Chapter 25

ISAPI

CONTENTS

e What ISISAPI A1l About?

e ISAPI Background and Functionality
o Internet Server Applications (ISAs)
o Internet Server API Filter
o Inplenentation Conplications

e Summmary

Web servers need t he capabil ity t o expand t heir horizons. They occupy a unique niche in
technol ogy, allowing peopl e to view information you want themto see. As such, each
situation is unique, and it woul d be near inpossibl e t o pick any one set of functions or
nmet hods and say, "This is it. This is how everyone will deal with information." That
would be like making carsin only one col or. Peopl e might try to sell you on the idea
that generic is good, but individuality (on either a personal or a corporate level) needs
tofind a way to expressitself.

CGI prograns are great at what they do-gather information, processit, and generate
out put. But they also have disadvantages, such as needing to create a new instance of
thensel ves every tine soneone runs the script. If five peopl e are using the function,
there are five copies of that process in nenory. If your site gets thousands of hits, and
nost of themare going to be starting CGI processes... you get the picture. Lots of wasted
nenory space and processing tine, all to do sone sinpl e (or maybe not so sinpl e)
functions.

The Internet Server API (ISAPI) is a different nethod of dealing with informational
functions. It applies high-l1evel progranmming to give you the nost efficient conbination
of power and flexibility, including information that isalnost impossibl e to get through
CGI. By devel oping a programin a certain nmanner, and by neeting certain requirenents,
you gain access to this hidden world of additional power, infornmation, and speed. Be
warned, however, that prog-ranming ISAPI functionsis not sonet hing t o be approached
lightly, or by the faint of progranmming-heart. It can be a jungle out there.

This chapt er does not assune nuch background in the real mof C or C++ progranming,

The primary focus here isnot the actual writing of ISAPI code, but understanding the
concept s behind it. Anong these conceptsare

What ISAPIisall about

ISAPI'stwo school s-Applications and Fil ters
How doesit all work?

Inpl enent ation Conypl ications

Future directions for ISAPI

Wit h these concept s firmly in hand, and sone exanypl es of code sneaked in here and
there, you'll have a place to start planning your own functions.

What Is ISAPI All About?

When you're working with a Web server, it isuseful to gain nore infornmation and be
able to deal with it faster. You want ways of getting at detailsthat normal CGI can't
give you, aswel]l asways to nodify those bits of information. You want a nethod of
doing it faster and nore efficiently, so that the only lag tine that existsisthe user
sorting through the cool stuff you can do for themin an al nost instant aneous nanner.
You want an AP, and you want it now.

An Application Progranming Interface (API) exists so that you can do fun things with it.
Y ou gain access to the inner workings of the programitself, giving you nore freedom
and power to do things with that infornation. In the case of a Web server, there are all
sorts of hidden things you might want to get hold of, such as user authorization
information, the ability to manipul ate how errors are handl ed, and how infornmation is
logged on the system In addition, APIs are faster than normal CGI prograns during
execution, and take uplessresources whil e running. This neans nore power, nore users
and fewer probl ens.

Note

In theory, API functions are supposed to be faster, and
thusbetter in general for use. Sone peopl e even say that
CGI will becone obsolete. Later in the chapter we'l 1
cover sone of the probl ens that API functions can
mresent later on in this chapter during "Inpl enentation
Conplications," and you'll get a sense of why API
programming isn't for everyone, no natter what benefits
it may have.

To take advantage of all this freedomand power, Microsoft and Process Software
teamed upto create an API standard for their Web servers (and for anyone who wants
to adopt it). The aptly-naned Internet Server API (ISAPI) isa whole col l ection of

functions that allow you to extend the capability of your web server in a nearly
unlinmit ed nunber of ways. There are actually two very distinct component s present in
the ISAPI standard that will be discussed separately in the next section, "ISAPI
Background and Functionality." I will l1ater discuss ISAPI as a whole in the

"Inpl ementation Conplications' section later in the chapter.

ISAPI Background and Functionality

The ISAPI standard is a very recent, but natural, invention. Microsoft has 1 ong been
providing Windows devel opers wit h access t o Windows' inner workings t hrough the
Windows Soft ware Devel opnent Kit (SDK), whil e Process soft ware has been providing
peopl e with Web servers. When Microsoft began devel opnent of it s new Internet
Information Server (IIS), it was expected that they would allow devel opersthe
opportunity to get down and dirty with IIS' functionality: they didn't disappoint anyone
with the release of the ISAPL

The two branches of the ISAPI Internet Server Applications (ISAs) and ISAPI Filters,
comyrise two different schools of thought on how progranmers can approach additional
functionality. ISAsare the nore traditional of the two, leading programmersto

devel opsonet hing that's nore of an external conponent with special 1inks back into the
server's workings. ISAPI Filters are closer to buil ding bl ocks, which can be attached
directly to the server, providing a seanl ess conponent that carefully nonitorsthe
HTTP request s being direct ed at the server. Since each has its own particul ar way of
being dealt with by the server, I'11 1ook at themas separate entities, and tie together
the common points where they conveniently overlap

Internet Server Applications (ISAs)

Internet Server Applications (ISAs), which can also be called ISAPI DLLs, are the first
stepin extending a server's functionality. Much like a traditional CGI program an ISA
might find itself referenced in a formentry like the fol l owing;

<form method=POST action=/scripts/function.dll>

Note

See Chapter 8 "Forns and How to Handle Them" for
nore detail s on CGI used with formel enents.

An ISA performns the sane task of gathering the POSTed formdata, parsing it out, and
doing sonet hing with it, but there the simlarities stop Although the surface el enents
look exactly the sane, what occurs once the formin question gets submit ted (or
whatever other action triggersthe ISA to execute) isa conpletely different matter.

Figure 25.1 shows the typical path of processesin ISAPI and CGI requests.

Figure 25.1: Request processes for ISAPI in CGL

Figure 25.1 shows an exanpl e of how conmunication works bet ween various entities in
the land of the server. Requests are routed to the main HTTP server. When the server
receivesinstructionsto start a typical CGI program it needs to nake a separate process
for that request. It sendsthe data out to the CGI programthrough the environnent
variabl es and Standard Input (STDIN). The CGI program in turn, processes t hat
information fromt he environment variabl es and STDIN, then sends out put (normally
through Standard Out put (STDOUT)) back to the server, which responds to the request.
This action takes place far fromhone so there's going t o be sone del ay. In addition,
there's sone information that the server can't export past its own boundaries.

Requeststhat go to an ISA, on the other hand, stay wit hin the boundaries of the
server's process territory. The data is handl ed using Ext ension Control Blocks (ECBs).
There's much less work invol ved in getting the data to the ISAs. Also, because it's cl oser
to hone, it also allows for nore det ail ed exchanges of infornmation, even changesto the
server based on that information. There'sa lot nore going on than might neet the eye.

What happens when an ISA function is called? There are a nunber of internal steps

Server receives call

Server checks function and loadsit, if not already in nenory
Function reads data fromExt ension Control Bl ocks

Data gets processed

Function sends out put back to client

Server terminates function and unloads it, if desired

When the server receives a request to start the ISA, one of the first thingsit doesis
check to see if the ISA isalready in the nenory. Thisis cal led Run-Tine Dynarric
Linking. Whil e the programis running, it hooks upwith other conponents that it needs
and recognizes that it already has themonboard when ot her requests cone in for those
conmponents' functions. These conponents are cormonly referred to as Dynamic Linked
Libraries, or DLLs. Just as the nane might inply, DLLs are libraries of functions that an
application can dynamical ly link to and use during itsnornmal execution. Anyone who
uses the Windows operating syst em in any version, has encountered DLLs before-
Windows is a whol e conpil ation of mutually cooperative DLL functions. Each function
can call out to another to do whatever needs to be done. When the server needs to
load the DLL, it callsinto a special entry point that defines an ISAPI function, as
opposed t o sone other DLL that might not be safe to use.

The primary entry point that the server looksfor in an ISA isthe
GetExtensionVersion () function. If the server callsout to that function, and nobody
answers, it knows that it'snot a usabl e function. Therefore, the attenpt to load the

DLL into menory will fail. If, on the other hand, the function is there, then it will let
the server know what version of the API it conforns to. Microsoft's recommended
inpl enentation of a GetExtensionversion() definition is

BOOL WINAPI GetExtensionVersion (HSE VERSION_ INFO *version)

{
version->dwkExtensionVersion = MAKELONG (HSE_VERSION_MAJOR,
HSE_VERSION_MINOR) ;
lstrcpyn(version->lpszExtensionDesc, "This is a sample
Extension",
HSE_MAX_ EXT_DLL_NAME LEN) ;
return TRUE;

The GetExtensionversion() entry point isreally just a way for the server to ensure
that the DLL is conforming to the specification that the server itself confornsto. It
could be that the server or function istoo old (or too new), and so they wouldn't work
well together. It's al so possibl e that future changes will need t o know past versionsto
accomnpdat e for special changes, or use it for sone ot her conpatibility purpose.

The actual startupof the function occursat the HttpExtensionProc () entry point.
Similar tothemain () function declaration in a standard C program it accepts data
inside an Extension Control Block. This bl ock is made available to the function to
figure out what to do with the inconing data before conposing a response. Here is t he
declaration for the Ht tpExtensionProc () entry point:

DWORD WINAPI HttpExtensionProc(LPEXTENSION_CONTROL_BLOCK *1pEcb) ;

Whatever happens, you can't keepthe client waiting; you have to tell themsonet hing.
In addition, it has to be sonet hing that the server understands and can properly deal
with. To properly create a response, the ISA can call on either the
ServerSupportFunction() or thewriteclient () function (These functions are defined
and expl ained in "Callback Functions."). Wit hin that response, it will want toreturn
one of the valid return values shown in Tabl e 25.1.

Tabl e 25.1. Accept abl e r et ur nval ues for anISA appl ication

Return Value Meaning
The ISA successful ly conpl eted it s task,
HSE_STATUS_SUccESS and the server can disconnect and clean
up

The ISA successful ly conpl eted it s task,
but the server shouldn't disconnect just
yet, if it supports persistent connections.
The application hopes it will wait for
another HTTP request.

HSE_STATUS_SUccESS_
AND_KEEP_CONN

The ISA isstill working and will let the
server know when it's done by sending an
HSE_STATUS_PENDING HSE_REQ_DONE_WITH_SESSION ITESSage
through the serversupportFunction
call.

Whoops, sonet hing has gone wrong in the
HSE_STATUS_ERROR ISA. The server should end the
connection and free upspace.

