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ABSTRACT

Academic and corporate communities have
been dedicating considerable effort to World
Wide Web caching. When correctly deployed,
Web caching systems can lead to significant
bandwidth savings, server load balancing, per-
ceived network latency reduction, and higher
content availability. In this article we survey the
state of the art in caching designs, presenting a
taxonomy of architectures and describing a vari-
ety of specific trends and techniques.

INTRODUCTION
As the Internet continues to grow in popularity
and size, so do the scalability demands on its
infrastructure. Exponential growth without scala-
bility solutions will eventually result in pro-
hibitive network load and unacceptable service
response times.

It is well known that the primary reason Inter-
net traffic has increased is the surge in populari-
ty of the World Wide Web, specifically the high
percentage of HTTP traffic. To better under-
stand this growth rate, consider that studies con-
ducted in the early ’90s revealed that 44 percent
of Internet traffic originated from FTP requests
[1]. However, within the last year it was shown
that HTTP activity had grown to account for
somewhere between 75–80 percent of all Inter-
net traffic [2].

THE APPEAL OF WEB CACHING
The unparalleled growth of the Internet in terms
of total bytes transferred among hosts, coupled
with the sudden dominance of the HTTP proto-
col, suggest much can be leveraged through Web
caching technology. Specifically, Web caching
becomes an attractive solution because it repre-
sents an effective means for reducing bandwidth
demands, improving Web server availability, and
reducing network latencies.

Deploying caches close to clients can reduce
overall backbone traffic considerably. Cache hits
eliminate the need to contact the originating
server. Thus, additional network communication
can be avoided.

To improve Web server availability, caching
systems can also be deployed in a “reverse” fash-
ion (e.g., the reverse proxy server approach),
where caches are managed on behalf of content
providers who want to improve the scalability of
their site under existing or anticipated demand.

In these cases, caches not only improve the
availability and fault tolerance of their associat-
ed Web servers, but also act as load balancers.

Caching can improve user perceptions about
network performance in two ways. First, when
serving clients locally, caches hide wide area net-
work latencies. On a local cache miss, the origi-
nal content provider will serve client requests.
However, in this case, server-side (reverse)
caches can still play a role by reducing actual
request serving time, as described above.

Second, temporary unavailability of the net-
work can be hidden from users, thus making the
network appear to be more reliable. Network
outages will typically not be as severe to clients
of a caching system, since local caches can be
leveraged regardless of network availability. This
will especially hold true for objects1 that are
temporal in nature (e.g., the isochronous deliv-
ery of multimedia data such as video and/or
audio), where consistent bandwidth and response
times are particularly important.

Although Web caching offers much hope for
better performance and improved scalability,
there remain a number of ongoing issues. Perhaps
primary among these is object integrity: if an
object is cached, is the user guaranteed that the
cached copy is up-to-date with the version on the
originating server? Other issues include using
HTTP “cookies” to personalize versions of identi-
cally named URLs, content security, and the legal
ethics of caching. Open issues are not the focus of
this article; rather, we simply provide a taxonomy
of designs and techniques that are available today.

THE NEED FOR A SURVEY
This survey is motivated by the rapid evolution
of Web caching technologies. It is difficult to
keep up with recent advances, since there are a
number of ongoing efforts (both industrial and
academic), many containing solutions based on
emerging Web standards (e.g., persistent con-
nections [3] and XML). Web caching is also a
young industry, with a number of commercial
vendors pushing new solutions either with direct
ties to research systems or architected by indi-
viduals with notable research backgrounds. Thus,
commercial solutions often contain aggressive
and unique architectures.

The survey presented here serves to capture a
snapshot of current design trends and tech-
niques. Its purpose is not to compare one solu-
tion with another, but to identify common
designs and put them in context.
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1 Web pages can consist
of multiple “objects”: the
HTML for the page itself,
an embedded picture or
video, a Java applet, etc.
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OUTLINE

This article is organized as follows. The next sec-
tion describes several distinct Web caching
architectures. We summarize various cache
deployment options; some deployments go hand
in hand with the caching system architecture,
whereas some architectures allow for a variety of
deployment options. We also focus on common
design techniques found in many existing archi-
tectures. In Appendix A, we briefly discuss the
difficulty in identifying metrics of cache effec-
tiveness and specifically address recent work on
benchmarking tools. Finally, in Appendix B, we
elaborate on related networking components
that can augment existing cache deployment
strategies to improve scalability.

