MULTIMEDIA OPERATING SYSTEMS

Digital movies, video clips, and music are becoming an increasingly common
way to present information and entertainment using a computer. Audio and video
files can be stored on a disk and played back on demand. However, their charac-
teristics are very different from the traditional text files that current file systems
were designed for. As a consequence, new kinds of file systems are peeded (o
handle them. Stronger yel, storing and playing back audio and video puts new
demands on the scheduler and other parts of the operating system as well. In the
sections that follow, we will study many of these issues and their implications for
operating systems that are designed to handle multimedia.

Usually, digital movies go under the name multisnedin . which literally means
more than one medium. Under this definition, this book is a multimedia work.
After all. it contains two media: text and images (the figures). However. most
people use the term “multimedia™ to mean a document containing two or more
corttinuouws media, that is media that must be ptayed back over some time interval.
In this book, we will use the term muttimedia in this sense.

Another term that is somewhat ambiguous is “video.” In a technical sense, it
is just the image portion of a movie (as opposed to the sound portion). In fuct,
carncorders and televisions often have two connectors, one labeled “video™ and
one tabeled “audio.” since the signals arc separate. However, the term “digital
video” normally refers to the complete product, with both image and sound.
Betow we will use the term “movie” to refer 10 the complete product. Note that a
movie in this sense need not be a two-hour long film produced by a Hollywood

453

454 MULTIMEDIA OPERATING SYSTEMS CHAP. 7

studio at a cost exceeding that of a Boeing 747. A 30-sec news clip duwnh{a.ded
from CNN's home page over the Intemet 1s aiso 4 movie under our definition.
We will also call these “video clips™ when we are referring to very short movies,

7.1 INTRODUCTION TO MULTIMEDIA

Belore getting into the technology of multimedia., a few words about its
currcnt and future uses are perhaps heipful (o set the stage. On a single computer,
muitimedia often means playing a prerecorded movie from a DVD (Digital Ver-
satile Disk). DVDs arc optical disks that use the same 120-mm poelycarbonate
(plastic) blanks that CD-ROMs use. but are recorded at a higher density, giving a
capacily of between 5 GB and 17 GB, depending on the format.

Another use of multimedia is for downloading video clips over the Internet.
Many Wceb pages have items that can be clicked on (0 download short movies, At
36 Kbps, downloading even a short video clip takes a long tume, but ax faster dis-
tribution technologies take over, such as cable TV and ADSL {Asymmetric Digi-
tal Subscriber Loop), the presence of video clips on the Interner will skyrocket,

Another area in which multimedia must be supported s in the creation of
videos themselves. Multimedia editing syslems exist and for best performance
need to run on an operating system that supports multimedia as welt s traditional
work.

Yet another arena where multimedia is becoming important is in computer
games. Games often run short video clips to depict some kind of action. The
clips are usually short, but there are many of them and the correct one is selected
dynamically, depending on some action the user has taken, These are Increas-
ingly sophisticated

Finally, the holy grail of the multimedia world is video on demand, by which
people mean the ability for consumers at home to select a movie using their telev-
ision remote control {(or mouse) and have it displayed on their TV set (or com-
puter monitor) on the spot. To enable video on demand, a special infrastructure is
necded. 1n Fig. 7-1 we see two possible video-on-demand infrastructures, Each
one contains three essential components: one or more video servers, a distribution
network, and a set-top box in each house for decoding the signal. The video
server is a powerful computer that stores many movies in its file system and plays
them back on demand. Sometimes mainframes are used as video servers. since
connecting, say, 1000 large disks to a mainframe is straighttorward, whercas con-
necting 1000 disks of any kind to a personal computer is a serious problem. Much
of the material in the following sections is about video servers and their operating
systems.

The distribution network between the nser and the video server must be capa-
bie of transmitting data at high speed and in real time. The design of such net-
works is interesting and complex, but falls outside the scope of this book. We

SEC. 7.1 INTRODUCTION TO MULTIMEDIA 455

.
a ™
p
—1 K ; &
F i r =
S > |
-
-""-f- Jursiew Fes - = P
- g
.Illll Fe J:h.-
— # =,
j - [
F = I i-‘_:'
L] (B pa T S TEET I " 4.:1}:| =
o L ' T T
- il - r
T —— Ty
g
¥ 15 i
. ! __'
Wil adurow gl Dasdammad o
18]
—
rl|-|- — !
——
* -
(RETIED e il e

Wil anipy |

Figure 7-1. Video on demand using diffcrent local distribution technologies.
(a} ADSL. (b) Cabic TV.

will not say any more about them except 1o note that these networks always use
fiber optics from the video server down to a junction box in each neighborhood
where customers live. In ADSL systems, which are provided by telephone com-
panies, the existing twisted-pair telephone line provides the last kilometer or so of
transmission. In cable TV systems, which are provided by cable operators, exist-
ing cable TV wiring is used for the local distribution. ADSL has the advantlage of
giving each user a dedicated channel. hence guaranteed bandwidth, but the
bandwidth is low (a few megabits/sec) due to limitations of cxisting telephone
wire. Cable TV uses high-bandwidth coaxial cable (at gigabits/scc), but many
users have to share the same cable, giving contention for it and no guaranteed
bandwidth to any individual user.

The tast piece of the system is the set-top box, where the ADSL or TV cable
terminates. This deviece is, in fact, a normal computer, with certain special chips

456 MULTIMEDIA OPERATING SYSTEMS CHAP. 7

for video decoding and decompression. As a minimum,. it contains a CPU. RAM,
ROM, and interface to ADSL or the cable.

An altemative to a set-top box is to use the customer's existing PC and
display the movie on the monitor. Interestingly enough, the reason set-top boxes
are even considered given that most customers probably already have a computer,
is that video-on-demand operators expect that people will want to watch movies in
their living rooms. which uswvally contain a TV but rarely a computer. From a
lechnical perspective, using a personal computer instead of a set-top box makes
far more sense since it 15 more powerful. has a large disk, and has a far higher
resolution display. Either way, we will often make a distinction between the
video server and the client process at the vser end that decodes and displays the
movic. In terms of system design, however, it does not matter much if the client
Process runs on a sct-top box or on a PC. For a deskiop video editing sysiem, all
the processes run on the same machine, but we will continue to use the terminol-
ogy of server and client to make it clear which process is doing what,

Getting back to multimedia itself, it has two key characteristics that must be
well understood to deal with it successfully:

. Multimedia uses extremely high data rates.

2. Multimedia requires real-time playback.

The high data rates come from the nature of visual and acoustic information. The
eye and the ear can process prodigious amounts of information per second. and
have (o be fed at that rate to produce an acceptable viewing experience. The data
rates of a few digital multimedia sources and some common hardware devices are
listed in Fig. 7-2. We will discuss some of these cncoding formats later in this
chapter. What should be noted is the high data rates multimedia requires, the
need for compression, and the amount of storage that is required. For example, an
uncompressed 2-hour HDTV movie fills a 570-GB file. A video server that stores
1000 such movies needs 570 TB of disk space, a nontrivial amount by current
standards. What is also of note is that without data compression, current hardware
cannot keep up with the data rates produced. We will examine video COMPpression
later in this chapter.

The second demand that multimedia puts on a system 1s the need for real-time
data delivery. The video portion of a digital movie consists of some number of
frames per second. The NTSC system, used in North and South America and
Japan, runs at 30 frames/sec (29.97 for the purist). whereas the PAL and SECAM
systems, used in most of the rest of the world, runs at 25 frames/sec {25.00 for the
purist}. Frames must be delivered at precise intervals of ca. 33.3 msec or 40
msec, respectively, or the movie will look choppy.

Officially NTSC stands for National Television Standards Commitiee, but the
poor way color was hacked into the standard when color television was invented

SEC. 7.1 INTRODUCTION TO MUELTIMEDIA 457

! Source I —l[Mbps " GB/Mhr | Device) __Mbp_sl
Telephone (PCM) o “ DDEJ 0.03 . Fast__lﬁtvhernet 10{1_
MP3 music N RV 006 'EtDEdisk | 133]
AudoCD 14 | 062 ATMOC3network | 156
_MF’EGE movie (640 x.d.-BD’.j“ o 4 1.76 | SCSI UItraWide_t_:lisk @_2[]#
Digital camcorder (720 x 480) 25 | 11| IEEE 1394 (FireWire) | 400 |
Uncompressed TV (640x480) | 221 97 | Gigabit Ethernet | 1000 |
| Uncompressed HDTV (1280 720) | 648 288 || SCSI Ulra-160 disk | 1280

Figure 7-2. Some data rates for multimedia and high-performance /O devices.

Note that | Mbps is 10° bits/sec but | GR is 2% bytes.
has led to the industry joke that it really stands for Never Twice the Same Color.
PAL stands for Phase Alternating Line. Technically it is the best of the systems.
SECAM is used in France {and was intended to protect French TV manufacturers
from foreign competition) and stands for SEquentiel Couleur Avec Memoire.
SECAM is also used in Eastern Europe because when television was introduced
there, the then-Communist governments wanted 1o keep everyone from watching
German {PAL) television, so they chose an incompatible system.

The ear is more scnsitive than the eve, so a variance of even a few mil-
tiseconds in delivery times will be noticeable. Variability in delivery rates is
called jitter and must be strictly bounded for good performance. Note that jitter
is not the same as delay. If the distribition network of Fig. 7-1 uniformly delays
all the bits by exactly 5.000 sec, the movie will start slightly later, but will look
fine. On the other hand, if it randomly delays frames by between 100 and 200
msec, the movie will look like an old Chariie Chaplin film, no matter who is star-
ring.

The real-time properties required to play back multimedia acceptably are
often described by quality of service parameters. They include average band-
width available, peak bandwidth available, minimum and maximum delay (which
together bound the jitter), and bit loss probability. For example, a network opera-
tor could offer a service guaranteeing an average bandwidth of 4 Mbps, 99% of
the transmission delays in the interval 1G5 to 110 msec, and a hit loss rate of
107, which would be fine for MPEG-2 movies. The operator could also offer a
cheaper, lower-grade service, with an average bandwidth of 1 Mbps (e.g., ADSL),
in which case the quality would have to be compromised somehow, possibly by
lowering the resolution, dropping the frame rate, or discarding the color informa-
tion and showing the movie in black and white

The most common way 1o provide guality of service guarantees is to reserve
capacity in advance for each new customer. The resources reserved include a por-
tion of the CPU, memory buffers, disk transfer capacity, and network bandwidth.
f a new customer comes along and wants to watch a movie, but the video server

458 MULTIVMEDRIA OPERATING SYSTEMS CHAP. 7

or network calculates that it does not have sufticient capacity for another custo-
mer, it has to reject the new customer 1o avoud degrading the service to current
customers. As a consequence. multimedia servers need resource reservation
schemes and an admission control algoerithm 1o decide when they can handle
more work.

7.2 MULTIMEDIA FILES

in most systems, an ordinary text file consists of a linear sequence of bytes
withoul any structure that the operating system knows about or cares about. With
multimedia. the sitvation is more complicaled. To start with. video and audio are
completely different. They are captured by distinct devices (CCD chip versus
microphone), have a different internal structure (video has 25-30 frames/sec;
audio has 44,100 samples/sec), and they arc played back by diffcrent devices
(monitor versus loudspeakers).

Furthermore, most Hollywood movies are now aimed at a worldwide audi-
ence, most of which does not speak English. The lauer point is dealt with in one
of two ways. For some countries, an additional sound track is produced. with the
voices dubbed into the local language (but not the sound etfects). In Japan, all
televisions have twa sound channels 10 allow the viewer to listen to foreign tilms
in either the original Janguage or in Japanese. A button on the remote control is
used for language selection. In stiil other countries. the original sound track is
used, with subtitles in the local language.

In addition, many TV movies now provide closed-caption subtitles in English
as well, to allow English-speaking bul hearing-impaired people to watch the
movie, The net result is that a digital movie may actually consist of many files:
one video file, multiple audio files. and multiple text files with subtities in variowus
languages. DVDs have the capability for storing up to 32 language and subtitle
files. A simple set of multimedia files is shown m Fig. 7-3. We will explain the
meaning of fast forward and fast backward later in this chapter.

As a consequence, the file system needs to keep track of multiple “subfiles™
per file. One possible scheme is 10 manage cach subfile as a traditional file {e.g..
using an i-node to keep track of its blocks) and to have a new data struclure that
lists ail the subfiles per multimedia file. Another way 15 to invent a kind of two-
dimensional i-node, with each column listing the blocks of each subtile. In gen-
eral, the orgunization must be such that the viewer can dynamically choose which
audio and subtitle tracks 10 use at the time the movie is viewed.

In all cases, some way 1o keep the subfiles synchronized is also needed so that
when the selected audio track is played back it remains in sync with the video, If
the audio and video get cven stightly out of sync, the viewer may hear an actor's
words before or after his lips move, which is easily detected and fairly annoying.

SEC. 7.2 MULTIMEDIA FILES 459

Frame

Video

Engiish audio

French audio

German audio

English subtities | Hello.Bob | Hoto. aice | Neaday | Sures |Mowareyou] Great | Andyou | Good |

Dutch subtitles I Cag. Bab IDag,.ﬁ.lice I M dag[Jezokar |Hne gaathatl Prirma I Engy] Goe-d_|

Fast torward

Fasl hackward

Figure 7-3. A movic may consist of several lles.

To better understand how multimedia files are organized, it is pecessary o
understand how digital audio and video work in some detail. We will now give an
Introduection to these topics.

7.2.1 Audio Encoding

An audio (sound) wave is a one-dimensional acoustic (pressure) wave. When
an acoustic wave enters the ear, the eardrum vibrates, causing the tiny bones of
the inner ear to vibrate along with it, sending nerve pulses to the brain. Thesc
pulses are perceived as sound by the listener. 1n a similar way, when an acoustic
wave strikes a microphone, the microphone generates an electrical signal,
representing the sound amplitude as a function of time.

