
Appeared in Journal of Symbolic Computation, vol. 13, pp. 485-510, 1992Implicit Representation of RationalParametric SurfacesDINESH MANOCHA and JOHN F. CANNYComputer Science DivisionUniversity of California at BerkeleyBerkeley, CA 94720U. S. A.(Received 27 November 1990)In many applications we need to compute the implicit representation of rational paramet-ric surfaces. Previously, resultants and Gr}obner bases have been applied to this problem.However, these techniques at times result in an extraneous factors along with the im-plicit equation and fail altogether when a parametrization has base points. In this paperwe present algorithms to implicitize rational parametric surfaces with and without basepoints. One of the strength of the algorithms lies in the fact that we do not use multi-variate factorization. The base points blow up to rational curves on the surface and wepresent techniques to compute the rational parametrization of the blow up curves.1. IntroductionMany algebraic and geometric algorithms use the parametric form to represent surfaces.For computational reasons, they are restricted to rational functions for parametric rep-resentation. A surface represented parametrically by rational functions is known as arational surface. The parametrization of a rational surface represented in terms of ho-mogeneous coordinates is:(x; y; z;w) = (X(s; t); Y (s; t); Z(s; t);W (s; t)); (1)where X(s; t), Y (s; t), Z(s; t) and W (s; t) are polynomials in the indeterminates s andt. The set of rational surfaces is a proper subset of the set of algebraic surfaces. Thus,every rational parametric surface has a corresponding implicit representation and it isdesirable to compute it. This process of converting from parametric to implicit is known1



as implicitization. The implicit representation is useful for representing the object as asemi-algebraic set and for surface intersections as shown in Ho�mann (1989) and Prakash& Patriakalakis (1988).There are two known techniques for implicitization. Both these techniques reducethe problem of implicitizing rational surfaces to eliminating two variables from threeparametric equations. The �rst technique involves the use of Elimination theory. InHo�mann (1989) the two variables are eliminated in succession by using the Sylvesterresultant for two equations. The resulting expression does not correspond to the resultantof three parametric equations and contains an extraneous factor, whose separation canbe a time consuming task involving multivariate factorization. The Dixon formulation,given in Dixon (1908), for computing the resultant has been used to implicitize tensorproduct surfaces in Sederberg et al. (1984). It does not generate an extraneous factor,but is limited to tensor product surfaces and not applicable to total degree boundedparametrizations. Bajaj et al. (1988) use Macaulay's formulation for computing theresultant of three parametric equations for implicitizing. In general, it is believed thattechniques based on Elimination theory can result in extraneous factors along with theimplicit equation and separating them can be a time consuming task as mentioned inHo�mann (1989).The second technique utilizes Gr}obner bases. It computes a canonical representationof the ideal generated by the parametric equations, by de�ning a suitable ordering of thevariables as shown in Buchberger(1989) and Ho�mann(1989). However, this method canbe extremely slow in practice. In this paper, we formulate the three parametric equationsin such a manner, that their resultant corresponds to the implicit representation withoutgenerating any extraneous factor.All the techniques mentioned above fail when a parametrization has base points inthe parametric domain. A base point in the domain, say s = s0; t = t0, corresponds to acommon solution of the following four equationsX(s; t) = 0; Y (s; t) = 0; Z(s; t) = 0; W (s; t) = 0:The base points also include the common solutions at in�nity. In general any faithfulparametrization of a rational surface whose algebraic degree is not a perfect square hasbase points. Furthermore, the base points blow up to rational curves on the surface(known as seam curves).We present an algorithm to implicitize rational parametrizations with base points andalso compute the rational parametrizations of seam curves. In particular, we symbolicallyperturb the given parametric equations and show that the implicit equation is containedin the lowest degree term of the resultant of the perturbed system (expressed in termsof the perturbing variable). However the lowest degree term contains an extraneousfactor along with the implicit equation, as observed in Chionh (1990), and separating2



it can be a time consuming task involving multivariate factorization. To overcome thisproblem we consider a particular perturbation, obtained by perturbing one of the threeequations and hereby denoted as the e�cient perturbation, and show that the extraneousfactor is independent of one of the variables. This allows us to compute the extraneousfactor by two substitutions for that variable followed by a GCD (greatest common divisor)calculation. Moreover, it is shown that in the case of e�cient perturbation the extraneousfactor corresponds to the projection of the seam curves and is used for computing therational parametrizations of the seam curves.The rest of the paper is organized in the following manner. In section 2, we specify ournotation and present some backgroundmaterial from algebraic geometry. Section 3 showshow resultants can be used to compute the implicit representation without generatingany extraneous factors. In section 4, we analyse parametrizations with base points andshow why resultants and Gr}obner basis fail on such surfaces. We perturb the givenparametric equations in section 5 and show that the implicit equation is contained in thelowest degree term of the resultant of the perturbed system. In section 6 we considerthe e�cient perturbation and show that the extraneous factor in the lowest degree termis a function of two variables and corresponds to the projection of seam curves. Thisextraneous factor is used for computing the rational parametrizations of seam curves insection 7. 2. BackgroundA rational parametrization is a vector valued function of the formF(s; t) = (X(s; t); Y (s; t); Z(s; t);W (s; t)): (2)We use lower case letters like s, t, x or y to denote scalar variables and upper caseletters to represent scalar functions like W (s; t) or F (x; y; z) and homogeneous functionslike F (x; y;w). Bold face upper case letters, like F(s; t), are used to represent vectorvalued functions and lower case bold face letters like p and q represent tuples like (s; t; u).In (2), X(s; t), Y (s; t), Z(s; t) and W (s; t) are bivariate polynomials and assumed tohave power basis representation. A polynomial H(x; y; z) is independent of z, if it is abivariate polynomial in x and y and all monomials are independent of z.A surface parametrization, (2), represents a mapping of the formF : R2 ! R3;In fact the domain is often restricted to a �nite interval, of the form [a1; b1] � [a2; b2]or a triangle. Since the �eld real numbers is not algebraically closed, we extend thisde�nition to the complexes and also include the points at in�nity. As a result, the3