CACHING ARCHITECTURES

PROXY CACHING
A proxy cache server intercepts HTTP requests
from clients, and if it finds the requested object
in its cache, it returns the object to the user. If
the object is not found, the cache goes to the
object’s home server, the originating server, on
behalf of the user, gets the object, possibly
deposits it in its cache, and finally returns the
object to the user.

Proxy caches are usually deployed at the
edges of a network (i.e., at company or institu-
tional gateway or firewall hosts) so that they can
serve a large number of internal users. The use
of proxy caches typically results in wide-area
bandwidth savings, improved response time, and
increased availability of static Web-based data
and objects.

Standalone proxy configuration is shown in
Fig. 1a. Notice that one disadvantage to this
design is that the cache represents a single point
of failure in the network. When the cache is
unavailable, the network also appears unavail-
able to users. Also, this approach requires that
all user Web browsers be manually configured to
use the appropriate proxy cache. Subsequently, if
the server is unavailable (due to a-long term out-
age or another administrative reason), all users
must reconfigure their browsers in order to use a
different cache.

Browser auto-configuration is a recent trend
that may alleviate this problem. The Internet
Engineering Task Force (IETF) recently
reviewed a proposal for a Web Proxy Auto-Dis-
covery Protocol (WPAD),2 a means of locating
nearby proxy caches. WPAD relies on resource
discovery mechanisms, including domain name
service (DNS) records and Dynamic Host Con-

figuration Protocol (DHCP), to locate an auto-
matic proxy configuration (APC) file.

A final issue related to the standalone
approach has to do with scalability. As demand
rises, one cache must continue to handle all
requests. There is no way to dynamically add
more caches when needed, as is possible with
transparent proxy caching.

Reverse Proxy Caching — An interesting twist
to the proxy cache approach is the notion of
reverse proxy caching, in which caches are
deployed near the origin of the content instead
of near clients. This is an attractive solution for
servers that expect a high number of requests
and want to ensure a high level of quality of ser-
vice. Reverse proxy caching is also a useful
mechanism when supporting Web hosting farms
(virtual domains mapped to a single physical
site), an increasingly common service for many
Internet service providers (ISPs).

Note that reverse proxy caching is totally
independent of client-side proxy caching. In fact,
they may coexist and collectively improve overall
performance.

Transparent Caching — Transparent proxy
caching eliminates one of the big drawbacks of
the proxy server approach: the requirement to
configure Web browsers. Transparent caches
work by intercepting HTTP requests and redi-
recting them to Web cache servers or cache clus-
ters. This style of caching establishes a point at
which different kinds of administrative control
are possible; for example, deciding how to load
balance requests across multiple caches.

The strength of transparent caching is also its
main weakness: it violates the end-to-end argu-
ment by not maintaining constant endpoints of
the connection. This is a problem when an appli-
cation requires that state be maintained through-
out successive requests or during a logical
request involving multiple objects.

The filtering of HTTP requests from all out-
bound Internet traffic adds additional latency. For
example, caches deployed in conjunction with layer
4 (L4) switches rely on the fact that these switches
intercept TCP traffic directed at port 80 and send
all other traffic directly to the WAN router.

There are two ways to deploy transparent
proxy caching: at the switch level and at the
router level. Router-based transparent proxy
caching (Fig. 1b) uses policy-based routing to
direct requests to the appropriate cache(s). For
example, requests from certain clients can be
associated with a particular cache.

2 http://search.ietf.org/
internet-drafts/draft-ietf-
wrec-wpad-01.txt

� Figure 1. a) Standalone, b) router-transparent, and c) switch-transparent proxy caching.

(a)

Client

Client Cache Router RouterWeb

Client

(b)

Client

Client Router Web

Client

Cache Cache Cache

(c)

Client

Client L4
switch Web

Client

Cache Cache Cache



IEEE Communications Magazine •May 2000180

In switch-based transparent proxy caching
(Fig. 1c), the switch acts as a dedicated load bal-
ancer. This approach is attractive because it
reduces the overhead normally incurred by poli-
cy-based routing. Although it adds extra cost to
the deployment, switches are generally less
expensive than routers.

Using L4 switches for transparent caching is
an example of how other network components
play a role in the effectiveness of a Web caching
solution. For transparent caching, these switches
provide a form of local load balancing. There are
other switches and solutions for local load bal-
ancing as well as solutions for global load balanc-
ing. The use of related network components for
this purpose is covered further in Appendix B.

