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In many applications we need to compute the implicit representation of rational paramet-
ric surfaces. Previously, resultants and Grébner bases have been applied to this problem.
However, these techniques at times result in an extraneous factors along with the im-
plicit equation and fail altogether when a parametrization has base points. In this paper
we present algorithms to implicitize rational parametric surfaces with and without base
points. One of the strength of the algorithms lies in the fact that we do not use multi-
variate factorization. The base points blow up to rational curves on the surface and we
present techniques to compute the rational parametrization of the blow up curves.

1. Introduction

Many algebraic and geometric algorithms use the parametric form to represent surfaces.
For computational reasons, they are restricted to rational functions for parametric rep-
resentation. A surface represented parametrically by rational functions is known as a
rational surface. The parametrization of a rational surface represented in terms of ho-
mogeneous coordinates is:

(z,y,z,w) = (X (s,8),Y (s,1), Z(s,t), W(s,1)), (1)

where X (s,t), Y(s,t), Z(s,t) and W(s,t) are polynomials in the indeterminates s and
t. The set of rational surfaces is a proper subset of the set of algebraic surfaces. Thus,
every rational parametric surface has a corresponding implicit representation and it is
desirable to compute it. This process of converting from parametric to implicit is known



as tmplicitization. The implicit representation is useful for representing the object as a
semi-algebraic set and for surface intersections as shown in Hoffmann (1989) and Prakash

& Patriakalakis (1988).

There are two known techniques for implicitization. Both these techniques reduce
the problem of implicitizing rational surfaces to eliminating two variables from three
parametric equations. The first technique involves the use of Elimination theory. In
Hoffmann (1989) the two variables are eliminated in succession by using the Sylvester
resultant for two equations. The resulting expression does not correspond to the resultant
of three parametric equations and contains an extraneous factor, whose separation can
be a time consuming task involving multivariate factorization. The Dixon formulation,
given in Dixon (1908), for computing the resultant has been used to implicitize tensor
product surfaces in Sederberg et al. (1984). It does not generate an extraneous factor,
but is limited to tensor product surfaces and not applicable to total degree bounded
parametrizations. Bajaj et al. (1988) use Macaulay’s formulation for computing the
resultant of three parametric equations for implicitizing. In general, it is believed that
techniques based on Elimination theory can result in extraneous factors along with the
implicit equation and separating them can be a time consuming task as mentioned in
Hoffmann (1989).

The second technique utilizes Grobner bases. It computes a canonical representation
of the ideal generated by the parametric equations, by defining a suitable ordering of the
variables as shown in Buchberger(1989) and Hoffmann(1989). However, this method can
be extremely slow in practice. In this paper, we formulate the three parametric equations
in such a manner, that their resultant corresponds to the implicit representation without

generating any extraneous factor.

All the techniques mentioned above fail when a parametrization has base points in
the parametric domain. A base point in the domain, say s = sg,t = tg, corresponds to a

common solution of the following four equations
X(s,t) =0, Y(s,t) =0, Z(s,t) =0, W(s,t) =0.

The base points also include the common solutions at infinity. In general any faithful
parametrization of a rational surface whose algebraic degree is not a perfect square has
base points. Furthermore, the base points blow up to rational curves on the surface

(known as seam curves).

We present an algorithm to implicitize rational parametrizations with base points and
also compute the rational parametrizations of seam curves. In particular, we symbolically
perturb the given parametric equations and show that the implicit equation is contained
in the lowest degree term of the resultant of the perturbed system (expressed in terms
of the perturbing variable). However the lowest degree term contains an extraneous

factor along with the implicit equation, as observed in Chionh (1990), and separating
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it can be a time consuming task involving multivariate factorization. To overcome this
problem we consider a particular perturbation, obtained by perturbing one of the three
equations and hereby denoted as the efficient perturbation, and show that the extraneous
factor is independent of one of the variables. This allows us to compute the extraneous
factor by two substitutions for that variable followed by a GCD (greatest common divisor)
calculation. Moreover, it is shown that in the case of efficient perturbation the extraneous
factor corresponds to the projection of the seam curves and is used for computing the
rational parametrizations of the seam curves.

The rest of the paper is organized in the following manner. In section 2, we specify our
notation and present some background material from algebraic geometry. Section 3 shows
how resultants can be used to compute the implicit representation without generating
any extraneous factors. In section 4, we analyse parametrizations with base points and
show why resultants and Grébner basis fail on such surfaces. We perturb the given
parametric equations in section 5 and show that the implicit equation is contained in the
lowest degree term of the resultant of the perturbed system. In section 6 we consider
the efficient perturbation and show that the extraneous factor in the lowest degree term
is a function of two variables and corresponds to the projection of seam curves. This
extraneous factor is used for computing the rational parametrizations of seam curves in
section 7.

2. Background

A rational parametrization is a vector valued function of the form
F(s,t) = (X (5,0), Y (s.0), Z(5,6), W (s.1)). 2)

We use lower case letters like s, t, & or y to denote scalar variables and upper case
letters to represent scalar functions like W (s, t) or F(z,y, 2) and homogeneous functions
like F(2,y,w). Bold face upper case letters, like F(s,¢), are used to represent vector
valued functions and lower case bold face letters like p and q represent tuples like (s, ¢, u).

In (2), X(s,t), Y(s,t), Z(s,t) and W (s,t) are bivariate polynomials and assumed to
have power basis representation. A polynomial H(xz,y,z) is independent of z, if it is a

bivariate polynomial in # and y and all monomials are independent of z.

A surface parametrization, (2), represents a mapping of the form
F: R?— R

In fact the domain is often restricted to a finite interval, of the form [aq,b;] X [a, bs]
or a triangle. Since the field real numbers is not algebraically closed, we extend this
definition to the complexes and also include the points at infinity. As a result, the
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resulting parametrization corresponds to a mapping of the form
F: P?— P3,

where P denotes the complex projective space. We use homogeneous coordinates to
represent the domain and range of F and a point in the domain is represented by the
tuple (s,t,u). The rational surface F(s,t) should be interpreted as a representation of
the form

F(s,t,u) = (X(s,t,u),Y (s,t,u), Z (s, t,u), W (s, t,u)) (3)
where X (s,t,u),Y (s,t,u), Z(s,t,u) and W (s,{,u) are homogeneous polynomials in s, ¢
and u and each polynomial has the same degree. Moreover,

GCD(X (s,t,u),Y (s,t,u), Z (s, t,u), W (s, t,u)) = 1.

2.1. ALGEBRAIC SETS

In this section we present some definitions and basic results on the dimension of
algebraic sets. We use these results in the rest of the paper.

