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                         ABSTRACT

Algorithms for approximately optimal quantization of color
images are discussed.  The distortion measure used is the
distance in RGB space.  These algorithms are used to compute the
color map for low-depth frame buffers in order to allow
high-quality static images to be displayed.  It is demonstrated
that most color images can be very well displayed using only 256
or 512 colors.  Thus frame buffers of only 8 or 9 bits can
display images that normally require 15 bits or more per pixel.

Work reported herein was sponsored by the IBM Corporation though
a general grant agreement to MIT dated July 1, 1979.
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                         Chapter I

                        INTRODUCTION

Most research in image quantization has been for the purpose of
data compression in picture transmission systems.  In these
systems, quantization is frequently used in combination with
other compression methods such as transform coding, DPCM, and
coarse-sampling (see Netravali and Limb [35]).  Until recently,
most image processing work was on monochromatic images.  The
research described in this thesis addresses itself to the
problem of color image display rather than image transmission or
storage.  To solve this problem, we borrow some monochromatic
quantization methods which are discussed thoroughly in the
literature.

The organization of this paper is as follows.  First, some
background into the architecture of frame buffers is given, and
the computational problem of finding the optimal color map for
an image is defined.  An abstraction of the problem is derived
in order to relate the work to previous research in monochromatic
(1-dimensional) quantization.  The history of that subject is
discussed, and several algorithms for optimal and approximate
quantization are given.  Then we advance to 2 and 3-dimensional
quantization, and discuss what research has been done in this
area.  Several new algorithms for approximate color quantization
are given.  These new algorithms represent the bulk of the
research presented.  Finally, improvements to the current
quantization algorithms are considered.

-----------------------------------------------------------------

                         Chapter II

                 FRAME BUFFERS AND COLORMAPS

Before describing the hardware that is used in color image
processing, it is helpful to define what we mean by "color". 
For our purposes, we will define a color to be an ordered triple
of color components in the Red-Green-Blue color space:
(Cr, Cg, Cb).  Each component of the color is an integer in the
range [0,255] requiring 8 bits of memory.  This is a common
representation for colors in the image processing world.  This
is not the same as the video standard used by broadcast
television in the United States.  That standard, termed NTSC
encoding, is described in [28].

FRAME BUFFERS

A frame buffer, or picture memory, is a computer memory
organized into an m x n rectangular grid of dots, called picture
elements, or pixels for short.  Each pixel requires a certain
number of bits, varying from 1 in bit-map displays to 24 or more
in high-quality color displays.  We call the number of bits per
pixel the "depth" of the frame buffer.

A common size of frame buffers is m=n=512, at a depth of 8 bits:
512x512x8.  A picture this size takes up 256 Kilobytes.  When
interfaced to a processor, it is possible to read and write into
the frame buffer much like one reads and write into standard
computer memories.  The main difference is that this memory is
scanned, usually 30 times per second, to generate a video
picture which is displayed on a CRT monitor.  A magnified view
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of the pixels in a color image is shown in figure 1.  Further
explanation of frame buffers, color displays, and other computer
graphics hardware can be found in Newman and Sproull [36].

There are several different raster-scan frame buffer
architectures commercially available at present.  It is useful
to distinguish between two classes of color frame buffers: let's
call them "segregated" and "integrated".  In segregated frame
buffers, there are three independent memories for the red, green,
and blue components of an image.  Typically 8 bits are used per
picture element (pixel).  A color lookup table for each
component is inserted between the picture memory and display
device in order to allow contrast correction.

An integrated color frame buffer, on the other hand, stores a
single color number at each pixel rather than three separate
components.  These color numbers (called pixel values in the
remainder of the paper) are used as addresses into a single
color lookup table.  This "colormap" provides a level of
indirection between the data in the picture memory and the
actual displayed image.  Also, it should be realized that the
order of colors in a colormap is arbitrary.

