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Abstract

Finding a closed form solution to a system of polynomial
equations is a common problem in computer vision as well
as in many other areas of engineering and science. Grob-
ner basis techniques are often employed to provide the so-
lution, but implementing an efficient Grobner basis solver
to a given problem requires strong expertise in algebraic
geometry. One can also convert the equations to a poly-
nomial eigenvalue problem (PEP) and solve it using linear
algebra, which is a more accessible approach for those who
are not so familiar with algebraic geometry. In previous
works PEP has been successfully applied for solving some
relative pose problems in computer vision, but its wider ex-
ploitation is limited by the problem of finding a compact
monomial basis. In this paper, we propose a new algorithm
for selecting the basis that is in general more compact than
the basis obtained with a state-of-the-art algorithm making
PEP a more viable option for solving polynomial equations.
Another contribution is that we present two minimal prob-
lems for camera self-calibration based on homography, and
demonstrate experimentally using synthetic and real data
that our algorithm can provide a numerically stable solu-
tion to the camera focal length from two homographies of
unknown planar scene.

1. Introduction

Many camera pose estimation and calibration problems boil
down to solving a system of polynomial equations. These
are often so-called minimal problems, where the camera
parameters are computed from a minimal number of con-
straints so that there are essentially as many unknowns as
equations, but the relationship between the unknown vari-
ables and the measurements follows a polynomial model
that makes the dependence nonlinear and difficult to solve
by means of linear algebra. Such minimal problems in-
clude for example, the classical P3P (Perspective-Three-
Point) problem for a calibrated camera where an image of
three points with known distances is sufficient to compute
the camera pose, but it requires solving a system of three

quadratic equations in three variables [9]. Another clas-
sical example is the five-point problem that allows find-
ing the relative pose between two views from an unknown
scene using five point correspondences. Nistér [17] con-
verted the resulting system of polynomial equations to a
tenth degree univariate polynomial that can be efficiently
solved using standard numerical techniques. The relative
pose problem has been modified in various studies to in-
corporate also unknown camera parameters that enable the
use of uncalibrated cameras and makes it a self-calibration
problem. To mention few of them, Stewenius et al. [20]
used six point correspondences to solve the relative pose
together with the focal length. Fitzgibbon [8] augmented
the fundamental matrix estimation to include one term of
radial lens distortion, and solved them from 9 point corre-
spondences. Kukelova and Pajdla [15] used an additional
constraint to solve the same problem from 8 point corre-
spondences, and Jiang et al. [ 1] added still one constraint
and they were able to solve the problem from 7 point corre-
spondences. A comprehensive list of minimal problems in
computer vision and related papers can be found in [18].

Planar objects are commonly used for estimating the
camera pose and intrinsic parameters. Well-known Zhang’s
calibration method [23] provides a closed form solution to
the calibration problem from images of a known planar tar-
get. Also, OpenCV and Matlab include tools to perform cal-
ibration with a similar setup. Despite of the extensive num-
ber of minimal problems introduced in recent years, it is
surprising that homography has not been much considered
in this context, and there are only few related works. Min-
imal solutions to panorama stitching in [1] and [2] assume
that the camera centers coincide which reduces the motion
to pure rotation. Methods for decomposing a homography
into rotation, translation, and surface normal parameters
have been proposed e.g. in [7] and [24]. Saurer et al. [19]
consider a minimal solution to a 3-point plus a common di-
rection relative pose problem using homography. Recently,
Kukelova et al. [14] have presented two algorithms for esti-
mating the homography between two cameras with different
radial distortions. However, none of these works address the
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problem of solving the camera focal length from images of
an unknown planar target, which is the homography-based
minimal problem presented in this paper.

The most common approach for solving minimal prob-
lems in computer vision and corresponding systems of poly-
nomial equations is to use Grobner basis techniques. One
drawback of this approach is that when the polynomial de-
grees are high, it often suffers from numerical inaccuracies.
To address this problem, for example, Byrod et al. [3] have
proposed a generalization of the Grobner basis method for
improving the numerical stability. Another limitation of this
approach is that implementing a Grobner basis solver for a
given problem requires expertise in algebraic geometry be-
cause the solver needs to be handcrafted in practice to make
it efficient. Because of the complicated theory this approach
is often beyond the reach of non-experts. An alternative ap-
proach that is also commonly used for solving polynomial
equations is multipolynomial resultant, which provides an
efficient tool for eliminating variables from multiple equa-
tions, and solving the remaining variable as a root of a uni-
variate polynomial [4]. However, there are some limita-
tions that make resultants less useful for engineering ap-
plications. For classical multipolynomial resultants such as
the Macaulay resultant, most of the polynomial coefficients
need to be non-zero, the roots distinct and there should be
no solutions at infinity. This problem can often be avoided
by using a sparse resultant [0] that works also for polynomi-
als with several zero coefficients. Another disadvantage is
that after elimination the remaining univariate polynomial
is a determinant of a matrix that often has high dimensions.
Because a determinant of an N x N matrix has N! terms,
finding the roots of the remaining polynomial can easily be-
come computationally infeasible or unstable.