Let us consider an algebraically closed field, €' and define a polynomial ring
A= Clay, gy, 2]

of m variables over (. All the polynomials used in this section are assumed to be defined
over this ring.

DEFINITION.  The set of common zeros of a system of polynomials Fi,...,F, in
T1,..., T,y is called an algebraic set and is denoted V (I, ..., F,,) C C"™. An algebraic set
V(F) defined by a single polynomial (which is not identically zero) is called a hypersurface.

If all the F; are homogeneous, it is more convenient to work with the projective
space P71 formed by identifying points in C™ which are scalar multiples of each
other. We use the same notation, V (F'y,...,F,) C P™~! for an algebraic set defined by
homogeneous polynomials F;.

An algebraic set is said to be reducibleif it can be expressed as a finite union of proper
subsets which are algebraic. Otherwise it is an irreducible algebraic set. An irreducible
algebraic set is known as a wvariety. An algebraic set can always be expressed as a
finite union of irreducible algebraic subsets called components. Many results in algebraic
geometry apply only to irreducible algebraic sets, and in much of what follows, we work
with the individual components of an algebraic set.

DEFINITION. Let Z be the intersection of n hypersurfaces in m-dimensional afline or
projective space. A component W of 7 is said to be properif it has dimension m —n. A

component of dimension greater than m — n is said to be an ezcess component.
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And in fact all components of an intersection must be either proper or excess by the
following lemma from Mumford (1976):

LEMMA 1. If F; are n non-homogeneous polynomials in m variables, (or homogeneous
in m+1 variables), then every component of V(Fy,..., F,) has dimension at least m —n.

3. Implicitization

Consider a rational surface
F(s,t,u) = (z,y,z,w) = (X(s,t,u),Y (5,8, 1), Z (s,t,u), W (s, t,u)),

where X (s,t,u), Y (s,t,u), Z(s,t,u) and W (s,t,u) are homogeneous polynomials of de-
gree n. Let ) denote the image of F. It is assumed that Y is a two dimensional set. In
other words, the image of F is not a 1-dimensional curve.

Let us consider the case when the parametrization, F, has no base points and the
map F, is therefore, defined at all points in the domain. Since P? is a closed, compact
and irreducible set of dimension 2 and F is a continuous rational map, the image of F is
a closed and irreducible set in P?. This can be proved formally by considering P? and
P3, the domain and range of F, as topological spaces with respect to Zariski topology.
It is shown in Munkres (1975) that the image of a compact set under a continuous map
is compact. As a result Y is a compact set. Furthermore, every compact subset of a
Hausdorff space is closed, as proven in Munkres (1975). Since P? is a Hausdorff space,
Y is therefore, a closed set. Thus, Y is a 2 dimensional projective variety in P3. The
following lemma from algebraic geometry,(Hartshorne, 1977),

LEMMA 2. A projective variety Y C P™ has dimension m — 1, if and only if it is the
zero set of a single irreducible and homogeneous polynomial G of positive degree.

implies that the image of F corresponds to the zero set of a single irreducible and ho-
mogeneous polynomial, G(z,y, z,w). Thus, G(z,y,z,w) is the implicit representation of
the given surface. It is characterized by the following property:

G(X (s, t,u),Y (s,t,u), Z (s, t,u), W (s,t,u)) = 0.

Consider the following parametric equations

Fi(s,t,u) = aW(s,t,u) —wX(s,t,u) =0,
Fy(s,t,u) = yWi(s,t,u) —wY (s,t,u) =0, (4)
Fs(s,t,u) = 2W(s,t,u) —wZ(s,t,u) = 0.

The solution set of each equation corresponds to a 4-dimensional hypersurface in P% x P>
(spanned by (s,t,u) and (¥, z,w), respectively). Let’s consider the algebraic set, @ =
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V(F1, Fq, F3), obtained by the intersection of the three hypersurfaces, obtained as the
solution set of the above equations. Let II be a projection function

M: P2x P?— p3

such that

H(s,t,u,z,y,z,w) = (2,9, 2, w).

Lemma 1 implies that each component in () has dimension of at least 2. Since there are
no base points, the intersection set consists of the following components:

1.

Q ={(s,t,u,z,y,z,w)|z = Y(s,t, u),y = 7(87t7 u),z = 7(s,t7 u),w = W(s,t, u)}.

@, is a proper component of ) and

=

(@1) = V(F($7 Y, 2, w))7

where
H(z,y,z,w) :@(x,y,z,w)k, for k> 1.

Qy = {(s,t,u, 2,9, 2, w)|W(s,t,u) = 0,w = 0}.

Q, is an excess component of Q (of dimension 3). However, II(Q,) has dimension
2 and corresponds to the points at infinity in the (z,y, 2z, w) space.

We see that T1(Q) consists of at least two distinct components, whereas we are inter-
ested in computing G(z,y, z,w) only. We therefore, work with an affine representation
of the image space and modify the parametric equations, (4), as

Fl(s,t, u) = aW(s,t,u) — X(s,t,u) =0,
Fly(s,tyou) = yWis,t,u) —Y (s, t,u) =0, (5)
Fls(s,t,u) = zW(s,t,u) — Z(s,t,u) =0

This corresponds to substituting w = 1 in (4). Let’s consider
Q=V(F',F'y, F'3) C P?x (¥,
and let II be the projection function
I:P?*xC°—C?

such that
H(s,t,u,z,y,2) = (2,9, 2).
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THEOREM 1. If the given parametrization has no base points and the parametrization
is faithful then @) consists of a single component. Moreover, that component can be

represented as

_ ; . = —
Q {(37 ,U7$7Z/73)|$ W(87t7u)7y I/I/(87t7u)7

PROOF. The fact that Q; C Q implies that Q; C Q. Thus, Q, is a component of
(). Let us assume that ) consists of some other component, say P. Since P # (Qq,
I p=(s1,t1,u1,21,y1,21) € P and p € Q1. There are two possibilities:

1. W(817t17ul) =0.
We know that p € V(F17F27F3) and therefore

F'y(s1,t1,u1) =0,

= Y(Sl7t17ul) = x1W(81,t1,u1) = 0

Similarly, we can show that Y (s1,¢1,u;) = 0 and Z(sy,¢1,u;) = 0. This implies
that (sy,{1,u1) is a base point of F, which is contrary to our assumption.

2. W(817t17ul) # 0.
We know that p €  and therefore,

F'y(s1,t,u1) =0

= aW sy, t1,ur) = X (s1,t1,u1)

= 2y = {(317t17u1) ]
W (sy,ty, 1)
Similarly we can show that -
= Y (51,11, 1)
1= =,
W (s1,t1, 1)
and _
(51,1, 1)
Zl —_— .
W (sq,t1,ur)

This implies that p € Q.
Thus, all points in ) also lie in 1 and therefore,
Q= Q.