resulting parametrization corresponds to a mapping of the formF : P2 ! P3;where P denotes the complex projective space. We use homogeneous coordinates torepresent the domain and range of F and a point in the domain is represented by thetuple (s; t; u). The rational surface F(s; t) should be interpreted as a representation ofthe form F(s; t; u) = (X(s; t; u); Y (s; t; u); Z(s; t; u);W (s; t; u)) (3)where X(s; t; u); Y (s; t; u); Z(s; t; u) and W (s; t; u) are homogeneous polynomials in s, tand u and each polynomial has the same degree. Moreover,GCD(X(s; t; u); Y (s; t; u); Z(s; t; u);W (s; t; u)) = 1:2.1. ALGEBRAIC SETSIn this section we present some de�nitions and basic results on the dimension ofalgebraic sets. We use these results in the rest of the paper.Let us consider an algebraically closed �eld, C and de�ne a polynomial ringA = C [x1; x2; . . . ; xm]of m variables over C . All the polynomials used in this section are assumed to be de�nedover this ring.DEFINITION. The set of common zeros of a system of polynomials F1; . . . ; Fn inx1; . . . ; xm is called an algebraic set and is denoted V (F1; . . . ; Fn) � Cm. An algebraic setV (F ) de�ned by a single polynomial (which is not identically zero) is called a hypersurface.If all the Fi are homogeneous, it is more convenient to work with the projectivespace Pm�1, formed by identifying points in Cm which are scalar multiples of eachother. We use the same notation, V (F1; . . . ; F n) � Pm�1 for an algebraic set de�ned byhomogeneous polynomials F i.An algebraic set is said to be reducible if it can be expressed as a �nite union of propersubsets which are algebraic. Otherwise it is an irreducible algebraic set. An irreduciblealgebraic set is known as a variety. An algebraic set can always be expressed as a�nite union of irreducible algebraic subsets called components. Many results in algebraicgeometry apply only to irreducible algebraic sets, and in much of what follows, we workwith the individual components of an algebraic set.DEFINITION. Let Z be the intersection of n hypersurfaces in m-dimensional a�ne orprojective space. A componentW of Z is said to be proper if it has dimension m� n. Acomponent of dimension greater than m � n is said to be an excess component.4



And in fact all components of an intersection must be either proper or excess by thefollowing lemma from Mumford (1976):LEMMA 1. If Fi are n non-homogeneous polynomials in m variables, (or homogeneousin m+1 variables), then every component of V (F1; . . . ; Fn) has dimension at least m�n.3. ImplicitizationConsider a rational surfaceF(s; t; u) = (x; y; z;w) = (X(s; t; u); Y (s; t; u); Z(s; t; u);W (s; t; u));where X(s; t; u), Y (s; t; u), Z(s; t; u) and W (s; t; u) are homogeneous polynomials of de-gree n. Let Y denote the image of F. It is assumed that Y is a two dimensional set. Inother words, the image of F is not a 1-dimensional curve.Let us consider the case when the parametrization, F, has no base points and themap F, is therefore, de�ned at all points in the domain. Since P2 is a closed, compactand irreducible set of dimension 2 and F is a continuous rational map, the image of F isa closed and irreducible set in P3. This can be proved formally by considering P2 andP3, the domain and range of F, as topological spaces with respect to Zariski topology.It is shown in Munkres (1975) that the image of a compact set under a continuous mapis compact. As a result Y is a compact set. Furthermore, every compact subset of aHausdor� space is closed, as proven in Munkres (1975). Since P3 is a Hausdor� space,Y is therefore, a closed set. Thus, Y is a 2 dimensional projective variety in P3. Thefollowing lemma from algebraic geometry,(Hartshorne, 1977),LEMMA 2. A projective variety Y � Pm has dimension m � 1, if and only if it is thezero set of a single irreducible and homogeneous polynomial G of positive degree.implies that the image of F corresponds to the zero set of a single irreducible and ho-mogeneous polynomial, G(x; y; z;w). Thus, G(x; y; z;w) is the implicit representation ofthe given surface. It is characterized by the following property:G(X(s; t; u); Y (s; t; u); Z(s; t; u);W (s; t; u)) = 0:Consider the following parametric equationsF 1(s; t; u) = xW (s; t; u) � wX(s; t; u) = 0;F 2(s; t; u) = yW (s; t; u) � wY (s; t; u) = 0; (4)F 3(s; t; u) = zW (s; t; u) � wZ(s; t; u) = 0:The solution set of each equation corresponds to a 4-dimensional hypersurface in P2�P3(spanned by (s; t; u) and (x; y; z;w), respectively). Let's consider the algebraic set, Q =5



V (F 1; F 2; F 3), obtained by the intersection of the three hypersurfaces, obtained as thesolution set of the above equations. Let � be a projection function� : P2 � P3 ! P3such that �(s; t; u; x; y; z; w) = (x; y; z;w):Lemma 1 implies that each component in Q has dimension of at least 2. Since there areno base points, the intersection set consists of the following components:1. Q1 = f(s; t; u; x; y; z; w)jx = X(s; t; u); y = Y (s; t; u); z = Z(s; t; u); w = W (s; t; u)g:Q1 is a proper component of Q and�(Q1) = V (H(x; y; z;w));where H(x; y; z;w) = G(x; y; z;w)k ; for k � 1:2. Q2 = f(s; t; u; x; y; z; w)jW (s; t; u) = 0; w = 0g:Q2 is an excess component of Q (of dimension 3). However, �(Q2) has dimension2 and corresponds to the points at in�nity in the (x; y; z;w) space.We see that �(Q) consists of at least two distinct components, whereas we are inter-ested in computing G(x; y; z;w) only. We therefore, work with an a�ne representationof the image space and modify the parametric equations, (4), asF 01(s; t; u) = xW (s; t; u) �X(s; t; u) = 0;F 02(s; t; u) = yW (s; t; u) � Y (s; t; u) = 0; (5)F 03(s; t; u) = zW (s; t; u) � Z(s; t; u) = 0:This corresponds to substituting w = 1 in (4). Let's considerQ = V (F 01; F 02; F 0 3) � P2 � C 3;and let � be the projection function� : P2 � C 3 ! C 3such that �(s; t; u; x; y; z) = (x; y; z):6



THEOREM 1. If the given parametrization has no base points and the parametrizationis faithful then Q consists of a single component. Moreover, that component can berepresented asQ = f(s; t; u; x; y; z)jx = X(s; t; u)W (s; t; u) ; y = Y (s; t; u)W (s; t; u) ; z = Z(s; t; u)W (s; t; u) g:PROOF. The fact that Q1 � Q implies that Q1 � Q. Thus, Q1 is a component ofQ. Let us assume that Q consists of some other component, say P . Since P 6= Q1,9 p = (s1; t1; u1; x1; y1; z1) 2 P and p 62 Q1. There are two possibilities:1. W (s1; t1; u1) = 0.We know that p 2 V (F 01; F 0 2; F 0 3) and thereforeF 01(s1; t1; u1) = 0;) X(s1; t1; u1) = x1W (s1; t1; u1) = 0:Similarly, we can show that Y (s1; t1; u1) = 0 and Z(s1; t1; u1) = 0. This impliesthat (s1; t1; u1) is a base point of F, which is contrary to our assumption.2. W (s1; t1; u1) 6= 0.We know that p 2 Q and therefore,F 01(s1; t1; u1) = 0) xW (s1; t1; u1) = X(s1; t1; u1)) x1 = X(s1; t1; u1)W (s1; t1; u1) :Similarly we can show that y1 = Y (s1; t1; u1)W (s1; t1; u1) ;and z1 = Z(s1; t1; u1)W (s1; t1; u1) :This implies that p 2 Q1.Thus, all points in Q also lie in Q1 and therefore,Q = Q1:Thus, Q consist of one component. Q.E.D.7