With an integrated frame buffer of 3*n bits per pixel, one can
simulate a segregated frame buffer having n bits per primary; an
integrated frame buffer is more general than a segregated one.
Unfortunately, the memory required for the colormap of a deep
integrated frame buffer gets to be prohibitive.  The colormap of
a 24-bit integrated frame buffer, if one were to be built, would
require at least 48 Megabytes of memory.  This would make the
colormap larger than the picture memory, which would require
approximately 0.8 Megabytes.  For this reason, one rarely finds
integrated frame buffers with more than 8 or 9 bits per pixel.

Currently, segregated frame buffers are much more common than
integrated systems in the image processing world, probably
because of their simplicity and the higher quality of images.
This may change, however.  At this moment, shallow, low-
resolution integrated graphic terminals such as the Apple are
making their way into the home computer market.  They may become
much more common than the huge frame buffers one finds in
universities.  If this were to happen, the demand for color
image quantization programs would certainly increase.

Most people feel that 6 to 8 bits per component are required
for high quality grayscale images.  With fewer than 100
quantization levels, the eye is distracted by the artificial
edges called "contours."  Figure 2 shows a 2-bit quantized 
image.

Note that the colormap also allows some redundancy.  For example,
there are many ways of displaying a totally black image.  One
could black out the entire colormap and pepper the picture memory
with random pixel values, or one could zero the picture memory
and only set slot 0 of the color map to be black (R=G=B=0).

CURRENT HARDWARE:

The algorithms outlined in chapter IV were implemented for the
Ramtek 9300 Raster Display Frame Buffers at the Architecture
Machine Group (AMG) at MIT.  These are integrated 9-bit systems
with 24-bit colors in the colormap.  This implies that the
colormap (also called a color matrix) is a 9x24 table: 9 bits in,
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24 bits out.  Colormaps for the Ramtek require 2K of memory.
The resolution of these picture memories is m=640 pixels
horizontally by n=480 lines vertically, or a total of N=m x n=
307,200 pixels.

Color image separations come from several sources: photographs
digitized by vidicon through red, green, and blue filters,
digitized video frames, and images from other labs recorded on
magnetic tape.  The quantization programs described later take
the three 8-bit separations and quantize them down to 8 or 9.

OPTIMIZING THE COLORMAP

When an image is quantized, each of the 3-dimensional colors
must be encoded into a single pixel value.  At the AMG, there are
307,200 24-bit colors in the original image, each of which must
be transformed into a pixel value. This is the quantizing step,
which will be done once (in software) before saving the image on
disk or tape.  When the image is loaded into the frame buffer,
the display processor in the frame buffer does the decoding for
us through the colormap.  This transforms our color numbers
(pixel values) back into a 3-dimensional color video signal.

We wish the quantized, displayed image to approximate as closely
as possible the 24-bit original.  Although we cannot (at the AMG)
display the 24-bit original for subjective comparison with the
quantized image, the "quality" of the approximation can be
measured with distortion formulas.  This distortion formula is a
measure of the similarity of the quantized image with the
original. The formula we will use is:

This is simply the distance squared between the colors of the
two pixels in RGB space.

We try to minimize D by varying the colormap.  In other words,
we want to approximate a 24-bit-per-pixel image with an 8 or
9-bit one by minimizing the sum of the distances between
corresponding pixels in the original and quantized images.  This
is a difficult optimization problem with no fast solution.

One dimensional (monochromatic) versions of the problem are
tractable; they are discussed in the next section.  In fact,
there are efficient algorithms for the fast solution of the
optimal quantization problem for black and white images.  The
problem is far from solved, however, in the color domain.  As we
will see, the complex topology and functional interdependence of
the color cells makes the 3-d quantization problem much more
difficult.  Therefore, we must be content with approximations to
the optimal.  Several algorithms for this purpose have been
investigated.

ARE WE USING THE PROPER DISTORTION MEASURE?