Thus, () consist of one component. Q.E.D.
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Since @) is an irreducible algebraic set, each point in I1(Q) lies in Y. This follows from
the representation of @) in Theorem 1. Since @ and I1(Q) are 2 dimensional algebraic
sets, 11(Q)) correspond to the affine portion of the zero set of the implicit representation
of F(s,t,u). If the given parametrization is unfaithful, each point in I1(Q)) has more than
one preimage with respect to F. In this case, I1(Q)) corresponds to an algebraic set of

multiplicity greater than one. Thus,

H(Q) :V(H(ac,y,z)), (6)

where H(z,y,2) = G(z,y, z)k7 k> 1. k= 1if and only if F is a faithful parametrization.
Using Bezout’s theorem it can be shown that the algebraic degree of H(x,y,z) is n?,
where n is the degree of the parametrization. The degree of G(z,y, 2) is n%/k. Moreover,
k corresponds to the number of points in the (s,¢,u) plane, that are the preimages of an
arbitrary point in V(G(z,y,z)).

The problem of implicitizing parametric surfaces without any base points corresponds
to computing I1(Q)) and making sure that the resulting polynomial is square free. This can
be done using Grébner bases or resultants, as shown in Buchberger (1989) and Manocha
& Canny (1992), respectively. The resultant of three parametric equations (5) can be
expressed as determinant of a matrix. The corresponding formulations are given in Dixon
(1908) and Morley & Coble (1927). This holds for tensor product surfaces as well as total
degree bounded parametrizations. In practice, this formulation is efficient for computing
the implicit representation, as shown in Manocha & Canny (1992).

4. Base Points

A base point is a common solution of

X(s,t,u) =0, Y(s,t,u) =0, Z(s,t,u) =0, Wi(st,u)=0.

The solution set of any of the polynomials, say X (s,¢,u) = 0, corresponds to an algebraic
plane curve in the P? plane (denoted by homogeneous coordinates s, t and u). Each curve
may have more than one component and the base point corresponds to the intersection
of these curves. The multiplicity of each base point is equal to the multiplicity of the
curves at that point. In other words, a base point has multiplicity &, if it is a k-fold point
of X(s,t,u),Y (s,t,u),Z(s,t,u) and W (s,t,u). The multiplicity of a curve is defined in
Semple & Roth (1985). Let

S = V(Y(Sv t,u), 7(37 t,u), 7(37 t,u), W(57 t,u))
be the set of base points. Since

GCD(X (s, t,u), Y (s,t,u), Z (s, t,u), W (s, t,u)) = 1,
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S is therefore, a finite set. Let p = (sq,tg,up) € S. Moreover,
F(P) = F(807 tos uO) = (07 0,0, 0)7

which does not correspond to any point in the image space. It has been known that base
points blow up to rational curves on the surface (known as seam curves), given in detail
in Clebsch (1868), Semple & Roth (1985) and Snyder et al. (1970). Furthermore, the
degree of the seam curve is bounded by the multiplicity of the corresponding base point.

Since F is not defined at the base points, we modify its domain and define it as a
mapping of the form
F : P?\S— P°

F(s,t, u) = F(s,t,u),

where P?\ S represents the difference of two sets. P?\ S is an open and irreducible
set of dimension 2. Let K be the image of F. We know that K is a 2-dimensional
set and K C P?. In general, K is a proper subset of an algebraic set V (H(z,y, z,w)).
The problem of implicitization corresponds to computing H(z,y, 2, w). The base points
decrease the degree of the implicit equation as explained in Manocha & Canny (1992). A
base point of multiplicity k decreases the degree of the implicit equation by at least k2.
The total number of base points (counted properly) correspond to n? — d, where n is the
degree of the parametrization and d is the degree of its implicit representation. Thus, a
base point of multiplicity & is counted at least &2 times.

4.1. IMPLICITIZING SURFACES WITH BASE POINTS

Given F, a parametrization with base points, we use resultants to compute the implicit
equation. The resultant of the parametric equations (5), by considering them as polyno-
mials in s, £ and u, is zero. This can be explained in the following manner.

Given p = (s, %o, ug), a base point in the parametrization. From the definition of a
base point it follows that

Fi(s0,t0,u0) =0 Fo(so,to,u0) =0, Fa(so,to,ug) = 0.

Thus, the given system of equations, (5), has a non trivial solution (sq, g, ug). Moreover,
this solution is independent of the coefficients, #, ¥y and z. The resultant is therefore,
identically zero.

The Grébner bases approach to implicitizing parametric surfaces considers the ideal
generated by the parametric equations. More details of this approach are given in Buch-
berger (1989) and Hoffmann (1989). It uses a particular ordering of the variables and
compute the Grébner base of the ideal. One of the polynomials in the Grébner base is in-
dependent of s and ¢t and therefore, corresponds to the implicit representation. However,
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the technique fails if a parametrization has base points in the affine domain as shown in
Manocha & Canny (1992).

Grébner bases offer us the flexibility of working in the affine space. As a result, it
is possible to implicitize parametrizations with base points only at infinity. All polyno-
mial parametrizations (with or without base points) can therefore, be implicitized using
Grébner bases.

5. Perturbation

In the previous sections, we have shown the use of resultants and Grébner bases for im-
plicitizing parametric surface. However these techniques fail when a parametrization has
base points. For example, the resultant of the parametric equations is identically zero
due to the presence of an excess component in the image space. Thus, the problem of
implicitizing corresponds to: computing the proper component in the presence of excess
component. Some similar problems have been encountered while solving system of poly-
nomial equations and techniques for dealing with such problems have been highlighted
in Canny (1990) and Ierardi (1989). The technique corresponds to perturbing the given
equations, such that the resulting algebraic set (in the higher dimensional space defined
by adding the perturbing variable) has no excess component. The projections of the
proper components of the algebraic set corresponding to the unperturbed system can be
obtained from the projections of the algebraic set corresponding to the perturbed system
by applying limiting arguments.

We will carry out the rest of perturbation analysis with resultants. The technique is
also applicable with Grébner bases. However we recommend resultants for their efficiency,
as shown in Manocha & Canny (1992).