A1l of these extension processes have to interact with sonet hing to get their data, and,
as shown before, there'sa groupof internediaries cal 1 ed Ext ension Control Blocks
(ECBs) that handle that particular duty. They're nothing nore than a C structure that
is designed t o hol d specific bl ocks of data and allow a few functions to make use of that
data. Here isthe setupof an ECB:

Listing 25.1. Ext ension Control Block structure.

// To be passed to extension procedure on a new request

//
typedef struct _EXTENSION_CONTROL_BLOCK ({
DWORD cbSize; //Size of this struct
DWORD dwVersion; //Version info for this spec
HCONN ConnlD; //Connection Handle/ContextNumber (don't
modify!)
DWORD dwHttpStatusCode; //Http Status code for request
chAR lpszLogData [HSE_LOG_BUFFER_LEN];
//Log info for this specific request (null
terminated)
LPSTR lpszMethod; // REQUEST_METHOD
LPSTR lpszQueryString; // QUERY_STRING
LPSTR lpszPathInfo; // PATH_INFO
LPSTR lpszPathTranslated; // PATH_TRANSLATED
DWORD cbTotalBytes; // Total Bytes from client
DWORD cbAvailable; // Available Bytes
LPBYTE lpbData; // Pointer to client Data (cbAvailable
bytes worth)
LPSTR lpszContentType; // Client Data Content Type
BOOL (WINAPI * GetServerVariable)
(HCONN ConnlID,
LPSTR lpszVariableName,
LPVOID lpvBuffer,
LPDWORD lpdwSize);
BOOL (WINAPI * WriteClient)
(HCONN ConnlID,
LPVOID Buffer,
LPDWORD lpdwBytes,

DWORD dwReserved) ;

BOOL (WINAPI * ReadClient)

(HCONN ConnlID,
LPVOID lpvBuffer,
LPDWORD lpdwSize);
BOOL (WINAPI * ServerSupportFunction)
(HCONN ConnlID,
DWORD dwHSERRequest,
LPVOID lpvBuffer,
LPDWORD lpdwSize,
LPDWORD lpdwDataType) ;

Table 25.2 goes int o detail about each individual conmponent of an Extension Control
Block.

Tabl e 25.2. Expl anation of fiel ds inthe Ext ension Contr ol Bl ock.

Field Data Direction||C omments

The size of the structure itself
(shouldn't be changed).

Version information of this
specification. The formfor this
dwVersion IN information is H1worD for major
version nunber, and LoworD for
ninor version nunber.

cbSize IN

A connection handl e uniquely
ConnID IN assigned by the server (DO NOT
chANGE).

The status of the current
transaction once conpl et ed.

dwHttpStatusCode ou

Contains a null-terminated
lpszLogData ou string for 1og information of
the size (HSE_LOG_BUFFER_LEN).

Equivalent of the environnment

lpszMethod IN .
variabl e REQUEST_METHOD.
_ Equivalent of the environnent
lpszQueryString IN .
variabl e QUERY_STRING.
Equivalent of the environnment
lpszPathInfo IN .
variabl e PATH_INFO.
Equivalent of the environment
lpszPathTranslated IN

variable PATH_TRANSLATED.

Equivalent of the environnent
variabl e CONTENT_LENGTH.

Avail abl e nunber of bytes (out
of cbTotalBytes) in the 1pbbata
cbAvailable IN buffer. See the expl anation of
the Data Buffer that fol lows
thistable.

cbTotalBytes IN

Pointer to a buffer, of size
lpbData IN cbAvailable, Which holds the
client data.

Equivalent of the environment

lpszContentType IN .
P yp variabl e CONTENT TYPE.

Note

For itens that arereferred to as"Equivalent of the
environnent variable...," a nore detail ed expl anation of
the particul ar environnent variabl es can be found in
this chapter in Table 25.6, "Variabl e Nanes and
Purposes," and also in Chapter 3 "Crash Course in CGL"

The Data Buffer

Sonetines there'sa lot of information sent to a program and sonetines there's not. By
default, 1pppata will hold a 48K chunk of data fromthe client. If cbTotalBytes (the
nunber of bytessent by the client) isequal to cbavailable, then the programistelling
you that all the information that was sent is availabl e wit hin the 1pbpata buffer. If
cbTotalBytes isgreater than cbavailableBytes, 1pbData isonly holding part of the
client'sdata, and you'll have to ferret out therest of the data with the rReadclient ()
cal 1 back function.

An additional possibility isthat cbTotalBytes hasa value of 0xrrrrrrrF. This means that
there'sat least four gigabytesof client data sitting out there, waiting to be read.

What are the chances that you're going to receive that much data? If you do expect it,
you'll be happy to know that you can keepcalling readclient () until you get
everything that's there. It'sa good thing API functions are fast.

The Callback Functions

Throughout sone of these other functions, there have been referencesto callback
functions. These are the nice little hooks that let you get infornation that the server
suppl ies you with. The functions are listed in Tabl e 25.3, al ong with a brief description

OfeaChJTTK%/areGEtServerVariable(),ReadClient(),WriteClient() and

ServerSupportFunction ().

Tabl e 25.3. ISAPI DLL cal 1back functions and pur poses.

Function Purpose

Retrieves connection information or
server detail s

Reads data fromthe client's HTTP
request

GetServerVariable

ReadClient

WriteClient Sends data back to the client

Provides access to general and server-

ServerSupportFunction e, .
specific functions

GetServerVariable

GetServervariable isused toreturn information that the server hasinregardsto a
specific HTTP connection, aswell as server-specific information. This is done by
specifying the nane of the server variable that containsthe data in 1pszvariableName.
On the way to the server, the Size indicat or (1pdwsize) specifies how much space it has
available in its buffer (1pvBuffer). On the way back, the Size indicator (1pdwsize) is set
to the anount of bytes now contained in that buffer. If the Size (1pdwsize), going in, is
larger than the nunber of bytes left for reading, the Size indicator (1pdwsize) will be
set to the nunber of bytesthat were placed in the buffer (1pvBuffer). Otherwise, the
numnber should be the sane going in and coning out. Here are the detail s on how the
GetServerVariable () function is defined:

BOOL WINAPI GetServerVariable (

HCONN hConn,

LPSTR lpszVariableName,
LPVOID lpvBuffer,
LPDWORD lpdwSize) ;

Tabl es 25.4 and 25.5 show the accepted paraneters and possibl e error returns for
GetServerVariable(),reSpECtively.

Tabl e 25.4. Accept ed par amet er s for GetServerVariable cal l back function

Parameter Direction ||Purpose

Connection handle (if request
hConn IN pertainsto a connection), ot herwise
any non-NULL

Nane of the variabl e being request ed

lpszvariableName ||IN (See Table 25.6for a list)

Pointer to buffer that will receive

lpvBuffer OUT the request ed infornation

Indicatesthe size of the 1pvBuffer
buffer on execution; on conpl etion is
set to theresultant nunber of bytes
transferred into 1pvBuffer

lpdwSize INOUT

Tabl e 25.5. Possibl e error codesreturned if GetServerVariablereturns FALSE.

Error Code Meaning

Bad or unsupported variabl e

ERROR_INVALID_ INDEX] .
identifier

ERROR_INVALID PARAMETER Bad connection handl e

More data than what isallowed for
ERROR_INSUFFICIENT BUFFER 1pvBuffer; necessary size now set in

lpdwSize
More data than what isal lowed for
ERROR_MORE_DATA 1pvBuffer, but total size of data is
unknown
ERROR_NO_DATA The requested data isn't available

Use of the Getservervariable () callback function requires knowing exactly what
variabl es are avail abl e, and why you might want to get them A brief description of each
of these variabl es can be found in Tabl e 25.6 "Variabl e Nanes and Purposes," but a nore
detail ed expl anation can be found in Chapter 3 asthey are al so coomonly encount ered
as CGI environment variabl es.

Tabl e 25.6. Var iabl e names and pur poses.

Name Data Type ||Purpose
. Type of authentication in use;
AUTH_TYPE String . .
nornel ly either none or basic
Nunber of bytes contained in
CONTENT_LENGTH Dword
stpIN froma POST request
CONTENT TYPE String Type of Content contained in
STDIN
. Revision of CGI spec that the
GATEWAY_INTERFACE string .
server conpliesto

PATH_INFO

string

Additional path information, if
any, which cones before the
QUERY_STRING but after the
script name

PATH_TRANSLATED

string

PATH_INFO with any virtual path
nanes expanded

QUERY__STRING

string

Information fol lowing the ? in
the URL

REMOTE_ADDR

string

IP address of the client (or
client gateway/proxy)

REMOTE_HOST

string

Host nane of client (or client
gateway/proxy)

REMOTE_USER

string

Usernane, if any, supplied by the
client and authenticated by the
server

REQUEST_METHOD

string

The HTTP request net hod,
nornally either GET or POST

UNMappeD_REMOTE_USER

string

Usernane before any ISAPI
filter napped the user to an
account nane (the mapped nane
appears in REMOTE_USER)

SCRIPT_NAME

string

Nane of the ISAPI DLL being
execut ed

SERVER_NAME

string

Nane or IP address of server

SERVER_PORT

string

TCP/P port that received the
request

SERVER_PORT_SECURE

string

If the request ishandled by a
secure port, the string value
will be one. Otherwise it will be
Zero.

SERVER_PROTOCOL

string

Nane and version of information
retrieval protocol (usually
HTTP/1.0

SERVER_SOFTWARE

string

Nane and version of the Web
server running the ISAPI DLL

A1l HTTP headers that are not
placed in a previous variabl e.
The fornat for these is
ALL_HTTP string |(http_<header field name>, and
are contained wit hin a nul 1-
terminated string, each
separated by a line feed.

Semi-colon (;) concatenated list
HTTP_ACCEPT string |lof all AccEPT statenentsfrom
the client

Provides the base portion of the

URL SLriNg - |YRL (Version 2.0 0nly)

ReadClient

ReadClient does what you'd expect it to-it keeps reading data fromthe body of the
client's HTTP request and placing it into a storage buffer. Just as Getservervariable ()
and the ot her callback functions do, it uses the Buffer Size Indicator (1pdwsize) asan
indicat or to show how big the buffer (1pvBuffer) initial ly was, and how big it is after
it'sfinished. rReadclient hasonly two possibl e return val ues, and no specific associat ed
error codes however, if the return of readclient () isTrue, but 1pdwsize is O, the socket
closes prematurely. The foll owing code shows how readclient () would be defined:

BOOL ReadClient (

HCONN hConn,
LPVOID lpvBuffer,
LPDWORD lpdwSize) ;

Table 25.7 detail s the expected paraneters of the Readclient () function.