In addition to the Grobner basis techniques and resul-
tants, systems of polynomial equations can be often solved
using eigenvalues and eigenvectors. One approach is to
convert the classical multipolynomial resultant to a stan-
dard eigenvalue problem [5],[4] which however works only
with dense polynomials. In [8] the minimal problem of
computing the radial distortion coefficient was expressed
as a quadratic polynomial eigenvalue problem and later it
was extended in [16] to include an additional constraint.
A resultant-based algorithm for transforming a system of
polynomial equations to a polynomial eigenvalue problem
(PEP) was proposed in [13] that enabled solving several
minimal relative pose problems using linear algebra. How-
ever, this algorithm has an inherent property of leading to
unnecessarily high dimensional vector spaces and spurious
roots that make the algorithm numerically unstable when
solving sparse systems of polynomials with high degrees.

To overcome the problems related to the algorithm pre-
sented in [13], we propose a new algorithm based on sparse
elimination theory that provides more stable solutions to

sparse systems that are the most typical cases in practical
applications. In addition, we demonstrate the applicablility
of our algorithm in two new minimal problems that have
higher number of solutions than typical relative pose prob-
lems previously presented in the literature.

2. Polynomial eigenvalue problems

Polynomial eigenvalue problem (PEP) is an extension of the
standard eigenvalue problem (C — A\I)v = 0 to a system of
polynomials represented with the matrix equation:

(Co+CiA+CoX + -+ CAYv =0, (D

where [ is the highest degree of the polynomials in the vari-
able A that we want to solve, v is a vector of monomials in
other variables than A, and C, ..., C; are m X m square
matrices that contain the coefficients of the polynomials.
This equation can be converted to a generalized eigenvalue
problem

Au = \Bu, 2)
where
0 I 0 0
0 0 I 0
A: . . . . )
-Gy —-C; -Gy -Ci
I 0 O 0 v
0 I O 0 AV
B = ,u= .
0 00 --- C Nty

Since most of the mathematical software libraries and pack-
ages can solve this problem it becomes easy to find all the
roots for A\. The eigenvector u contains the solutions of the
monomials that exist in the polynomials, and therefore, one
can extract the roots of the remaining variables by comput-
ing suitable ratios between individual elements of u.

The most difficult part of converting the system of poly-
nomials to PEP is to determine the monomials in v and
consequently the matrices Cy, . .., C;. Given n polynomi-
als one can easily construct n X m matrices and the cor-
responding v satisfying (1), but usually n < m which re-
sults in an underdetermined system of linear equations that
cannot be solved. The trick emplyed in [13] is to gener-
ate new equations by multiplying the initial equations with
monomials produced by their algorithm. Some of these new
equations may be linearly independent from the initial equa-
tions, which then enables constructing a fully determined
system. Notice that this procedure also increases the num-
ber of monomials in v and hence the dimensions of the co-
efficient matrices. In [13] they used the classical Macaulay
resultant formulation for creating the set of basis monomials
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in v. Because the Macaulay resultant is designed for dense
homogeneous polynomials, it is not guaranteed to produce
a basis that is linearly independent. Therefore, they pro-
posed a small modification to the resultant-based approach
that gives a higher number of polynomial equations that in-
creases the chances to get a linearly independent set of ba-
sis monomials. However, for larger systems of polynomials
the basis generated by this method becomes huge, because
the Macaulay resultant is based on the assumption that the
number of the solutions obtained is maximal for the given
degrees of the polynomials. According to Bézout’s theo-
rem [4] the maximum number of solutions is dy - ds - - - d,,,
where d; is the degree of the polynomial f;. The set of ba-
sis monomials contain all the monomials with total degree
of d = > (d; — 1) + 1. One can easily see that the num-
ber of monomials increases exponentially. Therefore, this
approach is feasible only for small systems of equations
and low polynomial degrees. Next, we present a method
based on sparse elimination that exploits the sparsity of the
general polynomials, and produces smaller monomial bases
and coefficient matrices enabling solutions to problems that
have been previously intractable.