ADAPTIVE WEB CACHING
Adaptive Web caching [4] views the caching
problem as one of optimizing global data dis-
semination. A key problem adaptive caching tar-
gets is the “hot spot” phenomenon, where
various short-lived Internet content can,
overnight, become massively popular and in high
demand.

Adaptive caching consists of multiple dis-
tributed caches which dynamically join and leave
cache groups (referred to as cache meshes) based
on content demand. Adaptivity and the self-
organizing property of meshes are a response to
those scenarios where demand for objects gradu-
ally evolves and those where demand spikes, or
is otherwise unpredictably high or low.

Adaptive caching uses the Cache Group Man-
agement Protocol (CGMP) and Content Rout-
ing Protocol (CRP). CGMP specifies how
meshes are formed, and how individual caches
join and leave those meshes. In general, caches
are organized into overlapping multicast groups
which use voting and feedback techniques to
estimate the usefulness of admitting or excluding
members from that group. The ongoing negotia-
tion of mesh formation and membership results
in a virtual topology.

CRP is used to locate cached content from
within the existing meshes. It can be said that
CRP is a more deterministic form of hierarchical
caching, which takes advantage of the overlap-
ping nature of the meshes as a means of propa-
gating object queries between groups, as well as
propagating popular objects throughout the
mesh. This technique relies on multicast commu-
nication between cache group members and
makes use of URL tables to intelligently deter-
mine to which overlapping meshes requests
should be forwarded.

One of the key assumptions of the adaptive
caching approach is that the deployment of
cache clusters across administrative boundaries
is not an issue. If the virtual topologies are to be
most flexible and have the highest chance of
optimizing content access, administrative bound-
aries must be relaxed so that groups form natu-
rally at proper points in the network.

PUSH CACHING
As described in [5], the key idea behind push
caching is to keep cached data close to the
clients requesting that information. Data is
dynamically mirrored as the originating server

identifies where requests originate. For example,
if traffic to a west coast site started to rise
because of increasing requests from the east
coast (typical of what happens on weekdays at 9
a.m. EST), the west coast site would respond by
initiating an east coast based cache.

As with adaptive caching, one main assump-
tion of push caching is the ability to launch
caches that may cross administrative boundaries.
However, push caching is targeted mostly at con-
tent providers, which will most likely control the
potential sites at which the caches could be
deployed. Unlike adaptive caching, it does not
attempt to provide a general solution for improv-
ing content access for all types of content from
all providers.

One study [6] found that well-constructed
push-based algorithms can lead to speedups of
between 1.27 and 2.43 as compared to tradition-
al cache hierarchies. This study also notes the
general dilemma that push caching encounters:
forwarding local copies of objects incurs costs
(storage, transmission), while overall perfor-
mance and scalability are only seen as improved
if those objects are indeed accessed.

ACTIVE CACHING
The WisWeb project at the University of Wis-
consin explored how caching can be applied to
dynamic documents [7]. Their motivation is that
the increasing amount of personalized content
makes caching such information difficult and not
practical with current proxy designs.

Indeed, a recent study [8] of a large ISP trace
revealed that over 30 percent of client HTTP
requests contained cookies, which are HTTP
header elements typically indicating that a
request be personalized. As Web servers become
more sophisticated and customizable, and as
one-to-one marketing e-commerce strategies
proliferate the Internet, the level of personaliza-
tion is anticipated to rise.

Active caching uses applets, located in the
cache, to customize objects that could otherwise
not be cached. When a request for personalized
content is first issued, the originating server pro-
vides the objects and any associated cache
applets. When subsequent requests are made for
that same content, the cache applets perform
functions locally (at the cache) which would oth-
erwise (more expensively) be performed at the
originating server. Thus, applets enable cus-
tomization while retaining the benefits of caching.

CACHE DEPLOYMENT OPTIONS
There are three main cache deployment choices:
near the content consumer (consumer-oriented),
near the content provider (provider-oriented),
and at strategic points in the network, based on
user access patterns and network topology.
Below we discuss each option’s advantages and
disadvantages.

Positioning caches near the client, as in proxy
caching (including transparent proxy caching),
has the advantage of leveraging one or more
caches to a user community. If those users tend
to access the same kind of content, this place-
ment strategy improves response time by being
able to serve requests locally.
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Caches positioned near or maintained by the
content provider, on the other hand, as in
reverse proxy and push caching, improve access
to a logical set of content. This type of cache
deployment can be critical to delay-sensitive con-
tent such as audio or video. Positioning caches
near or on behalf of the content provider allows
the provider to improve the scalability and avail-
ability of content, but is obviously only useful for
that specific provider. Any other content
provider must do the same thing.