Tabl e 25.7. Expect ed par amet er s for ReadClient callback function

Parameter Data Direction|| Purpose

hConn IN Connection Handl e (cannot be NULL)
lpvBuffer OUT Pointer to buffer for receiving client
data
lpdwSize IN/OUT Size of .avallable buffer numnber of bytes
placed in buffer
WriteClient

WriteClient writesinformation back to the client frominfornmation stored in the
buffer. The Buffer Size indicator (1pdwsize), in this case, functions as a record of how
many byt es are supposed to be written to the client fromt he buffer, and how many were.

Since this might be used for binary data, it does not assune that the data will be in the
formof a null-ternminated st ring like the serversupportFunction does. A sanple
definition of the writeclient function follows.

BOOL WriteClient (

HCONN hConn,
LPVOID lpvBuffer,
LPDWORD lpdwSize,
DWORD dwReserved) ;

Tabl e 25.8 shows what paranetersare accepted for thewriteciient callback function.
(An additional reserved paraneter is set aside for changes in t he function's behavior
that might be inpl ement ed in the future.)

Tabl e 25.8 Expect ed par amet er s for the WriteClient callback function

Parameter Data Direction||Purpose

hConn IN Connection Handl e (cannot be NULL)
lpvBuffer IN Pointer to data being written to client
otz || DVOUT |[NeTer of bytes bingsent; nunber of
dwReserved Unspecified-reserved for future use

ServerSupportFunction

The final callback function, serversupportFunction, is one of the nost powerful. It
sends a Service Request Code to the server itself, which isa value that the server
translatesinto a request to execute an internal function. An exanpl e of such a
function would be redirecting the client's browser to a new URL, sonething that the
server knows how to do without any hel p This al l ows sone standard operationsto be
perforned, but it also gives server manufacturersa nethod for allowing devel opersto
have easy access to a specialized internal function. Be it a buil t-in search routine, an
update of user databases, or anything el se, this function can call anything the server
will allow. The actual list of what each server will allow varies, of course, but the
definitions for the individual functions have a fixed order. Any service request code
with a value of 1000 or lessisa reserved value, used for mandatory
serverSupportFunction codes and defined in the sttpext . h file. Anything with a Service
Request Code of 1001 or greater isa general purpose server function, and should be able
to be found in the servers own *ext .1 file. For exanpl e, Process Soft ware's Purveyor
maintains a prvr_Ext.h file listing sone additional supported functions, which have been
included in Table 25.11. The serversupportFunction definition foll ows.

BOOL ServerSupportFunction (
HCONN hConn,
DWORD dwHSERequest,
LPVOID lpvBuffer,

LPDWORD lpdwSize,
LPDWORD lpdwDataType) ;

Tables 259 and 25.10 list the acceptabl e paraneters and t he standard defined values for
service request codes for the serversupportFunction, respectively.

Tabl e 25.9. Expect ed par amet er s int he ServerSupportFunction call back function

Parameter Data Direction||Purpose

hconn IN Connection Handl e (cannot be null)

GUHSER . IN Service Request code (See Table 25.10
v edues for default values)

LpvButfer IN Buffer for optional statusstring or

other information passing

Size of optional statusstring when
lpdwSize INOUT |[sent; bytesof statusstring sent,
including NULL term

Optional null-terninated string with
headers or data to be appended and
lpdwDataType IN sent with the header generated by the
service request (If NULL, header is
terminated by \r\n)

Tabl e 25.10. Defined val ues for st andar d service r equests.

Service Request Action

Sends a URL Redirect (302
nessage to the client. The buffer
(1pvBuffer) should contain the
HSE_REQ_SEND_URL_REDIRECT_RESP |[null-terminated URL, which does
not need to be resident on the
server. No further processing is
needed after thiscall.

Sendsthe data to the client
specified by the null-terninated
buffer (1pvBuffer), asif the client
had requested that URL. The URL
cannot specify any protocol
information (for exanpl e, it must
be /document .htm inst ead of
http://server.com/document .htm).

HSE_REQ_SEND_URL

HSE_REQ_SEND_RESPONSE_HEADER

Sends a conplete HTTP server
response header, which includes
the status code, server version,
nessage tine, and MIME version.
The DataType buffer
(1pdwbataType) should contain
additional headers such as
content type and length, along
with a CRLF (Carriage
Return/Line Feed (\r\n))
conbination and any data. It will
read text data only, and it will
stopat the first \Otermnation.

HSE_REQ_MAP_URL_TO_PATH

The buffer (1pvBuffer) pointsto
the logical path tothe URL on
entry, and it returns with the
physical path. The Size buffer
contains t he nunber of bytes
being sent in, and is adjusted to

t he nunber of bytessent back on
return.

HSE_REQ_DONE_WITH_SESSION

If the server has previously been
sent an HSE_STATUS_PENDING
response, thisrequest inforns the
server that the session is no
longer needed, and it can feel
free to clean upthe previous
session and its structures. All
paraneters are ignored in this
case, except for the connection
handl e (hConn).

Tabl e 25.11. Exampl es of ser ver-defined accept abl e ser vice r equest s (Pur veyor 1.1).

Service Request

Action

HSE_GET_COUNTER_FOR_GET_METHOD

Acceptsthe sERVER_NAME System
variabl e in the Buffer
(1pvBuffer), the length of
SERVER_NAME in the Size buffer
(lpdwSize), andreturnsthe
total nunber of GET requests
served since initiation of the
server, storing themin the

DataType buffer (lpdeataType)

Except pataType (1pdwbDataType),
will hold the nunber of POST
requestssince startupof the
server

HSE_GET_COUNTER_FOR_POST_METHOD

Except DataType(lpdwDataType),
will hold the nunber of HEAD
requests since startupof the
server

HSE_GET_COUNTER_FOR_HEAD_METHOD

Except pataType (1pdwbataType),
HSE_GET_COUNTER_FOR_ALL_METHODS||[will hold the total nunber of
all requestssince server startup

Note

Currently, there aren't many extra defined server
functionsin the public arena. But, given the rate of
server expansion, and Microsoft'srace to expand it's
Internet Infornation Server, it wouldn't be surprising to
see a large nunber of very useful functions show upin
the near future.

Asyou've seen, an ISA is much like a traditional programthat hasa coupl e of added
advantages, such as being able to get at the server programis insides, and taking
advantage of thingsthat might ot herwise require either 1ots of fil e reading, or not be
able to be acconplished at all. Next, however, you're going to take a 1 ook at sonet hing
that's one stepbeyond that-adding ont o the server functionality itself, to make it do
whatever tricks you want it to.

Internet Server API Filter

ISAPI filtersare quite different froma traditional CGI program If ISAPI DLLs nake a
server nore flexible, ISAPI filtersturn a server into a true contortionist, able to flex
whatever way they need to. They're not just resident with the server, they're part of
the server itself, having been 1 oaded int o nenory and the server's configuration ahead
of tine. They're direct extensions of the server, allowing themto do tasks that no CGI
programcoul d think of doing, such as enhancing the local 1ogging of file transfers,
buil ding in pre-defined net hods of handling forns or searches, and even doing
customized local authentication for requests. You're naking the server evolve into
sonet hing nore powerful, inst ead of adding pieces that the server can call for help

When you create an ISAPI fil ter, you're creating a linked DLL that's being examined
every tinme the server processes an HTTP request. The goal isto filter out specific
notifications that you're interested in, and renpve the duties of handling t hat

particular process fromthe core functionality of the server. You're essentially saying,
"Oh, don't worry about that when you see it; that's what thisfilter isfor." This

scal ability all ows you to take a basic server and customnize it to neet whatever needs
you night have. You're adding scalability to the server so that it neets your needs, even
if the original manufacturer didn't anticipate them

Like an ISAPIDLL, an ISAPI filter hastwo entry points that must be present in order to
verify that the function neetsthe current specification, and that it hasa place to
receive information fromthe server. Unlike an ISAPI DLL, though, an ISAPI fil ter isn't
sonet hing that's spur-of-t he-nonent in its use-any filters you define have to be entered
in the systemregistry so that they are literally part of the server's configuration.
Since they're intercepting things as they happen, the server needs to know about them
In this case, it's convinced that it always had the ability to do these functions, it just
never used thembefore.

Entry Point-GetFilterVersion

The first entry point to define in the ISAPI filter isthe one that tellsthe server that it
does in fact correspond to the correct specification version, so it should be able to run
without difficulty. Thisisthe GetFilterversion function, which takes only one
argunent-a structure that will hold the data that the server usesto find out the
version, the description, and the eventsthat the filter wantsto process. Here's how
GetFiltervVersion would normally be defined:

BOOL WINAPI GetFilterVersion (PHTTP_FILTER_VERSION pVer);

This pointsto a data structure of the HTTP_FILTER_VERSION type, which containsall the
little niceties that the server is looking for. Since pointing to a structure that you
don't know anything about isn't necessarily a good idea, 1 ook at what's inside an
HTTP_FILTER_VERSION structure to understand what data the server really needs. A
typical definition of an uTTP_FILTER VERSION structure follows

typedef struct _HTTP_FILTER_VERSION
{

DWORD dwServerFilterVersion;

DWORD dwFilterVersion;

chAR lpszFilterDesc|[SF_MAX_FILTER _DESC_LEN+1];
DWORD dwFlags;

} HTTP_FILTER_VERSION, *PHTTP_FILTER VERSION;

Tabl e 25.12 point s out the detail s of what those structure conponents are.

Tabl e 25.12. Expect ed par amet er s for anHTTP_FILTER VERSION structure.

Parameter Data Direction||Purpose

Version of specification used
by the server (Currently
server-defined to
HTTP_FILTER_revISION)

dwServerFilterVersion IN

Version of the specification
used by the filter
(Currently, server defined
to be HTTP_FILTER revISION)

dwFilterVersion OouT

A string containing a short
description of the function

Conbined list of
notification flags
(sw_noTIFY_*) that inform
the server what kind of
dwFlags ouT eventsthisfilter is
interest ed in knowing
about; see Table 25.15for
the conpl ete list of
sw_noTIrY_* flagsavailable

lpszFilterDesc OUuT

Note

dwFlags isa paraneter to be careful with-if you don't
specify what you need, the filter won't do you any good.
If you specify everything, your filter will drag down
the server's performance and possibl y cause ot her

probl ens. Be picky with what you pl ace inside.

