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Web proxy caches are used to improve performance of
the WWW. Since the majority of  Web documents are
static documents, caching them at WWW proxies
reduces both network traffic and response time. One of
the keys to better proxy cache performance is an
efficient caching policy which keeps in the cache
popular documents and replaces rarely used ones. This
paper introduces the Greedy-Dual-Size-Frequency
caching policy to maximize hit and byte hit rates for
WWW proxies. Proposed caching strategy incorporates
in a simple way the most important characteristics of
the file and its accesses such as file size, file access
frequency and recentness of the last access.
Greedy-Dual-Size-Frequency is an improvement of
Greedy-Dual-Size algorithm – the current champion
among the replacement strategies proposed for Web
proxy caches.
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1 Introduction

With the growth of the World Wide Web, an increasingly large fraction of available bandwidth

on the Internet is used to transfer Web documents. Recent studies show a signi�cant increase

of network tra�c due to HTTP requests: 40% in 1996 against 19% in 1994.

Since the majority of Web documents are static documents, caching them at HTTP proxies

reduces both network tra�c and request response time. HTTP proxies serve as intermedia-

teries between the browsers on a client side and web servers on Internet. Earlier studies have

shown that the hit ratio for Web proxy caches can be as high as 50% and can potentially

reduce tra�c up to 20%. Thus proxy caching can signi�cantly reduce network tra�c and

improve end-to-end request latency seen by a client.

One of the keys to better proxy cache performance is an e�cient caching algorithm which

intends to keep in the cache popular documents and replace rarely used ones. Additional

improvement can be achieved when the replacement strategy is combined with the decision

whether some documents are worth caching or not.

There are three essential features distinguishingWeb proxy caching from conventional caching

in the computer systems:

� Since HTTP protocol supports whole �le transfers only { Web proxy cache can satisfy

request only if the entire �le is cached.

� Web documents stored in a proxy cache are vastly of di�erent sizes while conventional

caches (CPU caches and virtual memory) deal with uniform size pages.

� The access stream seen by a conventional cache could strongly exhibit some algorithm

speci�c patterns because it is generated by one or few applications currently running

on a system. The access stream seen by the proxy cache is a union of access streams

coming from the users sitting behind the proxy (often the number of clients can be as

high as several hundreds or thousands).

Due to all of these special Web features, there are a number of replacement policies proposed

for Web proxy caches by the scienti�c community. Some of them are quite simple (i.e. { easy

to implement), and some of them are heavily parametrized or have parts that do not have an

e�cient implementation, and therefore in case of showing some good results, they still could

rather serve as a theoretical bound of best achievable performance than a practical choice.

The other problem which complicates a fair comparison of the proposed caching (or replace-

ment) algorithms concludes in the following. The results of trace-driven simulation studies

often have a strong dependency on the traces used to run simulation. In some cases, variation

in the traces could lead to contradictory simulation results.
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A very good survey of currently known Web replacement policies is done in [Cao-Irani97].

We use their survey to give an overview of the current state of the art in this �eld in Section 2.

In [Cao-Irani97], a new algorithm, called the Greedy-Dual-Size, is proposed as a solution for

the Web proxy replacement strategy. The authors make an additional e�ort to obtain traces

used in simulation studies by di�erent authors. This additional e�ort makes their results more

reliable and less dependent on particular trace characteristics.

They convincingly show that the Greedy-Dual-Size algorithm, with appropriate cost de�ni-

tions, outperforms currently known caching algorithms on a number of performance metrics

(see more discussion on performance metrics in Section 4).

Greedy-Dual-Size is an extension of a very elegant and e�cient algorithm, called Greedy-

Dual [Young91], which was designed to handle uniform-size variable-cost cache replacement.

Greedy-Dual-Size is extended to deal with caching and replacing of variable size documents

{ typical for the Web.

In this paper, we propose a new algorithm for Web proxy caching, called Greedy-Dual-Size-

Frequency, which takes into account how many times the document was accessed in the past.

It does improve the Greedy-Dual-Size algorithm further to re
ect �le access pattern. We

describe it in rigorous form in Section 5.

By exploiting the same idea, we also propose an extension to Greedy-Dual algorithm in

Section 7. A new algorithm, called Greedy-Dual-Frequency, incorporates the frequency count

for uniform-size references and is proposed as a solution for conventional paging problem.