3. Determining basis monomials

Most of the polynomial equations encountered in computer
vision are sparse, and therefore classical multivariate resul-
tants are not well-suited for generating the basis monomi-
als. Sparse elimination theory [21],[5] has been developed
to deal with general polynomials that have many zero co-
efficients. The benefit of the sparsity is that the resultants
obtained have much smaller dimensions than the classical
resultants. Therefore, instead of selecting all the monomials
of a certain total degree we can get a significantly smaller
set of monomials by using the tools provided by the sparse
elimination theory.

Let x = {z1, 22, ..., 2, } be a set of unknown variables
that we want to solve from n multivariate polynomials

filx) = fa(x) = = fu(x) = 0 3)
defined by 5i N
filx) =) eiyx®i, )
j=1
where x4 = z{"7'x5"?...2;"" are the monomi-

als corresponding to the non-zero coefficients c;;. Let
Ai ={a;1,...,a,} C Z7 denote the exponent vectors of
all the monomials in f; that is also called the support of f;.
Next we introduce few concepts from algebraic geometry
[4] that are needed to formulate our method.

Definition 1: The Newton polytope of f; is the convex hull
of the support A; denoted by P; = Conv(A;) C R™. The
volume of P; is denoted by Vol,,(F;).

Notice that in the low dimensional cases when

n = 1,2 or 3, the Newton polytope represents a line,

polygon or polyhedron, respectively. Clearly, the way
how the volume Vol,, (P;) is computed depends on n. For
example, Vol (F;) is the length of the line, and Vol (F;) is
the area of the polygon.

Definition 2: The Minkowski sum of two convex polytopes
P; and P; is the convex polytope

P;j = P, + P = {pi +pjlp: € P;,p; € Pj} CR".

Using the Minkowski sum (also known as dilation) we can
aggregate the Newton polytopes of individual polynomials
fi to form combined supports. It is also needed for defining
the mixed volume.

Definition 3: Given convex polytopes Pi,..., P, C R”
there is a real-valued function called mixed volume that can
be computed as

MV,L(Pl,...,Pn):i:(—l)"‘k Z Vol,, (ZPZ).

k=1 I1c{1,...n} il
|I|=k

&)
In high-dimensional cases computing the mixed volume us-
ing (5) can be time consuming. There are faster algorithms
that use a so called mixed subdivision of the Minkowski
sum, and one can also find their software implementations
from the Internet, but in the cases discussed in this paper
n < 4 and using (5) is still tractable. The following theorem
is the reason why we introduced the mixed volume.

Theorem 1 (Bernstein’s Theorem): Given the polynomi-
als f1,... fn over C with finitely many common zeroes in
(C*)™, where C* = C\ {0}, let P; be the Newton polytope
of f; in R™. Then the number of solutions of the f; in (C*)"
is bounded above by the mixed volume MV, (P, ..., P,).
For generic choices of the coefficients ¢;; the number of
common solutions is exactly MV, (P, ..., P,).

The proof of the theorem can be found from [4]. Bern-
stein’s theorem is an important result of the sparse elimina-
tion theory that gives us a tool for calculating the maximum
number of the roots in advance without knowing the numer-
ical values of the coefficients. What we need is only the ex-
ponent vectors a;; of the monomials, i.e., supports .4;. This
also determines the minimum size of the monomial basis as
we will see later.

Next we discuss about finding the basis monomials for
the polynomial eigenvalue problem, i.e., the elements of
v in (1). Sparse elimination provides the tools for con-
structing sparse resultants that generalize the classical mul-
tivariate resultant. While the degree of the classical mul-
tivariate resultant is determined by Bézout’s theorem (i.e.
dy-ds - - - dy), the degree of the sparse resultant comes from
Bernstein’s theorem which is the mixed volume. These two
types of resultants coincide only when all Newton polytopes
are n-simplices scaled by the total degree of the respec-
tive polynomials [4]. Otherwise the degree of the sparse
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resultant is smaller, which also means that the matrix con-
structed from the coefficients c;; has smaller dimensions.
Furthermore, it is necessary that the matrix has full rank
and its determinant vanishes only when the equations have
a common solution. It often happens that the multivariate
resultant is rank-deficient if the polynomials have zero co-
efficients, and thus it fails to provide a solution. In order
to have a full rank, it becomes necessary to select the basis
monomials of the sparse resultant carefully using, e.g., the
Lift-Prune algorithm proposed by Emiris & Canny [0]. The
main disadvantage of the resultant-based approach for solv-
ing the polynomial equations is that it requires computing
the determinant of a matrix which often has high dimen-
sions. Because the determinant of an NV x N matrix has V!
terms, solving the unknowns from the resultant often be-
comes computationally infeasible even for relatively small
problems. For example, if the dimension of the coefficient
matrix for the sparse resultant is 10 x 10, the resultant is a
factor of an expression that has more than 3.6 million terms.
In such cases finding the solution via PEP is much more ef-
ficient.