Of course, there are compromises between
provider-oriented and consumer-oriented cache
deployments. For example, resource sharing and
security constraints permitting, it may be possi-
ble for multiple corporations to share the same
client-side caches through a common ISP. Also,
one can envision media hubs such as
Broadcast.com providing content-based caching
on behalf of the actual media providers. Finally,
the use of both consumer-oriented and provider-
oriented caching techniques is perhaps the most
powerful and effective approach, since it com-
bines the advantages of both while lowering the
disadvantages of each.

The last approach, dynamic deployment of
caches at network choke points, is a strategy
embraced by the adaptive caching approach.
Although it would seem to provide the most flex-
ible type of cache coverage, it is still a work in
progress and, to the best of the authors’ knowl-
edge, there have not been any performance stud-
ies demonstrating its benefits. The dynamic
deployment technique also raises important ques-
tions about the administrative control of these
caches, such as what impact network boundaries
would have on cache mesh formation.

Finally, a discussion about cache deployment
would not be complete without noting the capa-
bilities of browsers to do caching on a per-user
basis using the local file system. Obviously, while
browser caching is useful for a given user, it does
not aid in the global reduction of bandwidth or
decline in average network latency for common
Web objects.

DESIGN TECHNIQUES
In addition to object hit rate, caching systems
are generally evaluated according to three met-
rics: speed, scalability, and reliability. There are
a variety of design techniques on which many
commercial and academic systems rely in order
to improve performance in these respects.

HIERARCHICAL CACHING
Hierarchical caching was pioneered in the Har-
vest Cache [9]. The basic idea is to have a series
of caches hierarchically arranged in a tree-like
structure and to allow those caches to leverage
from each other when an object request arrives
and the receiving cache does not have that object.

Usually, in hierarchical designs child caches
can query parent caches and children can query
each other, but parents never query children.
This promotes an architecture where informa-
tion gradually filters down to the leaves of the
hierarchy. In a sense, the adaptive caching
approach also uses cache hierarchies (in the
form of cache groups) to diffuse information

from dynamic hot spots to the outlying cache
clusters, but these hierarchies are peer-based:
the parent/child relationships are established per
information object. Thus, in one case a cache
group might act as a parent for a set of informa-
tion object X, but also as a child (or intermedi-
ary) node for information object Y.

With hierarchical caches, it has been observed
that parent nodes can become heavily swamped
during child query processing. Commercial
caches such as Network Appliances NetCache
employ clustering to avoid this swamping effect.

INTERCACHE COMMUNICATION
Web caching systems tend to be composed of
multiple distributed caches to improve system
scalability and availability, or to leverage physi-
cal locality. In terms of scalability and availabili-
ty, the existence of multiple distributed caches
permits a system to deal with a high degree of
concurrent client requests as well as survive the
failure of some caches during normal operation.
In terms of physical locality, assuming that band-
width is constant, simply having caches closer in
proximity to certain groups of users may be an
effective way to reduce average network laten-
cies, since there is often a correlation between
the location of a user and the objects requested.

Regardless of why a logical cache system is
composed of multiple distributed caches, it is
often desirable to allow these caches to query
each other. Distributing objects among caches
also allows load balancing, and permitting subse-
quent intercache communication allows the
overall logical system to efficiently resolve
requests internally.

There are five well-known protocols [10] for
intercache communication: ICP, cache digests,
CRP, CARP, and WCCP. Among these, ICP has
the longest history and is the most mature. It
evolved from the cache communication in Har-
vest and was explored in more detail within
Squid. With ICP, caches issue queries to other
caches to determine the best location from which
to retrieve the requested object. The ICP model
consists of a request-reply paradigm, and is com-
monly implemented with unicast over UDP.

Although it was mentioned earlier that multi-
ple distributed caches can improve scalability,
they can also impede it, as ICP later revealed.
One issue was raised by [11], which identified
desirable limits to the depth of the cache hierar-
chy. For example, trees deeper than four levels
provided noticeable delays. Another scalability
concern was the number of ICP messages that
could be generated as the number of cache peers
increased. As noted in [12], there is a direct rela-
tionship between the number of peer caches and
the number of ICP messages sent.