The frequency range of the human ear runs from 20 Hz 1o 20,000 Hz,
although some animals, notably dogs, can hear higher trequencies. The ear hears
logarithmically, so the ratio of two sounds with amplitudes A and B is convention-
ally expressed in dB (decibels) according to the formula

dB = 20 !ng]”(A .'!B}

If we define the tower limit of audibility (a pressure of about 0.0003 dync/cm”)
tor a 1-kHz sine wave as 0 dB, an ordinary conversation is about 50 dB and the

460 MULTIMEDIA OPERATING SYSTEMS CHAP. 7

pain threshold 1s about 120 dB, a dynainic range ot a factor of 1 million. To avoid
any confusion, A and B above are amplitudes. If we were 1o use the power level,
which is proportitonal to the square of the amplitude, the coefficient of the foga-
rithm wouid be 10, not 20

Audio waves can be converted to digital form by an ADC (Analog Digital
Converter). An ADC takes an electrical voltage as input and generates a binary
number as output. In Fig, 7-4(a) we see an example of a sine wave. To represent
this signal digitally, we can sample it every AT seconds, as shown by the bar
heights in Fig. 7-4(b). If a sound wave is not a pure sine wave, but a linear super-
position of sine waves where the highest frequency component present is f, then it
is sufficient to make samples at a frequency 2. This result was proven mathemat-
ically by H. Nyquist in 1924, Sampling more often is of no value since the higher
frequencics that such sampling could detect are not present.

1.00 -

AN |

‘
il

=025 L

.50

ol | [
-1.00 - (@) - - -

[
i [T
{

i

1
2

P | ==
—

1;| [
§T”

T

c)

Figure 7-4. (a) A sinc wave, (b Sampling the sine wave. (¢) Quantizing the
samples to 4 bits.

Digital samples are never exact. The samples of Fig, 7-4(c) allow only nine

values, from —~1.00 to +1.00 in steps of .25, Consequently, 4 bits are needed 10
represent all of them. An 8-bit sample would allow 256 distinct values. A [6-bit
sample would allow 65,536 distinct values. The error introduced by the finite
number of bits per sample is called the quantization noise. If it is 100 large, the
ear detects it.
_ Two well-known examples of sampled sound are the telephone and audio
compact discs. Pulse code modulation is used within the iclephone system and
uses 7-bit (North America and Japan) or 8-bit (Europe}) samples 8000 times per
second. This system gives a data rate of 56,000 bps or 64.000 bps. With only
8000 samples/sec. frequencies above 4 kHz arc lost,

Audio CDs are digital with a sampling rate of 44,100 samples/sec, enough to
capture frequencies up to 22,050 Hz, which is good for people, bad for dogs. The
samples are 16 bits each, and are linear over the range of amplitudes. Note that
16-bit samples allow only 65,536 distinct values, even though the dynamic range

SEC. 7.2 MULTIMEDIA FILES 461

of the ear is about 1 miilion when measured m steps of the smallest audible sound.
Thus using only 16 bits per sample introduces some guantization noise (a]thnugh
the full dynamic range is not covered—C s are not supposed 1o hurt). With
44100 samples/sec of 16 bits each, an andie CD needs a bandwidth of 705.6 Kbps
for monaural and 1.411 Mbps for stereo (see Fig. 7-2). Audio compression is pos-
sible bascd on psychoacoustic models of how human hearing works., A compres-
ston of 10x 1s possible using the MPEG layer 3 (MP3) system. Portable music
players for this format have been common in recent years.

Digiized sound can easily be processed by computers in software. Dozens of
programs exist for personal computers to allow users to record, display, edit. mix,
and store sound waves from moltiple sources. Virtually all professional sound
recording and editing is digital nowadays.

7.2.2 Video Encoding

The human eye has the property that when an image is flashed on the retina, it
is retained for some number of milliseconds before decaying. If a sequence of
images is flashed at 50 or more images/sec, the eye does not notice that it is look-
Ing at discrete images. All video- and film-based motion picture systemns exploit
this principle to produce moving pictures.

To understand video systems, it is best to start with simple, old-fashioned
black-and-white television. To represent the two-dimensional image in front of it
as a one-dimensional voltage as a function of time, thc camera scans an electron
beam rapidly across the image and slowly down it, recording the light intensity as
it goes. At the end of the scan, called a frame. the beam retraces. This intensity
as a function of time is broadcast, and receivers repeat the SCAnnIng process to
reconstruct the image. The scanning pattern used by both the camera and the
receiver is shown in Fig. 7-5. (As an aside, CCD cameras integrale rather than
scan, but some cameras and all CRT monitors do SCan.)

The exact scahning parameters vary from country to country. NTSC has 525
scan lines, a horizontal to vertical aspect ratio of 4:3, and 30 frames/sec. The
European PAL and SECAM systems have 625 scan lines, the same aspect ratio of
4:3, and 25 frames/sec. In both systems, the top few and bottom few lines are not
displayed (to approximate a rectangular image on the original round CRTs). Only
483 of the 525 NTSC scan lines (and 576 of the 625 PAL/SECAM scan lines) are
displayed., '

While 25 frames/sec is enough to capture smooth motion. at that frame rate
many people, especially older ones, will perceive the image to flicker (because
the old image has faded off the retina before the new one appears). Rather than
increase the frame rate, which would require using more scarce bandwidth, a Jif-
ferent approach is taken. lInstead of displaying the scan lines in order fromtop to
bottom. first all the odd scan lines are displayed, then the even ones are displayed.
Each of these half frames is called a field. Experiments have shown that although

462 MULTIMEDIA OPFRATING SYSTEMS CHAP. 7

The next field Scan e painted
Scan ling /f' starts here " on the screen

4
- Time

i e
Horizontal - Vertical - -,

retrace . retrace .
483 -

!

Figure 7-5. The scanning pattern uscd for NTSC video and television.

people notice flicker at 25 frames/sec, they do not notice it at 50 fields/sec. This
technigue is called interlacing. Noninterlaced television or video is said 1o be
progressive.

Color video uses the same scanning pattern as monochrome (black and white),
except that instead of displaying the image with one moving beam. three beams
moving in unison are used. One beam is used for each of the three additive pri-
mary colors: red, green, and blue {RGB)., This technigue works because any color
can be constructed from a linear superposition of red, green, and blue with the
appropriite intensities. However, for transmission on a single channel, the three
color signals must be combined into a single composite signal.

To allow color transmissions to be viewed on black-and-white receivers, ail
three systems linearly combine the RGB signals into a luminanee (brightness)
signal, and two chrominance (color) signals. although they all use different coei-
ficients for constructing thesc signals from the RGB signals. Interestingty
encugh, the eye is much more sensitive to the Juminance signal than to the chrom-
nance signals, so the latier need not be transmitied as accurately. Consequently,
the luminance signal cun be broadcast at the same frequency as the old black-
and-white signat, so it can be received on black-and-white television scts. The
two chrominance signals are broadcast in narrow bands at higher frequencies.
Some teievision sets have knobs or controls lubeled brightness, hue, and satura-
tion (or brightness, unt and color) for controlling these three signals separately.

SEC. 7.2 MULTIMEDIA FILES 463

Understunding luminance and chrominance is necessary for understanding how
video compression works, _ |

So far we have looked at analog video. Now let us wirn to digital video. The
simplest representation of digital video is a sequence of frames, each consisting of
a rectangular grid of picture elements. or pixels. For color video, 8 bits per pixel
are used for each of the RGB colors, giving 16 million cotors, which is enough.
The human eye cannot even distinguish this many colors, let alone more,

To produce smooth motion, digital video, like analog video, must display at
least 25 frames/sec. However. since good quality computer monitors often rescan
the screen from images stored in video RAM at 75 times per second or more,
interlacing is not needed Consequently, all computer monitors usc progressive
scanning. Just repainting (i.c., redrawing) the same frame three times in a row is
cnough to eliminate flicker.

In other words, smoothness of motion is determined by the number of dif-
ferent images per second, whereas flicker is determined by the number of times
the screen is painted per second. These two parameters are different. A still
image painted at 20 frames/sec will not show jerky motion bul it will flicker
because one frame will decuy from the retina before the next onc appears. A
movie with 20 different frames per second, cach of which is painted four times in
arow at 80 Hz, witl not flicker. but the motion will appear jerky.

The significance of these two parameters becomes clear when we consider the
bandwidth required for transmitting digital video over a network. Current com-
puter monitors all use the 4:3 aspect ratio so they can use inexpensive, muss-
produced picture tubes designed for the consumer television market. Common
configurations are 640 x 480 (VGA), 800 x 600 (SVGA}, and 1024 x 768 (XGA).
An XGA display with 24 bits per pixel and 25 frames/sec needs to he fed at 4772
Mbps. Doubling this rate to avoid flicker is not attractive. A better solution is to
transmit 25 frames/sec and have the computer store each one and paint it twice.
Broadcast television does not use this strategy because television sets do not have
memory, and in any event, analog signals cannot be stored in RAM without tirst
converting them to digital form, which reguires extra hardware. As a conse-
quence, interlacing is needed for broadeast television but not for digital video.

7.3 VIDEO COMPRESSION

It should be obvious by now that manipulating multimedia material in
uncompressed torm 15 completely out of the question—it is much too big. The
only hope is that massive compression is possible. Fortunately, a large body of
research over the past few decades has led to many compression technigues and
algofithms that make multimedia trunsmission feasible. In this section we will
study some methods for compressing multimedia data, especially images. Jor
more detail, sce (Fluckiger, 1995; and Steinmetz and Nahrstedt, 1995),

464 MULTIMEDIA OFERATING SYSTEMS CHAP. 7

All compression systems require two algorithms: one for compressing the data
at the source, and another for decompressing it at the destination. In the literature,
these algorithms are referred to as the encoding and decoding algorithms, respec-
tively. We will use this terminology here, too.

These algorithms have certain asymmetries that are impottant 1o understand.
First, for many applications, a multimedia document, say, a movie will only be
encoded once (when it is stored on the multimedia server) but will be decoded
thousands of times (when it is viewed by customers). This asymmetry means that
tt is acceptable for the encoding algorithm to be slow and require expenstve
hardware provided that the decoding algorithm is fast and does not require expen-
sive hardware. On the other hand, for real-time multimedia, such as video con-
ferencing, slow encoding is unacceptable. Encoding must happen on-the-fly, in
real time.

A second asymmetry is that the encode/decode process need not be invertible.
That 1s, when compressing a file, transmitting it, and then decompressing it, the
user expects to get the original back, accurate down to the last bit. With mul-
timedia, this requirement does not exist. It is usvalty acceptable to have the video
signal after encoding and then decoding be slightly different than the original.
When the decoded output is not exacily equal to the original input, the system is
said to be lossy. All compression systems used for multimedia are lossy because
they give much better compression.

7.3.1 The JPEG Standard

The JPEG (Joint Photographic Experts Group) standard for compressing
continuous-tone still pictures (e.g., photographs) was developed by photographic
experts working under the joint auspices of ITU, ISO. and IEC. another standards
bedy. It is important for multimedia because. to a fiest approximation, the mul-
timedia standard for moving pictures, MPEG, is Just the JIPEG encoding of each
frame separately, plus some extra features for interframe compression and motion
compensation. JPEG is defined in International Standard 10918. It has four
modes and many options, but we will oniy be concerned with the wdy it is used
for 24-bit RGB video and will leave out many of the details,

Step 1 of encoding an image with JPEG is block preparation. For the sake of
specificity, let us assume that the JPEG input is a 640 x 480 RGB image with 24
bits/pixel, as shown in Fig. 7-6(a). Since using luminance and chrominance gives
better compression, the luminance and two chrominance signals are computed
from the RGB values. For NTSC they are cailed Y, /, and {J, respectively. For
PAL they are called ¥, ¢/, and V, respectively, and the formulas are different.
Below we will use the NTSC names, but the compression algorithm is the same.

Separate matrices are constructed for ¥, f, and Q. each with elements in the
range 0 10 255. Next, square blocks of four pixels are averaged in the { and
matrices to reduce them to 320 x 240. This reduction is lossy. but the eye barely

SEC, 7.3 VIDEQ COMPRESSION 465

AGE Y |
- &40 -
[] P ?
! EEm g
‘ B PR o 8-Bit pixel cr
- = 1 Black
& = -
B , f
I| =))
i Bt | &
* :.:'_:..:_..:::'_::::'.:.':.:_'_'...:_'::'_':::'..'.',':;i:-:: :‘:'-.-:::_'_'::::....:: “ . < : m_ l - “_—-.-‘.J
(a} 24-Bit pixal Bilock 4793 i) (o)

Figure 7-6. (a) RGB input data. (b) After block preparation.

notices it since the eye responds to luminance mose than to chrominance.
Nevertheless, it compresses the data by a factor of two. Now 128 is subtracted
from each element of all three matrices to put ¢ in the middle of the range.
Finally, each matrix is divided up into 8 x 8 blocks. The Y matrix has 4800
blocks; the other two have 1200} blocks each, as shown in Fig. 7-6(h).

Step 2 of JPEG is to apply a DCT (Discrete Cosine Transformation) to each
of the 7200 blocks separately. The output of each DCT is an 8 x & matrix of DCT
coefficients. DCT element (0, 0) is the average value of the block. The other ele-
ments tell how much spectral power is present at each spatial frequency. in
theory, a DCT is lossless, but in practice using floating-point numbers and tran-
scendental functions always introduces some roundoff ercor that results in a little
information loss. Normally, these elements decay rapidly with distance from the
origin, (0, 0), as suggested by Fig. 7-7(b).

] '

E fﬁﬁfﬁf{fﬁ
El SN T
o N,
= W v
lef’ﬂ/
AN

Figure 7-7. (a) Onc block of the ¥ matrix. (b} The DCT voeflicients.

Once the DCT is complete. JPEG moves on to step 3, which is called quanti-
zation, in which the less important DCT coefficients are wiped out. This (lossy)

466 MULTIMEDIA OPERATING SYSTEMS CHAP. 7

ransformation is done by dividing each of the coefficients in the 8?@5 DCT
matrix by a weight taken from a table. It all the weights are I, the traps_tnrmgtmn
does nothing. However, if the weights increase sharply from the origin, higher
spatial frequencies are dropped guickly. | o

An example of this step is given in Fig. 7-8, Here we sec the initial DCT
matrix. the quantization table. and the result obtuined by dividing cach DCT al:-.;—
ment by the E:nrresponding guantization table element. The values in the quanti-
zation Lable are not part of the JPEG standard. Each application must supply its
own quantization table. giving it the ability o control its own loss-compression
trade-oft.