Lets consider the parametrization
F(s,t,u) = (z,y,z,w) = (X(s,t,u),Y (5,8, 1), Z (s,t,u), W (s, t,u)),

of degree n, which has base points in the domain, represented by set §. The resultant
of the parametric equations, (5), is identically zero. Lets perturb the given system of
equations and the resulting parametric equations are

Gi(s,t,u) = aW(s,t,u) — X (s,t,u) + AX(s,t,u) =0,
Ga(s,tyu) = yWi(s,t,u) =Y (s,t,u) +AY (s, t,u) =0, (7)
Gs(s,tyu) = z2Wi(s,t,u) — Z(s,t,u) + AZ (s, t,u) = 0,

where A is the perturbing variable and X (s,t,u),Y (s, t,u) and Z;(s,t,u) are homoge-
neous polynomials of degree n such that

V(Y(s,t, u),?(s,t7 u),?(s,t, u),W(s,t,u ,Yl(s,t, u),?l(s,t, u),?l(s,t, u)) = ¢.
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In other words, the perturbed system of parametric equations, (7), has no trivial solutions
and therefore, their resultant does not vanish. A simple procedure is to choose random
polynomials, X (s,t,u),Y (s, t,u) and Z(s,t,u). The resulting system of perturbed
equations has a base point if and only if their resultant of G,G5 and G5 is zero. This
process of choosing random polynomials can be repeated until the resultant is non-zero.
The probability of success is very close to 1.
Let
Q =V (G,Gy,Gs) C P2 x C° x O,
and II be the projection function

IT: PP x C° x €t — C° x O, (8)

such that
H(s,t,u,z,y,2,A) = (2,9, 2,A).

According to Lemma 1 every component of () has dimension greater than or equal to 3.
Let R(z,y,z,A) be the resultant of the perturbed system, (7), i.e.

R(z,y,z,A) = 11(Q).

Let us express the resultant as a polynomial in A, while the coefficients are polynomials
in z, y and z:

R(z,y,2,N) = Pz, 5, 2) A + ...+ Py(z,y, 2) A7 (9)
The fact that specializing A = 0 makes the resultant of (7) equal to zero implies that
i>0in (9).
THEOREM 2. H(z,y,z), the implicit representation of F(s,t,u) is contained in P;(z,y, 2),
i.e.

H(xvyv Z) | B(x,y, 2)7

where P;(x,y,z) is the coefficient of the lowest degree term of R(x,y,z,A), expressed as
a polynomial in A.
PROOF. Let

P=V(F(s,t,u), Fa(s,t,u), F3(s,t,u))

where F;(s,¢,u) is an unperturbed parametric equation and
PcPx (.
Let B be the component of P defined as

B = {(87t7u7$7y72)|$:—7@/:72:7 (S,t,u)EPQ\S}



where C(M’u)(x, y, z) is the set of all points lying on the seam curves corresponding to
(s,t,u). B is a proper component of P.

With the addition of a complex variable A, the zero set of @ lies in P? x € x C1.
Since F;(s,t,u) and G;(s,t,u) are identical when A = 0, it follows that

Px{0l=0Qn(\=0).

Thus, Bx {0} C Q. Since every component of () has dimension greater than or equal to 3,
B x {0} must be contained in some 3 (or higher) dimensional component B’ of Q. Every
point of B’ has a 3 dimensional neighbourhood whose intersection with the hypersurface
A = 0 is a 2 dimensional set. Thus, for every point q = (sg, tx, uk, Tk, Y&, 2, 0) € B %
{0}, there is a sequence of points q; = (sj,¢;,u;, %}, ¥, 2;,A;) in B — B x {0} which
converges to q. Moreover R(Il(q;)) = 0 for all j’s. Thus, R(z;,y;,2;,A;) = 0. Divide the
polynomial throughout by (A;)* (which is non-zero) and we obtain

P2 950 2) + Popr (25,95, ) (A) + - o+ Palaj, 5, 2) (A) 7 =0

for all q;. This is a polynomial in the coordinates of q; and is, therefore, a continuous
function of the coordinates. Since it is zero for q; — q, it must be zero at q. But q is a
point lying on the hypersurface A = 0, so P;(z, yz, 2x) = 0. Since

V(H($7y7 Z)) = {(xlmylmzk) | q= (8k7tk7uk7xk7yk7zk70) € B x {0}}7

V(H(2,y,2)) C V(Pi(z,y,2)). If Fis a faithful parametrization, H(z,y,z) is an irre-
ducible polynomial and therefore, H(z,y,z) | P;(x,y,z). Else let any generic point in
Y have m preimages (m > 1). Thus, H(z,y,z) = G(x,y,2)™. Let (z1,11,21) € Y and
(siytiyus), 1 <7< m be its preimages. In other words q; = (s;,%;,u;,21,91,21) € B for
all 7. As a result q; x 0 € B and it has a 3-dimensional neighborhood in B — B x0
which converges to q; x 0. Since R(z,y,z,A) = lI(Q), we can use the limiting argument
to show that (21, ¥1,21) is a point of multiplicity m in V (P;(z,y, z)). Thus,

H(z,y,2) | Pi(z,y,2). Q.E.D.

The same result hold when we use the Dixon eliminant on tensor product parametriza-
tions or Grébner bases on any parametrization as shown in Manocha & Canny (1992).
We illustrate the technique on the following examples.

EXAMPLE 1. Let

s2—1—t2 2s 2st )
$24 141272+ 14127524 1+12

be the parametrization of a rational surface (a sphere in this case), which has a base

F(s,1) = (2,9,2) = (

point at (s,t) = (0,7), where i = y/—1. The ideal generated by the parametric equations
is

T={a(s*+14+) s>+ 1413 y(s* + 1+ 13) — 25, 2(s> + 1 + 1*) — 2st}.
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None of the polynomials in 7 is independent of s and ¢. Lets perturb the parametric
equations and the ideal corresponding to the resulting parametric equations is

T ={e(s*+14+) =+ 1+ 12 = My(s? +14+12) =25 — A, 2(s* + 1+ 1?) — 25t + As}.
Compute the Grobner bases of J with a variable ordering
z<y<x<A<s<t.

The first polynomial in the Grobner bases is independent of s and ¢. It can be expressed

as a polynomial in A as
AR+EN) (VA (=32 —y? —dz—2%) = 2Ay(—a+a® -2y  +ay® —» —daz — 22— 3y*r —227)
“2\y(—3zz* = 2%) =22 4 P 4+ 2P — 1) (1 4+ 22 + 2 + y* 4 22+ 222 + 22)),
whose lowest degree term is
2@+ P+ 2 - D+ 20+ a2 oyt 422+ 222 + 7).

Thus, the implicit representation of the sphere, 22 + 4%+ 2% — 1, is contained in the lowest
degree term. Q.E.D.