That same study of ICP also raised the issue
of multicast, which is a key enabling technology
of the adaptive caching design. Its CRP protocol
uses multicast to query cache meshes. Overlap-
ping nodes are used to forward unresolved
queries to other meshes in the topology. To opti-
mize the path of meshes to query, adaptive
caching uses CRP to determine the likely direc-
tion of origin for the content. Although multi-
cast was a proposed solution suggested for use
with ICP when querying peer caches, the scala-
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bility implications of this approach are still
unclear.

Another technique related to cache-to-cache
communication is the notion of cache digests,
such as those implemented by Squid [12] and the
Summary Cache [13]. Digests can be used to
reduce intercache communication by summariz-
ing the objects contained in peer caches. Thus,
request forwarding can be more intelligent and
more efficient. This approach is similar to the
use of URL routing tables in adaptive caching
as a more intelligent way to forward requests.

Finally, there are two other proprietary pro-
tocols: Cisco’s WCCP and Microsoft’s CARP
method. When used with devices such as the
Cisco Cache Engine,3 WCCP enables HTTP
traffic to be transparently redirected to the
Cache Engine from network routers. WCCP has
gradually been integrated into Cisco’s Internet
Operating System (IOS) which Cisco ships with
its routers. Recently, Cisco announced it was
licensing WCCP to vendors such as Network
Appliance and Inktomi.

In contrast to ICP-based approaches, where
caches can communicate with each other to
locate requested content, Microsoft’s CARP4 is
deterministic: it uses a hashing scheme to identi-
fy which proxy has the requested information.
When a request comes in from a client, a proxy
evaluates the hash of the requested URL with
the name of the proxies it knows about, and the
one with the highest value is realized to be the
owner of that content.

The CARP hash-routing scheme is proposed as
a means of avoiding the overhead and scalability
issues associated with intercache communication.
In that sense it is very similar to the CRP protocol
used by the adaptive caching project, as well as the
cache digest approach championed by both Sum-
mary Cache and Squid-2. All of these efforts
attempt to reduce intercache communication.

HASH-BASED REQUEST ROUTING
Hash-based routing [14] is used to perform load
balancing in cache clusters. It uses a hash function
to map a key, such as the URL or domain name
of the originating server, to a cache within a clus-
ter. Good hash functions are critical for partition-
ing workload evenly among caches or clusters of
caches. For example, NetCache uses MD5-indexed
URL hash routing to access clusters of peer child
caches that do not have overlapping URLs.

Since hashing can be used as the basis for
cache selection during object retrieval, hash-based
routing is seen as an intercache communication
solution. Its use can reduce (or eliminate) the
need for caches to query each other. For exam-
ple, in the Microsoft CARP method, caches never
query each other. Instead, requests are made to
caches as a function of the hashing the URL key.

There are also scenarios in which hash-based
routing is used only to point the caller in the
direction of the content. This can be the case for
very large caching infrastructures, such as the
type described by the adaptive caching project.
When locating remote content, hash-based rout-
ing can be used as a means to point the local
cache in the direction of other caches (or cache
meshes) which either have the object or can get
it (from other caches or the originating server).

OPTIMIZED DISK I/O

Many systems, especially commercial ones, have
spent substantial time tuning their disk I/O,
treating the object cache as one does a high-per-
formance database. NetCache and Novell’s
Internet Caching System (ICS), for example, use
either application programming interfaces
(APIs) provided by their own custom microker-
nel or low-overhead APIs provided by the host
operating system.

Other disk I/O optimizations include improv-
ing the spatial locality of objects and using in-
memory data structures to avoid disk I/O
altogether, as in [15]. The former technique
leverages knowledge about logically related con-
tent in order to determine where on the disk to
place that content. In-memory data structures
(i.e., hash tables) can be used to quickly deter-
mine if an object has been cached; if querying
these data structures finds that the object has
indeed been cached, disk operations can begin
to actually locate the object (if not already in
RAM). Otherwise, disk access can be avoided
altogether and the object fetched from the origi-
nating server. Thus, these data structures sum-
marize the contents of a cache so that, when
possible, costly I/O operations can be avoided.

MICROKERNEL OPERATING SYSTEMS
Microkernel architectures have emerged as a
technique for optimizing cache performance,
specifically in terms of improving resource alloca-
tion, task execution, and disk access and transfer
times. The general motivation for microkernel-
based approaches has been that general-purpose
operating systems, such as UNIX and Windows
NT, are not suitable for the specialized needs of
optimized Web caching. These general-purpose
operating systems handle resources such as pro-
cesses and file handles in a cooperative way,
whereas caching systems have specific needs relat-
ed to how these resources are managed.