A sparse resultant to a system of n equations is com-
puted in n — 1 variables, which means that one of the vari-
ables of our original problem (3) needs to be hidden to the
coefficient field. The resultant obtained is then a univariate
polynomial of the hidden variable which can be solved by
finding the roots of this polynomial. Without loss of gener-
ality we can decide to solve the first variable x; that is then
treated as a coefficient in the polynomials

/
S

e i rogal.

[ =2 %, (©6)
where ¢f; = >, cjat?t, x = {x2,...,z,} and
agj = (aj2,--.,n) € A} are n — 1 dimensional sup-
port vectors with | A;| = s;. The first step is to create the

Newton polytopes Pj,..., P! C R""! corresponding to
the modified system (6), and compute the Minkowski sum
P = P] +---+ P!. The set of basis monomials S for the
sparse resultant is then obtained from

S=7""1'n(P+d), (7

where Z"~! defines a square lattice with integer points, and
d € R"!is a small translation vector that displaces P
slightly so that the lattice points lie in the interiors of the
convex polytope [0, 4]. In practice, the elements of d can be
randomly selected from {—¢, 0, ¢} where € € Q is a small
rational number.

Sparse resultants need to be of full rank in order to have
a non-zero determinant. In our case, the only strict require-
ment is that Cg, . . . , C; in (1) must be square matrices. No-
tice that this is a looser condition than in [13] where they
assumed that either C; or Cy must be of full rank and in-
vertible. Here this not necessary, but in some cases rank-
deficiency may lead to numerical instability with the eigen-

value solver. Because the PEP in (1) is defined for one un-
known variable A which is then computed as an eigenvalue
of (2) we need to choose this variable from x4, . . ., x,. This
is exactly the same situation as with the sparse resultant, and
therefore, we decide again without loss of generality that
A = x1, and we hide z; to the coefficient field which then
results in the modified system (6).

Due to the relaxed requirements, we can try to find
a smaller set of basis monomials than (7) defined for
the sparse resultant. The lower bound is determined by
Bernstein’s theorem which gives the maximum number of
the common roots for the polynomials denoted by r =
MV, (P,...,P,). It should be noticed that the mixed vol-
ume is computed for the original system (3). The eigen-
vector u in (2) has the same dimension as the maximum
number of unique eigenvalues i.e. possible roots of the sys-
tem. The length of u is clearly /m which gives us the bound

m> % (8)

Hence, it is sufficient to find a set of support vectors 55 for
the basis monomials where |B| > r/I.

Algorithm 1 summarizes the procedure for constructing
B based on the previous discussion. It generates several
putative sets of support vectors for the basis and selects
the smallest set among these candidates. It also returns a
set T = {T1,...,Tn} where T; # 0 are subsets of vec-
tors that can be used to construct the coefficient matrices
Co, ..., C;. These vectors are first converted to n sets of
monomials M; = {x*| Vt € 7;}, and the monomials are
multiplied with the original equations f; which then results
in n sets of new equations & = {x*f;(x)| Vx* € M;}.
These equations are converted to a matrix form (1), which
then directly gives us the coefficient matrices Co, ..., C;.
The total number of new equations ). |&;| is greater or
equal to the number of the basis monomials, which means
that the coefficient matrices have at least as many rows as
columns. If there are more rows than columns, one can
choose m rows that minimize the condition number, and
discard the remaining rows. It may also happen that the
most compact basis does not work, and in that case one
could try the next candidate produced by the algorithm.