Since Q is an irreducible algebraic set, each point in �(Q) lies in Y . This follows fromthe representation of Q in Theorem 1. Since Q and �(Q) are 2 dimensional algebraicsets, �(Q) correspond to the a�ne portion of the zero set of the implicit representationof F(s; t; u). If the given parametrization is unfaithful, each point in �(Q) has more thanone preimage with respect to F. In this case, �(Q) corresponds to an algebraic set ofmultiplicity greater than one. Thus,�(Q) = V (H(x; y; z)); (6)where H(x; y; z) = G(x; y; z)k, k � 1. k = 1 if and only if F is a faithful parametrization.Using Bezout's theorem it can be shown that the algebraic degree of H(x; y; z) is n2,where n is the degree of the parametrization. The degree of G(x; y; z) is n2=k. Moreover,k corresponds to the number of points in the (s; t; u) plane, that are the preimages of anarbitrary point in V (G(x; y; z)).The problem of implicitizing parametric surfaces without any base points correspondsto computing �(Q) and making sure that the resulting polynomial is square free. This canbe done using Gr}obner bases or resultants, as shown in Buchberger (1989) and Manocha& Canny (1992), respectively. The resultant of three parametric equations (5) can beexpressed as determinant of a matrix. The corresponding formulations are given in Dixon(1908) and Morley & Coble (1927). This holds for tensor product surfaces as well as totaldegree bounded parametrizations. In practice, this formulation is e�cient for computingthe implicit representation, as shown in Manocha & Canny (1992).4. Base PointsA base point is a common solution ofX(s; t; u) = 0; Y (s; t; u) = 0; Z(s; t; u) = 0; W (s; t; u) = 0:The solution set of any of the polynomials, sayX(s; t; u) = 0, corresponds to an algebraicplane curve in the P2 plane (denoted by homogeneous coordinates s, t and u). Each curvemay have more than one component and the base point corresponds to the intersectionof these curves. The multiplicity of each base point is equal to the multiplicity of thecurves at that point. In other words, a base point has multiplicity k, if it is a k-fold pointof X(s; t; u); Y (s; t; u); Z(s; t; u) and W (s; t; u). The multiplicity of a curve is de�ned inSemple & Roth (1985). LetS = V (X(s; t; u); Y (s; t; u); Z(s; t; u);W (s; t; u))be the set of base points. SinceGCD(X(s; t; u); Y (s; t; u); Z(s; t; u);W (s; t; u)) = 1;8



S is therefore, a �nite set. Let p = (s0; t0; u0) 2 S. Moreover,F(p) = F(s0; t0; u0) = (0; 0; 0; 0);which does not correspond to any point in the image space. It has been known that basepoints blow up to rational curves on the surface (known as seam curves), given in detailin Clebsch (1868), Semple & Roth (1985) and Snyder et al. (1970). Furthermore, thedegree of the seam curve is bounded by the multiplicity of the corresponding base point.Since F is not de�ned at the base points, we modify its domain and de�ne it as amapping of the form F0 : P2 n S ! P3F0(s; t; u) = F(s; t; u);where P 2 n S represents the di�erence of two sets. P2 n S is an open and irreducibleset of dimension 2. Let K be the image of F0 . We know that K is a 2-dimensionalset and K � P3. In general, K is a proper subset of an algebraic set V (H(x; y; z;w)).The problem of implicitization corresponds to computing H(x; y; z;w). The base pointsdecrease the degree of the implicit equation as explained in Manocha & Canny (1992). Abase point of multiplicity k decreases the degree of the implicit equation by at least k2.The total number of base points (counted properly) correspond to n2� d, where n is thedegree of the parametrization and d is the degree of its implicit representation. Thus, abase point of multiplicity k is counted at least k2 times.4.1. IMPLICITIZING SURFACES WITH BASE POINTSGiven F, a parametrization with base points, we use resultants to compute the implicitequation. The resultant of the parametric equations (5), by considering them as polyno-mials in s, t and u, is zero. This can be explained in the following manner.Given p = (s0; t0; u0), a base point in the parametrization. From the de�nition of abase point it follows thatF 1(s0; t0; u0) = 0 F 2(s0; t0; u0) = 0; F 3(s0; t0; u0) = 0:Thus, the given system of equations, (5), has a non trivial solution (s0; t0; u0). Moreover,this solution is independent of the coe�cients, x, y and z. The resultant is therefore,identically zero.The Gr}obner bases approach to implicitizing parametric surfaces considers the idealgenerated by the parametric equations. More details of this approach are given in Buch-berger (1989) and Ho�mann (1989). It uses a particular ordering of the variables andcompute the Gr}obner base of the ideal. One of the polynomials in the Gr}obner base is in-dependent of s and t and therefore, corresponds to the implicit representation. However,9



the technique fails if a parametrization has base points in the a�ne domain as shown inManocha & Canny (1992).Gr}obner bases o�er us the 
exibility of working in the a�ne space. As a result, itis possible to implicitize parametrizations with base points only at in�nity. All polyno-mial parametrizations (with or without base points) can therefore, be implicitized usingGr}obner bases. 5. PerturbationIn the previous sections, we have shown the use of resultants and Gr}obner bases for im-plicitizing parametric surface. However these techniques fail when a parametrization hasbase points. For example, the resultant of the parametric equations is identically zerodue to the presence of an excess component in the image space. Thus, the problem ofimplicitizing corresponds to: computing the proper component in the presence of excesscomponent. Some similar problems have been encountered while solving system of poly-nomial equations and techniques for dealing with such problems have been highlightedin Canny (1990) and Ierardi (1989). The technique corresponds to perturbing the givenequations, such that the resulting algebraic set (in the higher dimensional space de�nedby adding the perturbing variable) has no excess component. The projections of theproper components of the algebraic set corresponding to the unperturbed system can beobtained from the projections of the algebraic set corresponding to the perturbed systemby applying limiting arguments.We will carry out the rest of perturbation analysis with resultants. The technique isalso applicable with Gr}obner bases. However we recommend resultants for their e�ciency,as shown in Manocha & Canny (1992).Lets consider the parametrizationF(s; t; u) = (x; y; z;w) = (X(s; t; u); Y (s; t; u); Z(s; t; u);W (s; t; u));of degree n, which has base points in the domain, represented by set S. The resultantof the parametric equations, (5), is identically zero. Lets perturb the given system ofequations and the resulting parametric equations areG1(s; t; u) = xW (s; t; u) �X(s; t; u) + �X1(s; t; u) = 0;G2(s; t; u) = yW (s; t; u) � Y (s; t; u) + �Y 1(s; t; u) = 0; (7)G3(s; t; u) = zW (s; t; u) � Z(s; t; u) + �Z1(s; t; u) = 0;where � is the perturbing variable and X1(s; t; u); Y 1(s; t; u) and Z1(s; t; u) are homoge-neous polynomials of degree n such thatV (X(s; t; u); Y (s; t; u); Z(s; t; u);W (s; t; u);X 1(s; t; u); Y 1(s; t; u); Z1(s; t; u)) = �:10