2 The Overview of Existing Replacement Strategies for Web

Proxies

In this section, ten di�erent known algorithms are outlined and commented on. Greedy-Dual-

Size algorithm is of special interest and is described separately in Section 4.

� Least-Recently-Used (LRU) replaces the document which was requested least re-

cently.

This traditional policy is the most often used in practice and has worked well for CPU

caches and virtual memory systems. However it does not work as well for proxy caches

because the locality of time accesses for Web tra�c often exhibits very di�erent pattern.

� Least-Frequently-Used (LFU) replaces the document which has been accessed the

least number of times.

This strategy tries to keep more popular objects and replace rarely used ones. However,

some documents can build a high frequence count and be never accessed again. Tradi-
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tional LFU strategy does not provide any mechanism to remove such documents and

this leads to cache pollution.

� SIZE[WASAF96] replaces the largest document.

This strategy tries to minimize a miss ratio by replacing one large document rather than

a bunch of small ones. However, some of the small documents brought to a cache may

never be accessed again. The SIZE strategy does not provide any mechanism to evict

such documents, which leads to pollution of the cache.

� LRU-Threshold[ASAWF95] is the same as LRU, except it does not cache documents

larger than a certain threshold size.

� Log(Size)+LRU[ASAWF95] replaces the document which has the largest log(size) and

is the least recently used among the same log(size) documents.

� Hyper-G[WASAF96] is a re�nement of LFU with last access time and size considera-

tions.

� Pitkow/Recker[WASAF96] replaces the least recently used document, except if all the

documents are accessed today. In this case, the largest document is replaced.

This strategy tries to catch the daily time access pattern speci�c for the Web documents.

This replacement policy is also proposed to run at the end of the day for freeing a space

occupied by \old", least recently accessed documents.

� Lowest-Latency-First[WA97] removes the document with the lowest download la-

tency. It is explicitly aimed to minimize the average latency.

� Hybrid[WA97] targets at reducing the average latency too. For each document a utility

of retaining the document in the cache is computed. The document with the smallest

utility value is replaced. The utility function for a document f located at server s is

de�ned as using the following parameters: cs - the connection time to server s, bs { the

bandwidth to server s, frf { frequency count for f (i.e. number of accesses since f was

brought into the cache), sizef { the document f size in bytes. The utility function for

a document f is de�ned as:

(cs +K1=bs)� (frf )
K2

sizef

where K1 and K2 are constants. Estimates for cs and bs are based on the times to get

the documents from the server s in the recent past.

� Lowest Relative Value (LRV)[LRV97] is also based on computing a utility of re-

taining a document in the cache. The document with the smallest utility value is then

replaced. The calculation of utility value is based on extensive empirical analysis of the

trace data. For a given i, let Pi denote the probability that a document was requested

i+1 times given that it is requested i times. Pi is estimated in online manner by taking

5



the ratio Di+1=Di, where Di is the total number of documents seen so far which have

been requested at least i times in the trace. Pi(size) is de�ned similar to Pi taking into

account the only documents of size size. Furthermore, let 1�D(t) be the probability a

document requested again as a function of time (in seconds) since its last access t. D(t)

is estimated as

D(t) = 0:035log(t + 1) + 0:45(1 � e
�t

2e6 ):

Then for a particular document f of size size and cost cost requested i times in the past,

with the last access t seconds ago, the utility function V is computed in the following

way:

V (i; t; size) =

(
P1(size) � (1�D(t))� cost=size if i = 1

Pi � (1�D(t))� cost=size otherwise

Performance studies conducted in [ASAWF95, WASAF96] show that SIZE outperforms LFU,

LRU-Threshold, Log(size)+LRU, Hyper-G and Pitkow/Recker in terms of hit ratio.

SIZE also outperforms LRU in most situations as shown in [WASAF96]. However, results in

[LRV97] show that LRU outperforms SIZE in terms of byte hit ratio.

LRU outperforms LFU in most situations [Cao-Irani97]. LFU can only slightly outperform

LRU for small caches.

In terms of minimizing latency, [WA97] shows that Hybrid performs better than Lowest-

Latency-First.

Performance study in [LRV97] shows that LRV outperforms both LRU and SIZE in terms of

hit ratio and byte hit ratio.

This has narrowed the choice of replacement policies for Web proxy caches to LRU, SIZE,

Hybrid and LRV. Note that Hybrid and LRV are heavily parametrized strategies that make

them to serve rather as a theoretical bound of best achievable performance than a practical

choice.