There are often monomials (or vectors) in 3 that do not
contribute to the equations. Such monomials may cause in-
stability to the eigenvalue solver, and they need to be re-
moved. In [13] they call them “parasitic” zero eigenval-
ues, and they propose to convert the generalized eigenvalue
problem to a standard eigenvalue problem so that one can
easily identify and remove these monomials as they corre-
spond to zero columns of the matrix to be decomposed. The
drawback is that either Cy or C; need to be of full rank,
which then causes extra constraints to selection of the basis
monomials. Hence, we propose here a simple strategy for
finding these zero monomials. First, we need to specialize
the coefficient matrices with some random numerical val-
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Algorithm 1 Generate basis monomials
Input: A;,..., Al rl
Output: B, 7T
1: Create Newton polytopes P! «— Conv(A}) C R"~! for
i=1,...,n,and aunit (n — 1)-simplex P, C R"~1.
2: Create a list of index sets:
K + [{ko,,kz} ‘VZ = 0,...777,;]60,...
{0, Ce ,’ﬂ} ; k’j+1 > k]]
3: Create a list of displacement vectors:
A [(51, - 75n71) ‘V(Sl, - 7677,71 € {—6, 0, 6}]
4: Initialize B <+ 0, T < @ and N < co.
5: for I in K do
6: Compute Minkowski sum @ < >, _; Py.
7
8
9

ki €

for d in A do
Create a putative basis B < Z"~' N (Q + d).
if |[B| > 7 AND |B| < N then
10: Find the sets of vectors:
T, + {tft ez} ", A+t C B}
fori=1,...,n.
11: if >, |T;| > |B| AND min(|7;|) > 0 then
12: B+« B, T < {T;}i=1,...n, and
N « |B|.
13: end if
14: end if
15: end for
16: end for

ues as c;;. Using these values we construct the matrices A
and B in (2), and compute the singular value decomposition
B = USV . Next we perform a unitary transformation

A'=UTAV, 9)

and find the zero columns of A’. These columns correspond
to the zero monomials and they can be removed from A and
B. The rows with the same indices are also removed so that
the matrices will remain square. This procedure might need
to be repeated few times to find all zero monomials. How-
ever, one should notice that the elimination is performed
offline when designing the solver, and there is no need to do
it runtime once the zero polynomials have been identified.

4. Planar self-calibration

A standard approach for geometric camera calibration is to
use a known checker board pattern printed on a planar sur-
face. To demonstrate the applicability of our algorithm, we
present two minimal problems for solving the camera focal
length from two homographies corresponding to three im-
ages where the patterns are unknown, which makes this a
self-calibration problem. We consider the following cases:
1) a constant focal length and 2) two different focal lengths.
The resulting polynomials can be converted to PEPs using
Algorithm 1 and solved efficiently, for example, with Mat-

lab or some other software package or library capable of
computing generalized eigenvalues.

Let two 3D vectors a and b span a plane so that they are
both orthogonal and of equal length fulfilling the constraints

a'b=0 and a'a—b'b=0. (10)
If |a] = |b| = 1 the normal vector of the plane is defined
by n = a x b. In order to express the vectors a and b in
terms of the normal vector n we can choose

a=nxe and b=nxa, (11)
where e is a unit vector not parallel to n. For simplic-
ity, we select e = [1,0,0]7. We use parametrization

n = [ng,n,,1]"/,/n2 +n2 + 1, and we can now express
aand b in variables n, and n,,. Further assuming that a and
b are represented in the camera coordinate frame of the ref-
erence view we can convert them to the image coordinates
using .
é() = Koa and b() = Kob, (12)
where K is the intrinsic camera matrix for the reference
camera. Because one can often assume with reasonable ac-
curacy that the principal point of the camera is in the center
of the image, the pixel aspect ratio is 1, and lens distortion
is negligible, we limit ourselves to the case where we have
only one intrinsic parameter, the focal length )\, that leads
to the camera matrix Ko = diag(Ag, Ag, 1).

The mapping from the reference image to the " image is
described by the homography H;. After back-projecting to
the 3D space the corresponding vectors are obtained from

a;, = K;'H;Kpa and b; = K;'H,K¢b, (13)

where K; = diag()\;, \;,1) and ); is the focal length of
the i" camera. Because orthogonality and equality in the
length should hold in each frame we have the following self-
calibration constraints expressed by two polynomials

fl,i(A()v)\hna:any) — a;rb’b = 0
f2.i(Xoy My sy my) = a a; — b, b; = 0.