Once the GetFilterversion information has been transferred, it'stine to call the nain
filter processitself-HttprilterpProc(). Just like the main () function in a C program or
the HttpExtensionProc used by an ISAPIDLL, sttprilterProc() servesasthe gateway to
all that your filter is designed to do. Here'show the sttprilterProc () would normally
be defined:

DWORD WINAPI HttpFilterProc(

PHTTP_FILTER_CONTEXT pfc,
DWORD notificationType,
LPVOID pvNotification);

Table 25.13 explains the HttpFilterProc () function paraneters.

Tabl e 25.13. Expect ed Par amet er s for the HttpFilterProc function

Parameter Purpose

Pointer to a data structure of the
pfc HTTP_FILTER_CONTEXT type, which contains
context information about the HTTP request.

The type of notification being processed, as
defined in the list of notification flags
(sw_nNoT1FY_*). See Table 25.15for a conplete
list of sw_noT1FY_* flagsavailable.

notificationType

The data structure pointed to asa result of
the type of notification. See Table 25.15
pvNotification (sw_NOTIFY_* flags) for the relationship
bet ween notification t ypes and specific
structures.

Based on the event, and what was done by the cust omprocesses wit hin the fil ter,
HttpFilterProc () canyield a variety of different return codes, from"All Set," to "Keep
Going," to "Whoops." Table 25.14 lists the accepted return codes and their expl anations.

Tabl e 25.14. Accept abl e returncodes for the HttpFilterProc function

Return Code Meaning
Successfully handled the
SF_STATUS_REQ_FINISHED HTTP request, and the server

can now disconnect

Successfully handled the
HTTP request, but the server
shouldn't necessarily
disconnect

The next filter in the

SF_STATUS_REQ NEXT NOTIFICATION notification order should be
called

Successfully handled the

HTTP request, and no other
filtersshould be called for
this notification type

SF_STATUS_REQ_FINISHED_KEEP_CONN

SF_STATUS_REQ_HANDLED_NOTIFICATION

An error happened and should

SF_STATUS_REQ ERROR
be eval uated

(Used for raw data only)
SF_STATUS_REQ_READ_NEXT Session paraneters are being
negotiated by the fil ter

One thing you might have noticed fromTabl e 25.14 (Acceptabl e Returns) is that one of
the possibl e returnsis for the server to call the next filter in the notification order.
Y ou can have a whol e sequence of filtersall 1ooking for the sane event to occur, and

all standing in a line waiting t o do sonet hing with the data. So, the first function
might be an authorization 1og, whil e the next might be a docunent conversion, and the
last would be sone ot her customlogging function. Aslong as one of the earlier
functions doesn't return a code saying "OK, shut it all down," then everyone el se who's
waiting for data will get their turn at it.

Since they have already been nentioned several tines, now is probably a good point to
exanine the Notification flags (sw_noT1ry_x*). These serve a conbination of purposes
they let the server know what kind of specific events are being 1 ooked for, and they can
also specify that the filter should be 1oaded at a certain priority level. Depending on
the type of notification, there are specific data structuresthat these functions mapto
that hold the additional information the server might need upon receiving t he specific
notification. Table 25.15 shows the notification flags and their descriptions, as well as
what specific data structures each notification corresponds to, where apgropriate.

Tabl e 25.15. Accept abl e not ificationfl ags for GetFilterversion and HttpFilterProc.

Notification Meaning
(GFV only) Load thefilter at the
SF_NOTIFY_ORDER_DEFAULT default priority (thisisthe

reconnended priority level)
(GFV only) Load thefilter at a

SF_NOTIFY_ ORDER_LOW

low priority

(GFV only) Load thefilter at a
SF_NOTIFY_ORDER_MEDTUM . o

nmediumpriority

(GFV only) Load thefilter at a
SF_NOTIFY_ORDER_HIGH : .

high priority

Looking for sessions over secured
ports

Looking for sessions over
nonsecured ports

SF_NOTIFY_SECURE_PORT

SEF_NOTIFY_ NONSECURE_PORT

Let thefilter see the raw data
coming in; returned data consists
of both data and headers

Structure; HTTP_FILTER_RAW_DATA

SEF_NOTIFY_READ_RAW_DATA

Looking for instances where the

SF_NOTIFY_PREPROC_HEADERS
- - - server has processed the headers

Structure;
HTTP FILTER PREPROC_HEADERS

Looking for instances where the
SF_NOTIFY_AUTHENTICATION Client is being authenticated by
the server

Structure;
HTTP FILTER _AUTHENTICATION

Looking for instances where the
SF_NOTIFY_URL_MAP server is mapping a logical URL to

a physical path
Structure; HTTP_FILTER_URI_MAP
Let the filter know when t he

SF_NOTIFY_SEND_RAW_DATA server is sending back raw data to
the client

Structure; HTTP_FILTER_RAW DATA

Looking for instances where the
SF_NOTIFY_LOG server's saving information toits
log

Structure: HTTP_FILTER_LOG

Looking for the termination of

SF_NOTIFY END_OF NET_SESSION i \
the client session

(New for version 2) Looking for
any instance where the server is
about to send back an A ccess
Denied (401) stat us message.
Interceptsthisinstance to allow
for special feedback

SEF_NOTIFY_AccESS_DENIED

Structure;
HTTP FILTER AccESS_DENIED

Asyou can see fromTabl e 25.15, there are a 1ot of possibilities for the filter towant to
do sonet hing. There are also lots of pointersto Data Structures.

The two conponents of the ISAPI standard, one being A pplications and the other Filters,
make sense in a nunber of ways. CGI is a wide open fiel d, with dozens of toolsand
languages avail abl e to hel ppeopl e create whatever they need. Since what'snormally
needed is nore functionality, ISAs take CGI to that next stepby providing the direct
link bet ween the server'sinternal functionsand an external program Filtersallow
the programmers to nodify the heart of the server programitself, and nake it react
differently for their unique situation. The power

behind t hese net hods is obvious, the pain of inpl enentation tends to cone out later.

Implementation Complications

The point that tendsto detract fromall of the wonders of an API are the difficul tiesin
creating an API-based function. Y ou might have to use specific tools, or be limited to
specific platforms once you build what you want. Y ou need to know what you're doing

because a casual progranmer is not going to write a very efficient or safe API function.
Why? Because, unlike traditional CGI, where a new instance of the CGI programis run
for each user, an API function is a shared resource. This is why it doesn't take upas much
space in nenory-there's only one of themat a tine.

To inagine just one of the possibl e nyriad of problens that could cause an unprepared
program conypare it to a small conpany with one phone. The phone rings occasional ly,
the receptionist picksit upand does what's necessary, then hangs up If the phone calls
don't cone in too fast, there's no problem As soon as the pace starts picking up however,
there had better be a systemin place to deal with multiple callers, or the "one person
at a tine" syndrone is going t o grind t he conpany int o t he ground.

How does that relate to an API-based function? Well, when you design a traditional
CGI program it follows a very linear path. It accepts data, and then goes down a one-
way street. It callssubroutines and other organized functions, but it'sonly dealing
with one user, or one streamof data.

Programming Considerations

The biggest caveat about an ISAPI function, be it a filter or a DLL, isthat it hasto be
nmul tithread safe. A multithreaded environment is one where lots of things are running
at once, requests cone in bunches, and every function hasto be careful not to stepon
another function's toes whil e they use a file or take data froma bl ock of nmenory.
Coding sonet hing to be nul tithreaded can be a challenge, especial ly for nore conpl ex
functions. If youre an advanced C progranmer, then you've probably already dealt with
thisissue before, and you've been anticipating it ever since you started reading t his
chapter. If you're a novice programmer, or even an internediat e progranmer, you'll want
to delve deeper into the many resources out there that cover multithreaded DLL
programming. Microsoft maintains a great deal of these resources on their Website
(www.microsoft.com), and they're also availabl e on their Devel opnrent Library, and in
general programming references.

Caution

If you write an ISAPI function that'snot multithread
safe (or safe in general), you're risking a 1ot nore than
just sone errant data. As nentioned in the beginning of
this chapter, ISAPI functions are resident within the
samne process space as the server itself. That'sright-they
all live together in harnony. If one crashes and burns,
they other istoast aswell. The likelihood of a
commercial server product like IIS or Purveyor going ker-
blooey isn't very high, due to the anpunt of testing
perforned on them so in nost cases the weak link can be
your ISAPI function. Don't nake your server suffer-test
early, test often, and get hel pto do it if necessary.

There is hope for devel opersin that there are a nunber of waysto create an ISAPI
function, including one that might not be thought of at first glance-Visual Basic.
Microsoft has announced that upconing rel eases of Visual Basic will support a nunber
of functions, including the ability to create shared DLLs. Talk about nmaking your life
easier...

Debugging ISAPI DLL programs

Like any programming endeavor, you're going to hit the debugging phase. ISAPI functions
could place your server in danger if not well-tested. Therefore, chancesare pretty
good you'll be 1ooking at those functions in debug node for quite a while. The probl ens
that Web servers present in debugging sone of these conponents, however, can cause a
bit of frustration.

To cover the standard CGI debugging nethods using an ISAPI DLL, you'll want to review
Chapter 6 "Testing and Debugging." This covers sone of the nmethods available, but it's
important to note that one of the focuses of debugging a regular CGI application is
setting the Environnent Variablesto control the data. Since the ISAPI DLLs use
Extension Control Blocks, Environment Variabl es are no 1onger in the picture. You
can't just set themwith a shell script or regular executable. In fact, youreally can't
set themat all. But wait, there's nore.

Web serverson the NT platformnornally run as a background service-they start up
when the systemboots, and go on their nerry little way behind the scenes. Unless
sonet hing goes horribly wrong, they just sit there and process, and t hings magically
work. Unfortunately, to be behind the scenes neans that there'sno window that they
t oss nessages and ot her out put out of. Therefore, you don't get nice visual recognition
of things going on as they process. Before you get nervous about that, though, 100k at
what can be done to hel pyour debugging efforts.