In other words, the perturbed system of parametric equations, (7), has no trivial solutionsand therefore, their resultant does not vanish. A simple procedure is to choose randompolynomials, X1(s; t; u); Y 1(s; t; u) and Z1(s; t; u). The resulting system of perturbedequations has a base point if and only if their resultant of G1;G2 and G3 is zero. Thisprocess of choosing random polynomials can be repeated until the resultant is non-zero.The probability of success is very close to 1.Let Q = V (G1;G2;G3) � P2 � C 3 � C 1;and � be the projection function� : P2 � C 3 � C 1 ! C 3 � C 1; (8)such that �(s; t; u; x; y; z; �) = (x; y; z; �):According to Lemma 1 every component of Q has dimension greater than or equal to 3.Let R(x; y; z; �) be the resultant of the perturbed system, (7), i.e.R(x; y; z; �) = �(Q):Let us express the resultant as a polynomial in �, while the coe�cients are polynomialsin x, y and z: R(x; y; z; �) = Pi(x; y; z)�i + . . . + Pd(x; y; z)�d: (9)The fact that specializing � = 0 makes the resultant of (7) equal to zero implies thati > 0 in (9).THEOREM 2. H(x; y; z), the implicit representation of F(s; t; u) is contained in Pi(x; y; z),i.e. H(x; y; z) j Pi(x; y; z);where Pi(x; y; z) is the coe�cient of the lowest degree term of R(x; y; z; �), expressed asa polynomial in �.PROOF. Let P = V (F 1(s; t; u); F 2(s; t; u); F 3(s; t; u))where F i(s; t; u) is an unperturbed parametric equation andP � P2 � C 3:Let B be the component of P de�ned asB = f(s; t; u; x; y; z) j x = X(s; t; u)W (s; t; u) ; y = Y (s; t; u)W (s; t; u) ; z = Z(s; t; u)W (s; t; u) ; (s; t; u) 2 P2 n Sg[ f(s; t; u; x; y; z) j (s; t; u) 2 S and (x; y; z) 2 C(s;t;u)(x; y; z)g;11



where C(s;t;u)(x; y; z) is the set of all points lying on the seam curves corresponding to(s; t; u). B is a proper component of P .With the addition of a complex variable �, the zero set of Q lies in P2 � C 3 � C 1.Since F i(s; t; u) and Gi(s; t; u) are identical when � = 0, it follows thatP � f0g = Q \ (� = 0):Thus, B�f0g � Q. Since every component ofQ has dimension greater than or equal to 3,B�f0g must be contained in some 3 (or higher) dimensional component B0 of Q. Everypoint of B0 has a 3 dimensional neighbourhood whose intersection with the hypersurface� = 0 is a 2 dimensional set. Thus, for every point q = (sk; tk ; uk ; xk ; yk ; zk ; 0) 2 B �f0g, there is a sequence of points qj = (sj ; tj ; uj ; xj ; yj ; zj ; �j) in B0 � B � f0g whichconverges to q. Moreover R(�(qj)) = 0 for all j's. Thus, R(xj ; yj ; zj ; �j) = 0. Divide thepolynomial throughout by (�j)i (which is non-zero) and we obtainPi(xj ; yj ; zj) + Pi+1(xj; yj ; zj )(�j) + . . . + Pd(xj ; yj ; zj)(�j)d�i = 0for all qj . This is a polynomial in the coordinates of qj and is, therefore, a continuousfunction of the coordinates. Since it is zero for qj ! q, it must be zero at q. But q is apoint lying on the hypersurface � = 0, so Pi(xk; yk ; zk) = 0. SinceV (H(x; y; z)) = f(xk; yk ; zk) j q = (sk; tk ; uk ; xk ; yk ; zk ; 0) 2 B � f0gg;V (H(x; y; z)) � V (Pi(x; y; z)). If F is a faithful parametrization, H(x; y; z) is an irre-ducible polynomial and therefore, H(x; y; z) j Pi(x; y; z). Else let any generic point inY have m preimages (m > 1). Thus, H(x; y; z) = G(x; y; z)m. Let (x1; y1; z1) 2 Y and(si; ti; ui); 1 � i � m be its preimages. In other words qi = (si; ti; ui; x1; y1; z1) 2 B forall i. As a result qi � 0 2 B0 and it has a 3-dimensional neighborhood in B0 � B � 0which converges to qi � 0. Since R(x; y; z; �) = �(Q), we can use the limiting argumentto show that (x1; y1; z1) is a point of multiplicity m in V (Pi(x; y; z)). Thus,H(x; y; z) j Pi(x; y; z): Q.E.D.The same result hold when we use the Dixon eliminant on tensor product parametriza-tions or Gr}obner bases on any parametrization as shown in Manocha & Canny (1992).We illustrate the technique on the following examples.EXAMPLE 1. LetF(s; t) = (x; y; z) = (s2 � 1� t2s2 + 1 + t2 ; 2ss2 + 1+ t2 ; 2sts2 + 1+ t2 )be the parametrization of a rational surface (a sphere in this case), which has a basepoint at (s; t) = (0; i), where i = p�1. The ideal generated by the parametric equationsis I = fx(s2 + 1 + t2)� s2 + 1 + t2; y(s2 + 1+ t2)� 2s; z(s2 + 1+ t2)� 2stg:12



None of the polynomials in I is independent of s and t. Lets perturb the parametricequations and the ideal corresponding to the resulting parametric equations isJ = fx(s2 + 1+ t2)� s2 + 1+ t2 � �t; y(s2 + 1+ t2)� 2s� �; z(s2 + 1+ t2)� 2st+ �sg:Compute the Gr}obner bases of J with a variable orderingz < y < x < � < s < t:The �rst polynomial in the Gr}obner bases is independent of s and t. It can be expressedas a polynomial in � as�(2+�2)(�2y2(�3�x2�y2�4z�z2)�2�y(�x+x3�2y2+xy2�z�4xz�x2z�3y2z�2z2)�2�y(�3xz2� z3)� 2(x2+ y2+ z2� 1)(1+ 2x+ x2 + y2+ 2z+ 2xz+ z2));whose lowest degree term is�2(x2+ y2 + z2 � 1)(1+ 2x+ x2 + y2 + 2z + 2xz + z2):Thus, the implicit representation of the sphere, x2+y2+z2�1, is contained in the lowestdegree term. Q.E.D.EXAMPLE 2. Lets consider a tensor product parametrizationF(s; t) = (x; y; z;w) = (st2 � t; st + s; 2s � 2t; st2);which has a base point at (s; t) = (0; 0). The resulting parametric equations arexst2 � st2 + t = 0;yst2 � st� s = 0;zst2 � 2s+ 2t = 0;whose Dixon eliminant is zero. Lets perturb these equations and the resulting system isxst2 � st2 + t+ �(s+ 2) = 0;yst2 � st� s + �t2 = 0;zst2 � 2s+ 2t+ �(s+ 4) = 0:The Dixon eliminant of these equations is polynomial in x; y; z and � and after expressingit as a polynomial in �, the lowest degree term is8(�2 + 2x� z)(�4x+ 4x2 � 8y + 8xy + 4y2+ 2z � 4xz � 4yz + z2):In this case, (�2 + 2x� z) is an extraneous factor and (�4x+ 4x2 � 8y + 8xy + 4y2 +2z � 4xz � 4yz + z2) is the implicit representation. Q.E.D.13