The performance study conducted in [Cao-Irani97] showed that Greedy-Dual-Size algorithm

is a current champion outperforming LRU, SIZE, Hybrid and LRV for di�erent metrics and

for a variety of di�erent proxy traces used in other performance studies.

3 The Original Greedy-Dual Algorithm

The original Greedy-Dual algorithm was introduced by Young [Young91]. It deals with the

case when pages in a cache (memory) have the same size but have di�erent costs to fetch

them from the secondary storage.
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The algorithm associates a value, H, with each cached page p. Initially, when a page is brought

to a cache, H is de�ned to be a cost to bring the page into the cache (note that the cost is

non-negative).

When a replacement needs to be made, the page with the lowest H value, minH , is replaced,

and then all the pages reduce their cost values H by minH . If a page p is accessed again its

current cost value H is restored to the original cost of bringing this page to the cache.

In such a way, the H values of recently accessed pages maintain a larger amount of the original

cost as compared to the pages that have not been accessed for a long time.

The algorithm uses the pages with the lowest H values to be replaced �rst. These are either

\least expensive" pages to bring into the cache or the pages that have not been accessed for

a long time.

There is di�erent, an e�cient implementation of the algorithm using a priority queue and

keeping o�set value for future settings of H. We describe it in detail in Section 4.

4 Greedy-Dual-Size Algorithm for Web Proxies

Web Proxy caching is concerned with storing the documents of di�erent sizes. Cao and Irani in

[Cao-Irani97] extend Greedy-Dual algorithm to deal with variable size documents by setting

H to cost/size where the cost is the cost of bringing the document and size is the size of the

document in bytes. They call this algorithm as Greedy-Dual-Size algorithm (abbreviation:

GD-Size).

The simulation results provided in [Cao-Irani97] show that proposed algorithm outperforms

other currently known algorithms for di�erent performance metrics with accordingly chosen

cost functions.

The two most common metrics used to evaluate the proxy cache performance are the following:

� Hit ratio { the number of requests satis�ed from the proxy cache as a percentage of

total requests.

� Byte hit ratio { the number of bytes that transferred from the proxy cache as a per-

centage of total number of bytes for all the requests.

To get the best hit ratio, the cost function for each document has to be set to 1. In such a

way, larger documents have a smaller priority key than the smaller ones, and are likely to be

replaced if they are not referenced again in the near future. To maximize the hit ratio it is

always more \pro�table" to replace one large document (and miss this one document if it is

referenced again) than to replace many short documents to regain the same amount of space
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(and miss many of those documents when they are requested again). The cost of 1 favors

small documents and replaces large documents, especially those rarely referenced. We denote

this strategy GD-Size(1).

Thus, GD-Size(1) achieves the best hit ratio. However, this high hit ratio for GD-Size(1) is

achieved at a price of a lower byte hit ratio.

The strategy GD-Size(packets) sets cost function for each document to 2 + size=536, which

is the estimated number of network packets sent and received to satisfy a cache miss for

requested document. Te GD-Size(packets) strategy achieves both: a high hit and a high byte

hit ratio. This cost function provides greater key for large documents than for small ones. It

allows the documents of small sizes to be replaced more likely than the large ones (especially if

these large documents are often referenced). If the large document is never referenced again,

then it gets replaced due to aging mechanism.

Thus, GD-Size(1) is aimed to minimize miss ratio, while GD-Size(packets) tries to minimize

the network tra�c resulting from the misses.

In fact, as we can see, those two metrics are somewhat contradictory, and it is very di�cult

for one strategy to achieve the best performance results in both metrics.

Typically, a high hit ratio is a preferred choice because it allows a greater number of clients

requests to be satis�ed out of proxy cache, and minimizes average request latency.

However, if minimizing the outside network tra�c is more desirable then a strategy providing

a higher byte hit ratio has to be used.

Greedy-Dual-Size algorithm with appropriate cost de�nitions outperforms currently known

caching algorithms on a number of performance metrics including hit ratio and byte hit ratio.

However, Greedy-Dual-Size algorithm does have one shortcoming. It does not take into ac-

count how many times the document was accessed in the past.

Example: Let us consider how GD-Size(1) handles hit and miss for two di�erent documents

of the same size. When initially the documents are brought to a cache they both get an H

value as

H = 1=size:

The document doc1 which was accessed n times in a past will get the same H value as the

document doc2 accessed for a �rst time, and in a worst case scenario the document doc1 will

be replaced instead of document doc2.