EXAMPLE 2. Lets consider a tensor product parametrization
F(s,t) = (v,y,2,w) = (st* —t,st + 8,25 — 2t, 51%),

which has a base point at (s,t) = (0,0). The resulting parametric equations are

wst? — st 4t = 0,
yst? —st—s = 0,
zst? =25+ 2t = 0,

whose Dixon eliminant is zero. Lets perturb these equations and the resulting system is

ast — st +t+As+2) = 0,
yst? —st —s+ A2 = 0,
zst? =25+ 2t + A(s+4) = 0.

The Dixon eliminant of these equations is polynomial in z, y, z and A and after expressing

it as a polynomial in A, the lowest degree term is
8(—2+4 22 — 2)(—4x + 42* — 8y + Sxy + 4y® + 22 — daz — dyz + 7).

In this case, (=2 + 22 — 2) is an extraneous factor and (—4x + 42% — 8y + Szy + 4y* +
27 — dxz — 4yz + 2*%) is the implicit representation. Q.E.D.
13



Thus, we can perturb the given parametric equations such that the lowest degree
term of the resultant of the perturbed system contains the implicit equation. However,
there is always an extraneous factor present in the lowest degree term and extracting the
implicit representation involves multivariate factorization. Furthermore, we need to test
each irreducible polynomial, obtained after factorization, whether it corresponds to the

implicit equation. In many cases this process can be a time consuming task.

6. Efficient Perturbation

In this section we present an efficient perturbation such that the implicit equation can
be extracted from the lowest degree term of the resultant by computing the GCD of
bivariate polynomials. Furthermore, the extraneous factor in the lowest degree term of
the perturbed system contains interesting information about the seams or blow-ups of the
base points. In particular, we choose our perturbation so that we get the X-Y projection
of the blow-up curves. This is useful because the polynomial we obtain is the product
of the implicit equation and a polynomial that depends on x and y only. This makes it
easy to separate the implicit equation, assuming that it depends on z (which it will after
a generic change of coordinates). As a result we do not need to factorize, and the GCD

we compute involves only bivariate polynomials.

Before we present the efficient perturbation and carry out the analysis, we make

certain assumptions on the given parametrization, F. They are:

1. The implicit representation is not independent of z. In other words, it is not of the
form H(z,y) = 0.

2. W{(s,t,u)) does not divide Z(s,¢,u). Otherwise the implicit representation is of the
form z — k =0, where k = % and we can compute it directly.

The base points blow up to rational curves of the form (X (¢),Y (¢), Z(t), W(t)) on
the surface. Since these curves lie on the surface, they are characterized by the property

that
X)) Y(@) Z()

W) W) w(t)

where H (z,y, z) is the implicit representation of the surface. Lets consider the projection

H( ):07

of one of these curves on the X-Y plane. The projected curve has a rational parametriza-
tion of the form (X (¢),Y (¢), W(t)) and it can be implicitly represented as the zero set
of an irreducible polynomial, say F(z,y). Later we show that the lowest degree term
of this efficient perturbation can be expressed as a product of H(z,y,z) and F(z,y)

(corresponding to each seam curves).

14



Given a parametrization with base points, let us perturb one of the three parametric
equations, (5), say Fs(s,t,u) and the resulting perturbed system is

Gy(s,t,u) = aWi(s,t,u) — X(s,t,u) =0,
Go(s,t,u) = yW(s,t,u) —Y(s,t,u) =0, (10)
Gs(s,t,u) = zW(s,t,u) — Z(s,t,u) + A7 (s, t,u) =0,

where 7 (s,t,u) is a homogeneous polynomial of degree n such that
V(X (s, t,u),Y (s,t,u), W (s, t,u), Z1(s,t,u)) = ¢.

We will denote this perturbed parametrization as G. It is still possible that for all choices
of Z(s,t,u) the resultant of Gy (s,t,u),Go(s,t,u) and Gs(s,t,u) is zero. Let
Q = V(§17§27§3) C P2 X CS X C17

and II be the projection function from P? x C? x C' to C® x €, as defined in (8).

THEOREM 3. Given a set of three equations of the form, Gi(s,t,u),Gq(s,t,u) and
G3(s,t,u), where Z(s,t,u) is chosen such that

V(X (s,t,u),Y (s,t,u), W (s, t,u), Z (s, t,u), Z1(s,t,u)) = ¢.

The necessary and sufficient condition that the resultant of G, Gy and G5 does not vanish
s that
P(s,t,u) = GOD(X (s, t,u), Y (s,t,u), W (s,t,u))

18 a constant.

PROOF. Necessity

Let us assume that P(s,{,u) is a polynomial of positive degree. Let us consider the set
M = {(s,t,u,2,y,2, ) | P(s,t,u) =0,—Z(s,t,u) +AZ(s,t,u) = 0}

and
Mc PExC?xCh
Let P= (817t17u17$17y17Z17)‘1) € M. ThllS7

P(817t17ul) = 0

and therefore

Gi(siti,ug) = a1 W(sy, by, uy) — X(s1,6,u) =0-0=0,
Go(si ity ur) = yW(sy, by, ug) =Y (sy,ty,uy) =0—0=0,
Ga(sy,ty,uy) = W(s1,t1,u1) — Z(sy,ty,uy) + M Zq(s1,t1,u1)

21
= —Z(s1,t1, U1)1-51- MZy(s1,t1,u1) = 0.



Thus, p € V(G1,G2,G3) = p € Q. In other words, M C Q. M is a 4-dimensional
set. Given any 4-tuple, (2,y,2,A) = (21,91, 21, A1), one can find (sy,%1,uy) such that
(s1,t1,u1,21,y1,21,A1) € M. Thus, M is an excess component of ¢ and II(M) is a

4-dimensional set, too. Therefore the resultant of Gy, G5 and G5 is zero.

Sufficiency

Let P(s,t,u) be a constant polynomial. To prove the non-vanishing of the resultant
it is sufficient to show that there is some value of x, y, z and A such that for those values
Gy, G4 and G5 have no common solution.

First pick = 0. Now choose a value of y so that Gy(s,¢, ) has a finite number of in-
tersections with Gy (s, ¢, 1) =0, i.e. X (s,¢,u). Since GCD(X (s, t,u),Y (s,t,u), W (s,t,u))
is a constant, for almost all values of y, X (s,t,u) and Gy(s,¢,u) intersect in n* points,
according to Bezout’s theorem. Let these points be (s;,t;,u;), 1 <i < n

Once there are a finite number of solutions for the Gy (s,¢,u) and Gy(s,t,u), it is
easy to choose z and A such that G3(s;,t;,u;) # 0. At any of the n? solution points,
say (84,45, u;), X (8i,t;,u;) = 0. Pick z and X such that for each solution they satisfy the

following constraint. The constraint depends on the value of W (s;,t;,u;):

1. Case W(s;,t;,u;) = 0.
The fact that X(s;,¢;,u;) = 0 implies that Y (s;,¢;,u;) = 0. The polynomial
Z1(s,t,u) is chosen to be non-zero at the common roots of X(s,t,u), Y (s,t,u)

and W (s, t,u) and therefore, Z (s;,t;,u;) # 0. In this case

)\# _Z(Sht“ﬂi) )
Z1(sis b ;)
2. Case W(s;, t;,u;) # 0.