Image quality and image similarity is a very difficult
physiological and psychological problem.  We will not attempt
any new discoveries in this area.  Instead, we will use the
simple distance formula in order to speed the quantization
algorithms.  A complete evaluation of image similarity would
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include such complex topics as texture, continuity, contrast,
spatial frequency, color balance, and activity.  Fortunately,
one can achieve relatively good results by ignoring most of
these effects and comparing only corresponding pixels in the
original and quantized images. That is the approach used here.

C. F. Hall [19] and others have achieved excellent color image
compression though the use of perceptual transform coding.  By
transforming into a perceptual space, redundant spectral and
spatial data are compressed.  Hall achieved good results even at
1 bit per pixel.  Unfortunately, these results are not
applicable to our frame buffer quantization problem, because
state-of-the-art frame buffers cannot yet compute spatial
transforms in real time.  The best one can do within the
constraints of integrated frame buffer architecture is to choose
the color quantization cells based on a perceptual distortion
model of color differences; no spatial effects are relevant.

What sort of color distortions can we expect when we compress
images?  When highly continuous and colorful images are
quantized, it is not possible to match every color exactly, so
we anticipate contouring effects.  The contouring effect can be
alleviated by the addition of color noise.  Experiments with
noise addition are presented in chapter IV.

We can now proceed to reformulate our image processing problem
into mathematical terms.  Let K be the number of colors to which
we are quantizing.  One could use brute force: try all
possible colormaps, and choose the one with the least distortion,
but this is a horrendous computation which would require eons of
computer time.  The natural approach is to derive our colormap
from the color distribution of the image being quantized. 

Some graphical representations of colormaps will be helpful.
See figure 3 for a cross-sectional view of the color quantization
cells of a colormap containing 16 colors.  Figure 4 shows the
distribution of colors for an image.  It is seen that the red,
green, and blue components are highly correlated in this image.
Most natural scenes contain a majority of unsaturated colors -
colors close to the gray intensity axis.

The distribution of colors in an image is analogous to a
distribution of N points in the RGB color cube.  The color cube
is a discrete lattice because the colors of our original image
have integer components between 0 and 255.  Thus there are
256x256x256 colors in the lattice, or a total of 16 million
colors.  Although the number of possible colors is many times
greater than the number of pixels in an image, it is highly
likely that there will be two pixels with the same 24-bit color.

It is understood that we intend to generate a different colormap
for each image depending on its color range.  In one sentence,
this is two-pass, adaptive intraframe tapered quantization.

The algorithms for color quantization described in chapter IV
will use the following four phases:
     1. sample image to determine color distribution
     2. select colormap based on the distribution
     3. compute quantization table which maps 24-bit colors into
          pixel values
     4. scan the image, quantizing each pixel.

Choosing the color map is the major task. For once this is
done, computing the mapping table from colors to pixel values
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is straightforward.

To simplify the upcoming quantization algorithms, we will first
define the function closest.  Let C2 = closest(C1) be the number
of the color in the colormap which minimizes distance(C1,C2).
With this function, we can write the quantization problem as:

Choose the colormap which minimizes:

Several quantization algorithms will be described in detail
later.  But first, for practice, we will solve the simpler
1-dimensional quantization problem.

-----------------------------------------------------------------

                        Chapter III

            1-DIMENSIONAL TAPERED QUANTIZATION

One wishes to approximate a distribution of N points on the
interval [0,255] with K points.  The quantization cells here are
called intervals, and the partitions at either end, the decision
levels.  The representative for each interval is called the
reconstruction level, or output level.

For monochromatic images, we simply use the distribution of
gray levels in the image as our point distribution.  Because
we are working with 8-bit graylevels, most intensities between 0
and 255 will be repeated a number of times.

In uniform quantization, the decision levels are equally spaced,
and the reconstruction levels are placed at the midpoint of each
interval.

In non-uniform, or tapered quantization, the intervals are
shortened or lengthened according to the probability of each
part of the interval.  In the communications field, tapered
quantization is called companding, because it is achieved by
compressing, then uniformly quantizing a signal to be
transmitted.  At the receiver, the signal is expanded to un-do
the compression.  The first mention of tapered quantization was
made by Panter and Dite [38].