When nost servers go ahead and 1oad your ISAPI DLL, they're going to cache it when
they're through. If you're naking changesto your DLL, and wondering why in the world
they're not showing up this can certainly be a cause of it. By editing the registry, you
can disabl e caching for the DLLs, making sure the current copy is loaded each tine. This
makes t he execution of those functions sl ower, so make sure you turn it back on once
you're done. Here's how you can disabl e caching under Microsoft's IIS:

Disabling ISAPI DLL caching with Microsoft's IIS

1. Run the 32-bit registry editor (REGEDT32.EXE)
2. Select the skEY 1L0CAL_MAchINE window

3 Select the systemfol der

4. Select the currentcontrolset folder

5. Select the services folder

6. Select the w3svc folder

7. Select the paranetersfolder
8 Set cacheExtensionsto 0

To re-enabl e caching, go through the sane process, but set cacheExtensions toone. Note
that thisonly appliesto ISAPI DLL's wit h Microsoft's Internet Information Server (IIS).
Process Software's Purveyor 1.2 and previous versions do not have a simil ar option for
cache manipul ation, and ISAPI Filters can't be controlled in this manner. If you want to
replace a filter, you're going to have to shut your server down, replace the fil ter, and
start the server upagain. Good thing servers don't (nornmally) take a long time to cone

up

For real-tine debugging, you'll probably first turn to the lowly nmessage box. Although
not the nost elegant nethod in the world, it's sinple. Y ou place a nmessage box wit hin
your code to show you data fromthe ECBs, or astheresult of a function call. Then
slowly wind your way through your progranis execution. Renenber, though, that your
programis running as a service, so it doesn't have its own window to play with. What
you'll want to take advantage of are the MB_SERVICE_NOTIFICATION and MB_TOPMOST
flagsfor the nessage box, which are defined in the Win32 SDK. These are the flags that
let those nmessages cone through when the service has sonet hing horrible to report to
you and needs its own place on your screen.

Tip

Don't 1eave Message boxes in the final version of your
program They're only for debugging purposes. You're
not supposed to have any bugs left when you're done, so
why keepthemaround? If one does popup it'sbetter to
use the buil t-in 1ogging functions to write it out to a
file and continue on, rather than popupa nessage box
that no one might be around to see.

Log filesare your friendsaswell. Without a 1ot of preparation you can insert 1ogging
functionsin either your ISAPI DLL or ISAPI Fil ter, and 1 ook at a nice printout of what
happened. Standard File I/O will create the files so you don't have torely on buil ding
an extended 1 ogging function wit hin the ISAPI code set itself. Standard readrile and
writeFile will work just fine aslong asyou've got written permissions for the directory
in question (the systemroot). Logging is great for verifying data coning in and going

out as part of your testing process. If soneone el se is doing the testing for you it might
be nore suitabl e to have a written testing record generated this way, rather than

rel ying on nessage boxes or the next nmet hod.

The next nethod is a slightly nore invol ved net hod for debugging. Y ou can use the

OutputDebugString () function, which sends a string t o your specified Debug nonitor. If
you don't have a Debug nonitor, or don't know what one is, this might not be the best
choice. If it sounds like fun, though, Microsoft includes a pexon exanpl e with the Win32
SDK to show how thisis general ly done in code.

Tip

According to Microsoft, early versions of the Win32 SDK
(for instance, prior to the Win32SDK for NT 40Beta 2)
need a code change in DBMON to account for user
privileges. If you have one of these earlier versions,
you'll want to take a 1ook at the code change they
specify in Knowl edge Base Article Q152054, page 2, under
"outputDebugString ()." Thisis avail abl e fromMicrosoft's
Website.

Other nethods of debugging ISAPI DLLs and Filters are constantly evolving, as nore
and nore peopl e work on making them For sone further details, check Microsoft's
Online Knowl edge Base during your devel opnent cycle, and check for any updates
regarding hel pfful additions (or new probl ens) to the ISAPI debugging process. One of
the current Knowledge Base articles on this topic is Q152054, which provides the detail s
described above, as well as a few other options that you might like t o pursue.

Platform Considerations

Currently, ISAPI isnot extrenely cross-platformcapable. It will work with all flavors
of NT, but only ISAPI DLLs can, at this point, go to any other platform In this case, that
additional platformis OpenVMS, made possibl e by Process Soft ware's architecture. ISAPI
filtersare NT-only, and right now they're only to be found with Microsoft's Int ernet
Information Server (IIS) package. If you're thinking about going to UNIX, you might
want totalk to the folksat Microsoft-a recent docunent published by themon t heir
Internet strategy says

"In addition, Microsoft continuesto work closely with its key UNIX partners (Software
AG, Bristol, Spyglass, and Mainsoft) to deliver the server and client technol ogies for
the various UNIX platforns."

Of course this doesn't say when, but, with the aggressive efforts Microsoft is making to
take a big stake in the Internet market, you can bet that they're not going to sit idly by
whil e other standards, 1ike the Netscape Server API (NSAPI), hold doninance in
Internet-int ensive markets like UNIX.

Note

See Chapter 26 "NSAPL" for detailson the Netscape
Server API (NSAPI) and its cross-platformcapabilities.

Summary

Y ou can do alnost anything with the ISAPIL The big questions to ask yourself are: Does
nmy Server support ISAPI in either forn? Do I have the progranming experience to create
an API function? Is this a function I could do with standard CGI progranming and, if so,
what are thereal benefitsI gain fromdoing it this way? In many cases you night
discover that sonet hing linits you fromusing ISAPI for your needs, but as Web sit es
continue to evol ve, sone of the nore sophisticat ed functions wit hin serverswill be
accessible only to API calls. In addition, buil ding val ue-added functions for established
server packagesis an area that hasnot yet begun to reach saturation of devel opers. The
power and flexibility to expand and exceed what you're doing now with CGI exists. A1l
you have to do is want to take advantage of it.

Chapter 26

NSAPI

CONTENTS

e Why NSAPI?
e NSAPI versus CGI
o Performance
o Process Space
o Data and Function A ccess
e NSAPI and the Server's Processes
o HTTP Request /Response Process
o Server Application Functions
o Controlling Function Use
e Functionsand Features
o Server Application Function Prototype
o Paraneter Blocks
o Sessions
o Request Structure
o Functions, Variabl es, and Their Responses
¢ Inplenentation Considerations
o Cross-PlatformCapabilities
o Informmtional Resources
o Programming Knowl edge

o Debuggin
e The Future of the NSAPI
e Summmnary

What do you do if your server can't do what you want it to? Buy another server? Not do
what you were planning on? Even CGI prograns can't really change the way a server
works they can only add on specific functions that need to be called in a specific way.
Another way does exist, however.

The Netscape Server API, or NSAPL enabl es you to add functions to your server, like
CGL but it also enables you to change the way the server works at the very core of its

functionality. Don't like the way errors are handl ed? Change the error handling. Not
enough information being 1 ogged? Change the 1ogging system Want to add your own
customaut horization mechanisn? Go right ahead. The power exists for you to change
almost any function that the server perforns, aswell asadd whatever pieces you want.

In this chapter, you explore the world of the NSAPI and see what it meansto Netscape
aswell astoyou, the devel oper fuser. The primary focus areas are asfol l ows

Why NSAPI?

NSAPI versus CGI

NSAPI and the server's processes
Functions and feat ures

Inpl enent ation conypl ications
Future directions

Let ne give you advance warning: creating and using NSAPI functionsrequire a
thorough knowl edge of C programming. Sone of the information contained in this
chapter nay be of nore use if you have a progranming background, asI cover data
structures, function calls and general progranming issues. The real focus of this
chapter, though, isto provide you with a detail ed overview of the NSAPI itself so that
you have a starting point if you want to pursue it further.

Caution

Before you spend t oo much tine learning about the
NSAPI standard, nmake sure that your server supports it.
It isnative only to Netscape servers, and there are
certain other server packages and versions that have
added, or are adding, NSAPI support. Y ou woul dn't want
tocreate a great function only to find out it can't be of
any use to you.

Why NSAPI?

When buil ding t heir servers, Netscape couldn't possibl y anticipate exactly how you
would want to work. They could and have buil t in a great deal of flexibility to enable
you to performnost of the tasks you want, but you will always have a set of functions
or a way of doing business that is unique to your situation. Support for the open CGI
standard allows easy access to functionality to extend the server'sreach, but in a
world where things need to be faster, nore flexible, and nore seaml essly integrated,
easy access is often not enough.

Net scape has a vision, and that vision is the Internet Application Framework. Soundsall-
enconpassing, doesn't it? Well, it is. The overall focus of Netscape'seffortsisto create a

set of open standards and protocolsthat any devel oper can use to get the functionality
that he or she needsfor Internet and intranet applications. As part of Netscape's Open
Network Environment (ONE) phil osophy, the Internet Application Framework and NSAPI,
specifical ly, play pivotal rolesin defining t he next generation of applications. Figure
26.1 shows Netscape'srepresentation of thisInternet Application Framework. The figure
al so shows that in Netscape's vision NSAPI and CGI (al ong with ot her t echnol ogies)
reside in the category of Server APIs (A pplication Progranming Interfaces).

Figure 26.1: Netscape's representation of their Internes Application Framework

Server APIsare the nethods that you can use to extend your server'sfunctionality. An
APl isnothing nore than a way to get at special bits of data and exert an anpunt of
control over the server itself, through a variety of nethods.

Unlike CGI, whose open standard is supported by al nost every server in exist ence, no
open standard current ly exists for Web servers. This lack of standard presents a
problem and it goesrather deepeach server is different, and its insides operate in
different ways. Without forcing every server devel oper to adopt the sane net hodol ogy
in how he or she processes data internally, no conmon ground can be had for every
server to take advantage of. Although this situation might present a problemfor sone
conpanies, it's just anot her opportunity for Net scape.

Wit h it s broad base of users, Netscape can influence Internet trends, including HTML,
security issues, and servers thensel ves. Most of thisinfluence is through just adopting
what Netscape feel sisa good net hod of doing sonet hing and going with it. In a few
cases, arbitrary additions neet with unaninous approval (franes, for instance), but

Net scape has enough nonent umt o avoid being bogged down by a need for everyone to
endorse what they've designed. Much 1like Microsoft often says, "This is the standard
that soft ware must conformto." Because they control a great percentage of the
operating syst ens market, Net scape has a simil ar kind of power in the Internet
environnent, and it is due to their setting the trends, not following them

The NSAPI is Net scape's next venture into trend-setting standards, though it will be a
much nore difficult task. The first reason is, asI nentioned before, that it invol ves
having the server work in a specific way. The second is that it requires a reasonabl y high
level of expertise to create a useful and robust API function. The final reason is the
one that may be the biggest obstacle: Netscape isnot alone in their proposal for a server
API standard. The chal lengers are nunerous, but the biggest conpetition cones fromone
sour ce-t he conbinat ion of Microsoft and Process Soft ware to create the Internet
Server API (ISAPI).