DCT Coeficients Quantized coeflicients Quantization table
150[80]40 (14427 1: 0| Pofeol207a 1 0loin]| [1] 1] 2] 4] 8[16]32]6a
9217513641006 [1fo] 0| [9]75[18[3[1]ofo[o| [1] 1] 2] 4] 8[16|oe]ea
152[38i26f 8l 7 a0l o] [26[e[@le |16 olo] 22l 2| ¢ &l ea
Eﬁaa4z1gg_'3221130130'44445153254

4 alz2ro|lolo|lolo MWofojol{o|lo|a|o 88888'163264_
2t 2] 1] 1]oJofo]o| [ofo[o[oio nDlda]|o| [16:16]16] 16| 16| 16[32" 6a
1 1] 6]olololofG]| [0 0]o[o]lo alo]o 32:92 2] 3232 32[32| 2
ofojec{ojofofo|o| [oo ojo|o|olo]o 6464647 64|64] 546484

Figure 7-8. Computation of the quantized DCT coefficients,

Step 4 reduces the (0, 0) value of each block (the one in the upper left-hand
corner) by replacing it with the amount it differs from the corresponding element
in the previous block. Since these elements are the averages of their respective
blocks. they should change slowly. so laking the differential values should reduce
most of them to small values. No differentials are computed from the other
values. The (0, 0} values are referred to as the DC compenents: the other values
are the AC components.

Step 3 linearizes the 64 elements and applies run-tength encoding to the list.
Scanning the block from left o right and then top to bottom will not concentrate
the zeros together, so a zig zag scanning pattern is used. as shown in Fig. 7-9. In
this example, the zig zag pattern ultimately produces 38 consecutive Os at the end
of the matrix. This string can be reduced to 4 single count saying there are 3%
7ET0S.

Now we have a list of numbers that represent the image (in trunsform space),
Step 6 Huffman encodes the numbers for storage or transmission.

IPEG may seem complicated, but that is because it iy complicated. Sl
since it often produces a 20: | compression or better. it is widely used. Decoding a
JPEG image requires running the algorithm backward. JPEG is roughly sym-
metric: it takes about as long to decode an image as to encode it,

SEC. 7.3 VIDEOQ COMPRESSION 467

I

5|

150 |80 |20 4 | v | o] 0
go 75 18 3 1 O 1’: 0 0
S SN N S S
26 | 19 | 1@ | 2 t |8 0 | o
H_._S 2 P 1 i) 0 0) a'""
L f L O .*h_ﬂ 0 0 . i)
0 0 G e G i..-.ﬂ a 0
0 0 { Q Q | G 0 0
0 i) 0 0 l 4] i 0)] '

Figure 7-9. The vrder in which the quantized values are transmitted.

7.3.2 The MPEG Standard

Finally, we come to the heart of the matter: the MPEG (Motion Picture
Experts Group) standards. These are the main algorithms used to compress
videos and have been international standards since 1993, MPEG-! (International
Standard 1(172) was designed for video recorder-quality output {352 »x 240 for
NTSC) using a bit rate of 1.2 Mbps. MPEG-2 (Internationa! Standard {38 18Y was
designed for compressing broadcast quality video into 4 to 6 Mbps. so it could fit
in a NTSC or PAL broadcast channel.

Both versions take advantages of the two kinds of redundancies that exist in
movies: spatial and temporal, Spatial redundancy can be utitized by simply cod-
ing each frame separately with JPEG. Additional compression can be achieved by
taking advantage of the fact that comsecutive frames are often almost identical
(temporal redundancy). The DV (Digital Video) system used by digital camcord-
ers uses only a JPEG-like scheme because encoding has to be done in real time
and it 18 much faster 1o just encode each frame scparately. The consequences of
this decision can be seen in Fig. 7-2: although digital camcorders have a lower
data rate than uncompressed video, they are not nearly as good as full MPEG-2.
(To keep the coimparison honest, note that DV camcorders sample the luminance
with 8 bits and each chrominance signal with 2 bits. but there is still a factor of
five compression using the JPEG-like encoding.)

For scenes where the camera and background are stationary and one or 1wo
actors are moving around slowly, nearly all the pixels will be identical from frame
to frame. Here, just subtracting each frame from the previous one and running
JPEG on the difference would do fine. However. for scenes where the camers is
panning or zooming, this technique fails badly. What is needed is some way o
compensate for this motion. This is precisely what MPEG does; in fact, this is the
main difference between MPEG and JPEG.

468 MULTIMEDIA OPERATING SYSTEMS CHAP. 7

MPEG-2 oulput consists of three different kinds of frames that have to be pro-
cessed by the viewing program:

1. [{Intracoded) frames: Self-contained JPEG-encoded still pictures.
2. P {Predictive} frames: Block-by-block difference with the last frame.
3. B (Bidirectional) frames: Differences with the last and next frame.

I-frames are just still pictures coded using JPEG, also using full-resolution
tumminance and half-resolution chrominance ulong each axis. It is necessary to
have I-frames appear in the output stream periodically for three reasons. First,
MPEG can be used for television broadcasting, with viewers tuning in at will. If
all frames depended on their predecessors going back to the first frame., anybody
who missed the first frame could never decode any subsequent frames. This
would make it impossible for viewers to tune in after the movie had started,
Second, if any frame were received in error, no further decoding would be possi-
ble. Third, without I-frames, while doing a fast forward or rewind, the decoder
would have 1o calculate every frame passed over so it would know the full value
of the one it stopped on. With I[-frames, it is possible to skip forward or backward
until an I-frame is found and start viewing there. For these reasons, I-frames are
inserted into the output once or twice per second.

P-frames, in contrast, code interframe differences. They are based on the idea
of maeroblocks, which cover 16 x 16 pixels in luminance space and 8 x 8 pixels
in chrominance space. A macroblock is encoded by searching the previous frame
for it or something only slightly different from it

An example of where P-frames would be useful is given in Fig. 7-10. Here
we see three consecutive frames that have the same background. but differ in the
position of one person. The macroblocks containing the background scene will
match exactly, but the macroblocks containing the person will be offset in POsi-
tion by some unknown amount and will have to be tracked down.

Figure 7-10. Three consecutive video frames.

The MPEG standard does not specify how 1o search, how far to search, ar
how good a match has to be to count. This is up to cach implementation. For
example, an implementation might search for 4 macroblock at the current position
in the previous frame, and all other positions offset £Ax in the x direction and TAY

SEC. 73 VIDEQO COMPRESSION 469

in the y direction. For each position, the number of matches in the luminance
matrix could be computed. The position with the highest score woulid be declared
the winner, provided it was above some predefined threshold. Otherwise, the
macroblock would be said 1o be missing. Much more sophisticated algorithms are
also possible, of course.

It a macroblock is found, it is encoded by 1aking the difference with its vaive
in the previous frame (for luminance and both chrominances). These difference
matrices are then subject to the JPEG encoding. The value for the macroblock in
the output streamn 18 then the motion vector (how far the macroblock moved from
its previous position in each direction), followed by the JPEG-encoded differences
with the one in the previous frame. If the macroblock is not locaied in the previ-
ous frame, the current value is encoded with JPEG, just as in an [-frame.

B-frames are similar to P-frames, except that they allow the reference
macroblock to be in either a previous frame or in a succeeding frame, either in an
I-frame or in a P-frame. This additional freedom allows nmproved motion com-
pensation, and is also wuseful when objects pass in front of, or behind, other
objects. For example, in a baseball gamc, when the third baseman throws the ball
to first base, there may be some frame where the ball obscures the head of the
moving second baseman in the background. In the next frame. the head may be
partially visible to the left of the ball, with the next approximation of the head
being derived from the following frame when the ball is now past the head. B-
frames allow a frame to be based on a future frame.

To do B-frame encoding, the encoder needs 10 hold three decoded frames in
memory at once: the past oneg, the current one. and the future one. To simplify
decoding, frames must be present in the MPEG stream in dependency order,
rather than in display order. Thus even with perfect timing. when a video is
viewed over a network, buffering is required on the user’s machine to rcorder the
frames for proper dispiay. Due to this difference between dependency order and
disptay order, trying to play a movie backward will not work without considerable
buffering and complex algorithms,

7.4 MULTIMEDIA PROCESS SCHEDULING

Operating systems that support multimedia differ from traditional ones in
three main ways: process scheduling, the file system. and disk scheduling. We
will start with process scheduling here and continue with the other fopics in subse-
quent sections.

7.4.1 Scheduling Homogeneous Processes
‘The simplest kind of video server is one that can suppott the display of a fixed

number of movies, all using the same frame rate, video resolution, data rate, and
other parameters. Under these circumstances, a sumple, but effective scheduling

470 MULTIMEDIA OPERATING SYSTEMS CHAP. 7

algorithm is as follows. For each movie, thcre is a sfng]e process (or thread)
whose Job it 1s to read the movie from the disk onc frame at a time and then
transmit that frame to the user. Since all the processes are equally important,
have the same amount of work to do per frame, and block when they have fin-
ished processing the current frame. round-robin scheduling does the job just tine.
The only addition needed to standard scheduling algorithms is a timing mechan-
15/ to make sure each process runs at the correct frequency.

One way to achieve the proper timing is (¢ have a master clock that ticks at,
say. 30 times per second (for NTSC). At cvery tick, all the processes are runm
sequentiaily, in the same order. When a process has completed its work. il issues
a suspend system call that releases the CPU until the master clock ticks RGAatl.
When that happens. all the processes are run again in the same order. As long as
the number of processes is small enough that all the work can be done in one
frarmc time, round-robin scheduling is sufficient.

7.4.2 General Real-Time Scheduling

Unfortunately, this model is rarely applicable in reality. The number of psers
changes as viewers come and go, frame sizes vary wildly due to the nature of
video compression {l-frames are much larger than P- or B-frames), and different
movies may have different resolutions. As a consequence, different processes
may have to run at different frequencies. with different amounts of work, and with
different deadlines by which the work must be completed.

These considerations lead to a different model: multiple processes competing
for the CPU, each with its own work and deadlines. In the following models, we
will assume that the systern knows the frequency at which each process must run,
how much work it has (o do, and what its next deadline is. (Disk scheduling is
alse an issue, but we will consider that later.y The scheduling of multiple compot-
ing processes, some or all of which have deadlines that must be met is cailed
real-time scheduling.

As an example of the kind of environment a real-time mutiimedia scheduler
works in, consider the three processes, A. B. and C shown in Fig. 7-11. Process A
runs every 30 msec (approximately NTSC speed). Each frame requires 10 msec
of CPU time. In the absence of competition. it would run in the bursts A1, A2, A3
etc., each one starting 30 msec after the previous one. Each CPU burst handles
one frame and has a deadiine: it must compiele before the next one is to start,

Also shown in Fig. 7-11 are two other processes. B and . Process B runs 25
imes/sec (e.g., PAL) and process C rons 20 times/sec (e.g., a slowed down NTSC
or PAL stream intended for a user with a low-bandwidth connection 1o the video
server). The computation titme per frame is shown as 15 msec and 5 msec for 8

and C, respectively, just to make the scheduling problem more general than hav-
ing all'of them the same.

SEC. 7.4 MULTIMEDIA PROCESS SCHEDULING 471

Starting moment Deadline

for A1, B1.C1 for A1 Daadline for B1
Deadline tor C1
| L/
Al"A7 AZ A3 Ad A5
B Bl | B2 | B3 | Ba |
C e 76| @

o 14 20 30 40 50 &0 74 BO 9 100 110 120 130 140

Time (msec) -

Figure 7-F1. Three periodic processes, cach displaving 3 movie. The {rame
rates and processing regquirements per frame are different for each movic.

The scheduling question now is how to schedule A, B, and C to make sure
they meet their respective deadlines. Before even looking for a scheduling algo-
rithm, we bave to see if this set of processes is schedulable at all. Recall from
Sec. 2.5.4, that if process ¢ has period P; msec and requires C; msec of CPU time
per frame, the system is schedutable if and onty if

n Ce'
¥ <]

Fonf Pf

where m is the number of processes, in this case, 3. Note that P,/C; is just the
fraction of the CPU being used by prucess /. For the example of Fig. 7-11, A is
eating 10/30 of the CPU, B is eating 15/40 of the CPU, and C is eating 5/50 of the
CPU. Together these fractions add 1o 0.808 of the CPU. so the system of proc-
esses 1s schedulable.

So far we assumed that there is onc process per stream. Actually, there might
be two (or more processes) per stream, for example, one for audio and one for
video. They may run at different rates and may consume differing amounts of
CPU time per burst. Adding audio processes to the mix does not change the gen-
cral model, however, since all we are assuming is that there are m processes, each
running at a fixed frequency with a fixed amount of work needed on each CPU
burst.

In some real-time systems, processcs are preemplable and in others they are
not. In muitimedia systems, processes are generally preemptabie, meuning that a
process that is in danger of missing its deadline may interrupt the running
processes before the running process has finished with ies lrame. When it is done,
the previous process can continue. This behavior is just multiprogramming. as we
have seen before. We will stady preemptabie real-time scheduling algorithms
because there is ne objection to them in multimedia systems and they give better

472 MULTIMEDIA OPERATING SYSTEMS CHAP. 7

‘performance than nonpreemptable ones. The only concern is that it a transmis-
sion buffer 1s being filled in littie bursts, the buffer is completely full by Ehr.f: dead-
line so it can be sent to the user in a single operation. Otherwise jitter might be
introduced. _

Real-time algorithms can be either static or dynamic, Static algorithms assign
cach process a fixed priority in advance and then do prionitized preemptiv_e
scheduling using those priorities. Dynamic algorithms do not have fixed priori-
ties. Below we will study an example of each type.

7.4.3 Rate Monotonic Scheduling

The classic static real-time scheduling algorithm for preemptable, periodic
processes is RMS (Rate Monotonic Scheduling) (Liu and Layland. 1973). It can
be used for processes that meet the following conditions:

I Each periodic process must complete within its period.