Let A take any value choose z such that

£ Z(sistiy ;) — Ay (855t u;)
VA —— .
Wisits,u)

Thus, for almost all choices of z and A, the given equations have no common solution
and therefore, the resultant does not vanish. Q.E.D.

To circumvent this problem of vanishing resultant in certain cases we perform a change

of coordinates and let the new parametrization be

f— ro

F (s,t,u) = (x/,y,z,w/):(ac,y—i—kz,z,w)

= (X(s,t,u),Y (s,t,u) + kZ(s,t,u), Z (s, t,u), W (s,t,u)),
16



where k is a scalar. The corresponding parametric equations are

@ll(s,t, u) = aWi(s,t,u) — X(s,t,u) =0,
@;(s,t, u) = yW(s,t,u) =Y (s,t,u) — kZ(s,t,u) =0,
Gs(s,tyu) = z2Wi(s,t,u) — Z(s,t,u) + AZ (s, t,u) = 0.

Since GOD(X (s, t,u),Y (s,t,u), Z(s,t,u), W (s,t,u)) = 1, for any generic k,
GCD(X (s,t,u),Y (s,t,u) + kZ(s,t,u), W (s, t,u)) =1,

too. We compute the implicit representation in terms of ', y’,z and w' and substi-
tute them to obtain an implicit equation in terms of z,y,z and w. From now on-
wards we assume that it is possible to choose Z;(s,t,u) such that the resultant of
G1(s,t,u),Go(s,t,u) and Gs(s,t,u), R(z,y,2,A), is non—zero. Moreover the resultant
can be expressed as a polynomial of the form

R(z,y,2,0) = XS(x,y,2,N), (11)

where S(z,y,2,0) # 0.
LEMMA 3. The total number of base points (counted properly) of F correspond to i in

(11).

PROOF. Let F has m base points (counted properly). Base points of multiplicity k are
counted at least k2 times. Thus, its implicit representation has degree n?—m. R(z,y,z, \)
is the resultant of G (s,t,u), Ga(s,t,u) and Gs(s,t,u). Gy(s,t,u) and Gy(s,t,u) corre-
spond to plane curves of degree n each and according to Bezout’s theorem intersect in
n? points (counted properly). Let the points be (s;,t;,u;), 1 < i < n?. 1If (sg,tg,ug) is
a base point of F, G (s, o, ug) = G2(s0,lp,ug) = 0. Thus, the intersection set consist
of these m base points and n* — m other intersections (which are functions of z and y).
Let (s;,t;,u;), 1 <j < m correspond to the base points. Using properties of resultants,
highlighted in Salmon (1885), it follows

n2

R($,@/,Z,)\) = HGS(Sivtivui)
=1
7’L2
= JIGW(sitiu) = Z(sitiyug) + AZq (54,1, u;))
=1
7’L2
= a\” H 53(8i7ti7ui)7

i=m+1

where o = [[72, Z1(s;,t;,u;) # 0. Thus, the lowest degree term in A in R(z,y,z,\) has
degree at least m. Since the points, (s;,¢;,u;), m < i < n* do not correspond to the base
17



points, at least W (s;,¢;,u;) or Z(s;,t;,u;) does not vanish. Thus, the lowest degree term
of the resultant has degree exactly equal to m. Q.E.D.

For a generic choice of Zy(s,t,u) it is possible to show that S(z,y,z,A) is an irre-
ducible polynomial. This follows from the fact, that for any generic choice of A = A;,
the resulting parametrization G has no base points and R(z,v, z, A;) corresponds to its
implicit representation. Therefore, R(z,y, 2, A;) is equal to some power of an irreducible
polynomial and for a generic choice of Z,(s,t,u), R(x,y,z, ;) is an irreducible polyno-
mial. Thus, V(R(z,y,z,A)) consist of the following components:

1. V(A) of multiplicity 7.

2. V(S(z,y,2,N)).
As a result, Q) consists of i + 1 components. ¢ of these components are of the form

{(807t07u07$7y7Z70)7}

where (sg,%0,up) is a base point and the (i 4+ 1)st component can be represented as
Q = {q = (Sjvtjvuj7$j7yj7zj7>‘j) | qc Q7 S($]7y]72]7)\]) = 0}

Let us express the resultant as a polynomial in A, and let P;(z,y,z) be the constant
term of S(z,y,2,A). We know from Theorem 2 that

Pl(x7y7z) :H($7y7z)F($7y7z)7

where H(z,y,z) corresponds to some power of the implicit equation and F(z,y,z) is
the extraneous factor. Our aim is to extract H(z,y, z) without resorting to multivariate
factorization.

THEOREM 4. F(x,y,z) is independent of z. In other words F(z,y,z) is a bivariate
polynomial in x and y. Moreover, I'(x,y,z) corresponds exactly to the projections of the
seam curves on the X-Y plane.

PROOF. Every component of () has dimension 3. Let P and B be algebraic sets as
defined in the proof of Theorem 3. For every point q € B x {0}, there is a sequence of
points (q;) € Q' — B x{0} in its neighbourhood, which converges to q. Furthermore, q has
a 3-dimensional neighbourhood for defining such sequence of points. As a result we are
able to show that H(z,y, 2) | P:(x,y,2). Let (sg,tg, ) be a base point of F(s,t,u) and let
q = (so, to, %o, To, Yo, 20, 0), where (xq, Yo, 20) is a point on the seam curve corresponding
to (so,to,uo). Let (x;,y;,2;,A;) be a point in the neighbourhood of (g, Yo, 20,0) such
that S(z;,y;,2;,A;) = 0. For each such (x;,y;,2;,A;) there exists (s;,¢;,u;) such that
qa; = (5j,t5,uj,%5,Y;,2;,Aj) € Q' - Bx {0}. As a result we are able to define a sequence

18



of points q; converging to q. Corresponding to every point in this sequence let us consider
another sequence of points q; = (55,45, u5,25,¥j, z;, )\;) such that

z; = kzj,

)\/, _ —ijW(Sj_,t]‘,u]‘)+7(8]‘7t]‘,u]')
! Zl(sjvtjvuj)

where k is any arbitrary constant. The fact q; € Ql implies that q; € Ql. As a result
R(z;,y;,kz;, )\;) =0.