The Greedy-Dual-Size algorithm can be improved to re
ect �le access pattern by incorporating

�le frequency count frequency in the computation of H:
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H = frequency �
cost

size
:

We will call it the Greedy-Dual-Size-Frequency algorithm (abbreviation: GD-Size-Frequency).

5 Greedy-Dual-Size-Frequency Caching Policy

This section describes the proposed algorithm in a rigorous way.

Let us consider a cache of size Total.

Let Used be amount of cache which is used to store cached �les.

At the beginning, Used = 0.

With each �le f present in a cache we associate a frequency count Fr(f): how many times it

was accessed. File f which is not in a cache but is going to be cached is assigned a frequency

count of 1: Fr(f) = 1:

To de�ne which �les are going to be replaced when the cache capacity is exceeded, we maintain

a priority queue on �les.

The �le f is inserted into the priority queue with a priority key Pr(f) computed in the

following way:

Pr(f) = Clock + Fr(f)�
Cost(f)

Size(f)
(1)

where

� The parameter Clock is a running queue \clock" that starts at 0 and is updated for

each replaced (evicted) �le fevicted to the priority key of this �le in the priority queue:

Pr(fevicted):

� The parameter Fr(f) is a �le f frequency count. If �le f is a hit (i.e. it is present in a

cache) then Fr(f) is increased by one: Fr(f) = Fr(f) + 1. If �le f is a miss (i.e. it is

not in a cache) it is assigned a frequency count of 1: Fr(f) = 1:

� The parameter Size(f) is the �le size.

� The parameter Cost(f) is the cost associated with �le f to bring it to a cache. We

have discussed the most popular cost functions and correspondent performance metrics

in Section 4.
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Now, let us describe the caching policy as a whole.

1. If the requested �le f is a hit in the cache then this �le request is served out of cache,

and

� The Amount of cache Used does not change.

� File frequency count Fr(f) is increased by one.

� The priority key Pr(f) is recomputed using formula (1).

� File f with recomputed key Pr(f) is reinserted into the priority queue to re
ect

its new state, and

it completes this case.

2. If the requested �le f is a cache miss then this �le request is served from the original

server and may be cached by a Proxy cache on its way back from the original server to

the client that requested this �le. To do this

� File frequency count Fr(f) is set to one.

� The priority key Pr(f) is computed using formula (1).

� File f is inserted into the priority queue with computed key Pr(f).

� Amount of cache Used is reevaluated in the following way:

Used = Used + Size(f ) (2)

After that one of the following two situations takes place:

� If Used � Total then this means that there is enough space to store the �le f , and

no �les should be replaced. The �le f is cached, and it completes this case.

� If Used > Total then this means that there is not enough space to store the �le f ,

and some �les should be replaced.

First, we identify a minimal set of �les to evict using the following procedure: The

�rst k �les (k might be equal to 1) with lowest priority in the priority queue are

chosen, f1,f2, ..., fk, to satisfy the property UsedEstimate � Total where

UsedEstimate = Used �
kX

i=1

Size(fi) (3)

(a) If the original �le f we are going to cache is not among the �les f1,f2, ..., fk

then the following actions take place:

i. The parameter Clock (running \clock" of the priority queue) is recomputed

in the following way:

Clock =
k

max
i=1

Pr(fi) = Pr(fk) (4)
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ii. Amount of cache Used is reevaluated:

Used = Used �
kX

i=1

Size(fi ) (5)

iii. The �les f1,f2, ..., fk are evicted.

iv. The �le f is cached.

(b) If the original �le f we are going to cache is among the �les f1,f2, ..., fk which

has to be removed in order to store the �le f then:

i. The �le f is not cached and its Pr(f) is removed from the priority queue.

ii. None of the �les in a cache are evicted.

This completes the caching algorithm.

The main innovation proposed in this section is the introduction of the frequency count Fr(f)

associated with each �le f present in a cache and incorporating it in the formula (1). This

re
ects �le access patterns and proposes non-trivial performance improvement of GD-Size

algorithm across the set of di�erent performance metrics with corresponding cost functions.

The part of the algorithm related to the �le eviction has an interesting part related to the case

when the �le is not cached due to its very low key value which puts this �le (if cached) among

the �rst candidates for replacement. Typically, it can happen when the �le size is very large

{ the proposed procedure automatically will restrict the cases when such �les are cached.