2. No process is dependent on any other process.

3. Each process needs the same amount of CPU time on each burst.
4. Any nonperiedic processes have no deadlines.

5. Process preemption occurs instantancously and with no overhead.

The first four conditions are reasonable. The last one is not, of cowrse, but it
makes modeling the system much easicr. RMS works by assigning each process a
fixed priority equal to the frequency of occurrence of its triggering event. For
example, a process that must run every 30 msec (33 times/sec) gets priority 33. a
process that must run every 40 msec (25 times/sec) gets priority 25, and a process
that must run every 50 msec (20 times/sec) gets prionty 20. The priorities arc
thus linear with the rate (number of times/second the process runs). This is why it
is called rate monotonic. At run time, the scheduler always runs the highest prior-
ity ready process, preempting the running process if need be. Liu and I.ayland
proved that RMS is optimal among the class of static scheduling algorithms.

Figure 7-12 shows how rate monotonic scheduling works in the example of
Fig. 7-11. Processes A, B, and € have static priorities, 33, 25, and 20}, respec-
tively, which means that whenever A needs to run, it runs, preempting any other
process currently using the CPU. Process B can preempt C, but not A. Process O
has to wait until the CPU is otherwise idle in order to run,

In Fig. 7-12, initially all three processes are ready to run. The highest priority
one, A, is chosen, and allowed to run until it completes at |5 msec, as shown in
the RMS line. After it finishes, B and C are run in that order. Together, these
processes take 3() msec to run, so when C finishes, it is time for A to run again.
This rotation goes on untif the system goes idle at 7 = 70,

SEC. 7.4 MULTIMEDIA PROCESS SCHEDULING 473

Al AT A2 A3 Ad AS
B B1 | B2 | 83] B4 _ |
cEy % &3
RMS ! Al 81| [0 Az B2 [C2] A3 B3 | A4 | JG3 AS B4 |
EDF | At Bi] CH A2 lel A3 le IAT4 IC3 A5 |- E4I]

G 10 20 30 40 50 60 TO 80 80 100 110 120 130 140

Time (msec) =
Figure 7-12. An example of RMS and EDF real-time scheduling.

Al =80 B becomes ready and runs. However, at 1 =90, a higher priority
process, A, becomes ready, so it preempts B and runs until it is finished. at
t = 100. At that point the system can choose hetween finishing B or starting C. so
it chooses the highest priority process, B.

7.4.4 Earliest Deadline First Scheduling

Another popular real-time scheduling aigorithm is Earliest Deadline First.
~ EDF is a dynamic algorithm that does not require processes 1o be periodic, as does
the riate monotonic algorithm. Nor does it require the same run time per CPU
burst, as does RMS. Whenever a process needs CPU time, it announces its pres-
ence and its deadline. The scheduler keeps a list of runnable processes. sorted on
deadline. The algorithm runs the first process on the list, the one with the closest
deadline. Whenever a new process becomes rcady, the system checks to see if its
deadline occurs before that of the currently running process. Tf so, the new proc-
€8s preempts the current one.

An example of EDF is given in Fig. 7-12. Initially all three processes are
ready. They are run in the order of their deadlines. A must finish by ¢ =30, &
must finish by 7 = 40, and C must finish by ¢ = 50, s0 A has the cartiest deadline
and thus goes first. Up until 7 = 90 the choices are the same as RMS. Atr = 90, A
becomes ready again, and its deadline is 1 = {20, the same as B's deadline. The
scheduler could legitimately choose either one to run, but since in practice,
preempting B has some nonzero cost associated with it. it is better to let 8 con-
tinue to run.

To dispel the idea that RMS and EDF always give the same results, let us now
look at another example, shown in Fig. 7-13. In this exampie the periods of 4, B,
and € are the same as before, but now A needs 15 msec of CPU time per burst
instead of only 10 msec. The schedulability test computes the CPU utitization as

474 MULTIMEDTA OPERATING SYSTEMS CHAP. 7

0.500 + 0.375 + 0.100 = 0.975. Only 2.53% of the CPU is left over. but in theary
the CPU is not oversubscribed and it should be possible to find a legal schedulc.

Ai;j = | =) E;
B[81 | B2 | B3] Ba |
CKEH 2 =3
RMS| A1 | Bl A2 | 82]|Faied
EDF A1 }_lat G 1Y !AE B2 | A3 |2 B3 A4 o3l As [Ba |
| |
0 10 20 30 40 50 B0 VD B8O 90 100 110 120 130 140
Time (msec) —n

Figure 7-13. Another example of real-time scheduling with RMS and EDF.

With RMS, the priorities of the three processes are still 33. 25, and 20 as only
the period matters, not the run time. This time, B does not finish until 7 = 30, at
which time A is ready to roll again. By the time A is finished, at ¢ = 45, B is ready
again, so having a higher priority than C, it runs and € misses its deadline. RMS
fails,

Now look at how EDF handles this case. At r = 30, there is a contest between
A2 and C1. Because C1's deadline is 50 and A2's deadline is 60, C is scheduled.
This is different from RMS, where A’s higher priority wins,

At £ =90 A becomes ready for the fourth ime. A4's deadline is the same as
that of the current process (120), so the scheduler has a choice of preempting or
not. As before, it is better not to preempt if it is not needed. so B3 is allowed to
complete.

In the example of Fig. 7-13, the CPU is 100% occupied up o r = 150. How-
ever, eventually a gap will occur because the CPU is only 97.5% utilized. Since
all the starting and ending times are multiples of 5 msec. the gap will be 5 msec.
In order to achieve the required 2.5% idle time, the 5 msec gap wifl have to occur
every 200 msec, which is why it does not show up in Fig. 7-13,

An interesting question is why RMS failed. Basically, using static priorities
only works if the CPU utitization is not too high. Liu and Layland (1973) proved
that for any system of periodic processes, if

i _& < m(zl/m .
p =

i=1 ti

1)

then RMS is guaranteed o work. For 3,4, 5, 10, 20, and 100, the maximum per-
mitted utilizations are 0.780, 0.757. 0.743, 0.718, 0.705, and 0.696. As » — oo,

SEC. 7.4 MULTIMERMA PROCESS SCHEDUILING 475

the maximum utilization is asympotic 1o In 2. [n other words, Liu and Layland
proved that for three processes, RMS always works it the CPU wtilization is at or
below 0,780, In our first example, il was 0.808 and RMS worked, bul we were
just lucky. With different periods and run times, a utilization of 0.808 might fail.
In the second example, the CPU utilization was so high (08.975), there was no
hupe that RMS could work.

In contrast, EDF always waorks for any schedulable set of processes. It can
achicve 100% CPU utihization. The price paid is a more complex algonthm.
Thus in an actual video server, if the CPU utilization 1s below the RMS limit,
RMS can be used. Otherwise EDF should be chosen.

7.5 MULTIMEDIA FILE SYSTEM PARADIGMS

Now that we have covered process scheduling in multimedia systems., let us
continue our study by looking at multimedia file systems. These file systems use
a different paradigm than traditional file systems. We will first review traditional
file I/O, then turn our atlention to how multimedia file servers are organized. To
access a file, a process first issues an open system call. If this succeeds. the caller
is given some kind of token. called a file descriptor in UNIX or a handle in Win-
dows to be used in future calls. At that peint the process can issue a read SYStem
call, providing the token, buffer address, and byte count as parameters. The
operating system then returns the requested data in the buffer. Additional read
calls can then be made until the process is finished. at which time it calls close to
close the file and return its resources.

This model does not work well for multimedia on account of (he need for
reai-time behavior. It works espectally poorly for displaying multimedia files
coming off a remote video server. One problem is that the user must make the
read calls fairly precisely spaced in time. A second problem is that the video
server must be able to supply the data blocks without delay, something that is dif-
ficult for it to do when the requests come in unplanned and no resources have
been reserved in advance.

To solve these problems, a completely different paradigm is used by mul-
timedia file servers: they act like VCRs (Video Cassette Recorders). To read a
multimedta fife, a user process issues a start system call. specifying the file o be
read and various other parameters, for example, which audio and subtitle tracks to
usc. The video server then begins sending out frames at the required rate. 1t is ap
to the user to handle them at the rate they come in. If the user gets bored with the
movie, the stop system call terminates the stream. File servers with this strearn-
ing model are often called push servers (because they push data at the user) and
are contrasted with traditional publ servers where the user has to pull the data in
one block at a time by repeatedty calling read to get one block after another. The
ditference between these two models is illustrated in Fig. 7-14.

476 MULTIMEDIA OPERATING SYSTEMS CHAP. 7

' Vidao
Yideo)
sarver Client server . Client
":@W A"’E.E’/
Bipe
”"—'-Eiji.___.c“____._ --.__._____k_;|___-h
Block o
__-__""_‘“-——--
g Roquest 2
k= A
'_“‘%—c—k-i___,_
; pequest 2
Bio
-Ek% .-—"——-—Cﬁ___*

{a} (&)

Figure 7-14. (a) A pall server, {b) A push server.
7.5.1 VCR Control Functions

Most video servers also implement standard VCR control functions, including
pause, fust forward, and rewind, Pauwse is fairly straightforward. The user sends a
message back to the video server that teils it to stop. All it has to do at that point
is remember which frame goes out next. When the user teils the server to resume.
it just continues from where it left off,

However, there is one complication here. To achieve acceptable perfor-
mance, the server may reserve resources such as disk bandwidth and memory
buffers for each outgoing stream. Continuing to tie these up while a movie is
paused wasies resources, especially if the user is planning a trip to the kitchen to
locate. microwave, cook, and eat a frozen pizza (especially an extra large). The
resources can easily be released upon pausing, of course, but this introduces the
danger that when the user tries 10 resume. they cannot be reacquired.

True rewind is actually easy, with no complications. All the server has to do
is note that the next frame to be sent is (). What could be easier? However, fast
forward and fast backward (i.e., playing while rewinding) are much trickier. It it
were noi for compression, one way to go forward at 10x speed would be to Just
display every 10th frame. To go forward at 20x speed would require displaying
every 20th frame. In fact, in the absence of compression, going forward or back-
ward at any speed is easy. To run at k times normal speed, just display every k-th
frame. To go backward at k 1imes normal speed, do the same thing in the other
direction. This approach works equally well for hoth pull servers and push
SerVers.

Compression makes rapid motion either way more complicated. With a cam-
corder DV tape, where each frame is compressed independently of all the others,

SEC. 1.5 MULTIMEDIA FILE SYSTEM PARADIGMS 477

It is possibie 1o use this stralegy, provided that the needed frame uan_bc fmif'ld
quickty. Since cach frame compresses by a different amount, depending on iis
contenl, each frame is a different size, so skipping ahead & frames in the file can-
not be done by doing a numerical calculation. Furthermore, audio compression is
done independently of video compression, so for each video frame displayed in
high-speed mode, the correct audio frame must also be located {unless sound is
turned off when running faster than normal}. Thus fast forwarding a DV file
requires an index that allows frames to be located quickly, but it is at least doable
1n theory.

With MPEG. this schermne does not work, even in theory, due to the use of I-,
P-, and B-frames. Skipping ahead & frames (assuming that can be done at al}),
might land on a P-frame that is based on an I-frame that was just skipped over.
Without the base frame, having the incremental changes from it (which is what a
P-frame contains) is useless. MPEG requires the file to be played sequentially.

Another way to attack the problem is to actually try to play the file sequen-
tially at 10x speed. However, doing this requires pulling data off the disk at 10x
speed. At that point, the server could try o decompress the frames (something it
normally does not do), figure out which frame is needed, and TECOMPress every
10th frame as an I-frame. However, doing this puts a huge load on the server. It
also requires the server to understand the compression format, samething 1t nor-
mally does not have to know.

The alternative of actually shipping all the data over the network to the user
and letting the correct frames be selected out there requires running the network at
tOx speed, possibly doable, but certainly not easy given the high speed at which it
normally has to operate,

All in all, there is no casy way out. The only feasible strategy requires ad-
vance planning. What can be done is build a special file containing, say, every
[Oth frame, and comprcss this file using the normat MPEG algorithm. This file is
what is shown in Fig. 7-3 as *‘fast forward.” To switch to fast forward mode, what
the server must do is figure out where in the fast forward file the user currently is.
For example, if the current tframe is 48,210 and the fast forward file runs at 10x,
the server has to locate frame 4821 in the fast forward file and start playing there
at normal speed. Of course. that frame might be a P- or B-frame, but the decoding
process at the client can just skip frames until it sees an I-frame. Going backward
is done in an analogous way using a second speciatly prepared file,

When the user switches back to normal speed. the reverse trick has to be
done. If the current frame in the fast forward file is 5734. the server just switches
back ta the regular file and continues at frame 57,340. Again, If this frame is not
an I-frame, the decoding process on the client side has to tgnore all frames until
an i-frame ts seen.

While having these two extra files does the job, the approach has some disad-
vantages. First, some extra disk space is required 10 store the additional files.
Second, fast forwarding and rewinding can only be done at speeds corresponding

478 MULTIMEDIA OPERATING S5YSTEMS CHAP. 7

to the special files. Third, extra complexity 1s needed to switch back and forth
betwecn the regular, fast forward, and fast backward files.

7.5.2 Near Video on Demand

Having k users getting the same movie puts essentially the same load on the
server as having them getting & different movies. However, with a small change
in the model, great performance gains are possible. The problem with video on
demand is that users can start streaming a movie at an arbitrary moment, so if
there are 100 users all starting to walch some new movic at about 8 P.M., chances
are that no two will start at exactly the same instant so they cannaot share a stream.
The change that makes optimization possible is to tell all users that movies only
start on the hour and cvery (for cxample) 5 minutes thereafter. Thus if a user
Wants 10 see a movie at 8:02, he will have io wait until 8:05.

The gain here is that for a 2-hour movie, only 24 streams are needed, no
matter how many customers there are. As shown in Fig. 7-15, the first stream
starts at 8:00. At 8:05. when the first stream is at frame 9000, stream 2 starts. At
8:10. when the first stream is at frame 18,000 and stream 2 15 at frame 9000,
stream 3 starts, and so on up to stream 24, which starts at 9:55. At 10:00, stream |
terminates and starts all over with frame 0. This scheme is called near video on
demand because the video does not quite start on demand, but shortly thereafter.