(14)
5)

Herrera et al. [10] used similar constraints for planar
self-calibration but they solved the camera parameters with
non-linear minimization. The solver was initialized by as-
suming that the reference view is fronto-parallel when it be-
comes easy to compute an initial value for the focal length.
In this paper, we do not make such assumptions, and no
initialization is needed. There are now 3 + k unknowns
A0y -+ -3 Ak, N and ny, and two equations which means
that we cannot solve the problem from a single homogra-
phy, but we need at least two homographies (¢ = 1, 2) that
lead to four equations with four unknowns. This is true also
in general, because one homography provides only 8 con-
straints to calibration. Five constraints are needed for the
camera pose (3 for rotation and 2 for translation up to scale),
the normal of the plane n requires two constraints and one
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Figure 1. Components of the mixed volume in the case of equal
focal lengths (a). The exponent vectors of the basis obtained as
72 N ((P{ + P3) + (0, —¢)) are shown with crosses inside the
shaded convex polytope (b).

is needed for the perspective scaling factor. There are al-
gorithms such as [24] available for decomposing a single
homography to the pose parameters. In order to estimate
intrinsic camera parameters we need more constraints.

In our case, the minimal problem consists of two homo-
graphies that enables us to consider two calibration prob-
lems. In the first problem, we assume that all cameras
have the same focal length (A = Ay = A1 = X3). Be-
cause there are now three unknowns only three constraints
are needed. We can see that (14) has fewer terms than
(15), and therefore, we select the equations f; 1, f2,1 and
f1,2. The corresponding numbers of monomials are 15, 28,
and 15 with the total degrees of 6, 8, and 6, respectively.
All these polynomials are sparse, and the total degrees are
higher than in many of the minimal problems considered in
computer vision. The degree of A\ is [ = 4 for all equa-
tions. The first thing to do is to compute the mixed vol-
ume for obtaining the number of common solutions to these
equations. We use Maple’s PolyhedralSets package to
construct the convex polytopes from the Minkowski sums of
the polynomial supports (notice that P;+P; = Conv(A;)+
Conv(A;) = Conv(A; + A;)). The components of the
mixed volume are illustrated in Fig. 1 (a), and after com-
puting their volumes and substituting them into (5) we get
r=22/3+68/3+22/3—117—176/3—117+976/3 = 70
which is the upper bound for the number of solutions.

Next, we wuse Algorithm 1 to construct the
monomial basis.  The index list we get is K =
{0}, {1}, {2}, {3}, {0.1}, {0,2},{0,3}, {12}, {1, 3}, {2,
3},{0,1,2},{0,1,3},{0,2,3},{1,2,3}, {0, 1,2,3}]
and the list of displacement vectors A = [(—e, —¢)

(_670)7 (_67 6)? (07 _6)7 (07 0)7 (07 6)7 (Ev _6)7 ( )7 ( €, )}7

where we use € = 1/10. We obtain 135 puta-
tive bases B (62 valid), and from those we select
the minimal one which has more than or equal to

ceil(70/4) = 18 monomials and produces 18 or more equa-
4 6

. . . 2 3

tions. The basis we get is {1,ny,ny,ny,ny,ny,ny,nx,
2 4 5 02 2 2,2 2.3

ngng7 NNy, nxn% an gxny, Ny NGy, NNy, NNy,

ning,n3, niny, nin?, »J- It consists of 22 mono-

mials and it has been obtalned with Q=P; + P, and
d = (0,—¢). The exponent vectors B of this basis
are illustrated in Fig. 1 (b). We multiply the orig-
inal equations fii, fo1 and fio with monomials
Mg = {1,nw,ny,ni,n;ng,ngmy,nzni,niny},
Mo = {1,ng,ny,n2, nzny}, Mio = My, and as a
result we get 23 equations that can be expressed as linear
combinations of the basis monomials. In order to get square
coefficient matrices we simply discard the last equation.
Then we need to identify the zero monomials by using the
strategy described in the previous section. We find 6 zero
monomials with two iterations, and remove the correspond-
ing rows and columns from A and B which means that
the final dimensions of these matrices are 82 x 82. Hence,
besides the actual 70 roots we get 12 spurious roots that
can be found, for example, by substituting the solutions
obtained to the original equations. In practice most of the
roots are complex-valued, and there are typically only few
positive real-valued roots that we need to consider.