Note

Later in this chapter I cover in nore detail the future of
the NSAPI amidst these challenges. You can also review
the ISAPI in Chapter 25, "ISAPL"

Why, then, with all these challenges, would anyone pursue the creation of NSAPI
functions? To begin t o understand that question, you nust start by conparing NSAPI
functions to the CGI standard to understand where they're sinmilar and where they part

conpany.

Asyou can see fromthe diagramshown in Figure 26.1, many ot her conponents fit
naturally into the creation of Internet applications, but therole of NSAPI itself isthe
focus of attention here. Both CGI and NSAPI provide additional server-side
functionality; that is they isolate data processing fromthe client for convenience,
security, and/or speed. The key difference is that a CGI programis built to take
advantage of data gathered by the server and operat e outside t he boundaries of the
HTTP server's environnent, whereas NSAPI functions are buil t directly into the server
itself, extending its core functionality to neet individual or corporate needs.

NSAPI versus CGI

Of all the server software produced anywhere in the world, only a small fraction
provides no support for the CGI standard or sone closely related independent ext ension.
The reason isthat CGI makes sense. You can't expect the server nanufacturer to know
everyt hing you want to do with the soft ware, and often you wouldn't want the
manufacturer to cranpyour style even if it could predict sone formof what you

want ed.

Asyou've seen throughout this book, using CGI can be an easy and powerful way to
extend the server's functional ity wit hout t oo much fuss.

Performance

API functions are faster than CGI functions. How nmuch faster? They are anywhere from
two to five tines as fast, depending on what you're doing. Knowing how inportant it isto
get work done as fast as possibl e on the Internet, this speed is a good thing.

Process Space

API functions share process space with the server itself. Asaresult, these functionsare
faster. Every tine a server executesa CGI program on the other hand, a new process is
started upfor that program and it doesn't like to share with anybody. That's one
process per CGI execution. Imagine how much server effort that process causesif your

server getstensof thousands of CGI hitsa day. And peopl e wonder why server's need so
much nenory.

If you look through a CGI script, you'll see that it's just not designed to be nice to other
applications that nmay need extra menory or processor tine. Each script wantsto doits
task asfast as possibl e and get out of there. Although this capability may not be bad for
nost functions, think of database functions. Say you have a database wit h 400,000
recordsin it, and you're doing a search off a subset within your CGI script. Every tine
you want to do sone Int er-Process Connunicat ions t o whatever manages your data
source, you're in for a long haul. API functions, on the other hand, share resources of
any kind and can coexist peaceful ly whet her they're dealing with an external or an
internal resource.

Data and Function Access

The largest advantage that an API function has over a CGI programis the anount of
data and nunber of functions that the server hasavailabl e but can't be accessed from
"outside the 1oop' of its own process space. CGI is designed t o receive data and send data
in a linited fashion t hrough int ernediaries (environnent variabl es and STDOUT,
nornmally). API functions, however, are part of the server itself and can cause the
server to take sone action or intercept sone action that the server might normally do.

Suppose that you have a page that requires aut horization, and soneone wit hin your
conmpany who isn't authorized triesto accessit. You could intercept the error nessage
that would nornmlly go back, identify who the user is, and then present nore
appropriate feedback, such as"Sorry, Bob, you don't currently have accessto the
Technical Specifications for that product. The contact person for your departnent's
questionsis Janet, who can be reached at extension 58 Y our regional contact is Joe, who
can be reached at 5550101 for any questions when Janet isn't available." Asyou can see,
this nessage isa 1ot nore hel pfful than the Access penied nessage. By buil ding t his
functionality as an additional server function, all your conpany's servers can easily
make use of similar functionality, and it will be transparent to the usersand even to
sone of the administrators.

The preceding exanypl e is just a sanpling of what you can do, and without having much
impact on your server's performance at all. You can create custonized 1 ogging entries,
security functions, reporting, autonatic docunent conversion, and even "cookie"-1ike
information for maint aining user states whil e they're accessing your pages. The
functionality you add isall upto you, your needs, and your inaginat ion.

To hel pyou better understand the ways in which the NSAPI enabl es you to get better
acquaint ed with your server, I del ve int o sone of the functions and structuresthat
make the NSAPI what it isin the following sections.

NSAPI and the Server's Processes

NSAPI works by acting in place of, or in addition to, specific server functions. By
crawling around inside your server's configuration fil es and changing what things are
being done, you can rebuil d the server in any way you want. Not only are you

cust omizing it to neet your needs, but you're also learning how it worked in the first
place.

HTTP Request/Response Process

The server functions that you're adjusting to your own purposes take place in a specific
order, starting as soon as the client sends a nessage that says, "I'd like thisfile." This
process is called an HTTP Request/Response process, it's t he series of tasks that occurs once
the client hassent data, and the duty rests with the server to conpl ete the exchange of
information.

To cone to grips with how Netscape servers treat thiswhole process, 1ook at Netscape's
own definition of what the HTTP Request /Response process 1 0oks like, as shown in Table
26.1.

Tabl e 26.1. Net scape's HITTP Request /Response pr ocess.

Process Purpose
Authorization Any client authorization data converted into
Translation user and groupfor server
Nane Translation URL translated or nodified, if necessary

Local accessteststo ensure docunent can be

Path Checks safely retrieved

Evaluate the MIME type for the given object

Object Type Check (docunent)

Response to Request ||[Generate appropriate feedback

Logging of Save information about the transaction to
Transaction logging files

Server Application Functions

To get fromthe beginning to the end of the whol e Request /Response process, each one of
these steps has its own internal server functions, called server application functions. These
internal functions, which are known to the server, hel pit do its job. These functions
can be separated into classes, called function classes, t o best describe what each int ernal
functionrelatesto and to hel pwith organizing the design process. Each function class
relatesto one or nore of the processes that take place when the server answers a
client'scall for data. Though Netscape's breakdown of the HTTP Request Response
process has six steps, only five classes are used because one serves doubl e duty. Table

26.2 lists these classes in order of execution and tellsto which of the six st eps shown in
Table 26.1 they map

Tabl e 26.2. NSAPI function cl asses.

Class Function
AuthTrans Perforns Authorization Translation
NameTrans Perforns Nane Transl ation
PathCheck Perforns Pat h Checks

ObjectType Perforns Object Type Check

Perforns Response t o Request and Logging of

Service .
Transaction

Note

For nore detail ed infornmation on each of these
functions, including what types of response codes and
errorsthey can generate, see "Functions, Variabl es, and
Their Responses' later in this chapter.

Controlling Function Use

At every stepalong the way, the server needs t o know what functions take priority and
what additional functionsare available. Although the function classes have their own
special order of working, control wit hin each class of function is administ ered by the
server's configuration fil es. To make use of your own function, you need t o know how to
define the function in these configuration fil es and what the configuration files
thensel ves are.

Function Declaration

All server application functions, regardl ess of what they do, get referenced in the sane
way. They let the server know what function class they bel ong to, what the nane of
the function is, and which values need to be passed to the function itself. An exanpl e of
this kind of function declaration isasfollows

class fn=functionname valuel=datal .. valueN=dataN
You nny also see directive substituted for class. You say potato, they say potato.

Configuration: UNIX

When you configure a UNIX-based Net scape server to use a function, you do so through
the use of two fil es magnus.conf and obj.conf.

magnus.conf

The magnus.conf fil e is the server's master controller. It contains the instructions and
directives that the server hasto take into account when it first startsup The
magnus.conf file setsup for exanpl e, the server's nane, port nunber, and what
functions to 1oad into menory. When you devel opan NSAPI function, magnus.conf is the
starting point for making sure that your function is avail able for use. Y ou specify that
you want the server, on initialization, to load the npdule that you've created which
holds your function. You also give it any aliases that might be used for your function,
asin the foll owing exanypl e

Init fn=load-module shlib=/usr/me/mymodule.so funcs=myfunction

Init specifies that this processisto be perforned upon initialization. Next, you instruct
the server to use itsdefault 10ad-modules function toload your nodul e, and you
provide the full path to that nodule within the sh1ib (shared library) paraneter. The
mymodule.so fil e is a shared object, which I discuss in the "Functions and Feat ures"
section. Finally, you provide the alias (or aliases) for your function so that you can
reference it later.

obj.conf

When t he server is running, obj.conf is in conmand. A1l requeststhat cone to the server
get analyzed through the order and net hod specified in obj.conf to det ernmine what
should happen. The breakdown order of the HTTP Request /Response process t hat you
exanined in Table 26.1 occurs here. Your particul ar function is specified somewhere in
the obj.conf, depending on what class of function it is and what you want it to do, and
the server goes through each function in class order and then function order to see
what should happen.

One exanypl e of this processis a function supplied by Netscape; it takesa URL path asa
value and then maps that value to a hard-coded path on your system Essentially, it
creates a synbolic path link. Thisfunction's entry in the obj.conf file follows the basic
function declaration:

NameTrans fn=makepath path=/usr/mine/stuff
Here the function isin the NameTrans function class, because it should occur asthe

server is mapping file locations. The function itself is call ed makepath; it accepts only
one value, a hard-coded path.

Configuration: NT

Windows NT relies on a different mechanismfor controlling server processes, but the
basic premise isstill the sane. Different sectionsin the Windows NT registry correspond
to the purposes of the magnus.conf and obj.conf files, so you just make the entries there
inst ead.

Caution

Be extrenely careful when doing anything to the
Windows NT registry. Whereas nessing upan obj.conf or
a magnus.conf file would only create probl ens for your
server, the NT registry controlsall actions on your
system Y ou could ruin your whol e week if you
accidental ly del ete or nodify sonet hing. Before you
nodify anyt hing, nake a backupcopy of the registry for
safekeeping, or nake a syst emdisk that can restore your
current configuration.

Y ou nodify the Windows NT registry by running the regedt 32.exe program Y ou should
look for the HKEY_LOCAL_MAchINE\Software\Netscape\Httpd-80 section. Remenber, this is
your entire systemconfiguration, so be careful!

StartUp Key

Under the nttpd-80 section is Currentversion\startUp, Which controlsthe startup
processes of the Netscape server. This controlswhat functions are 1oaded into nenory
when the Net scape server runs as an NT service. To add your own entry, you create a
new key in the Start Upfol der by choosing Edit |Add Key and then entering
InitFunction01 (Or InitFunction02 if ITnitFunctiono01l isalready there) in the Key Nane
value, leaving the Class entry blank for now. You then add values to the key, as shown
here:

fn: load-modules
shlib: c:\netscapel\stuff\mymodule.dll

funcs: myfunction

Here you're specifying that the server use its own 1oad-modules function to place the
shared library (sh1ib) of c:\netscape\stuff\mymodule.dll into menory. Fileswith a.dl1
ext ension are Windows Dynamic Linked Libraries (DLLs), which allow their functionsto
be shared by other processes on the system You're also telling the server that the alias
for this particular function ismyfunction.