The key parameter here is how often a stream starts. If one starts every 2
minutes, 60 streams will be needed for a (wo-hour movie, but the maximum wiijt-
Ing time to start watching will be 2 minutes. The operator has 10 decide how long
people are willing to wait because the longer they are willing to wait, the more
efficient the system, and the more movies can be shown at once. An alternative
strategy is to also have a no-wait option, in which case a new stream is started on
the spot, but to charge more for instant startup.

In a sense, video on demand is like using a taxi: you call it and it comes. Near
video on demand is like using a bus: it has a fixed schedule and you have to wait
for the next one. But mass transit only makes sensc if there is a mass. In mid-
town Manhattan, a bus that runs every 5 minutes can count on picking up at lcast
a few riders. A bus truveling on the back roads of Wyoming might be empty
nearly all the time. Similarly, starting the latest Steven Spielberg release might
attract enough customers to warrant starting a new stream every 5 minutes, but for
Gone with the Wind it might be better to simply ofter it on a demand basis.

With near video on demand, users do not have VCR controls. No user can
pause a movie to make a trip to the kitchen. The best thal can be done is upon
returning from the kitchen. to drop back to a stream that started later, thereby
repeating a few minutes of material.

“Actually, there is another model for near video on dernand as well. Instead of
announcing in advance that some specific movie will start every 5 minutes, people
can order movies whenever they want to. Every 5 minutes, the system sees which

SEC. 7.3 MULTIMEDIA FILE S5YSTEM PARADIGMS 479

Stream
o | o |l9oco| [18000] |27000] [36000| i4s000] (54000| [63c00| [72000| 181000|

1 { &6 | [9000]| [18000] i(27000]| [36000] {45000] [54000] [63000] {72000]
2 i'u | [9000] [18000{ [27000{ |(36000] [45000] ([54000] [63000]
3 [o] [so00] [18000] [27000] [36000] [4s000] [S54000]
4 .o [} [goc0} [18000] [27000] [36000] [45000]
Frame 9000 in
5 stream 3 is sent L o]| [9c00] [18000]| [2700c] [36000]
at 8:20 min
6 Lo | [s0oo] [1so00] (27000}
7 L ¢] [9000] [18000]
8 [_o | [e0ac]

2:00 B:05 B:10 g8:15 5:20 8:25 8:30 8:33 &840 §:4E

Timg ——a

Figure 7-15. Neuar video on demand has a new stream starting at regutar inter-
vals, in this example every 5 minules {9000 frames).

movies have been ordered and starts those. With this approach, a movie May start
at 8:(0K), 8:10, 8:15. and K:25, but not at the intermediate times, depending on
demand. As a result, streams with no viewers are not transmitted. saving disk
bandwidth, memory, and network capucity. On the other hand. attacking the
freezer is now a bit of a gamble as there is no guarantee that there is another
stream running 5 minutes behind the one the viewer was watching. OF course, the
operator can provide an option for the user to display a list of all concurrent
streams, but most people think their TV remote controls have more than enough
buttons already and arc not likely to enthusiastically welcome a few more,

7.5.3 Near Video on Demand with VCR Functions

The rdeal combination would be near video on demand (for the cfficiency)
plus full VCR controls for every individual viewer (for the user CONvEntence).
With slight modifications to the model, such a design is possible. Below we will
give a slightly simplified description of one way to achieve this goal (Abram-
Profeta and Shin, 1998).

We start out with the standard near video-on-demand scheme of Fig. 7-15.
However, we add the requirement that each client machine buffer the previous AT
min and also the upcoming AT min locally. Buffering the previous AT min is

480 MULTIMEDIA OPERATING SYSTEMS CHAP. 7

easy: just save it after displaying it. Buftering the upcoming AT min is harder, but
can be done if clients have the ability (o read two streams at once.

One way to get the buffer set up can be illustrated using an example. If a user
starls viewing at 8:15, the cliemt machine reads and displays the 8:15 stream
(which is at frame). In parallel, i reads and stores the 8:10 stream, which is
currently at the 5-min mark (i.e., frame 9000). At 8:20, frames (O to 17,999 have
been stored and the user is expecting to see frame 900 next. From that point on,
the %:15 stream s dropped, the buffer is filled from the 8:10 stream (which is at
18.,000), and the display is driven from the middle of the butfer (frame 9000). As
edach new frame 1s read, one frame is added o the end of the buffer and one frame
is dropped from the beginning of the buffer. The current trame being displayed.
called the play peint, is always in the middle of the buffer. The situation 75 min
into the movie is shown in Fig. 7-16(a). Hcre all frames between 70 min and 80
min are in the buffer. If the data rate is 4 Mbps, 1 10-min buffer requires 300 mil-
lton bytes of storage. With current prices, the bufter can certatnly be kepr on disk
and possibly in RAM. If RAM is desired. but 300 million bytes is too much, a
smaller buffer can be used.

_ Play paint at 75 min
Mirnutes 0 30 a0 Jv—. 80 120

{a) :-I
L—F‘Iay paint at 12 min

]

r Play point at 15 min

{c)

l_ Play paint at 18 min
{d) J

r—— Ptay point at 22 min

(e}

Figure 7-16. (a) Initial situation. (b) After a rewind 1o i2 nun. (oY Afler wait-
ing 3 min. (d) After starting to refilf the bufter. (c) Bufter full,

Now suppose that the user decides to fast forward or fast reverse. As long as
the play point stays within the range 70-80 min, the dasplay can be fed from the

SEC. 7.5 MULTIMEDIA FILE SYSTEM PARADIGMS 481

bufter. However, if the play point moves outside that interval either way, we have
a problem. The solutton is to turn op a private (i.e., video-on-demand) stream to
service the user. Rapid motion in either direction can be handled by the tech-
niques discussed carlier.

Normally, at some poiat the user will settle down and decide to watch the
movie at normal speed again. At this point we can think about migrating the user
over o one of the near videc-on-demand strecams so the private stream can be
dropped. Suppose, for example, that the user decides to go back to the 12 min
mark, as shown n Fig. 7-16(b). This point is far cutside the buffer, so the display
cannot be fed from it. Furthermore, since the switch happened (instantaneousiy)
at 73 min, there are streams showing the movie at 5, 10, 15, and 20 min, but none
at 12 min.

The solution is to continue viewing on the private stream, but to start filling
the buffer from the stream currently {5 minutes into the movie. After 3 minutces,
the situation is as depicted in Fig. 7-16(c). The play point is now 15 min, the
buffer contains minutes 15 to 18, and the near video-on-demand streams are at 8,
i3, I8, and 23 min, among others. At this point the privaie stream can bc dropped
and the display can be fed from the buffer. The buffer continues to be filled from
the stream now at 18 min. Afler another minute, the play pomnt is 16 min, the
buffer contains minutes 13 to 19, and the stream feeding the buffer is at 19 min, as
shown in Fig. 7-16(d).

After an additional 6 minutes have gone by, the buffer is full and the play
point is at 22 min. The play point is not in the middle of the buffer, although that
can be arranged if necessary.

7.6 FILE PLACEMENT

Multimedia files arc very large, are often writien only once but read many
times, and tend to be accessed sequentially. Their playback must also meet strict
quality of service criteria. Together, these requirements suggest different file SY5-
tem layouts than traditional operating systems use. We will discuss some of these
issues below, first for a single disk, then for multiple disks.

7.6.1 Placing a File on a Single Disk

The most important requirement is that data can be streamed 10 the network or
output device at the requisite speed and without jitter. For this reason, having
multiple seeks during a frame is highly undesirable. One way to eliminate
intrafile seeks on video servers is to use contiguous files. Normally, having files
be contiguous does not work well, but on a video server that is carefully preloaded
in advance with movies that do not change afterward it can work.

482 MULTIMEDIA OPERATING SYSTEMS CHAP. 7

One complication, however, is the presence of video, audio. and text, as
shown in Fig. 7-3. Even if the video, audio, and text are each stored as separate
contiguous files, a seek will be needed to go from the video file to an audio file
and from there to a text file, if need be. This suggesis a second possible storage
arrangement, with the video, audio, and text interleaved as shown in Fig. 7-17, but
the entire file stll contiguous. Here, the video for frame | is directly followed by
the various audio tracks for frame | and then the various text racks for frame 1.
Depending on how many audio and text tracks there are, it may be simplest just to
read in all the pieces for each frame in a single disk read operation and only
transmit the needed paris to the user.

Frame 1 Frame 2 Frame 3
- A . .
i —”“"\—"—wr i

video |A|A[ATT]E

WA

AU

Audio Text
track track

Videao

Figure 7-17. Inericaving video. audio, and text in single contiguous file per
movie,

This organization requires extra disk /O for reading in unwanted audio und
text. and extra buffer space in memory to store them. However il eliminates ail
seeks (on a single-user system} and does nol require any overhead for keeping
track of which frame is where on the disk since the whole movie is in one contigu-
ous ftle. Random access is impossible with this layouy, but if it is not necded, its
loss is not serious. Similarly. fast forward and fast backward are impossible
without additionat data structures and complexity.

The advantage of having an entire movie as a single contiguous tfile is lost on
a video server with’ multiple concurrent output streams because after reading a
frame from one movie, the disk will have to read in frames from many other
movies before coming back to the first one. Aiso, for a system in which movies
are being written as well as being read (c.g.. a system used for video production or
editing), using huge contiguous files is difficult to do and not that uscful.

7.6.2 Two Alternative File Organization Strategies

These observations lead to two other file placement organizations for mul-
imedia files. The first of these, the small block tnaxdel, 1s illustrated in Fig. 7-
18(a). In this organization, the disk block sive s chosen to bhe considerably
smaller than the average frame size, even for P-frames and B-frames. For
MPEG-2 at 4 Mbps with 30 frames/sec. the average frame 15 16 KB. s0 a hlock
size of | KB or 2 KB would work weil. The idea here is to have a data structure,
the frame index, per movie with one entry for each frame pointing to the start of

SEC. 7.6 FILE PLACEMENT 483

the frame. Each frame itself consists of all the video, acdio, and text tracks for
that frame as a contiguous run of disk blocks, as shown. In this way, reading
frame k consists of indexing into the frame index to find the k-th entry. and then
rcading 1n the entire frame in one disk operation. Since different frames have dif-
ferent sizes, the trame size (in blocks) is needed in the frame index. but even with
[-KB disk blocks, an 8-bit field can handle a frame up to 255 KB, which is
enough for an uncompressed NTSC frame, even with many audio tracks.

Frame Block
Incdex Index
Cisk block larger Disk biock smaifer
than frame than frame
-]
ETH
(LT :
TN} Awaio Text [T TIHITH 1 TANEA
e A
IHi l x Hrame P-frame f
EZIII] Unused
il

(a} {b}

Figure 7-18. Noncontiguous movie storage. (a) Small disk blocks. (b) Large
disk blocks.

The other way to store the movie is by using a large disk block (say 256 KB)
and putting multiple frames in each block. as shown in Fig. 7-18(b). An index is
still needed, but now it is a block index rather than a frame index. The index is, in
fact, basically the same as the i-node of Fig. 6-15, possibly with the addition of n-
formation telling which frame is at the beginning of each block to make it possibte
to locate a given frame quickly. In general, a block will not hold an integral num-
- ber of frames, so something has to be done to deal with this. Two options exist.

In the first option, which is iliustrated in Fig. 7-18(b), whenever the next
frame does not fit in the current block. the rest of the block is just left empty,
This wasted space is internal fragmentation, the same as in virtual memory sys-
tems with fixed-size pages. On the other hand, it is never necessary to do a Sé{:‘lk
in the middle of a frame.

The other option is to fill each block to the end, splitting frames over blocks.
This option introduces the need for seeks in the middle of frames, which can hurt
performance, but saves disk space by eliminating internal fragmentation.

484 ' MULTIMEDIA OPERATING SYSTEMS CHAP. 7

For comparison purposes, the use of small blocks in Fig. 7-18(a) also wastes
some disk space because a fraction of the last block in cach frame is unused.
With a 1-KB disk block and a 2-hour NTSC movie consisting of 216,000 trames,
the wasted disk space will only be about 108 KB out of 3.6 GB. The wasied
space is harder to calculate for Fig. 7-18(b). but it will have to be much more
hecause from time to time there will be 100 KB left at the end of a block with the
next frame being an I-frame larger than that.

On the other hand. the block index is much smaller than the trame index.
With a 256-KB block and an average frame of 16 KB, about 16 frames fit in a
block, so a 216,000-frame movie needs only 13,500 entries in the block index,
versus 216,000 for the frame index. For performance reasons, in both cases the
index should list all the frames or blocks (i.e.. no indirect blocks as UNIX), so
tying up 13.500 8-byte entries in memory (4 bytes for the disk address. 1 byte for
the frame size, and 3 bytes for the number of the starting frame) versus 216,000
5-byte entries {disk address and size only) saves almost 1 MB of RAM while the
movie is playing.

These considerations lead to the following trade-offs:

I. Frame index: Heavier RAM usage while movie is playing; little disk
wastage.

2. Block index (no splitting frames over blocks): Low RAM usage;
major disk wastage.

3. Block index (splitting frames over blocks is allowed): Low RAM
usage: no disk wastage: extra seeks

Thus the trade-offs involve RAM usage during playback, wasted disk space all the
time, and performance loss during playback duc to extra seeks. These prohlems
can be attacked in various ways though. RAM usage can be reduced by paging in
parts of the frame table just in time. Seeks during frame transmission can be
masked by sufficient buffering, but this introduces the need for extra memory and
probably extra copying. A good design has to carefully analyze all these factors
and make a good choice for the application at hand.

Yet another factor here is that disk storage management is more complicated
in Fig. 7-18(a) because storing a frame requires finding a consecutive run of
blocks the right size. Ideally, this run of blocks should not cross a disk track
boundary, but with head skew, the loss is not serious. Crossing a cylinder boun-
dary should be avoided, however. These requirements mcan that the disk’s free
storage has to be organized as a list of variable-sized holes. rather than a simple
block list or bitmap, both of which can be used in Fig. 7-18(b}.