Most of the previous work on quantization has been for the
purpose of analog-to-digital conversion in signal processing. In
the methods described in the literature, instead of quantizing a
discrete variable using frequency histograms, one quantizes over
a continuous range whose statistics are given by the probability
density of a random variable.  Elias [12] gives an excellent
history of the subject.

Max [30] was one of the first to write about the subject of
optimal quantization.  His method was to approximate the
probability density of an analog signal with a gaussian
distribution, find the optimal quantizer for the gaussian, and
use that quantizer on his signal.  This is slightly different
from our approach; we intend to find a quantizer for each frame,
rather than process a number of frames with a single quantizer.

Let the distribution be the set of points p(i) for 1<=i<=N
(where N = m x n) and each p is an integer in the interval
[0,255].  The quantization function y(x) has output value y[k]
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when x lies within the input range between x[k]+1 and x[k+1].
(x[0] = -1, x[K] = 255).  If f(x) is the number of points p[i]
with value x, then our goal is to minimize

or, if we think of p as a continuous random variable, then f(x)
is the probability density of p at x.  Then our sum becomes the
integral:

We can derive a relation between y[k-1], y[k], and x[k] which
reduces the number of independent variables in this optimization
problem.  If y[k-1] and y[k] are fixed, then what value of x[k]
minimizes the sum S = D[k-1]+D[k]?  The decision level should be
placed midway between the output levels on either side:
x[k] = (y[k-1]+y[k])/2.  In addition, D[k] is minimized when y[k]
is the centroid of its interval:

Max used a trial-and-error method to find the optimum decision
and output levels.  The first output level, y[0], is chosen, and
all subsequent levels can be derived using (?) and (?).
Many different placements for y[0] are tried until the last
output level comes out to be the centroid of the interval from
x[k-1] to x[k].

Another approach is that used by Bruce [8], and rediscovered by
the author.  It is a dynamic programming algorithm which takes
advantage of the independence of different quantization
intervals.  Dynamic programming is a process by which a complex,
multivariate decision is broken down into a sequence of
decisions; it is called a multistage decision process [5], [6],
[31].

Netravali and Saigal [32] also devised an algorithm for optimal
1-dimensional quantization.  Theirs is based on methods for
finding fixed points in mappings.

FINDING THE OPTIMAL QUANTIZATION BY DYNAMIC PROGRAMMING

Because we are limiting ourselves to one distortion formula -
the squared distance in RGB space - our algorithm here is
slightly simpler than the general one described by Bruce.  If the
decisions levels x[k] are known, the y[k] can be derived by the
centroid formula given above.  Therefore, to find a K-interval
quantization of a probability density function p, all we need do
is find the K-1 decision levels x[1], x[2], ..., x[K-1].

The Algorithm:
We will consider one decision level at a time, advancing from
left to right (small k to large), accumulating information about
the quality of different placements of x[k].  Given a placement
of x[k] from 0 to 254, we want to find the location of x[k-1]
which minimizes the distortion "so far": the sum D[0] + D[1] +
D[2] + ... + D[k-1].  This is facilitated by accumulating these
partial sums of "left-distortions" in a table.  We generate a
two-dimensional table containing, for all k and x*, the minimum
left-distortion possible, given that x[k] = x*.  In addition, we
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will need a "backpointer" table which holds the position of
x[k-1] which minimized the error to the left of x[k].

     LDIST(k,x*) = min sum D[j]  - given that x[k]=x*
          over all possible positions for x[k-1], x[k-2], ..., x[1]

     PREV(k,x*) = position of x[k-1] which minimized LDIST(k,x*)

Generating this table level by level is similar to generating
Pascal's triangle row by row.  They are both Dynamic Programming
methods because they avoid recursion by keeping a table of
accumulated results.  The big win is that LDIST can be computed
at each level without a lot of recomputation:

     LDIST(k,x*) = min D[k-1] + LDIST(k-1,x') over all possible x'

So when k=K-1 is reached, the backpointers are traced to find
the K reconstruction levels.

