. It involves taking
suitable minors of matrix and reduction to an eigenvalue
problem.

VII. CONCLUSION

In this paper we presented an efficient algorithm for inverse
kinematics of a 6 R manipulator of general geometry. The algo-
rithms performs symbolic preprocessing, matrix computations
and reduces the problem to computing the eigendecomposition
of a matrix. The numerical accuracy of the operations used
in the algorithm is well understood. For most instances of
the problem the solution can be accurately computed using
double precision arithmetic. The algorithm has been tested on
a variety of instances and the average running time is 11 ms
on an IBM RS§/6000. We believe that this algorithm gives us a
level of performance expected of industrial manipulators. This
approach can be directly extended to all serial manipulators
with a finite number of solutions.
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