In all cases, there is much to be said for putting all the blocks or frames of a
movie within a narrow range, say a few cylinders. where possible. Such a place-
ment means that seeks go faster so that more time will be left over for other
(nonreal-time) activities or for supporting additional video streams. A constrained

SEC. 7.6 FILE PLACEMENT 485

placement of this sort can be achieved by dividing the disk mto cylinder groups
and for each group keeping separate lists or bitmaps of the free blocks. [f holes
are used, tor example, there could be one list for 1-KB holes, one for 2-KB holes,
one for holes of 3 KB to 4 KB, another for holes of size 5 KB to 8 KB, and so on,
In this way 1t is easy to find a hole of a given size 1n a given cylinder group.

Another difference between these two approaches is buffering. With the
small-block approach, cach read gets exactly one frame. Consequently, a simple
double buffering strategy works fine: one buffer for playing back the current
frame and one for fetching the next one. If fixed buffers are used, each buffer has
10 be large encugh for the biggest possible I-frame. On the other hand, if a dif-
ferent buffer is allocated from a pool on every frame, and the frame size is known
before the frame 1s read in, a small buffer can be chosen for a P-frame or B-frame.

With large blocks, a more complex strategy is required because each block
contains multiple frames. possibly including fragments of frames on each end of
the block (depending on which option was chosen earlier). If displaying or
transmitting frames requires them to be contiguous. they must be copied, but
copying is an expensive operation so it should be avoided where possible. If con-
tiguity is not required, then frames that span block boundaries can be sent out over
the network or o the display device in two chunks.

Double buffering can also be used with large blocks, but using two large
blocks wastes memory. One way around wasting memory is to have a circular
transmission buffer slightly larger than a disk block (per stream) that feeds the
network or display. When the buffer's contents drop below some threshold. a new
targe block is read in from the disk. the contents copied to the transmission buffer,
and the large block buffer returned to a common pool. The circular buffer’s size
must be chosen so that when it hits the threshold, there is room for another full
disk block. The disk read cannot go directly to the transmission buffer because it
might have to wrap around. Here copying and memory usage are being traded off
against one another.

Yet anather factor in comparing these two approaches is disk performance.
Using large blocks runs the disk at full speed, often a major concern. Reading in
little P-frames and B-frames as separate units is not efficient. In addition. striping
large blocks over multiple drives (discussed below) is possible, whereas striping
individual frames over multiple drives is not.

The small-block organization of Fig. 7-18(a) is sometimes called constant
time length because each pointer in the index represents the same number of mil-
liseconds of playing time. In contrast, the organization of Fig. 7-18(b) is some-
times called constant data length hecause the data blocks are the same size.

Another difference between the two file organizations is that if the frame
types are stored in the index of Fig. 7-18(a), it may be possible to perform a fast
forward by just displaying the I-frames. However, depending on how often I-
frames appear in the strewm, the rate may be perceived as too fast or too slow. In
any case, with the organization of Fig. 7-18(b) fast forwarding is not possible this

486 MLE.TIMEDIA OPERATING SYSTEMS CHAP. 7

way. Actually reading the file sequentiaily to pick out the desired frames reguires
massive disk /0.

A second approach is to vse a special file that when played at normal speed
gives the illusion of fast forwarding at 10x speed. This file ¢an be structured the
samc as other files, using either a frame index or a block index. When opening a
file, the system has to be able to find the fast torward file if needed. If the user
kits the fast forward button, the system must instantly find and open the fast {or-
ward file and then jump to the correct place in the file. What it knows is the
frame number it is currently at. but it needs the ability to locate the corresponding
frame in the fast forward file. If it is currently at frame, sav, 4816, and it knows
the Tast forward file is at 10x, then it must locate frame 482 in that file and start
playing from there,

If a frame index 1s used, locating a specific frame is casy: just index into the
frame index. If a block index is used, extra information in each entry 1s needed to
identify which frame is in which block and a binary search of the block index has
to be performed. Fast backward works in an analogous way 10 tast forward,

7.6.3 Placing Files for Near Video on Demand

So far we have looked at placement strategies tor video on demand. For near
video on demand, a different tile piacement strategy 1s more efficient. Remember
that the same movic is going out as multiple staggered streams. Even if the movie
is stored as a contiguous file, a seek is needed for each stream. Chen and Thapar
(1997) have devised a file placement strategy (o eliminate nearly all of those
seeks. Its use is illustrated in Fig. 7-19 for a movic running at 30 frames/sec with
a new stream starting every 3 min, as in Fig. 7-15. With these parameters, 24
concurrent streams are nceded for a 2-hour movie,

Order in which blocks are read from disk —-w—w

: Stream ! Stream | : g : : : : ;Straamé Stream
29 22 ' : : R - I '

bod R

Track 1 [0 9000 [18000 27000 36000] 45000[54600[63000]72000] 87000 - - |

[207000)
1

0700 I

Track2 [1] 9001 [13&{}1I2?331]35m1§45nﬂ1iﬁ4m1 [63001 [72001]81067] - -

2
|ED?DUEJ

Track 3 [2 | 9002 [18502[27602 | 36002] 45002]64003 [63003] 72002187602
\ Frame 27002 {atiout 15 min into the mowvie)

Figure 7-19. Optimal frame placemoent for near video on demand.

SEC. 7.6 FILE PLACEMENT 487

In this placement, frame sets of 24 frames are concatenated and writtep to the
disk as a single record. They can also be read back on a single read. Consider Fhﬂ
instant that stream 24 is just starting. It wilk need frame 0. Frame 23. which
started 5 min earlier. will need frame 9000. Stream 22 will need frume 18,000,
and so on back to stream O which will need frame 207.000. By putting these
frames consecutively on one disk track. the video server can satisty all 24 streams
in reverse order with only one seek (to frame (). Of course. the frames can be
reverscd on the disk if there is some reason to service the streams in ascending
order. After the last stream has been serviced, the disk arm can move to track 2 to
prepare servicing them all again. This scheme does not require the entire fite to
be contiguous, but still affords good performance to a number of streams at once.

A simple buffering strategy is to use double buffering. While one buffer is
being played out onto 24 streams, another buffer is being loaded in advance.
When the current one finishes, the two buffers are swupped and the one Just used
for playback is now loaded in a single disk operation.

An interesting question is how large to make the buffer. Clearly, it has to
hold 24 [rames. However, since frames are variable in size, 1t 18 nol entirely
trivial 1o pick the right size buffer, Muaking the buffer large enough for 24 |-
frames is overkill, but making it large enough for 24 average frames is living
dangerously,

Fortunately. for any given movie, the largest track (in the sense of Fig, 7-19}%
in the movie is known in advance, so a buffer of precisely that size can be chosen,
However, it might just happen that in the biggest track, therc are, say. 16 l-frames.
whereas the next biggest track has only nine I-frames. A decision to choose a
buffer large enough for the second biggest case might be wiser. Making this
choice means truncating the biggest track. thus denying some streams one frame
in the movie. To avoid a gtitch, the previous frame can be rcdisplayed. No one
will notice this.

Taking this approach further. if the third biggest track has only four I-frames,
using a buffer capable of holding four I-frames and 20 P-frames is worth it. Intro-
ducing two repeated frames for some streams twice in the movie 1s probably
acceptable. Where does this end? Probably with a buffer size that is big enough
for 99% of the frames. Clearly, there is a trade-off here between memory used for
buffers and quality of the movies shown. Note that the more simultaneous

streams there are, the better the statistics are and the more uniform the frume sets
will be.

7.6.4 Placing Muitiple Files on a Single Disk

So far we have looked only at the placement of a single movie. On a video
server, there wiil be many movies, of course. If they are strewn randomly around
the disk, time will be wasted moving the disk head from movie to movie when
multiple movies are being viewed simultaneously by different customers.

488 MULTIMEDIA OPERATING SYSTEMS CHAP. 7

This sitwation can be improved by observing that some movies are more popu-
iar than others and taking popularity into account when placing mov‘ics on the
disk. Although littie can be suid about the populanty of particular movies in gen-
eral (other than noting that having big-name stars seems to help), something can
be said about the relative popularity of movies in general.

For many kinds of popularity contests, such as movies being rented. books
being checked out of a library, Web pages being referenced, even English words
being used in a novel or the population of the largest cities, 1 reasonable approxi-
mation of the relative popularity follows a surprisingly predictable pattern, This
pattern was discovered by a Harvard professor of linguistics, George Zipf
{1902-1954) and is now called Zipf’s law. What it states is that if the movies,
books, Web pages. or words are ranked on their popularity, the probability that the
next customer will choose the itemn ranked 4-th in the list is C/k, where C is a nor-
malization consiant.

Thus the fraction of hits for the top three movies are C/1, C/2. and C/3,
respectively, where C is computed such that the sum of all the terms is 1. In other
words, if there are & movies, then

CAA+CR+C/3+C/A+ - +C/N =

From this equation, € can be calculated. The values of C for populations with 10,
100, 1000, and 10,000 items are 0.341, 0.193, (.134, and 0.102, respectively. For
example, for 1000 movies, the probabilities for the top five movies are 0.134,
0.067, 0.045, 0.034, and 0.027, respectively.

Zipf’s law is illustrated in Fig. 7-20. Just for fun. it has been applied to the
populations of the 20 largest U.S. cities. Zipf's law predicts that the second larg-
est city should have a population half of the largest city and the third largest city
shoutd be one third of the largest city, and so on. While hardly perfect, it is a
surprisingly good fit, '

For movies on a video server, Zipf™s law states that the mosi popular movie is
chosen twice as often as the second most popular movie. three times as often as
the third most popular movie. and so on. Despite the fact that the distribution falis
off fairly quickly at the beginning, i has a long tail. For example, movie 50 has a
popularity of C/50 and movie 51 has a popularity of C/51, so movie 51 is 50/51
as popular as movie 30, only about a 2% difference. As one goes out further on
the tail, the percent difference hetween consecutive movies becomes less and less,
One conclusion is that the server needs a lot of movies since there is substantial
demand for movies outside the top 19.

Knowing the relative popularities of the different movies makes it possible o
model the performance of a video server and to use that information for placing
files. Studies have shown that the best strategy is surprisingly simple and distri-
bution independent. It is called the organ-pipe algorithm (Grossman and Silver-
man, 1973; and Wong, 1983). It consists of placing the most popular movie in the
middle of the disk, with the second and third most popular movies on either side

SEC. 76 FILE PLACEMENT 489

Frequancy

0.250 =

0200

2150 —

0100 —

(.050 }-

0.300 —

| I | i | |
1 2 2 4 5 6 ¥ B 85 10 41 12 13 14 15 16 17 18 19 20
Rank

Figure 7-20. The curve gives Zipf's law for N = 20, The squares represent the
poputations of the 20 Jargest cities in the U5, sorted on rank order (New York
is 1. Los Angeles is 2, Chicago is 3, ete.).

of 1. QOutside of these come numbers four and five, and so on, as shown in
Fig. 7-21. This placement works best if each movie is a contiguous file of the
type shown in Fig. 7-17, but can also be used to some extent if each movie is con-
strained to a narrow range of cylinders. The namec of the algorithm comes from
the fact that a histogram of the probabilities looks like a skightly lopsided organ.

-Frequency of use ——s

oUUUUUD .

Movie | Movie | Movie | Movie | Movie | Movie | Movie | Movie | Movie | Movie Movie

10 B 6 4 2 1 3 5 7 8 11

Cylindagr ——

-Figure 7-21. The organ-pipe distribution of files on a video server

What this algorithm does is try to keep the disk head in the middle of the disk.

With 1060 movies and a Zipf's law distribution, the top five movies represent a

490 MULTIMEDIA OPERATING SYSTEMS CHAP. 7

total probability of 0.307, which means that the disk head will stay _ir? the
cylinders allocated to the top five movies about 30% of the time. a surprisingly
large amount if 1000 movies are available,

7.6.5 Placing Files on Multiple Disks

To get higher performance, video servers often have many disks that can run
n parallel. Sometimes RAIDs are used, but often not because what RAIDs offer
is higher reliability at the cost of performance. Videe servers generally want high
performance and do not care so much about correcting transient errors. Also
RAID coutrollers can become a bottleneck if they have too many disks to handle
Al once.

A more common configuration is simply a large number of disks. sometimes
referred to as a disk farm. The disks do not rotate in a synchromized way and do
not contain any parity bits, as RAIDS do. One possible conftguration is to put
movie A on disk 1, movie B on disk 2, and so on, as shown in Fig. 7-22{a). In
practice, with modern disks several movies can be placed on each disk.

Disk —=-| AD BG 0 D0 Al A1 Az A3
At B1 1 (B3 Ad A5 AG AT
AZ B2 c2 o2 BO E1 8- A3
Al B3 <3 D3 B4 B& B& B7
Ad B4 G4 D4 iy C1) C3
AL BS oh Ds C4 Cs ChH Sy
Ab B& CE D& (4] B Dz D3

az) kez) ter) Lozl o) ‘bs) lps) o7l

{a) {b)

L1 3 b2) L3 i (.1 2 [2] b 3_J (4]
ACQ Al AZ AZ AD A2 A Al
Ad AS A A7 AG A5 Ad A7
B3 B B1 B2 B3 B1 B2 B0
B7 B4 B5 B& B4 B7 BS B&
o &3 o <1 oo ca 3 C1
9] C7 o4 Ch) cg <4 Cs
D D2 03 D D D2 B3 0o

05.) lps) o7 (ogld b6 \bs) lps) (p7J

{c) {d)

Figure 7-22. Four ways of organizing multimedia files over multipie disks. {a)
No striping. (b} Same striping pattern for all files, {€) Staggered striping. (d)

Random striping.
This organization is simple to impiement and has straightforward failure char-
actertstics: if one disk fails, ali the movies on it become unavailable. Note that a
company losing a disk full of movies is not nearly as bad as a company losing a

SEC. 7.6 FIL.LE PLACEMENT 491

disk fuli of data because the movics can easily be reloaded on a spare disk from a
DVID. A disadvantage of this approach is that the load may not be well I;aiancr:d.
It some disks hold movies that are currently much in demand and other disks hotd
less popular movies, the system will not be fully utilized. Of course, once the_
usage frequencies of the movies are known. it may be possible 10 move some of
them to balance the load by hand.