This is far superior to the brute-force method.  It can find the
optimal 16 level quantization for a black and white image in one
or two minutes.  Figure 6 shows a comparison between a 16-level
(4-bit) uniform quantization of "Pamela" and a tapered
quantization, also with 16 levels.  Figure 7 shows the
quantization function, and another plot of the inverse of the
probability distribution, p(i).

RELATION TO FUNCTION APPROXIMATION

Plotting the distribution this way shows graphically that the
one-dimensional quantization problem is related to the
approximation of certain functions of one variable.  That
relation can be explored mathematically:

Both the probability distribution and its inverse function are
non-decreasing. Approximation of p(i) by a staircase function
having K steps is equivalent to the quantization formulation.
This staircase function is a stepwise-constant function r(i)
defined by:

     r(i) = y[k]  if  x[k]+1 <= p(i) <= x[k+1]

     or (equivalently) if t[k]+1 <= i <= t[k+1]
               where t[k] = F(x[k]) and x[k] = p(t[k])

Minimizing the D in the quantization problem corresponds to the
least-squares best-fit, here in the function approximation
problem.

Why is this an equivalent problem?  We can transform Max's
distortion formula into the one above:
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So we see that the monochromatic color-selection problem is related to
several others:
     the analog signal tapered-quantization problem
     the approximation of a random variable, or a point distribution
     the approximation of non-decreasing functions with
          staircase functions

-----------------------------------------------------------------

                        Chapter IV

                  3D TAPERED QUANTIZATION

HISTORY OF COLOR QUANTIZATION

Color quantization is usually done by treating the three color
coordinates independently.  Although the three color components
can be decorrelated by transforming the color space to YIQ or
Lab or some other color space (see [28] and [41]), independent
quantization in these spaces is inefficient because much of
their space lies outside the RGB color cube [24].  In any event,
color transforms are of little use in quantization for display;
their proper place is in image compression systems.  An excellent
review of the subject is Limb [28].  Multidimensional quantization
is discussed by In Der Smitten [23], Stenger [47], and Zador[51].

RELATION TO SPHERE-PACKING

Color quantization of a uniformly-distributed set of 3-d points
is analogous to close-packing of spheres into a cube.  Coxeter
[11] describes empirical experiments to determine the highest
density packing of spheres.  Cubic close-packing is the densest
known, but just as in multi-dimensional quantization, there are
a number of unanswered questions in this field.

TAPERED QUANTIZATION

When the quantization problem is generalized to 2 or 3
dimensions, it becomes much more difficult.  The reason for this
is the increased interdependency of quantization cells.  While in
the one-dimensional case all intervals are determined by the two
decision levels at either end, in the two and three-dimensional
cases the quantization cells can be polygons (and polyhedra)
with any number of sides.  Because each quantization cell
contacts a number of others (3 or more), and the topology of
quantization cells is variable, we can no longer represent a
quantization by a list of decision levels x[k].

Our only recourse is to derive the quantization decision levels
from the quantization outputs, in contrast to the algorithm
given previously for the 1-d case, which first found the
decision levels, and then computed the reconstruction levels.

We should formalize the multi-dimensional quantization problem.
If our points are d-dimensional, then let
     P[i]=(x1[i],x2[i],...,xd[i])  for 1<=i<=N
be the list of (unordered) points.  We wish to choose the
colormap (a set of points Y[k]=(y1[k],...,yd[k])) which minimizes
the distortion measure D:

     where (as before) closest(P) is the k which minimizes the
     distance between P and Y[k].  k is the cell number, or
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     pixel value.

The locus of points for which closest(P)=k is the quantization
cell having output k.  An example is shown in figure 3.

Although it has not been proven, it seems certain that there is
no efficient (polynomial time) algorithm for the solution of the
optimal multidimensional quantization problem.  All further
discussion is limited to approximations to optimal quantization.