Directive Keys

To convince the server that your function should be called, now that you've specified
that it should be 1oaded, you need to det ernmine where your function fitsinto the
general schene of things To start with, go into the currentversion\oObjects registry
folder and check through the objects list ed t o see which one of themhas the name:
default value.

Next, you need to l ook under that object, in itsdirective keys, to find the Directive
(class) under which your application falls. If your function is supposed to take place asa
logging request, for exanpl e, you should see if you can find a directive key with a value
of Directive: Addlog. If one doesn't exist, you can add it.

After you find (or create, which is l ess likely) the directive key your function should be
part of, you need to add a new function underneath that Directive folder. This tine,
you just specify the function and any necessary values. A sinpl e case would be just the
function itself, as shown here:

fn: myfunction

Here you're just saying, "When you run through this groupof functions, be sure to call
myfuncticn1asvvellp

Initializing the Server

After you make any changes, regardl ess of which platformyou make themon, you need
to shut down the server and restart so that it 1oads the new functions. Sending the
server a Restart signal isn't enough because the signal is not going to cause the server
to load the new functions specified in either magnus.conf or the StartUpregistry key.
Make sure that you conpl etely shut down the server and then start it back upagain.

One thing to keepin mind is that certain npdul es may need to be explicitly instructed to
stopwhat they're doing before the server startsupagain; otherwise, you could end up
with two instances of a process running, wasting space and even causing conflicts. To
clean upthose processes, you can use the atrestart() function, defined as

void magnus atrestart(void (*fn) (void *), void *data)

Thisiscalled by the server during restart, not during ternination, with the data
point er being passed in as the argunent for the function call.

Functions and Features

To create an NSAPI function, you need t o know what it's built of-what data structures
and general functions are necessary and avail abl e t o make your idea for a function

beconereality.
Server Application Function Prototype

Just asall server application functions are defined the sane way in the configuration
filesfor how they're accessed, all the functions are defined t he sane way in your

actual code. This ensures that they are conpatibl e with the other processes the server is
performing and that they can accessthe server'sdata in a tinel y manner. The prototype
that followsis Netscape'srequired definition for each function:

int function(pblock *pb, Session *sn, Request *rq);
Response Codes

To deternine the out cone of the function, the integer return fromthe function must
correspond to the avail abl e response code, as listed in Table 26.3

Tabl e 26.3. Accept abl e ser ver applicationfunctionresponse codes.

Code Value Definition
REQ PROCEED 0 The function has perforned its task; proceed
- with the remainder of the request.
REQ ABORTED _, |Anerror occurred; the entire request
- should be aborted at this point.
The function didn't acconplish what it
REQ_NOACTION -2 |lwanted to do, but the request should
proceed.
REQ_EXIT -3 [|Close the session and exit.

Depending on the class of function, different interpretations for thereturnsare
availabl e, asyou learn in the section "Functions, Variabl es, and Their Responses."

Parameter Blocks

The paraneter bl ock (pb1lock) data structure isthe amino acid of NSAPI functions.
Because servers deal with information based on name=value pairs, pblock isa hash table
that is keyed on the nane string, which then allows the function to mapnanesto
values.

The data structures used when dealing with paraneter bl ocks are shown in Listing 26.1.
The name=value pairsare stored in the pb_param structures, which are in turn used inside
pb_entry to create linked lists of the pb_param structures. The hash table itself
(pblock) is defined in Listing 26.2, though it is subject to change by Netscape and is

nornally transparent to nost functions.

Listing 26.1. Par amet er bl ock structure definition

#include "base/pblock.h"

typedef struct {
char *name, *value;
} pb_param;

struct pb_entry {
pb_param *param;
struct pb_entry *next;

bi

typedef struct ({

int hsize;

struct pb_entry **ht;
} pblock;

Listing 26.2. pblock hash t abl e sampl e definition

#include "base/pblock.h"

/* Create parameter with given name and value */
pb_param *param_create(char *name, char *value);

/* Free Parameter if not null, Return 1 if non-null, 0 if null*/
int param_free(pb_param *pp);

/* Create new pblock of Hash Table size 'n' */
pblock *pblock_create(int n);

/* Free defined pblock and entries it contains */
void pblock_free(pblock *pb);

/* Find entry with given name in pblock */
pblock *pblock_find(char *name, pblock *pb);

/* Return value of pblock with given name found in it */
char *pblock_findval (char *name, pblock *pb);

/* Find entry containing name in pblock, and remove it */
pblock *pblock_remove (char *name, pblock *pb);

/* Create new parameter, insert into specified pblock */
pb_param *pblock_nvinsert (char *name, char *value, pblock *pb);

/* Insert a pb_param into a pblock */
void pblock_pinsert)pb_param *pp, pblock *pb);

/* Scan the string for name=value pairs */
int pblock_str2pblock (char *str, pblock *pb);

/* Place all the parameters in pblock into string */
char *pblock_pblock2str (pblock *pb, char *str);

Not all the functions are needed for server application functions, but the preceding
listings show which functions are currently defined. Before inpl enenting any of t hese
functions, however, check the latest version of your server docunentation, which
cont ains nore specific detail s on each one of these functions, their use, and their
current state.

Sessions

A session, by Netscape's definition for the NSAPI, is the tine bet ween the opening and the
closing of the client connection. To hold the data associated with the session in
question and nmeke it availabl e systemwide, a session data structure is needed, as
outlined in Listing 26.3

Listing 26.3. Sampl e session data structure.

#include "base/session.h"

typdef struct {
pblock *client;

SYS_NETFD csd;
netbuf *inbuf;

struct in_addr iaddr;

} Session;

The c1ient paraneter bl ock pointsto two nore pieces of infornation to hel pidentify the
session uniquely: the IP address of the client machine and the resol ved DNS nane of the
client machine. Information in csd and inbuf isrelevant to the socket descriptor for the
connection, whereas the iaddr structure is for internal use and contains raw socket
information.

Request Structure

When the client makes a request, various HITP-rel ated information is stored, just asit
is during normal CGI operations. All thisinformation is accessibl e through the rRequest

data structure, asoutlined in Listing 26.4.

Listing 26.4. HTTP rRequest data structure.

#include "frame/reqg.h"

typedef struct {

/* Server's working variables */

pblock *vars;

/* Method, URI, and Protocol
pblock *reqgpb;

/* Protocol Specific Headers
int loadhdrs;
pblock *headers;

/* Server's Response headers
pblock *srvhdrs;

/* Object Set constructed to
httpd_objset *os;

specified */

*/

*/

handle this request */

/* Last stat returned by request_stat_path */

char *statpath;
struct stat *finfo;

} Request;

Contained within the request structure are several sources of data that your function

can take advant age of, depending on what
what you're
looking for.

function class your function bel ongsto and

The vars paraneter bl ock cont ains function-specific variabl es, which are different for
every function class. In the section "Functions, Variabl es, and Their Responses," you
will look in nore detail at what the possibl e val ues can be.

One of the first things your function conesin contact with is the reqpb paraneter bl ock
because it contains the data you first need to evaluate, as outlined in Table 26.4

Tabl e 26.4. Request par amet er s cont ained in regpb.

Parameter Purpose
HTTP nethod used to initialize the request;
method . :
equivalent to the rREQUEST METHOD variable
uri The URI that the client requests
protocol The HTTP protocol version that the client supports

The first line of the client'srequest to be used for

e _ .
cli-request logging or other sinilar purposes

The neaders block is just what you would expect-the headers sent by the client. If nore
than one value is sent for the sane header, they are joined toget her with a conmms, as
follows

Header: valuel, valueZ

Tip

Net scape recommends that you do not access the pbl ock
for headers directly but instead use the following
function:

int request_headers(char *name, char *value,

Session *sn, Request *rq)

Even though you can access the pbl ock directly, that
capabil ity may change in the future. Because Net scape
doesn't want you to create code that won't work later,
they have nmade this recormendation.

The data contained in srvhdrs is just the reverse of the headers bl ock: thisisthe place
where you can specify headers to be sent back to the client for the request result.

The last three partsof Listing 26.4 (os, statpath, and finfo) are used by the base server
itself and are basical ly transparent to your application. They essentially verify the
statusof a given path, returning a stat structure if it's successful or an error code if it
isn't.

Functions, Variables, and Their Responses

Wit h each of the application function classes, specific data is evaluated, and certain
response codes are valid. In the fol lowing sections, I hel pyou review each one of the
main classes in the order that the server handles them and then I cover what's

avail abl e with each one for both variabl es and response codes. Fol 1 owing that, I provide
further information on sone ot her cormon functions that are available to your
applications.

AuthTrans

authTrans decodes any authorization type data sent by the client so that it can conpare
the data to internal tablesand determine the validity of the user. If the user is
verified, AuthTrans nmakes the fol lowing data available in a vars pblock:

e auth-type: Definesthe authorization schene to which it conplies. Currently, the
only possibl e value isbasic. (The CGI variabl e equival ent is auTH_TYPE.)

e auth-user: Provides the usernane that has been verified. (The CGI variable
equivalent is AUTH_USER.)

AauthTrans returnsone of the following three response codes, with the following
neanings

e REQ_ABORTED: Abort the process (error).
e REQ_NOACTION: No authorization took place.
e REQ_PROCEED: Authorization occurred; continue.

NameTrans

NameTrans convertsa virtual path, such as /stuff/docs into the absolute directory
path, such as /usr/bin/netscape/docs/stuff/docs.

NameTrans functions expect to receive two variabl esin the vars pblock on execution:
ppath and name. ppath isthe partial path, that is the virtual path that was supplied such
as /stuff/docs. It nay have already been partially translated, and your function can
nodify it, no matter what it decidesto return. The name variabl e specifies additional
server objects (besides default) that should add their list of thingsto do to this process.

Return codes froma NameTrans function can be any of the following

e REQ_PROCEED: Translation was perforned; no nore translation should occur.

e REQ_ABORTED: An error should be sent to the client; no other functions should
execute.

e rREQ_NOACTION: The function doesn't admit translating ppath, though it may have
changed it anyway. The rest of the functions should be carried out.

e REQ_EXIT: AnI/O error occurred, and the process should be abort ed.