At least five notable vendors5 have embraced
microkernel architectures, and their systems
share a number of common features. In some,
caches are modeled as finite state machines.
They are event-driven, allowing them to scale
better than the thread-based approaches com-
monly used for deployment on general-purpose
operating systems. Microkernels can also opti-
mize access to disk resources by increasing the
number of file handles for each process as well as
creating very fast APIs for disk hardware access.

CONTENT PREFETCHING
Prefetching refers to the retrieving of data from
remote servers in anticipation of client requests.
Prefetching can be classified as local-based or
server-hint-based [16]. The former relies on data
such as reference patterns to choose what to
prefetch next. The latter uses data accumulated
by the server, such as historical information
about objects frequently requested by other
clients. One disadvantage of the server-hint
approach is that integration between client and
server is more complicated, since there needs to
be some coordination related to the communica-
tion of the hints from the server to the client.
Also, as noted by [7], there are three distinct

3 http://www.cisco.com/
univercd/cc/td/doc/pcat/2
06.htm

4 http://www.microsoft.
com/Proxy/Guide/carp-
wp.asp

5 CacheFlow, Cisco,
InfoLibria, Network
Appliance, and Novell.
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prefetching scenarios: prefetching between
clients and servers, between clients and proxies,
and between proxies and servers. Several studies
[3, 7, 16] have attempted to quantify the benefits
of prefetching in these various scenarios.

Kroeger et al. [16] looked at prefetching
between proxies and servers. They found that
without prefetching, proxy caching with an
unlimited cache size resulted in a 26 percent
reduction in latency. With a basic prefetching
strategy in place, the reduction in latency could
be improved to 41 percent, and with a more
sophisticated prefetching strategy (server hints),
that number could be further improved to 57
percent. As might be expected, a good prefetch-
ing algorithm and higher prefetch lead times
play an important role in optimizing the profits
associated with this technique.

Padmanabhan and Mogul [3] examined pre-
dictive prefetching between clients and servers,
distinguishing between file access times and net-
work latencies. In their experiment, they consid-
ered a case where a prefetching unit would be on
the client side, communicating with a Web server
that was integrated with a predictive engine. They
also explored two models of prefetching: individu-
al prefetching requests and pipelined requests.
The found that a predictive prefetching approach
could indeed shift the distribution of object access
times such that Web cache hits were more fre-
quent. However, they also correlated the gain in
object access time with the trade-off in increased
network bandwidth required. For example, the
more easily prefetching was induced, the lower
the average access time (especially in the
pipelined requests case), but the greater the net-
work bandwidth demand.

A study by Cao et al. [7] explored scenarios in
which proxy caches pushed content out to clients
connected through low-bandwidth links (i.e.,
modem users). Thus, this explored the issues of
prefetching between clients and proxies. The
study showed that the average latencies encoun-
tered by these types of clients could be reduced
by over 23 percent. Their design was based on a
proxy that predicted which documents a user
might access in the near future and then pushed
those documents out to the user’s local cache
during periods of idle network activity. This
study acknowledged that their results were based
on simulations constructed from actual modem
trace logs, where the average bandwidth between
clients and proxies was 21 kb/s.

CACHE CONSISTENCY METHODS
Cache consistency is concerned with ensuring
that the cached object does not reflect stale or
defunct data. For purposes of our discussion,
stale or defunct data refers to locally cached
objects which are either:
• No longer equivalent to the object on the

originating server (a phenomenon discov-
ered through comparison of object check-
sums)

• Obsolete
As identified by Dingle and Partl [17], there are
four well-known cache consistency maintenance
techniques to deal with detecting such instances:
client polling, invalidation callbacks, time to live,
and if-modified-since.

With client polling, caches timestamp each
cached object and periodically compare the
cached object timestamp with that of the original
object (at the originating server). Out-of-date
objects are discarded and newer versions fetched
when necessary. This approach is very similar to
the timestamp-based file system cache consisten-
cy approach used by the Sun Network File Sys-
tem (NFS).

Instead of having clients periodically check for
inconsistency, invalidation callbacks rely on the
originating server to identify stale objects. The
server must then keep track of the proxies that
are caching its objects and contact these proxies
when objects change. On one hand, callbacks
improve cache consistency as well as save net-
work bandwidth by not requiring clients to peri-
odically poll servers. On the other hand, there
are clear scalability issues and privacy/security
concerns regarding this approach, since servers
need to track caches for each cached object.