6 GD-Size-Frequency Algorithm Properties

Let us consider the properties of GD-Size-Frequency(1).

In this case, the priority queue key for a �le f is computed in the following way:

Pr(f) = Clock + Fr(f)�
1

Size(f)
(1)

In such a way, the documents with a higher frequency count get the larger key, and have a

better chance to stay in a cache, compared with documents rarely accessed.

GD-Size-Frequency(1) assigns greater keys to a small documents comparing with the large

ones aiming to maximize hit ratio by minimizing the miss ratio when the documents get

replaced.

Parameter Clock has a monotonically increasing value (it is increased any time when some

document get replaced. The documents which were not accessed for a long time do not change
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their key in the priority queue. At some point, the Clock value gets high enough that any

new document is inserted behind these \long time not accessed" documents. In such a way,

small documents and the documents with high frequency count get replaced if they are not

accessed again. This \aging" mechanism prevents proxy cache from pollution.

Similar properties has GD-Size-Frequency(packets) aimed to achieve both: a high hit and a

high byte hit ratio. It has the only di�erence comparing with GD-Size-Frequency(1) that it

does not discriminate against the large documents.

7 Greedy-Dual-Frequency Algorithm

Another important derivation of Section 5 related to introducing the frequency count in

combination with GD-Size policy is the direct extension of the original Greedy-Dual algorithm

with a frequency count for uniform size cache (memory) pages. The original Greedy-Dual

algorithm can be improved further to re
ect the cache page access pattern by incorporating

for each cache page its frequency count frequency in the computation of H:

H = frequency � cost :

Following de�nitions introduced in Section 5: the page f is inserted into the priority queue

with a priority key Pr(f) computed in the following way:

Pr(f) = Clock + Fr(f)�Cost(f)

We will call it Greedy-Dual-Frequency algorithm (abbreviation: GD-Frequency).

8 Directions for Future Research

The formula (1) for computing a �le key in priority queue from Section 5:

Pr(f) = Clock + Fr(f)�
Cost(f)

Size(f)

has four basic parameters:

� The parameter Clock which introduces the aging factor.

� The parameter Fr(f) which is a �le f frequency count.

� The parameter Size(f) which is the �le size.
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� The parameter Cost(f) which is the cost associated with �le f to bring it to a cache. We

have discussed the most popular cost functions and correspondent performance metrics

in Section 4.

Clearly, all these parameters are important one. They could be de�ned in slightly di�erent

way to cover a wide range of replacement policies.

For example, the clock in GD-Size-Frequency policy starts at 0 and is updated for each

replaced (evicted) �le fevicted to the priority key of this �le in the priority queue: Pr(fevicted):

In such a way, a clock is a monotonically increasing function, but it increases at a very slow

pace. Designing a faster increasing clock function will lead to a replacement strategy with

closer features to LRU, i.e. the strategy with greater impact of �le resency over �le size and

frequency..

The same applies to parameters Size(f) and frequency count Fr(f). If one would use

log(Size(f)) then the impact of �le size will be decreased against the impact of �le frequency.

It is an interesting problem to adapt this algorithm to achieve the best performance if one

would know more details about workload speci�cs, and use it to emphasize the impact of right

parameters in the formula (1). .

9 Conclusion

This paper introduces the Greedy-Dual-Size-Frequency caching policy to maximize hit and

byte hit ratios for WWW proxies. The proposed caching strategy incorporates in a simple

way the most important characterizations of the �le and its accesses such as �le size, �le access

frequency and recentness of the last access. Greedy-Dual-Size-Frequency is an improvement of

Greedy-Dual-Size algorithm { current champion among the replacement strategies proposed

for Web proxy caches. We describe it in rigorous form in Section 5.

The interesting performance question still remaines: to evaluate the potential gain of intro-

ducing a frequency count. We leave it for future study.

We speculate that this algorithm can also be successfully used for main memory caching at

Web servers. This can be an interesting future study especially in the light of the results in

[AW97]. They show that frequency based strategy with aging mechanism for reference count

is a good choice for replacement strategy in Web server caching.

We also propose an extension to Greedy-Dual algorithm by exploiting the same frequency

count idea. A new algorithm, called Greedy-Dual-Frequency, incorporating the frequency

count for uniform-size references is proposed for conventional paging problem.
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