Consider the sequence of points approaching q, and from the limiting argument it
follows that (z¢, yo,20) € V(P;(z,y,2)). Moreover,

lim A= lim _kZJW(SJ_thv“j) — Z(sj,t5,u5)
(s+t5u)—=(s0,tosu0) 7 (5:t5u;)—(50:t0,u0) Z1(s5,t5,u5)

=0.

This is because (sg, tg, o) is a base point and therefore, W (sq, to, ug) = 0, Z(sq,to, ug) =
0 and Z;(sg,to,ug) # 0. Thus, q; — (50,0, %0, o, Yo, k20,0) and from the limiting
arguments it follows that P;(xo, yo, kz9) = 0. Furthermore, (2¢, yo, 20) can correspond to
any point on the seam curve and the choice of £ is arbitrary.

The fact P;(xq,yg, kz9) = 0 implies either H(zg,yg,kz9) = 0 or F(zg,yo,kzg) = 0.
We have assumed that H(z,y, 2) is not independent of z and therefore, it is not possible
that for all points (zg, yo, z0) on a seam curve (2, Yo, kz9) € V(H (z,y, 2)), for any choice
of k. Therefore, F/(zg,yo,kz0) = 0 for all k. Since V(F(z,y, 7)) is a polynomial in z, y
and z, this is possible if and only if F(z, yo,2) = 0 for all such (zg, yo), where z¢ and yo
represent the  and y coordinates of a point on a seam curve. Let 3;(z,y), 1 <j <m
correspond to the implicit representation of the projection of seam curves (where m
correspond to the number of seam curves and m < i) on the X-Y plane and therefore

V(ﬁ](xvy)) C V(F(ac,y,z)), Jor 1 <5 <m.

It is still possible that V (F;(z,y, 7)) may consist of some other component, besides
the implicit representation and the projection of seam curves. Let that component be
the zero set of a(x,y, z). Since a(z,y, z) is distinct from H(x,y,2) and 3;(z,y)s, there
exist (21,91,21) € V(e(2,y,2)) such that H(z1,y1,21) # 0 and §;(21,41) # 0.

Let us consider the point p = (sg, to, 20, %1, Y1, 21,0). Since p € Q', we can choose a
sequence p; = (s;,t;,%;,%,9;,%;,A;) in the neighbourhood of p such that p; € Ql. We
can similarly choose a sequence p; = (s5,tj,uj,25,y;,kzj, )\;), such that p; € Ql, and
from the argument used above it follows that (21, y1,kz1) € V(a(z,y,2)) for all k. Thus,
a(z,y,z) is independent of z and we may represent it as a(z,y). Moreover a(z1,y1) = 0.

A seam curve corresponding to (sg,tg, ug) is the set of limit points (Z,7,7) such that

q = (so,to,%0,7,7,7%,0) € Ql and q has a 3-dimensional neighbourhood in Ql. Since
19



S(z1,91,2,0) = 0 and p = (so,to, o, 1, ¥Y1,2,0) € Q' for all z, there exists a sequence
of points p; € Ql in the neighbourhood of p. The fact that there exists such a sequence
implies that (21, y,) must correspond to the (z,y) coordinates of a point on a seam curve,

which is contrary to our assumption.

Thus, F'(2,y, 2) exactly corresponds to the projections of all the seam curves on the
X-Y plane. Q.E.D.

From now onwards we will represent the lowest degree term of the resultant of the

perturbed system as
Pi(x,y,2) = H(z,y,2) F(2,y),

where F'(z,y) is the extraneous factor. Our aim is to extract F(z,y) out of P;(z,y,?)
without resorting to multivariate factorization. Let P;(z,y, z) and H(z,y,z) be polyno-
mials of degree d (d > 0) and they can be expressed as

Pix,y,2) = po(a,y) + pi(@, 9)z + pal@,y)2° + ...+ palz, y) 27,
H($,y, Z) = h0($,y) + h1($7y)2+ . '7+hd($7y)zd7

Since H(z,y,z) corresponds to some power of an irreducible polynomial

GCD(hg(z,y), ha—1(x,y), ..., ho(z,y)) = 1.

As a result,
GOD(])O($7@/)7P1($7@/)7p2($7y)7 .. '7pd($7y)) = F($7y)

Hence, we can extract the extraneous factor by taking the GCD of d + 1 bivariate poly-
nomials.

In general, for almost all two distinct values of z, say z; and z9,
F($7 y) = GCD(R($7 Y, Zl)7 ]Dz(wv Y, ZQ))

Thus, the implicit equation can be represented as

Pi(x,y,2
Hzy.2) = GCD(PZ»(x,gg, zl),z)z»(x,y, =)

Let the parametric equations be polynomials belonging to a ring F|s,t, u].
COROLLARY 1. If F is an infinite field, there exists an implicit equation belonging to
the ring Flx,y, z].

PROQOF. If the parametrization has no base points, then the implicit equation corre-
sponds to the resultant expressed as determinant of a matrix. Each entry of the matrix
is of the form ax + by + ¢z 4+ d, where a,b,c,d € F, and therefore the coefficients of the

implicit equation belong to the same field.
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If the parametrization has base points, we can always choose a perturbing polynomial
Z1(s,t,u) € F(s,t,u) and let R(x,y, z,A) be the resultant of the perturbed system. Each
coefficient of R(xz,y,z,A) and therefore, of P;(z,y,z,A) lies in F. The implicit equation
can be expressed as ratio of two polynomials, whose coefficients belong to F. Thus, the
implicit equation has the same coefficient field as the parametric equations. Q.E.D.

7. Rational Parametrization of Seam Curves

In the previous section we presented the technique for computing the implicit represen-
tation from the parametrization by making use of the GCD operation. The extrane-
ous factor corresponds to the projection of seam curves on the X-Y plane. Given a
parametrization, F, we can use efficient perturbation and perturb the equations contain-
ing the z and y variable so that we are able to compute the projections of seam curves
on the Y — 7 and X — Z planes, respectively. Given these projections, we present an

algorithm to compute the rational parametrizations of seam curves.

Perform a transformation on the coordinates of a parametrization and let the projec-
tions of the seam curves of the resulting parametrization be P(z,y), Q(y, 2) and R(z, 2)
on the X-Y, Y-Z and X-Z planes, respectively. For a generic transformation, each of

these polynomials would consist of projections of all the seam curves.