Similar to the limited life of packets in transit
on communication networks, cached objects can
also have a time to live (TTL). When expired,
these objects are dumped and new copies
fetched. The TTL approach does not guarantee
that an object which never changes will not be
continually refetched, but it does significantly
limit repeated retrieval. Adaptive TTL is a tech-
nique whereby the TTL of an object is updated
within the cache when a cache hit occurs.

If-modified-since is a recent demand-driven
variation on TTL-based consistency (Squid migrat-
ed to this approach). In this scenario caches only
invalidate objects when they are requested and
their expiration date has been reached.

Despite the concerns listed above, [18] report-
ed that invalidation and adaptive TTL are com-
parable in terms of network traffic, client
response times, and server CPU workload. These
methods were found to be preferable over the
other two approaches, given situations where
consistency is important. Furthermore, it was
also found that choosing to support strong con-
sistency over weak consistency does not neces-
sarily result in increased network bandwidth.

CONCLUSIONS
Web caching is an important technology which
can improve content availability, reduce network
latencies, and address increasing bandwidth
demands. In this article we present several caching
architectures, deployment options, and specific
design techniques. We have shown that while
there are different approaches to designing and
deploying caches, some issues (e.g., intercache
communication) remain common among them.

There remain a number of open issues in Web
caching. Among the technical issues are content
security, the practicality of handling dynamic and
real-time data, and dealing with complex func-
tional objects (e.g., Java programs). The next few
years will likely be exciting as both researchers
and vendors address these challenges.
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Given all the existing caching solutions, how does one decide
which is best? Ultimately, the effectiveness of a Web caching
system will largely depend on the need and constraints of the
deployer. A given architecture might inherently be more suit-
able (and thus perform better) for certain scenarios.

For example, corporations may have significant success
with basic proxy serving, and may not view browser configura-
tion as an issue (perhaps the company enforces use of a par-
ticular browser which supports auto-configuration). Other
deployers, such as ISPs, may profit more from router- or
switch-based transparent caching approaches, deployed at the
edges of their networks. Finally, there are content providers
who have no control over how their content is cached at the
client side they merely want to deliver their content in a scal-
able manner. Thus, reverse proxying or push caching might be
most suitable, given those constraints.

Regardless of deployment needs, there is still a demand to
quantify the performance of various caching systems. Similar
to the standard SPEC benchmarks used to measure the per-
formance of multiprocessor architectures and the TPC family
of benchmarks used with database systems, the cache develop-
er and user community recently recognized the need for stan-
dard benchmarking tools to evaluate the performance of
cache systems. Cache-specific performance metrics include
amount of bandwidth saved, response time, hit rate, and vari-
ous scalability metrics.

In this section, we briefly describe two well-known cache
benchmarks: the Wisconsin Proxy Benchmark and Polygraph.

THE WISCONSIN PROXY BENCHMARK
The Wisconsin Proxy Benchmark (WPB) [19] was one of the
first publicly available cache benchmarking tools. Its distin-
guishing features include support for studying the effects of
adding disk arms and handling low-bandwidth (modem-
based) clients. One interesting finding through the use of

WPB was that latency advantages due to caching were essen-
tially erased when considering the overall profit to modem-
based clients.

While WPB addresses a number of important benchmark-
ing requirements, such as initial support for temporal locality
and some ability to generate load on Web server processes, it
has some limitations. These include lack of support for model-
ing spatial locality, persistent HTTP 1.1 connections, DNS
lookups, and realistic URLs. The WPB has been used to
benchmark several proxy caches, including some of the
research and commercial systems mentioned in [19].

POLYGRAPH
Polygraph6 is a recently developed, publicly available cache
benchmarking tool developed by NLANR. It can simulate
Web clients and servers as well as generate workloads that
model typical Web access patterns.

Polygraph has a client and a server component, each of
which uses multiple threads to generate or process requests.
This allows Polygraph to simulate concurrent requests from
multiple clients to multiple servers. Polygraph can generate
different types of workloads to simulate various models of
content popularity. For example, Zipf-based [20] workloads
(largely believed to model average Web access patterns) can
be created.

More recently, Polygraph has been playing an increasing
role in holding open benchmark Web Caching Bakeoffs as a
way of inspiring the development community and encourag-
ing competition toward good caching solutions. A summary
of their study comparing a number of commercial and aca-
demic systems can be found online at http://bakeoff.ircache.
net/N01/.