Thus, we can perturb the given parametric equations such that the lowest degreeterm of the resultant of the perturbed system contains the implicit equation. However,there is always an extraneous factor present in the lowest degree term and extracting theimplicit representation involves multivariate factorization. Furthermore, we need to testeach irreducible polynomial, obtained after factorization, whether it corresponds to theimplicit equation. In many cases this process can be a time consuming task.6. E�cient PerturbationIn this section we present an e�cient perturbation such that the implicit equation canbe extracted from the lowest degree term of the resultant by computing the GCD ofbivariate polynomials. Furthermore, the extraneous factor in the lowest degree term ofthe perturbed system contains interesting information about the seams or blow-ups of thebase points. In particular, we choose our perturbation so that we get the X-Y projectionof the blow-up curves. This is useful because the polynomial we obtain is the productof the implicit equation and a polynomial that depends on x and y only. This makes iteasy to separate the implicit equation, assuming that it depends on z (which it will aftera generic change of coordinates). As a result we do not need to factorize, and the GCDwe compute involves only bivariate polynomials.Before we present the e�cient perturbation and carry out the analysis, we makecertain assumptions on the given parametrization, F. They are:1. The implicit representation is not independent of z. In other words, it is not of theform H(x; y) = 0.2. W (s; t; u)) does not divide Z(s; t; u). Otherwise the implicit representation is of theform z � k = 0, where k = Z(s;t;u)W (s;t;u) and we can compute it directly.The base points blow up to rational curves of the form (X(t); Y (t); Z(t);W (t)) onthe surface. Since these curves lie on the surface, they are characterized by the propertythat H(X(t)W (t) ; Y (t)W (t) ; Z(t)W (t)) = 0;where H(x; y; z) is the implicit representation of the surface. Lets consider the projectionof one of these curves on the X-Y plane. The projected curve has a rational parametriza-tion of the form (X(t); Y (t);W (t)) and it can be implicitly represented as the zero setof an irreducible polynomial, say F (x; y). Later we show that the lowest degree termof this e�cient perturbation can be expressed as a product of H(x; y; z) and F (x; y)(corresponding to each seam curves). 14



Given a parametrization with base points, let us perturb one of the three parametricequations, (5), say F 3(s; t; u) and the resulting perturbed system isG1(s; t; u) = xW (s; t; u) �X(s; t; u) = 0;G2(s; t; u) = yW (s; t; u) � Y (s; t; u) = 0; (10)G3(s; t; u) = zW (s; t; u) � Z(s; t; u) + �Z1(s; t; u) = 0;where Z1(s; t; u) is a homogeneous polynomial of degree n such thatV (X(s; t; u); Y (s; t; u);W (s; t; u); Z1(s; t; u)) = �:We will denote this perturbed parametrization asG. It is still possible that for all choicesof Z1(s; t; u) the resultant of G1(s; t; u);G2(s; t; u) and G3(s; t; u) is zero. LetQ = V (G1;G2;G3) � P2 � C 3 � C 1;and � be the projection function from P2 � C 3 � C 1 to C 3 � C 1, as de�ned in (8).THEOREM 3. Given a set of three equations of the form, G1(s; t; u);G2(s; t; u) andG3(s; t; u), where Z1(s; t; u) is chosen such thatV (X(s; t; u); Y (s; t; u);W (s; t; u); Z(s; t; u); Z1(s; t; u)) = �:The necessary and su�cient condition that the resultant of G1, G2 and G3 does not vanishis that P (s; t; u) = GCD(X(s; t; u); Y (s; t; u);W (s; t; u))is a constant.PROOF. NecessityLet us assume that P (s; t; u) is a polynomial of positive degree. Let us consider the setM = f(s; t; u; x; y; z; �) j P (s; t; u) = 0;�Z(s; t; u) + �Z1(s; t; u) = 0gand M � P 2 � C 3 � C 1:Let p = (s1; t1; u1; x1; y1; z1; �1) 2M . Thus,P (s1; t1; u1) = 0and thereforeG1(s1; t1; u1) = x1W (s1; t1; u1)�X(s1; t1; u1) = 0� 0 = 0;G2(s1; t1; u1) = y1W (s1; t1; u1)� Y (s1; t1; u1) = 0� 0 = 0;G3(s1; t1; u1) = z1W (s1; t1; u1)� Z(s1; t1; u1) + �1Z1(s1; t1; u1)= �Z(s1; t1; u1) + �1Z1(s1; t1; u1) = 0:15



Thus, p 2 V (G1;G2;G3) ) p 2 Q. In other words, M � Q. M is a 4{dimensionalset. Given any 4-tuple, (x; y; z; �) = (x1; y1; z1; �1), one can �nd (s1; t1; u1) such that(s1; t1; u1; x1; y1; z1; �1) 2 M . Thus, M is an excess component of Q and �(M) is a4{dimensional set, too. Therefore the resultant of G1;G2 and G3 is zero.Su�ciencyLet P (s; t; u) be a constant polynomial. To prove the non-vanishing of the resultantit is su�cient to show that there is some value of x, y, z and � such that for those valuesG1, G2 and G3 have no common solution.First pick x = 0. Now choose a value of y so that G2(s; t; u) has a �nite number of in-tersections with G1(s; t; u)x=0 , i.e. X(s; t; u). Since GCD(X(s; t; u); Y (s; t; u);W (s; t; u))is a constant, for almost all values of y, X(s; t; u) and G2(s; t; u) intersect in n2 points,according to Bezout's theorem. Let these points be (si; ti ; ui); 1 � i � n2.Once there are a �nite number of solutions for the G1(s; t; u) and G2(s; t; u), it iseasy to choose z and � such that G3(si; ti ; ui) 6= 0. At any of the n2 solution points,say (si; ti; ui), X(si; ti; ui) = 0. Pick z and � such that for each solution they satisfy thefollowing constraint. The constraint depends on the value of W (si; ti ; ui):1. Case W (si; ti; ui) = 0.The fact that X(si; ti; ui) = 0 implies that Y (si; ti; ui) = 0. The polynomialZ1(s; t; u) is chosen to be non-zero at the common roots of X(s; t; u), Y (s; t; u)and W (s; t; u) and therefore, Z1(si; ti; ui) 6= 0. In this case� 6= Z(si; ti; ui)Z1(si; ti; ui) :2. Case W (si; ti; ui) 6= 0.Let � take any value choose z such thatz 6= Z(si; ti; ui)� �Z1(si; ti; ui)W (si; ti; ui) :Thus, for almost all choices of z and �, the given equations have no common solutionand therefore, the resultant does not vanish. Q.E.D.To circumvent this problem of vanishing resultant in certain cases we perform a changeof coordinates and let the new parametrization beF0(s; t; u) = (x0; y0 ; z0 ; w0 ) = (x; y + kz; z;w)= (X(s; t; u); Y (s; t; u) + kZ(s; t; u); Z(s; t; u);W (s; t; u));16