Our second self-calibration problem enabled by (14) and
(15) has two unknown focal lengths Ag and Ay = As. This
corresponds to a situation where the first uncalibrated cam-
era is used to capture the reference image and the second un-
calibrated camera captures two target images. Interestingly,
we cannot solve the focal length of the first camera )\g in
this case, because the variety is no longer zero-dimensional,
and a single reference image does not provide enough con-
straints for )\, but it can still be used to solve A\;. Now we
use all four constraints f; 1, f2,1, f1,2 and f2 2. The total
degrees remain the same but because there are now 4 vari-
ables, the degree of \; is two and hence, the PEP will have
degree I = 2. Next we compute the mixed volume in 4-
dimensional space. The volumes of the corresponding con-
vex polytopes are Vol(P;) = Vol(Ps) = 14/3, Vol(P) =
Vol(Py) = 64/3,Vol(P12) = Vol(P14) = Vol(Pa3) =
VOI(P34) == 204,V01(P13) == 224/3,V01(P24) == 1024/3,
VO](P123) = VOI(P134) = 800,V01(P124) = VO](P124) =
Vol(Pa34) = 1270, and Vol(Pi234) = 3264. This gives
us the mixed volume » = 304 which is the upper bound
on the number of solutions. The minimum cardinality for
the monomial basis is hence 152. Then we use Algorithm
1 to construct the basis. Because P = P{ and P; = P;
we can use kg, ...,k; € {0,1,2} that results in an index
list with || = 17. The displacement vector A contains
27 elements, and therefore we get 459 putative bases (175
valid). From those the minimal one with 191 monomials is
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obtained using @ = Pj + P; and A = [0, —¢, €]. The set T
contains 196 elements, and we decide to discard the 5 last
ones to get square coefficient matrices. Now it turns out that
C; becomes a zero matrix, and we can rewrite the PEP to
Cov = —A\2C,v, which is again a generalized eigenvalue
problem. Instead of \; we get solutions to A? which then
results in 191 positive solutions, and most of them are com-
plex valued or at infinity. Finally, we observe that there are
15 zero columns common to Cy and C;. We can remove
these columns and corresponding rows which reduces the
number of solutions to 176 meaning that there are now 24
spurious roots in the solutions obtained.

5. Experiments

In this section, we show experimentally that the self-
calibration methods presented in Section 4 give numerically
stable results both with synthetic and real data. We com-
pared our method to the modified resultant-based method
[13] which generates (”+j_1) basis monomials, where d =
> (d; — 1)+ 1. Since d = 8 and n = 3 in the first cali-
bration problem (equal focal length) we get 45 basis mono-
mial which is more than twice the number of the monomials
produced by our method. In total 57 equations can be con-
structed from the original ones by multiplying them with
monomials of degree d — d;. Despite of 12 extra equations
we were not able to find a combination that would result in
Cy with a full rank, and hence, it is not possible to invert
Cy and convert the PEP to a standard eigenvalue problem.
Instead we selected the equations randomly and used our
SVD based elimination scheme to remove 11 zero monomi-
als that helped to improve the stability of the method. The
final number of solutions is therefore 169 which means that
there are 99 spurious roots, while in our method the number
of spurious roots is only 12. Both solvers were implemented
with Matlab.

In the experiments with synthetic data we uniformly
sampled 1000 random points on a plane with dimensions
of 1000 x 1000 units. Three cameras were placed around
2000 units from the plane so that the cameras were roughly
pointing at the center of the plane. The size of the images
were 1000 x 1000 pixels. For the first calibration problem
the focal length was set to A = A\g = A} = Ay = 1200,
and we first tested the numerical stability of the methods
by using noise-free data. We randomly picked 4 points
from the dataset and computed the homographies. This was
repeated 30,000 times, and every time the closest root A
to the ground truth Ay was selected, and the relative er-
ror |A — Age|/Agt was computed. The distributions of the
relative errors in the first calibration problem are shown
in Fig. 2 (a) on a logarithmic scale for our method based
on sparse elimination (SPE) and for the modified resultant-
based method (MRE). As it can be observed our method is
more precise which is explained by the smaller basis. We
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Figure 2. Relative errors for the first calibration problem (equal
focal length): (a)-(c) synthetic data and (d)-(f) real images.

then added random noise with o = 0.5 pixels to the image
coordinates to simulate the quantization error. To make the
comparison more fair, we have compensated for the large
difference in the number of roots by doing the random sam-
pling twice for SPE and selecting the relative error which is
smaller. Furthermore, we rescaled the pixel values by 1/10
to reduce the numerical values of the homographies. This
was done, because the polynomial coefficients c;; are them-
selves polynomials of the homographies, and high powers
of large values tend to amplify the noise. Using smaller val-
ues regularizes the noise and reduces numerical problems.
The corresponding relative errors are plotted on a logarith-
mic scale in Fig. 2 (b), and they are also presented as his-
tograms on a linear scale in Fig. 2 (c). The precision is
marginally better for SPE than for MRE (mean error 0.1935
vs. 0.1947), but the computational cost is much higher for
MRE, because the eigenvalue decomposition has typically
complexity of O(n?).