A second possible organization is to stripe cach movie over multiple disks.
four in the exampte of I\ig. 7-22(b). Let us assume for the moment that all frames
are the same size (i.e.. uncompressed). A fixed number of bytes from movie 4 js
writien 1o disk 1. then the same number of bytes is writien to disk 2. and so on
until the last disk is reached {in this case with unit A3). Then the siripmg contin-
ues at the first disk again with A4 and so on until the entire file has been writlen.
Al that point movies B. C. and D are striped using the same pattern.

A possible disadvantage of this striping pattern is that because all movies start
on the first disk, the load across the disks may not be balanced. One wiy Lo
spread the load better is to stagger the starting disks, as shown in Fig. 7-22(c).
Yet another way to attempt to balance the load is 10 use a random striping pattern
for each file, as shown in Fig. 7-22(d).

So far we have assumed that all frames are the same size. With MPEG-2
movies, this assumption is false: I-frames are much targer than P-frames. There
are two ways of dealing with this complication: stripe by frame or stripe by block.
When striping by frame. the first frame of movic A goes on disk | as a contiguous
untt, independent of how big it is. The next frame goes on disk 2, and so on.
Movie B is striped in a similar way, either starting at the same disk, the next disk
(if staggered), or a random disk. Since frames are read one at 2 time. this torm of
striping docs not speed up the reading of any given movie. However, it spreads
the load over the disks much better than in Fig. 7-22{a), which may behave badly
tf many people decide to watch movie A tonight and robody wants movie €. On
the whole, spreading the load over alf the disks makes better use of the total disk
bandwidth, and thus increases the number of customers that can be served.

The other way of striping is by block. For each movic, fixed-size units are
written on each of the disks in succession for at random), Euach block contains
one or more frames or fragments thereof. The SYSIetTt can now issuc requests for
multiple blocks at once for the same movie. Each request asks o read data into a
different memory buffer, but in such a way that when all requests have been com-
pleted, a contiguous chunk of the movie (contaming many frames) is now assem-
bled in memory contiguously, These requests can proceed in parallel. When the
iast request has been satisfied, the requesting process can be signaled that the
work has been completed. It can then begin transmitting the data to the user. A
number of frames later, when the buffer is down to the last few frames. more
requests are issued to preload another buffer. This approach uses large amounts
of memory for buffering in order to keep the disks busy. On a system with 1000
active users and 1-MB buffers (for cxample, using 256-KB blocks on each of four

492 MULTIMEDEA OPERATING SYSTEMS - CHAP. 7

disks), ! GB of RAM is needed for the butters. Such an amount is small potatoes
onr a 1000-user server and should not be a problem.

One final tssue concerning striping 1s how many disks to stripe over. At one
extreme, each movie 1s striped over all the disks, For example, with 2-(GGB movies
and 1000 disks, a4 block of 2 MB could be written on each disk so that no movie
uses the same disk twice. At the other extreme. the disks are partitioned into
small groups (as in Fig. 7-22} and each movie is resiricted to a single partition.
The former, called wide striping. does a good job of balancing the load over the
disks. its main problem is that if every movie uses every disk and one disk goes
down, no movie can be shown. The latter, called narrow striping. may suffer
trom hot spots (popular partitions). but loss of one disk only ruins the movies in
its partition. Striping of variable-sized frames is analyzed in detail mathemati-
cally in (Shenoy and Vin, 1999),

7.7 CACHING

Traditional LRU file caching does not work well with multimedia files
because the access patterns for movies are different from those of text files. The
idea behind traditional LRU buffer caches is (hat atter a block is used. it should be
kept in the cache in casc it is needed again quickly. For example, when editing a
file, the set of blocks on which the file is written tend to be used over and over
until the edit session is finished. In other words, when there is rclatively high pro-
bability that a block will be reused within a short interval, it is worth keeping
around 10 eliminate a tuture disk access.

With multimedia, the usual access pattern is that a movie is viewed from bhe-
ginming o end sequentially. A block is unlikely to be used a second time untess
the user rewinds the movie to see some scene again. Consequently, normal cach-
ing techniques do not work. However. caching can still help, but only if used dif-
ferently. In the following sections we will look at caching for multimedsa.

7.7.1 Block Caching

Although just keeping a block arvund in the hope that it may be reused
quickly is pointless, the predictability of multimedia systems can be exploited to
make caching useful again. Suppose that two uscrs are watching the same movie,
with one of them having started 2 sec after the other. After the first user has
fetched and viewed any given block, it i« very likely that the second user will
need the same block 2 sec later. The system can casily kecp track of which
movies have only one viewer and which have two or more viewers spaced closely
together in time.

Thus whenever a block is read on behalf of a movie that will be needed again
shortly, it may make sense to cache it, depending on how Tong it has to be cached

SEC. 7.7 CACHING 493

and how tight memeory 1s. Instead ot keeping all disk blocks in the cache and dis-
carding the least recently used one when the cache fills up, a different strategy
should be used. Everv movice that has a second viewer within some time AT of the
first viewer can be marked as cachable and all its blocks cached until the second
(and possibly third} viewer has used them. For other movies, no caching is done
at all.

This idea can be taken a step further. In some cases it may be feasible to
merge (wo streams. Suppose that two users are watching the same movie but with
4 10-sec delay between them, Holding the blocks in the cache for 10 sec is possi-
ble but wastes memory. An alternative, but slightly sneaky, approach is to try to
get the two movies in sync. This can be done by changing the frame rate for both
movies. This idea is illustrated in Fig. 7-23.

10 sac 1 min 2 min 3 min 4 min

' } | | }

1 3 5 7
a8 & 4 2
Liser 1 0 o o 0
0 0 o} 4] 0
1 3 L5 7
8 G 4 2
User 2 0 0 a a
0 0 0 #] 0
Staris .
10 soc Time ——
later {(a)
Runs slower Mormal speed
A _— . - ;
r s — N
1 3 5 7
B B 4 2
1
Liser o p o b
O 1] L]])
1 3 5 rd
B B 4 2
Liser 2 a 0 0 o
0 J o) 0 0
L
- _ AL g A
Buns taster Normal speed

{b)

Figure 7-23. (a} Two uscrs watching the same movie 10 sce out of sync, (b}
- Merging the two streams into one.

In Fig. 7-23(a), both movies run at the standard NTSC rate of 1800
frames/min. Since user 2 started 10 sec later, he continues to be 10 sec beyond
for the entire movie. In Fig. 7-23(b), however. user |'s stream 15 slowed down
when user 2 shows up. Instead of running 1800 frames/min, for the next 3 min, it

494 MULTIMEDIA OPERATING SYSTEMS CHAP. 7

runs at 1750 frames/min. After 3 minutes. it is at frame 5530). In addition, user
2°s stream is played at 1850 frames/min for the first 3 min, also putting it at frame
5550, From that point on, both play at normal speed. ‘

During the catch-up period, user 1°s stream is running 2.8% slow and user 2°s
stream is running 2.8% fast. It is uniikely that the nsers will notice this. How-
ever, it that is a concern, the catch-up period can be spread out over a longer inter-
val than 3 minutes.

An alternative way to stow down a user to merge with another siream 15 to
give users the option of having commercials in their movies, presumably for a
lower viewing price than commercial-tree movies. The wser can also choose the
product categories, $o the comimercials will be less introsive and more likety to be
watched. By manipulating the number, length. and timing of the commercials, the
stream can be held back long enough to get in syne with the desired stream
i Krishnan, 1999},

7.7.2 File Caching

Caching can also be usetul in multimedia systems in a different way. Due to
the large size of most movies (2 GB). video servers often cannot store afl their
movies on disk, so they keep them on DVD or tape. When a movie is needed. it
can always be copied 1o disk, but there is u substantial startup time 10 locate the
movie and copy it to disk. Consequently, most video servers maintain a disk
cache of the most heavily requested movies. The popular movies are stoted in
their entirety on disk.

Another way to use caching is to keep the first lew minutes of each movie on
disk. That way, when a movie is requested, playback can start immediately from
the disk file. Meanwhile, the movie is copied from DVD or 1ape to disk. By stor-
ing enough of the movie on disk all the time. it is passible 1o have a very high pro-
bability that the nexi piece of the movie has been feiched before it is needed. If
all goes well, the entire movie will be on disk well before it is needed. It will then
go in the cache and stay on disk in case therc are more requests later. If too much
time goes by without another request, the movie will be removed from the cache
to make room for a more popular one.

7.8 DISK SCHEDULING FOR MULTIMEDIA

Multimedia pats different demands on the disks than traditional texi-oriented
applications such as compilers or word processors. In particuiar, multimedia
demands an extremety high data rute and real-time delivery of the data. Neither
of these is trivial to provide. Furthermore, in the case of a video server, there is
economic pressure to have a single server handle thousands of clients simultane-
ously. These requirements impact the entire system. Above we looked at the fife
system. Now let us look at disk scheduling for multimedia.

SEC. 7.8 DISK SCHEDULING FOR MULTIMEDIA 495

7.8.1 Static Disk Scheduling

Although multimedia puts enormous real-time and data-rate demands on atl
parts of the system, it also has one property that makes i1 casier to handle than a
traditional system: predictability. In a traditional operating system, requests are
made tor disk blocks in a fairiy unpredictable way. The best the disk subsystem
can do 1s perform a one-block read ahead for each open {ile. Other than that, all #t
can do 15 wail for requests (0 come in and process them on demand, Multimedia
15 different. Each active stream puts a well-defined load on the system that is
highly predictabie. For NTSC playback, every 33.3 msec, each client wants the
next trame m its file and the systern has 33.3 msec 1o provide all the frames (the
system needs to buffer at least one frame per stream so that the fetching of frame
k + 1 can proceed in parallel with the playback of frame k).
~ This predictable load can be used to schedule the disk using algorithms
tailored to multimedia operation. Below we will consider just one disk, but the
idea can be applied to multiple disks as well. For this example we will assume
that therc are 10 users, each one viewing a different movie. Furthermore, we will
assume that all movies have the same resolution, frame rate, and other properties.

Depending on the rest of the system, the computer may have 10 processes,
one per video stream, or one process with 10 threads, or even one process with
one thread that handles the 10 streams in round-robin fashion. The details are not
important. What is important, is that tirme is divided up into rounds, where a
round is the frame time (33.3 msec for NTSC, 40 msec for PAL). At the sturt of

each round, one disk request is generated on behalf of each user, as shown in
Fig. 7-24.

Stream
1 2 3 4 5 & ri 8 9 10
Buffer for odd frames] O O [O (| £l O Ol |13
Buffer for even frames 4t{3| |1 3 | [£] 3 | (D

¥ ¥ ¥ ¥ ¥ ¥] ¥ ¥ ¥

Block requested 701 92 281 130 326 410 160 466 204 524

Optimization algorithm

92 130 180 204 281 326 410 466 524 701
Order in which disk requests are processed —m

Figure 7-24. In one round, each movie asks for one frame.

After all the requests have come in at the start of the round, the disk knows
what tt has to do during that round. Tt also knows that no other requests will come
in until these have been processed and the next round has begun. Consequently, it

496 MULTIMEDIA OPERATING SYSTEMS CHAP. 7

can sort the requests in the optimal way, probably in cylinder order ‘(allhough con-
ceivably in sector order in some cases) and then process them in the optimal
order. In Fig. 7-24, the requests are shown sorted in cylinder order.

At first glance, one might think that optimizing the disk in this way has no
value because as long as the disk meets the deadline, it does not matter if it meets
it with | mscc to spare or 1) msec to spare. However, this conclusion is false. By
opunmizing secks in this fashion. the average time (o process each request is
diminished, which means that the disk can handle more streams per round on the
average, [n other words, optimizing disk requests like this increases the number
of movijes the server can transmit simultanecusly. Spare time at the end of the
round can also be used to service any nonreal-time requests that may exist.

If a server has too many sireams, once in a while when it is asked (0 feich
frames from distant parts of the disk and miss a deadline. But as long as missed
deadlines are rare enough, they can be tolerated in return for handling more
streams at once. Notc that what matters is the number of stireams being fetched.
Having two or more clients per stream does not affect disk performance or
scheduiing.

To keep the flow of data out to the clients maving smoothly, double buffering
is needed in the server. Puring round 1, one set of buffers is used. one butfer per
stream. When the round is finished, the output process or processes are un-
blocked and told to transmit frame 1. At the same time, new requests come in {or
frame 2 of each movie (there might be a disk thread and an output thread for cach
movie). These requests must be satisfied using a second set of buffers, as the first
ones are still busy. When round 3 starts, the first set of buffers are now free and
can be reused to fetch frame 3.

We have assumed (hat there 1s one round per frame. This limitation is not
strictly necessary. There could be two rounds per frame 1o reduce the amount of
buffer space required, at the cost of twice as many disk operations. Similarly, two
frames could be fetched from the disk per round (assuming pairs of frames are
stored contiguously on the disk). This design cuts the number of disk operations
in halt, at the cost of doubling the amount of buffer space required. Depending on
the relative availahility, performance. and cost of memory versus disk 170, the
optimum strutegy can be calculated and used.

7.8.2 Dynamic Disk Scheduling

In the example above, we made the assumption that all sireams have the same
resotution, frame rate, and other propertics. Now let us drop this assumption.
Ditferent movies may now have different data rates. so it is not possible 1o have
one round every 33,3 msec and fetch one trame tor each stream. Requests come
in to the disk more or less at random.

Each read request specifies which block is 10 be read and in addition at what
time the block is needed. that is, the deadline. For stmplicity, we will assome that

SEC. 7.8 DISK SCHEDULING FOR MULTIMEDIA 497

the actual scrvice time for cach request is the same (even though this ts certainly
not troed. In this way we can subtract the fixed service time from each request to
get the latest time the request can be initiated and stll meet the deadline. This
makes the modcl simpler because what the disk scheduler cares about is the dead-
line for scheduling the request.

When the system starts up, there are no disk requests pending. When the first
request comes in, 1t is serviced immediately. While the first seek is taking piace,
other requests may come in, so when the first request is finished. the disk driver
mity have a choice of which request 10 process next. Some reguest is chosen and
started. When that request is finished, there is again a set of possible requests:
those that were not chosen the first time and the new arrivals that came in while
the second request was being processed. In peneral, whenever a disk reguest
completes, the driver has some set of requests pending from which it has to make
a choice. The question is: “"What algorithm does it use to select the next request
to service?”