ALGORITHMS FOR 3-D QUANTIZATION:

The Popularity Algorithm:

The popularity algorithm was invented by Tom Boyle and Andy
Lippman at the AMG in the Summer of 1978.  In this scheme one
first quantizes the original colors down to 5 bits per primary.
(This reduces the total number of bits per color from 24 to 15,
thus allowing us to fit one color in two bytes of the computer
for storage.)  This clumping, or grouping of the colors has the
effect of reducing the number of different colors, and
increasing the frequency of each color.  The assumption is
that a good choice for the colormap can be made by finding the
densest regions in the color cube.  The popularity algorithm
chooses the K clumps with the greatest popularity as its colormap.

Boyle's program, which was called the "Color Maker", was
rewritten by the author in July 1979.  The new version is called
IMAGE.  IMAGE has been coded in assembler, thoroughly debugged,
and is now in regular use at the AMG.  It can complete all four
phases of the process in 2.5 minutes.  More implementation
details for IMAGE are given in the appendix.  Several examples of
its quantized images are displayed in figures 10-15.

TWO PROBLEMS AND THEIR SOLUTIONS:

Boyle's MAKER program used a different approach when mapping
those colors which were not among the lucky few to make it into
the colormap.  Instead of using a function like closest which
finds the nearest color spectrally, it would choose the pixel's
neighbor spatially.

With this algorithm, color searching was done while the image
was being redrawn (during phase 4), and there was no phase 3 at
all.  MAKER would examine each pixel to determine if its color
was among the chosen.  If not, the program would simply write
the value of the pixel to its left (which it had just computed).
This method did not work well, as you can see from the image
below.  Boyle frequently got streaks near vertical edges in his
images (see fig. 16).

To prevent these defects, MAKER was modified to use the closest
function.

IS HUMAN INTERACTION NECESSARY?

There are several cases in which IMAGE will neglect the colors
of high-interest areas of an image, such as eyeballs.  To remedy
this, a method for manually weighting the sampling phase was
developed.  The DOODLE program allows a user, employing a
digitizing tablet, to point to areas of the image he wants to
emphasize.  These points will be multiply counted in the frequency
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table, guaranteeing better representation in the colormap.
Generally this feature is not needed, but occasionally it is
very effective.

MORE PROBLEMS WITH THE POPULARITY ALGORITHM:

It was found that IMAGE performs poorly when extreme compression
is desired (quantization to 6 or fewer bits). The shortcomings
of the popularity algorithm arise because it frequently neglects
sparse, but remote, regions of the color cube. The populous
regions are always well-represented, at the expense of
less-popular regions which do not have large clump-counts.

It is the grays and low-saturation colors which are popular and
over-represented, and the highly-saturated primaries which are
neglected in the colormaps chosen by the popularity algorithm.

One can draw a useful analogy to a political quantization
problem: the selection of members to the legislative branch of
government.  The popularity algorithm is like the House of
Representatives - there are few representatives from the sparse
regions (eg. Alaska and Arkansas).  The Senate, on the other
hand, is like uniform quantization.  It provides a better
representation of the Unites States because its makeup is makeup
is determined by the spatial extent of states.  We will borrow
this idea of emphasising the spatial over the popular in the
Median Cut algorithm.

The Median Cut Algorithm

This algorithm was invented by the author in December, 1979. It
was undertaken as an alternative to the popularity algorithm.
The median cut algorithm repeatedly subdivides the color cube
into smaller and smaller rectangular boxes.

It starts by finding the minimum and maximum red, green, and
blue among all N colors (N usually 307200).

Iteration step: Split a box.
For each box, the minimum and maximum value of each component is
found. The largest of these three determines the dominant
dimension - the dimension along which we would want to split the
box. The box with the largest dominant dimension is found, and
that box is split in two. The split point is the median point -
the plane which divides the box into two halves so that equal
numbers of colors are on each side. The colors within the box are
segregated into two groups depending on which half of the box
they fall.