PathCheck

pathCheck functions verify that a given path can be safely returned to the client, based

on authorization, URL screening, and ot her sinmilar checks. The only infornmation
supplied to the pathcheck function is the path variabl e, which specifies the 1ocation to
be checked.

For return codes, anything other than rReo_aBORTED is considered to be a success.
ObjectType

objectType functionsare supposed to locate a filesystem object for the path supplied.
MIME type checks and sinil ar functionality are handl ed here. If no objects can be

mat ched to the path in question, this function returns an error. The path variable is the
only one passed to objectType functions, like pathcheck, and returns other than
REQ_ABORTED are considered a success.

Service

Service functions are the nethods that the server usestoreply to the client'sinitial
request. Usually, the response isautommatically generated based on the type of file
being sent back, its location, or the authorization of the client for the request in
question. Server-Side Includes are parsed before being sent in this stage of execution,
whereas other fil es just go on their nerry way.

Because Service functions have to take the initiative for sending the information back
tothe client, they need to initialize the response process with the fol 1 owing function
call:

int protocol_start_response(Session *sn, Request *rq);
Return codes for the Service class functions can be any of the foll owing:

e REQ_PROCEED: A response was sent to the client with no probl ens.

e REQ_NOACTION: A Service function did not hing; the server should execute one of
the subsequent Service directives.

e REQ_ABORTED: Sonet hing bad has happened, and the server should direct an error
to the client.

e REQ_EXIT: The Session should be cl osed.

General Functions

Y ou can use nmany different functions. The current printed list is 61 pages, including
details. They range fromthe mundane mMarLoc (a cross-platformsubstitute for the
malloc () function in C) to the fol lowing fun function (which checks for URIs
containing ../ or // andreturns 1 if they do or o if they don't):

int util_uri _is_evil (char *t);

What ever task you want to perform you can choose fromliterally dozens of functions,
because you are at the base level of the server itself-anything that it does, you can do
aswell. Most of the functions that you will need for your server will likely invol ve
reading data fromthe client, such aspblock_findval () for grabbing the request

net hod, or sending back nessages, such asthe protocol_status () for sending server
error codesto the client.

The conplete list isavailabl e as part of the NSAPI Devel opnent Whit e Papers and
Technical Notes, all of which you can find at http://help.netscape.con. In addition,
devel opers who are part of the Netscape Devel oper's programcan obtain further
infornation through the Devel oper's Technical Library. For further details, visit
http://developer.netscape.com to see what'savailable to the general public and

what's avail abl e to regist ered devel opers.

Error Reporting

Reporting when probl ens occur is important. AsI just nentioned, the protocol_status ()
function enabl es you to send back information to the client in the formof a traditional
server error code. The syntax for the function is asfol l ows

void protocol_status(Session *sn, Request *rqg, int n, char *r);

The session and Request structures establish which user session and for which request
the error is being generated, to be sure it goesto the right place. To specify which error
you want to send back, you can use the r string to enter your own specific reason t hat
the process encountered an error, and the n int to specify one of the available error
codes listed in Tabl e 26.5. If you do not specify a string in r, the string sent to the client
defaultsto reason Unknown.

Tabl e 26.5. Accept abl e ser ver error codes.
Value Error Code

200 PROTOCOL_OK

204 PROTOCOL_NO_RESPONSE

302 PROTOCOL_REDIRECT

304 PROTOCOL_NOT_MODIFED

400 PROTOCOL_BAD_REQUEST

401 PROTOCOL_UNAUTHORIZED

403 PROTOCOL_FORBIDDEN

404 PROTOCOL_NOT_FOUND

407 PROTOCOL_PROXY_UNAUTHORIZED

500 PROTOCOL_SERVER_ERROR

501 PROTOCOL_NOT_IMPLEMENTED

Implementation Considerations

When you're ready to take the plunge int o devel oping NSAPI functions, or you're at
least 1ooking at themseriously, you should be aware of a coupl e of pointsthat wil]
affect both how easy it will be to devel opyour sol ution and where you can use that
solution. I describe these points in the fol l owing sections.

Cross-Platform Capabilities

Who said, "You can't take it with you"? One of the great things about the NSAPI is t hat
it'scross-platform Currently, it is supported with Netscape products on several UNIX
platfornsaswell as Windows NT, and that list is bound to grow with tine. Because the
internal function callsremnin exactly the sane fromplatformto platform all you
need to worry about isthe C code that does the processing for your particul ar
functions.

Informational Resources

A growing anpunt of information isavailable on the NSAPL but it isstill in the early
stages of devel opment. You can obtain the best resources availabl e through the
Netscape Devel oper's program called DevEdge, or through taking one of the Netscape
training courses on the NSAPI, which were started in the second quarter of 1996. In
public newsgroups, you also can find a nunber of peopl e naking use of the NSAPI, asit
enconpasses a wide range of progranming topics. Secured newsgroups on Net scape's site,
for registered devel opers, have a high turnout rate for questions and answers, and they
provide the added benefit of serving asa link to Netscape support personnel and
advanced devel opers.

A growing nunber of devel opers are also beginning to offer conmercial servicesfor
functions such as hel ping you det ernmine how you might nove a CGI function into NSAPI
functionality or designing server ext ensions fromt he ground up

Programming Knowledge

API programming is much easier to approach if you're already a C programmer. If you are,
youre well on your way to taking advantage of all the power that APl hasto offer. If
youre not a C progranmer, however, or you work with a groupwith linited tine for
devel oping constant ly changing functions, you nay want to consider how you would go
about nmaking NSAPI functions and whether they're worth the tine and effort. CGI
programming still naintains one significant advantage over API progranming-it's easy to

do, in any language. If all your devel opment experience isin Perl, you may not be
willing to invest the considerable tine and frustration it will take to learn C and
becone fluent enough in it to code advanced and robust functions. For many peopl e, this
decision wil 1 be the biggest obstacle to devel oping their functions and one of the
factorsthat will linmit API devel opnent inpact on the general server nmarket place.

With all the resources avail abl e and with training under your belt, you might begin to
wonder if API programming is a good direction to be going in. After all, programming
these functionsis very specific to servers that support the NSAPI standard, and this
programming is sonewhat involved. Isit worth all the effort? The answer to this

quest ion depends on whomyou ask, but the majority opinion is t hat this type of
programming is definitel y an area in which you should becone well versed. CGI wil 1
probably never go away. Its quick and dirty, easily impl enent ed data processing
functions are al ways needed, and it's just way too much fun. Corporate-level solutions,
however, are increasingl y denanding and increasingly st andards orient ed.

Debugging

To debug a buil t-in server function, you nust rely heavily on your faith in your code
because sone possibl e synpt ons can occur due to an errant return fromyour code or a
slight error in placing data within a pb1ock. One of the best considerationsisto include
a logging function wit hin your function so that a 1ook at the systenis error 1ogs can at
least hel pyou pinpoint if your function is doing anyt hing and what data it has.

Here isonerelativel y common pitfall to avoid when calling NSAPI functions through
references in an HTML page. When they're being referenced in a formel enent like this

<FORM METHOD="POST" ACTION="/cgi-bin/nsapi/blah.useaction">

you nust have a file called blah.useaction in /cgi-bin/nsapi. The file doesn't need to
have anyt hing in it (it can be a shopping list or a doghouse blueprint), but the file it sel f
needs to exist because the server first checks the validity of the fil e by using the
pathCheck class If the server doesn't see a fil e there, it fail s and doesn't do what you
want it to do.

The Future of the NSAPI

Standards are a big issue when it cones to the Internet. A1l conpanies want their
technol ogy to be the one that everyone el se adopt s because noney rides on being t he
leader. To this point, Net scape has dominat ed t he conmercial sector in devel oping
Internet standards, or at least close enough to it that they might aswell be the
leader. By proposing the NSAPI as a standard, the folks at Netscape have positioned
thenselvesto try to take the lead in server extensions, just asthey have in creating
demand for the HTML tags that they've adopted ahead of schedul ed standards

impl enent ation.

The NSAPI isnot alone in the race for standardization, however. The Internet Server
API (ISAPI), created by Microsoft and Process Soft ware (see Chapter 25 for nore details

on ISAPI), is generating its own band of followers. In addition, other entriesinto the
fray exist aswell, either existing as sonething sinmilar to NSAPI or ISAPI or as sonet hing
conpletely different. In the face of conpetition fromtwo industry giants, though, how
can standardization of other entries succeed when they aren't part of either larger

canps proposal?

Would it be possibl e to neet sonmewhere in the middl e? Not easily, and not likely. The
NSAPI is heavil y tied to the inner workings of the server itself, rel ying on the obj.conf
and magnus.conf fil es, whereas the ISAPI standard goes nore al ong the line of
Microsoft's traditional DLL additions wit h nessage hooks.

Who has the advantage? Again, the answer to this question depends on whomyou ask.
Independent research agencies have reported conflicting information about who'sin the
lead and which inpl enent ation of the API functionsis better suited for
standardization. The real advantage, however, currently liesin the Net scape canp
because of cross-platformcapabil ities. Microsoft's push is currently for NT asa
substitute server platformfor UNIX, but with the nunber of UNIX boxes already in use,
a large and st ubborn groupof the nore advanced devel opers doesn't want to switch
platforns and server software just to take advantage of the API functions.

I'mnot saying that the battle for who'sin the lead is over, by any neans. Microsoft has
never been shy about pursuing its goalsfor market share, and if they feel that they're
at a disadvantage, they'l1l fight even harder to becone topdog. For the nonent,
however, Netscape nmaintains the edge that may well determine what direction the nore
serious devel opers go in.

Isall this conpetition good newsfor you, as an individual ? Sure. It neans that nore
powerful functions will surely be devel oped for a whol e range of Web servers. If you're
a devel oper, you've got a new marketplace to play in. If you're a user, nany of the tasks
that you performon the Web coul d becone faster and nore powerful. No natter from
which angle you look at this conpetition, it's a win-win situation for everyone.

Summary

The Netscape Server API isa powerful tool for customizing your Web server and making
it junpthrough the hoops you need it to. NSAPI isnot a replacenent for CGI because
people will always have a need for therole CGI plays. But NSAPI can performthe sane
functions, be called in the sane manner, and do it all with less work for your server.
These benefits are bal anced by it s being harder for devel opersto get upto speed and
create stable functions. After you're faniliar with the way NSAPI works and have had
the chance to experinent, you'll understand why it'sa great tool to have around.