where k is a scalar. The corresponding parametric equations areG01(s; t; u) = xW (s; t; u) �X(s; t; u) = 0;G02(s; t; u) = yW (s; t; u) � Y (s; t; u) � kZ(s; t; u) = 0;G3(s; t; u) = zW (s; t; u) � Z(s; t; u) + �Z1(s; t; u) = 0:Since GCD(X(s; t; u); Y (s; t; u); Z(s; t; u);W (s; t; u)) = 1, for any generic k,GCD(X(s; t; u); Y (s; t; u) + kZ(s; t; u);W (s; t; u)) = 1;too. We compute the implicit representation in terms of x0; y0 ; z0 and w0 and substi-tute them to obtain an implicit equation in terms of x; y; z and w. From now on-wards we assume that it is possible to choose Z1(s; t; u) such that the resultant ofG1(s; t; u);G2(s; t; u) and G3(s; t; u), R(x; y; z; �), is non{zero. Moreover the resultantcan be expressed as a polynomial of the formR(x; y; z; �) = �iS(x; y; z; �); (11)where S(x; y; z; 0) 6= 0.LEMMA 3. The total number of base points (counted properly) of F correspond to i in(11).PROOF. Let F has m base points (counted properly). Base points of multiplicity k arecounted at least k2 times. Thus, its implicit representation has degree n2�m. R(x; y; z; �)is the resultant of G1(s; t; u), G2(s; t; u) and G3(s; t; u). G1(s; t; u) and G2(s; t; u) corre-spond to plane curves of degree n each and according to Bezout's theorem intersect inn2 points (counted properly). Let the points be (si; ti; ui), 1 � i � n2. If (s0; t0; u0) isa base point of F, G1(s0; t0; u0) = G2(s0; t0; u0) = 0. Thus, the intersection set consistof these m base points and n2 �m other intersections (which are functions of x and y).Let (sj ; tj ; uj), 1 � j � m correspond to the base points. Using properties of resultants,highlighted in Salmon (1885), it followsR(x; y; z; �) = n2Yi=1G3(si; ti ; ui)= n2Yi=1(zW (si; ti; ui)� Z(si; ti ; ui) + �Z1(si; ti; ui))= ��m n2Yi=m+1G3(si; ti; ui);where � = Qmi=1 Z1(si; ti; ui) 6= 0. Thus, the lowest degree term in � in R(x; y; z; �) hasdegree at least m. Since the points, (si; ti; ui); m < i � n2 do not correspond to the base17



points, at least W (si; ti; ui) or Z(si; ti; ui) does not vanish. Thus, the lowest degree termof the resultant has degree exactly equal to m. Q.E.D.For a generic choice of Z1(s; t; u) it is possible to show that S(x; y; z; �) is an irre-ducible polynomial. This follows from the fact, that for any generic choice of � = �i,the resulting parametrization G has no base points and R(x; y; z; �i) corresponds to itsimplicit representation. Therefore, R(x; y; z; �i) is equal to some power of an irreduciblepolynomial and for a generic choice of Z1(s; t; u), R(x; y; z; �i) is an irreducible polyno-mial. Thus, V (R(x; y; z; �)) consist of the following components:1. V (�) of multiplicity i.2. V (S(x; y; z; �)).As a result, Q consists of i+ 1 components. i of these components are of the formf(s0; t0; u0; x; y; z; 0); gwhere (s0; t0; u0) is a base point and the (i+ 1)st component can be represented asQ0 = fq = (sj ; tj ; uj ; xj ; yj ; zj ; �j) j q 2 Q; S(xj; yj ; zj ; �j ) = 0g:Let us express the resultant as a polynomial in �, and let Pi(x; y; z) be the constantterm of S(x; y; z; �). We know from Theorem 2 thatPi(x; y; z) = H(x; y; z)F (x; y; z);where H(x; y; z) corresponds to some power of the implicit equation and F (x; y; z) isthe extraneous factor. Our aim is to extract H(x; y; z) without resorting to multivariatefactorization.THEOREM 4. F (x; y; z) is independent of z. In other words F (x; y; z) is a bivariatepolynomial in x and y. Moreover, F (x; y; z) corresponds exactly to the projections of theseam curves on the X-Y plane.PROOF. Every component of Q has dimension 3. Let P and B be algebraic sets asde�ned in the proof of Theorem 3. For every point q 2 B � f0g, there is a sequence ofpoints (qj) 2 Q0�B�f0g in its neighbourhood, which converges to q. Furthermore, q hasa 3-dimensional neighbourhood for de�ning such sequence of points. As a result we areable to show thatH(x; y; z) j Pi(x; y; z). Let (s0; t0; u0) be a base point of F(s; t; u) and letq = (s0; t0; u0; x0; y0; z0; 0), where (x0; y0; z0) is a point on the seam curve correspondingto (s0; t0; u0). Let (xj ; yj ; zj ; �j ) be a point in the neighbourhood of (x0; y0; z0; 0) suchthat S(xj; yj ; zj ; �j ) = 0. For each such (xj; yj ; zj ; �j ) there exists (sj ; tj ; uj) such thatqj = (sj ; tj ; uj ; xj ; yj ; zj ; �j ) 2 Q0 �B�f0g. As a result we are able to de�ne a sequence18