Two factors play a role in selecting the next disk request: deadlines and
cylinders. From a performance point of view, keeping the requests sorted on
cylinder and using the elevator algorithm minimizes total seek time. but may
cause requests on outlying cylinders 10 miss their deadline. From a real-time
point of view, sorting the requests on deadline and processing them in deadline
order, earliest deadline first, minimizes the chance of missing deadlines, but
increases total seek time.

These factors can be combined using the scan-EDF algorithm (Reddy and
Wyllie, 1992). The basic idea of this algorithm is to collect requests whose dead-
lines are relatively close together into batches and process these in cylinder order.
As an example, consider the situation of Fig. 7-25 at 7 = 700. The disk driver
knows it has 11 requests pending for various deadlines and various cylinders, It
could decide, for example, to treat the five requests with the earliest deadlines as a
batch, sort them on cylinder number, and use the elevator atgorithin o service
these in cylinder order. The order would then be 110, 330, 440, 676, and 680. As
[ong as every request is completed before its deadline. the requests can be safely
rearranged to minimize the tofal seek time required.

When different streams have different data rates, a serious issue arises when a
new customer shows up: should the customer be admitted. If admission of the
customer will cautse other stireams to miss their deadlines frequently. the answer is
probably no. There are two ways to calculate whether to admit the new customer
or not. One way is to assume that each customer needs 4 certain amount of
resources on the average, for example, disk bandwidth. memory buffers, CPU
time, etc, If there is enough of each left tor an average customer, the new one is
admitted.

The other algorithm is more derailed. It takes a look at the specitic movie the
Mew custemer wants and looks up the (precomputed) data rate for that movie,
which differs for black and white versus color. cartoons versus filmed, and even

498 MLULTIMEDIA OPERATING SYSTEMS CHAP. 7

Heguests (sorted on deadline)
Batch together

220 7b5 280 550 B12 103

b

J;llii1]11!!11iIIIiI]JJ_llJJJJi IillliJIJIiJJiIIIII
700 710 720 730 740 750

Cylinder

Deadline (msec) e

Figure 7-25. The scan-EDF algorithm uses deadlines and cylinder numbers for
scheduling.

love stories versus war films. Love stories move slowly with long scenes and
slow cross dissolves, all of which compress well whereas war films have many
rapid cuts, and fast action, hence many l-frames and large P-frames. If the server
has enough capacity for the specific film the new customer wants, then admission
is granted; otherwise it is denied.

7.9 RESEARCH ON MULTIMEDIA

Multimedia is a hot topic these days, so there is a considerable amount of
research about it. Much of this research is about the content, construction tools,
and applications, all of which are beyond the scope of this book. However, some
of it involves operating system structure, either writing a new multimedia operat-
ing system (Brandwein et al.. 1994), or adding multimedia support to an existing
operating system (Mercer, 1994). A related arca is the design of multimedia
servers (Bernhardt and Biersack, 1996; Heybey et al., 1996: Lougher et al,, 1994,
and Wong and Lee, 1997).

Some papers on multimedia are not about complete new systems. but about
algorithms useful in multimedia systems. A popular topic has been real-time CPU
scheduling for multimedia (Baker-Harvey, 1999; Bolosky et ai.. 1997: Dan et al.,
1994 Goyal et al., 1996: Jones et al., 1997: Nieh and Lam, 1997: and Wu and
Shu, 1996). Another topic that has been cxamined is disk scheduling for mul-
timedia (Lee et al., 1997: Rompogiannakis et al., E998; and Wang et al.. 1999,
File placement and load management on video servers are also important (Gafsi
and Biersack, 1999; Shenoy and Vin, 1999: Shenoy et al., 1999; and Venkata-
subramanian and Ramanathan, 1997) as is merging video streams to reduce
bandwidth requirements (Eager et al.. 1999),

In the text, we discussed how movie popularity affects placement on the video
server. This topic is an ongoing area of research (Bisdikian and Patel. 1995: and

S5EC. 79 RESEARCH ON MULTIMEDIA 499

Griwadz et al., 1997). Finally. security and privacy in multimedia {e.g.. in video-
conferencing} are also subjects of research interest (Adams and Sasse, 1999; and
Honeyman et. al, 1998)

7.10 SUMMARY

Mulamedia s an up-and-coming use of computers. Due to the large sizes of
multimedia files and their stringent real-time playback requirements, operating
systems designed for 1ext are not optimal for mueltimedia. Multimedia files con-
sist of multiple, paraliel trucks, usvally one video and at least one zudio and some-
imes subtitle tracks as well. These must all be synchronized during playback.

Audio is recorded by sampling the volume periodically, usuvally 44100
times/sec (for CD quality sound). Compression can be applied to the audio signal,
giving & uniform compression rate of about 10x. Video compression uses both
intraframe compression (JPEG) and interframec compression (MPEG). The latter
represents P-frames as differences from the previous frame. B-frames can be
based either on the previous frame or the next frame.

Multimedia needs real-time scheduling in order to meet its deadlines. Two
algorithms are commonly used. The first is rate monotonic scheduling, which is a
Static preemptive algorithm that assigns tixed priorities to processes based on their
periods. ‘The second is earliest deadline first, which is a dynamic algorithm that
always chooses the process with the closest deadline. EDF is more complicated,
but it can achieve 100% utilization, something that RMS cannot achieve.

Muitimedia file systems usuvally use a push model rather than a puil model,
Once a stream is started, the bits come off the disk without further user requests.
This approach is radically different from conventional operating systems, but is
needed to meet the real-time requirements.

Files can be stored contiguously or not. In the latter case, the unil can be vari-
able length (one block is one frame) or fixed length (one block ts many frames).
These approaches have different trade-offs,

File placement on the disk affects performance. When there are multiple
files, the organ-pipe algorithm is sometimes used. Striping files across multiple
disks, either wide or narrow, is common, Block and file caching strategies arc
atso widcly employed to improve performance.

PROBLEMS

L. What i3 the bit rate for uncompressed full-color XGA running at 25 framesfsec? Cuan
a stream at this rate come off an UltraWide SCST disk?

500 MULTIMEDIA OPERATING SYSTEMS CHAP. 7

2.

3

10.

1L.

12.

13.

4.

Cun vncompressed black-and-white NTSC television be senl over fast Ethernet? I so.
how many channels at once?

HDTV has twice the horizontal resolution of regular TV (1280 versus 640 pixel_s).
Using information provided in the text. how much more bandwidth does it require
than standard TV?

In Fig. 7-3, there are separate files for fast Jorwurd and fast reverse. If a video server
s mntended to support slow motion as well, is another file required or slow motion in
the forward direction? What about in the backward direction?

- A Compact Dise holds 74 min of music or 650 MB of data. Make an estimate of the

compression lactor used for music.

. A sound signal is sarmpled usiag a signed 16-bit number (1 sign bit, 15 magnitude

hits). Whal is the maximum quantization noise in percent? 1s this a bigger problem
tor flute concertos or for rock and roll or is it the same for both? Explain your answer.

A recordmg studio is able to make a master digital recording using 20-bit sampling.
The final distribution to listeners will use 16 bits. Suggest a way to reduce the effect
of quantization noise. and discuss advantages and disadvantages of your scheme.

NTSC and PAL both use a 6-MHz broadcast channel, yel NTS5C has 30 frames/sec
whereas PAL has only 25 frumes/sec. How is this possible? Does this mean thal if
both systems were 10 use the same color cncoding scheme, NTSC would have
inhierently better quality than PAL? Explain your answer,

The DCT transformation uses an 8 x 8 block, vet the algorithm used for motion com-

pensation uses 16 x 16. Does this difference cause problems, and if so, how are they
solved in MPEG?

In Fig. 7-10 we saw how MPEG works with a stationary background and a moving
actor. Suppose that an MPEG video is made from a scene in which the camera is
mounted on a tripod and pans slowing from left to right at a speed such that no two
consecutive frames are the same. Do all the frames have to be 1-frames now” Why or
why not?

Suppose that each of the three processes in Fig. 7-11 is accompanied by a process thal
supports an audio stream running with the same period as its video process, 50 audio
buffers can be updated between video frames. All three of these audio processes are
identical. How much CPU time is available for each burst of an audic process’!

Two real-time processes are running on a computer. The first one runs every 25 msce

for 10 msec. The second one runs every 40 msec for 15 msec. Will RMS always
work lor them?

The CPU of a vidco server has a utilization of 65%. How MRy movies can it show
using RMS scheduling?

In Fig. 7-13, EDF keeps the CPU busy 100% of the time up ¢ = 150, It cannor keep

-the CPU busy indefinitely because there is only 975-msec work per second for it to do

s0. Extend the [igure beyond 150 msec and determine when the CPU first goes idle
with EDF.

CHAP, 7 PROBLEMS 501

15,

16.

17,

18.

19,

20.

21,

22,

23,

25.

A DVD can hold enough data for a fuli-lengith movie and the transter rate is adequate
to display a television-quality program. Why not just use a “farm” of many DVD
drives as the data source for a video server?

The operatars of a near video-on-demand systern have discovered that peoplie in a cer-

tain city are not willing to wait more than 6 minutes for a movie to start. How many
parailel streams do they nced for a 3-hour movie?

Consider o system using the scheme of Abram-Profeta and Shin in which the vide:c
server operator wishes customers to be able to search forward or backward for | min
entirely locally. Assuming the video stream is MPEG-2 at 4 Mbps, how much buffer
space must each customer have locally?

A video-on-demand system for HIXTV uses the small block mode! of Fig. 7-18{a) with
a |-KB disk block. If the video resoiution is 1280 x 720 and the dala stream is 12
Mbps, how much disk space is wasted on intemnal fragmentation in a 2-hour movie
using NTSC?

Consider the storage allocation scheme of Fig. 7-18(a) for NTSC and PAL. For a
given disk block and movie size, does one of them suffer more internal fragmentation
thas the other? If so. which one is better and why?

Consider the two ailternatives shown in Fig. 7-18. Does the shift toward HDTV favor
cither of these systems over the other? Discuss.

The near video-on-demand scheme of Chen and Thapar works best when each frame
set is the same size. Suppose that a movie is being shown in 24 simultaneous streams
and that one (rame in 10 is an [-frame. Also assume that I-frames arc 10 umes larger
than P-frames. B-frames are the same size as P-frames. What is the probability that a
buffer equal o 4 I-frames and 20 P-frames will not he hig enough? Do you think that
such a buffer size is acceprable? To make the problem tractable, assume that frame
types are randomly aud independently distributed over the streats.

The end result of Fig. 7-16 is that the play point is not in the middle of the buffer any
more. Devise a scheme to have at least 5 min behind the play point and 5 min zhead
of it. Make any reasonable assumptions you have to. but state them expiicitly.

The design of Fig. 7-17 requires that all language tracks he read on each frame. Sup-
pose Lhat the designers of a video server have (o support a large number of languages,
but do not wanl to devote so much RAM 10 buffers to hold cach frame. What other
alternatives are available, and what are the advantages and disadvantages of each one?

A small video server has eight movies. What does Zipt's law predict as the probabili-
ties for the most popular movie, sccond most popular movie. and so on down to the
least popuiar movie?

A 14-GB disk with 1000 cvlinders is wsed to hold 1006 30-sec MPEG-2 video clips

‘running at 4 Mbps. They are stored according to the organ-pipe algorithm. Assumning

Zipf's law, what fraction of the time will the disk arm spend in the middle 10
cvlinders?

502 MULTIMEDIA OPERATING SYSTEMS CHAP. 7

26.

27.

28,

29,

3.

33.

Assumng that the relative demand for films A, B, C, and D is deseribed by prl“s I;lrw,
what is the expected relative utifization of the four disks in Fig. 7-22 for the four strip-
ing methods shown?

Two video-on-demand custoaners started watching the same PAL movie 6 sec apat.
If the system speeds up one stream and slows down the other to get them to merge,
what percent speed up/down is needed (o merge them in 3 min?

An MPEG-2 video server ases the round scheme of Fig, 7-24 for NTSC video. All the
videos come off a single 10,800 rpm UltraWide SCSI disk with an average seck time
of 3 msec. How many streams can be supported?

Repeal the previous problem. but now assime that scan-EDF redoees the uverage seck
time by 20%. How many streams can now be supported?

Repeat the previous problem once more, but now assume that each frame is striped
across four disks, with scan-EDF giving the 20% on each disk. How Many streams
can now be suppored.

The text describes using a batch of five data requests 10 schedule the situation
described in Fig. 7-25(a). It all requests take an equal amount of time, what s the
maximum time per request alfowabie in this example?

Muny of the bitmap images that are supplied for generating computer “wallpaper” use
few colors and are easily compressed. A simple compression scheme is the following:
choose a data value that does not appear in Lhe input file, and use it as a ag. Read the
file. byte by byte, looking for repeated byte vailues. Copy single values and bytes
repeated up to three times directly to the catpat tile. When a repeated string of 4 or
more bytes is found, write to the output file a stning of three bytes consisting ol the
flag byte, a byte indicating a count from 4 to 255. and the actual value tound in the
input file. Write a compression program using this algorithm. and a decompression
program that can resiore the original file. Extra credit: how can you deal) with files that
contain the flag byte in their data?

Computer animation is accomplished by displaying a sequence of slightly differeni
images. Write a program (o calculate the byte by byte difference between two
uncompressed bitmap images of the same dimensions. The output will be the same
size us the input files, of course. Use this difference file as MpUL 10 the compression
program of the previous problem, and compare the elfectiveness of this approach with
compression of individual images.

	Preface
	Contents
	1 INTRODUCTION
	2 PROCESSES AND THREADS
	3 DEADLOCKS
	4 MEMORY MANAGEMENT
	5 INPUT/OUTPUT
	6 FILE SYSTEMS
	7 MULTIMEDIA OPERATING SYSTEMS
	8 MULTIPLE PROCESSOR SYSTEMS
	9 SECURITY
	10 CASE STUDY 1
	11 CASE STUDY 2
	12 OPERATING SYSTEM DESIGN
	13 READING LIST AND BIBLIOGRAPHY
	INDEX