APPENDIX A: MEASURING PERFORMANCE

6 http://polygraph.ircache.net
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APPENDIX B: RELATED NETWORK COMPONENTS

The effectiveness of Web caching is, in part, affected by the
related network components deployed in conjunction with a
cache, cache cluster, or Web server. We now summarize a few
types of local and global load balancing solutions which aug-
ment existing cache systems.

LOCAL LOAD BALANCERS
Local load balancing is concerned with improving the scalabil-
ity, availability, and reliability of Web servers or Web caches.
Incoming requests are intercepted and “redirected” to one
member of a group of servers or caches, all of which exist in a
common geographic location. By splitting the requests among
members of a group, one server or cache is not forced to han-
dle all incoming requests. Thus, such services can scale better
and are more robust (no single point of failure). Local load
balancing usually involves distributing requests according to
some load balancing algorithm, such as round-robin or least
connections.

One way to achieve local load balancing is to use L4
switches in a transparent caching environment. In that case,
client outbound requests can be intercepted and redirected
toward members of a cache cluster. Another type of local load
balancing can be achieved by using L5 switches, which per-
form a more semantic style of load balancing.

The Alteon ACE-Director and CACHE-Director switches
represent examples of how L4 switching can improve server
and cache load balancing. Another example is the LocalDirec-
tor from Cisco, which is typically deployed to distribute incom-
ing load on multiple Web servers or reverse proxy caches.

Recent alternatives to L4-based switching include L7 switch-
ing and L2 switches that support L4 and L7 processing. The
former type provides the same functionality as an L4 switch but
also includes sophisticated partitioning support and comes with
IP filters that normally need to be added to L4 switches.

More recently, L5 switching has emerged as another load
balancing alternative. This type of switching approaches load
balancing from a more semantic level. One example is the
Arrowpoint Content SmartSwitch (CSS). Like a standard L4
switch, the CSS performs load balancing for both client-based
or server-based deployment strategies. However, CSS oper-
ates above the transport layer and balances based on request-
ed content type.

For instance, on the client side CSS can be configured to
redirect static HTTP requests to a local cache cluster, and
bypass caching for dynamic HTTP requests. When balancing
load among content servers, CSS can distinguish among dif-
ferent “higher-level” protocols like HTTP, SSH, and NTTP,
and divert them to the appropriate server or group of servers.
Furthermore, requests can be redirected based on content-
based quality of service. For example, as Fig. 2 shows, admin-
istrators can redirect SSH request files to different servers.
Fulfillment of those requests may be per request type (i.e.,
requests for video files may be slowly filled, whereas text files
are handled much quicker, since the latter is easier to trans-
mit than the former).

Distributed Web serving solutions may combine caching,
L4-, and L5 switching. Take, for example, the case of an ISP
that also provides Web hosting services. An L4 switch can be
placed in front of each group of replicated servers, each serv-
ing different content. An L5 switch can be placed at the

entrance of the ISP to divert different content to the appro-
priate L4-replicated server group.

GLOBAL LOAD BALANCERS
Global load balancers are similar to local load balancers in
that they have the goal of improving performance and scala-
bility However, instead of distributing requests among mem-
bers of a group which are geographically local to one another,
global load balancers usually distribute requests to servers or
caches which are near the client, to achieve lower average net-
work latencies as well as improve scalability.

For example, if an organization has Web servers deployed
throughout the world, a global load balancer can determine
the appropriate host (based on physical location) for a given
client request and return the IP address of that server to the
client. Since browsers often cache DNS entries (local POPs
also do this, etc.), repeated requests by a client to a given logi-
cal Internet address will continue to result in those requests
being forwarded to the most local server.

Cisco’s Distributed Director is one example of a global load
balancer. When a client request is issued, it is initially directed
at a primary DNS server. This request eventually reaches the
local DNS server for that logical site. At this point, the local
DNS server contacts the Distributed Director and determines
the IP address of the geographically appropriate server for
handling the request. This IP address is then sent back to the
client, and will most likely be cached for further use.

Radware’s Cache Server Director (CSD) is another global
load balancing solution, dedicated toward improving cache fault
tolerance. Consider the case of a content provider whose repli-
cated servers are located at different Internet sites. A CSD is
placed at each site as a front-end to the local set of replicated
servers. Each CSD runs a local DNS server and exchanges net-
work proximity as well as server load information with the
other CSDs. A CSD maps a client request’s host name to one
of the ISP site’s IP address. It makes its decision based on
where the request originated, and its current network and serv-
er load information (about itself and the other server clusters).

� Figure 2. Request-based routing via L5 switching.
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