of points qj converging to q. Corresponding to every point in this sequence let us consideranother sequence of points q0j = (sj ; tj ; uj ; xj ; yj ; z0j ; �0j) such thatz0j = kzj ;�0j = �kzjW (sj ; tj ; uj) + Z(sj ; tj ; uj)Z1(sj ; tj ; uj) ;where k is any arbitrary constant. The fact qj 2 Q0 implies that q0j 2 Q0 . As a resultR(xj ; yj ; kzj ; �0j ) = 0.Consider the sequence of points approaching q, and from the limiting argument itfollows that (x0; y0; z0) 2 V (Pi(x; y; z)). Moreover,lim(sj;tj ;uj)!(s0;t0;u0)�0j = lim(sj;tj;uj)!(s0;t0;u0) �kzjW (sj ; tj ; uj)� Z(sj ; tj ; uj)Z1(sj ; tj ; uj) = 0:This is because (s0; t0; u0) is a base point and therefore,W (s0; t0; u0) = 0, Z(s0; t0; u0) =0 and Z1(s0; t0; u0) 6= 0. Thus, q0j ! (s0; t0; u0; x0; y0; kz0; 0) and from the limitingarguments it follows that Pi(x0; y0; kz0) = 0. Furthermore, (x0; y0; z0) can correspond toany point on the seam curve and the choice of k is arbitrary.The fact Pi(x0; y0; kz0) = 0 implies either H(x0; y0; kz0) = 0 or F (x0; y0; kz0) = 0.We have assumed that H(x; y; z) is not independent of z and therefore, it is not possiblethat for all points (x0; y0; z0) on a seam curve (x0; y0; kz0) 2 V (H(x; y; z)), for any choiceof k. Therefore, F (x0; y0; kz0) = 0 for all k. Since V (F (x; y; z)) is a polynomial in x, yand z, this is possible if and only if F (x0; y0; z) = 0 for all such (x0; y0), where x0 and y0represent the x and y coordinates of a point on a seam curve. Let �j(x; y); 1 � j � mcorrespond to the implicit representation of the projection of seam curves (where mcorrespond to the number of seam curves and m � i) on the X-Y plane and thereforeV (�j(x; y)) � V (F (x; y; z)); for 1 � j � m:It is still possible that V (Pi(x; y; z)) may consist of some other component, besidesthe implicit representation and the projection of seam curves. Let that component bethe zero set of �(x; y; z). Since �(x; y; z) is distinct from H(x; y; z) and �j(x; y)s, thereexist (x1; y1; z1) 2 V (�(x; y; z)) such that H(x1; y1; z1) 6= 0 and �j(x1; y1) 6= 0.Let us consider the point p = (s0; t0; z0; x1; y1; z1; 0). Since p 2 Q0 , we can choose asequence pj = (sj; tj ; zj ; xj ; yj ; zj ; �j ) in the neighbourhood of p such that pj 2 Q0 . Wecan similarly choose a sequence p0j = (sj ; tj ; uj ; xj ; yj ; kzj ; �0j ), such that p0j 2 Q0 , andfrom the argument used above it follows that (x1; y1; kz1) 2 V (�(x; y; z)) for all k. Thus,�(x; y; z) is independent of z and we may represent it as �(x; y). Moreover �(x1; y1) = 0.A seam curve corresponding to (s0; t0; u0) is the set of limit points (x; y; z) such thatq = (s0; t0; u0; x; y; z; 0) 2 Q0 and q has a 3-dimensional neighbourhood in Q0 . Since19



S(x1; y1; z; 0) = 0 and p = (s0; t0; u0; x1; y1; z; 0) 2 Q0 for all z, there exists a sequenceof points pj 2 Q0 in the neighbourhood of p. The fact that there exists such a sequenceimplies that (x1; y1) must correspond to the (x; y) coordinates of a point on a seam curve,which is contrary to our assumption.Thus, F (x; y; z) exactly corresponds to the projections of all the seam curves on theX-Y plane. Q.E.D.From now onwards we will represent the lowest degree term of the resultant of theperturbed system as Pi(x; y; z) = H(x; y; z)F (x; y);where F (x; y) is the extraneous factor. Our aim is to extract F (x; y) out of Pi(x; y; z)without resorting to multivariate factorization. Let Pi(x; y; z) and H(x; y; z) be polyno-mials of degree d (d > 0) and they can be expressed asPi(x; y; z) = p0(x; y) + p1(x; y)z + p2(x; y)z2+ . . . + pd(x; y)zd;H(x; y; z) = h0(x; y) + h1(x; y)z + . . . ;+hd(x; y)zd;Since H(x; y; z) corresponds to some power of an irreducible polynomialGCD(hd(x; y); hd�1(x; y); . . . ; h0(x; y)) = 1:As a result, GCD(p0(x; y); p1(x; y); p2(x; y); . . . ; pd(x; y)) = F (x; y):Hence, we can extract the extraneous factor by taking the GCD of d+ 1 bivariate poly-nomials.In general, for almost all two distinct values of z, say z1 and z2,F (x; y) = GCD(Pi(x; y; z1); Pi(x; y; z2))Thus, the implicit equation can be represented asH(x; y; z) = Pi(x; y; z)GCD(Pi(x; y; z1); Pi(x; y; z2)) :Let the parametric equations be polynomials belonging to a ring F [s; t; u].COROLLARY 1. If F is an in�nite �eld, there exists an implicit equation belonging tothe ring F [x; y; z].PROOF. If the parametrization has no base points, then the implicit equation corre-sponds to the resultant expressed as determinant of a matrix. Each entry of the matrixis of the form ax+ by + cz + d, where a; b; c; d 2 F , and therefore the coe�cients of theimplicit equation belong to the same �eld. 20



If the parametrization has base points, we can always choose a perturbing polynomialZ1(s; t; u) 2 F(s; t; u) and let R(x; y; z; �) be the resultant of the perturbed system. Eachcoe�cient of R(x; y; z; �) and therefore, of Pi(x; y; z; �) lies in F . The implicit equationcan be expressed as ratio of two polynomials, whose coe�cients belong to F . Thus, theimplicit equation has the same coe�cient �eld as the parametric equations. Q.E.D.7. Rational Parametrization of Seam CurvesIn the previous section we presented the technique for computing the implicit represen-tation from the parametrization by making use of the GCD operation. The extrane-ous factor corresponds to the projection of seam curves on the X-Y plane. Given aparametrization, F, we can use e�cient perturbation and perturb the equations contain-ing the x and y variable so that we are able to compute the projections of seam curveson the Y � Z and X � Z planes, respectively. Given these projections, we present analgorithm to compute the rational parametrizations of seam curves.Perform a transformation on the coordinates of a parametrization and let the projec-tions of the seam curves of the resulting parametrization be P (x; y), Q(y; z) and R(x; z)on the X-Y , Y -Z and X-Z planes, respectively. For a generic transformation, each ofthese polynomials would consist of projections of all the seam curves.Every rational space curve is birationally equivalent to an algebraic plane curve,as explained in Walker (1950). For a generic choice of coordinates such a birationalequivalence can be established between a space curve B(t) = (x(t); y(t); z(t); w(t) andits projection on X-Y plane, C(t) = (x(t); y(t); w(t). In our case, P (x; y) is the productof the implicit representations of C(t) corresponding to each seam curve. Thus, givenP (x; y) we use a factorization algorithm to decompose it into irreducible polynomials ofthe form P (x; y) = P1(x; y)P2(x; y) . . .Pm(x; y);where Pi(x; y) is an irreducible polynomial. The factorization algorithms are given inKaltofen (1983).Each plane curve, Pi(x; y) = 0, is a curve of genus 0 and therefore, has a rationalparametrization. Given any algebraic plane curve of genus 0 techniques of computing itsrational parametrization are well known in algebraic geometry, as explained in Walker(1950). The computational details are worked out in Abhyankar & Bajaj (1988). Thus,we are able to compute the rational parametrization, Ci(t) = (x(t); y(t); w(t)) of theprojection of each seam curve.For the choice of coordinates it is assumed that each seam curveBi(t) = (xi(t); yi(t); zi(t); wi(t))21