Every rational space curve is birationally equivalent to an algebraic plane curve,
as explained in Walker (1950). For a generic choice of coordinates such a birational
equivalence can be established between a space curve B(t) = («(t),y(¢), 2(t), w(t) and
its projection on X-Y plane, C(¢t) = (z(t), y(t), w(t). In our case, P(z,y) is the product
of the implicit representations of C(¢) corresponding to each seam curve. Thus, given
P(z,y) we use a factorization algorithm to decompose it into irreducible polynomials of

the form

P(ac,y) = P1($7y)P2($7y) .. Pm(wvy)7
where P;(z,y) is an irreducible polynomial. The factorization algorithms are given in
Kaltofen (1983).

Each plane curve, P;(z,y) = 0, is a curve of genus 0 and therefore, has a rational
parametrization. Given any algebraic plane curve of genus 0 techniques of computing its
rational parametrization are well known in algebraic geometry, as explained in Walker
(1950). The computational details are worked out in Abhyankar & Bajaj (1988). Thus,
we are able to compute the rational parametrization, C;(t) = (z(t), y(t), w(t)) of the
projection of each seam curve.

For the choice of coordinates it is assumed that each seam curve
B;(t) = (2;(t), yi (1), % (t), w; (1))
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is birationally equivalent to C;(¢). Thus, our problem is reduced to computing the rational

_ d(z,y)
- ()

expressing the relation between the z, ¥ and z coordinates of almost all the points on

function

any seam curve.
7.1. Remainder Sequences

Let us treat Q(y,z) and R(z,z) as polynomials in z and its coefficients are in the ring
Flz,y]. Without loss of generality we assume that the degree of R(z,z) is less than or
equal to that of Q(y,z). Let

@;S;(2) = BiSit1(2) — Siy2(2),

where S;(z) € Flz,y]lz], degree(Siy2(2)) < degree(S;y1(z)) for 1 < i < d and ay,
B; € Flx,y][z] such that

The sequence Sy(2),52(2),...,Sk(2) is a remainder sequence, as defined in Loos (1983).
Sk(z) is independent of z and corresponds to the resultant of Q(y, z) and R(y,z) with
respect to z. Let (2, ¥, 21) be any point lying on any seam curve. Thus,

osP(x1,11) =0; Q(y1,21) =0; R(xq,2)=0.

The fact S;(z1) =0 and S;41(%1)p=gp, y=y, = 0 implies that

T=T1,Y=Y1
Sive(21) =y y=y; = 0.0

As a result all the polynomials in the remainder sequence vanish when (z,y,z) corre-
sponds to any point on any seam curve. Let’s consider the polynomial Sj_1(z), which is
a linear function in z and can be expressed as

Sk—l(z) = ¢($7 y)z - ¢($7 @/),

where ¢(z,y) and ¥ (x,y) are polynomials in @ and y. Since this polynomial vanishes for

all points on any seam curve, the points on a seam satisfy the equation

(12)
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Thus, the rational parametrizations of the seam curves are

-

(t) wilr) GG 2

B;(t) = (w»(t)7 w; (1)’ Qb(m M))

o

corresponding to each C;(t).
EXAMPLE 3. Let’s consider the parametrization of a sphere (same as Example 1)

2 —1-—1t2 2s 2st

PO =@y =Grarp arise friv e

Since the parametrization has base points, let’s perturb the given system and the
corresponding parametric equations are

Gi(s,t,u) = a(s*+24+1)—(s*—1-t}) =0,
Gy(s,t,u) = y(s*+t2+1)—25=0,
Ga(s,t,u) = y(s®+12+1) = 2st + A(2s> + 32 +4) = 0,

The resultant, R(z,y, z, A) is a polynomial in the four variables and the lowest degree
of A is 2 (equal to the number of base points in F). The coefficient of A\? is

Py(x,y,2) = —64— 1282+ 1282° 4 642" + 64y* + 1282y
+6422y? 4 6422 + 128222 + 642222

Choose 2 generic values of z, say z = 1 and z = 2 and the extraneous factor is
F(x,y) = GCD(P:(x,y,1), P:(x,y,2)) = 64 4+ 1282 + 6422,
Thus, the implicit equation is

o= )

Apply a linear transformation on the coordinates and obtain

:x2+y2+z2—1.

T = T-25—-%
y T-J-%
z = —-y—z
and the inverse transformation is
T = y—z
Y y—z (13)
zZ = rx—-Yy—z
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The resulting parametrization is
F = (25— 2st,25 —s* + 14+ 1%,87 =1 —t* — 25 — 2st,8* +t* 4 1).

This parametrization has the same base points as F and we perturb each of the

parametric equations to obtain the following extraneous factors, which correspond to the
projections of seam curves on X' - Y/7 Y -7 and X' = 7' planes.

24 2T+ T2 — 47 — 2Ty + 27°
Z) = 1-254+25° + 277+ 72
1+72+27+7°

P(Z,7) can be factorized as

PEy) =(y- (-1 —i)((y- D@ +1) - ),

where i = /—1. The resulting parametrizations are

Ci(t)

= (z,7,®) = (it —t,it +1,1)
and

!

C2(t ) = (fv ?7 E)

(=it —t',—it +1,1).
Let’s consider the polynomial remainder sequence defined as
51(7) = Q(¥,7),
S2(Z) = R(7, 7).

As a result

S3(2) = 51(2) — S2(7) = —27+ 27" + 297 — 7° — 2%.

Since S3(Z) is a linear polynomial in Z, we are able to express the rational function from
the plane curves to the space curves as

Loy w42y -2y
¢($7@/) 2?—2

Thus,

(it —t it +1,-1—t —it' 1)
and

—it =t =it +1,-1—t 4t 1)

24



Now we can apply the inverse transform according to (13) and obtain the parametriza-

tion of the original seam curves as
B(t) = (z,y,z,w) = (—1,1t,t,1)

and
B (t) = (2,y,z,w) = (=1, —it,1,1)

These seam curves lie on the surface and we can verify that by substituting their

parametrizations into the surface equation, H(z,y,z) = 0.

8. Conclusion

In this paper we presented algorithms to compute the implicit representation of rational
parametric surfaces. If a parametrization has no base points the implicit representation
corresponds to a matrix determinant (using results from Elimination theory), otherwise
we use perturbation techniques. In particular, we presented an efficient perturbation
such that the computation of implicit representation involved GCD of polynomials as
opposed to multivariate factorization. Moreover, the extraneous factors obtained can be
used to compute the rational parametrizations of seam curves. The techniques presented
in this paper can be used to implicitize rational hypersurfaces in higher dimensional
space. The implicit equation can always be extracted from the resultant of the perturbed
system by GCD operation and the extraneous factors can be used to compute the images
of base points (and its higher dimensional equivalents). This follows from the proofs
of Theorems 2 and 4, which utilize the properties of the algebraic sets defined by the
parametric equations for a given parametrization. More details on the implementation
of the algorithm and its performance are given in Manocha & Canny (1992).
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