We also tested the methods using real images cap-
tured with a Canon EOS 600D camera. The camera was
first calibrated with a checkerboard pattern and Matlab’s
cameraCalibrator tool to provide a ground truth value
for the focal length. The lens was adjusted to f = 18 mm
and the images were decimated by 4 to 1296 x 864 pix-
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els. The calibration was performed from 10 images and the
ground truth focal length obtained was 1108 pixels. In the
first experiment, we used the same images of the checker-
board pattern to estimate the focal length with both solvers.
In contrast to the Matlab’s tool, these solvers do not exploit
the prior information that the points form a known pattern.
In addition, we only used three randomly selected images
with a half of the points (27 out of 54) to compute the ho-
mographies. The random sampling for images and points
is again repeated 30,000 times to get statistically reliable
results. The relative errors are presented as histograms in
Fig. 2 (d). One can observe that the precision is now higher
than with the simulated data (¢ = 0.5). This is explained
by the larger number of points that were used to compute
the homographies. Four points, which is the minimum, is
not clearly sufficient for obtaining reliable results, but be-
cause the homography can be easily estimated from more
than 4 points, it is beneficial to use as many points as pos-
sible. The results also indicate that our approach can pro-
duce much higher precision than MRE. In the other exper-
iment with real data, we used 14 images of a copier trans-
parency film box captured with the same camera (an exam-
ple is shown in Fig. 2 (f)). SURF keypoints and descriptors
were used to find correspondences between the image pairs,
and RANSAC was employed to compute the homographies.
This procedure was repeated 30, 000 times for randomly se-
lected image triplets. The distributions of the relative errors
presented in Fig. 2 (e) indicate that the results with SPE are
again better than with MRE although the precision for both
methods is lower than for the calibration images, because
the keypoint locations are more noisy than the corners of
the checkerboard pattern.

For the second calibration problem (unequal focal
length) we set \g = 1000 and A\; = Ao = 1200, and we
repeated the same experiments as for the first problem with
our method (SPE2). We did not implement the modified
resultant-based method, because in this case d = 17 and
n = 4 that would give us 1140 monomials which is almost
6 times more than with our method, and it is clear that the
results would be inferior. The relative errors are plotted in
Fig. 3 (a) both for the noiseless case and for o = 0.5 us-
ing the simulated data. The latter one is also presented on
a linear scale in Fig. 3 (b). One can observe that without
noise the precision is lower than in the first problem which
is due to the larger matrix size that causes higher numeri-
cal errors to the eigenvalues. However, in the case of noisy
measurements the precision is actually higher than in the
first problem. One possible reason for this is that in the sec-
ond problem the solver uses 4 constraints in contrast to the
3 constraints of the first problem. Similar behavior can be
seen in the case of real data shown in Fig. 3 (c) both for
the checkerboard and the transparency film box images that
also produce slightly smaller errors than in the first problem.
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Figure 3. Relative errors for the second calibration problem (un-
equal focal length): (a)-(b) synthetic data and (c) real images. Ex-
ecution times for the solvers (d).

Execution times for the three solvers are given in Fig.
3 (d) that clearly demonstrates the advantage of our algo-
rithm. It should be noticed that Matlab’s eig function is
used to compute the generalized eigenvalues. In practice,
one can build a more efficient solver by exploiting the spar-
sity of the matrices. Finally, we also tried to compare our
method with a Grobner basis solver using the automatic
generator [22] implemented based on [12], but the software
failed to produce solvers to these calibration problems that
have very high polynomial degrees, and hence, we were un-
able to perform the comparison with a reasonable effort.

6. Conclusions

In this paper, we have proposed a new algorithm for se-
lecting the monomial basis for polynomial eigenvalue prob-
lems based on sparse elimination that has been previously
used for constructing sparse resultants. Our approach has
two important advantages over the sparse resultants: 1) the
solution is provided by eigenvalues instead of the roots of
a high-order determinant, and 2) the cofficient matrices do
not need to be of full rank unlike sparse resultants that sim-
plifies the algorithm and often leads to a more compact ba-
sis. In contrast to the modified resultant-based method [13]
our algorithm can exploit the sparsity of the polynomials
that is a common property in real-world problems. As a re-
sult, the monomial basis becomes smaller, and it is the same
only in the limiting case where the polynomials are dense.
We also presented two new minimal problems for camera
self-calibration, and demonstrated that our algorithm can
provide numerically more stable results than the modified
resultant-based method.
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