is birationally equivalent toCi(t). Thus, our problem is reduced to computing the rationalfunction z = �(x; y) (x; y)expressing the relation between the x, y and z coordinates of almost all the points onany seam curve. 7.1. Remainder SequencesLet us treat Q(y; z) and R(x; z) as polynomials in z and its coe�cients are in the ringF [x; y]. Without loss of generality we assume that the degree of R(x; z) is less than orequal to that of Q(y; z). Let S1(z) = Q(y; z);S2(z) = R(x; z);�iSi(z) = �iSi+1(z)� Si+2(z);where Si(z) 2 F [x; y][z], degree(Si+2(z)) < degree(Si+1(z)) for 1 � i � d and �i,�i 2 F [x; y][z] such that GCD(�i; �i) = 1:The sequence S1(z); S2(z); . . . ; Sk(z) is a remainder sequence, as de�ned in Loos (1983).Sk(z) is independent of z and corresponds to the resultant of Q(y; z) and R(y; z) withrespect to z. Let (x1; y1; z1) be any point lying on any seam curve. Thus,osP (x1; y1) = 0; Q(y1; z1) = 0; R(x1; z1) = 0:The fact Si(z1)x=x1;y=y1 = 0 and Si+1(z1)x=x1;y=y1 = 0 implies thatSi+2(z1)x=x1;y=y1 = 0:iAs a result all the polynomials in the remainder sequence vanish when (x; y; z) corre-sponds to any point on any seam curve. Let's consider the polynomial Sk�1(z), which isa linear function in z and can be expressed asSk�1(z) =  (x; y)z � �(x; y);where �(x; y) and  (x; y) are polynomials in x and y. Since this polynomial vanishes forall points on any seam curve, the points on a seam satisfy the equationz = �(x; y) (x; y) : (12)22



Thus, the rational parametrizations of the seam curves areBi(t) = ( xi(t)wi(t) ; yi(t)wi(t) ; �( xi(t)wi(t) ; yi(t)wi(t)) ( xi(t)wi(t) ; yi(t)wi(t)))corresponding to each Ci(t).EXAMPLE 3. Let's consider the parametrization of a sphere (same as Example 1)F(s; t) = (x; y; z) = (s2 � 1� t2s2 + 1 + t2 ; 2ss2 + 1 + t2 ; 2sts2 + 1+ t2 ):Since the parametrization has base points, let's perturb the given system and thecorresponding parametric equations areG1(s; t; u) = x(s2 + t2 + 1)� (s2 � 1� t2) = 0;G2(s; t; u) = y(s2 + t2 + 1)� 2s = 0;G3(s; t; u) = y(s2 + t2 + 1)� 2st+ �(2s2 + 3t2 + 4) = 0;The resultant, R(x; y; z; �) is a polynomial in the four variables and the lowest degreeof � is 2 (equal to the number of base points in F). The coe�cient of �2 isP2(x; y; z) = �64� 128x+ 128x3+ 64x4 + 64y2+ 128xy2+64x2y2 + 64z2 + 128xz2+ 64x2z2:Choose 2 generic values of z, say z = 1 and z = 2 and the extraneous factor isF (x; y) = GCD(Pi(x; y; 1); Pi(x; y; 2)) = 64 + 128x+ 64x2:Thus, the implicit equation isH(x; y; z) = Pi(x; y; z)F (x; y) = x2 + y2 + z2 � 1:Apply a linear transformation on the coordinates and obtainx = x� 2y � zy = x� y � zz = �y � zand the inverse transformation is x = y � zy = y � x (13)z = x� y � z23



The resulting parametrization isF0 = (2s� 2st; 2s � s2 + 1+ t2; s2 � 1� t2 � 2s� 2st; s2 + t2 + 1):This parametrization has the same base points as F and we perturb each of theparametric equations to obtain the following extraneous factors, which correspond to theprojections of seam curves on X 0 � Y 0 , Y 0 � Z 0 and X 0 � Z 0 planes.P (x; y) = 2 + 2x+ x2 � 4y � 2xy + 2y2Q(y; z) = 1� 2y + 2y2 + 2yz + z2R(x; z) = 1 + x2 + 2z + z2P (x; y) can be factorized asP (x; y) = ((y� 1)(i� 1)� ix)((y� 1)(i+ 1)� ix);where i = p�1. The resulting parametrizations areC1(t0) = (x; y;w) = (it0 � t0 ; it0 + 1; 1)and C2(t0) = (x; y;w) = (�it0 � t0 ;�it0 + 1; 1):Let's consider the polynomial remainder sequence de�ned asS1(z) = Q(y; z);S2(z) = R(x; z):As a result S3(z) = S1(z)� S2(z) = �2y + 2y2 + 2yz � x2 � 2z:Since S3(z) is a linear polynomial in z, we are able to express the rational function fromthe plane curves to the space curves asz = �(x; y) (x; y) = x2 + 2y � 2y22y � 2 :Thus, B1(t0) = (x; y; z;w) = (it0 � t0 ; it0 + 1;�1� t0 � it0 ; 1)and B2(t0) = (x; y; z;w) = (�it0 � t0 ;�it0 + 1;�1� t0 + it0 ; 1)24



Nowwe can apply the inverse transform according to (13) and obtain the parametriza-tion of the original seam curves asB1(t) = (x; y; z;w) = (�1; it; t; 1)and B2(t) = (x; y; z;w) = (�1;�it; t; 1)These seam curves lie on the surface and we can verify that by substituting theirparametrizations into the surface equation, H(x; y; z) = 0.8. ConclusionIn this paper we presented algorithms to compute the implicit representation of rationalparametric surfaces. If a parametrization has no base points the implicit representationcorresponds to a matrix determinant (using results from Elimination theory), otherwisewe use perturbation techniques. In particular, we presented an e�cient perturbationsuch that the computation of implicit representation involved GCD of polynomials asopposed to multivariate factorization. Moreover, the extraneous factors obtained can beused to compute the rational parametrizations of seam curves. The techniques presentedin this paper can be used to implicitize rational hypersurfaces in higher dimensionalspace. The implicit equation can always be extracted from the resultant of the perturbedsystem by GCD operation and the extraneous factors can be used to compute the imagesof base points (and its higher dimensional equivalents). This follows from the proofsof Theorems 2 and 4, which utilize the properties of the algebraic sets de�ned by theparametric equations for a given parametrization. More details on the implementationof the algorithm and its performance are given in Manocha & Canny (1992).Acknowledgement: This research was supported in part by David and Lucile PackardFellowship and in part by National Science Foundation Presidential Young InvestigatorAward (# IRI{8958577). ReferencesAbhyankar, S., Bajaj, C. (1988). Computations with Algebraic Curves, Lecture Notesin Computer Science 358, 279{284.Bajaj, C., Garrity, T., Warren, J. (1988). On the Applications of Multi{equationalResultants. Technical report CSD-TR-826, Computer Science Department, PurdueUniversity.Buchberger, B. (1989). Applications of Gr}obner Bases in Non-linear ComputationalGeometry. In: (Kapur, D., Mundy, J. eds) Geometric Reasoning, 415{447, MIT25
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