The above step is repeated until the desired number of boxes is
generated.  Then the representative for that cell (the
quantization output) is computed by averaging the colors
contained.  The list of reconstruction levels is our colormap.

The CUT program was implemented by taking IMAGE and replacing
step 2 (the colormap selection phase), with the median cut
algorithm described above.  An example of its output is figure
17.

The Variance Bisection Algorithm:
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This algorithm is a variation on the Median Cut algorithm.  There
is only one change: instead of splitting at the median point, we
split spatially.  The program considers all possible split planes
perpendicular to the dominant dimension, and for each finds the
variance of colors in the left and right halves of the box.  The
split point is chosen in order to minimize that sum.  This
should tend to minimize the mean squared error much better than
the median cut method.  The variance bisection method has not
been implemented yet.

THE ADDITION OF NOISE

As mentioned before, the addition 49 noise to a severely
quantized image can help remove quantization distortion.  This
was tried for monochromatic images by Goodall [16] and Roberts
[42].  They found that black and white images can be quantized to
3 or 4 bits with good results.  Huang et al. [20] point out
that this noise addition succeeds because the eye objects more to
structured noise than unstructured noise.  The lesson is that it
is best to transform quantization noise into random noise.

Two examples of the addition of color noise are shown in figures
19 and 20.

-----------------------------------------------------------------

                         Chapter V

          CONCLUSIONS AND IDEAS FOR FURTHER STUDY

IMPROVEMENTS TO THE DISTORTION FORMULA:

The error criterion used in all of the research described above
is a squared error formula in RGB space:

This formula is not ideal, since it does not conform to the
subjective sensitivity of viewers.  The ideal distortion measure
would be based on the perceptual properties of human viewers,
since it is they who ultimately use the images [47].

MacAdam (see [28]) has carried out extensive physiological tests
to determine the perceptual differences between colors.  Ideally,
a distance measure, or color metric, should be defined using his
empirical measurements.  This would provide a more accurate model
of the sensitivity of the eye and brain to different color
ranges. Unfortunately, the formula for such a model would be
spatially variant, unlike the simple distance formula used in
our model. Thus the distance between two colors would be a
function of six variables:

so we would no longer be working in a Euclidean space. This
makes computation much more difficult.

If a complete perceptual distortion model is not feasible, then
what improvements our simple the distance formula could be made?
One improvement on our formula would be the addition of
coefficients to weight the three components differentially:

Limb et al. [28] indicate that the proper coefficients here
should be approximately: ar = 1.0, ag = 1.2, ab = 0.8.
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Another improvement could be achieved by using the logarithm of
intensity rather than the intensity itself, since humans are
more sensitive to intensity differences at low intensities than
at high ones (the Weber-Fechner law - see [9] and [25]).

GENERAL CONCLUSIONS

We found that the architecture of integrated frame buffers
forces certain restrictions on any attempt to display color
images.  One is naturally led to the non-separable
multidimensional quantization problem.  Although the optimal
solution of this problem is computationally intractable, there
are approximate techniques which allow high-quality color
quantization to be done efficiently.  Using one of the
algorithms described, it is possible to display a full-color
image using only 256 colors, thus tripling memory efficiency. 
It is conjectured that the use of random noise could improve
efficiency even further.

-----------------------------------------------------------------
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                         Appendix

                     THE IMAGE PROGRAM

PHASE 1:
Sample the 5-bit separations of the image, accumulating
the frequency counts of each of the possible 2^15=32768 colors.

Because of the word-size on our computers (Interdata 7/32's),
the frequency counts cannot exceed 32767, so only a fraction
(usually 1/20) of the pixels in an image are actually counted in
the frequency table.  The sampling pattern used is a random
sprinkling. There is also a method of manually choosing the
sampling points which was described in chapter IV.

Another hardware-related problem is the huge size of the
frequency table.  There is no room for a 64K frequency table in
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the processor on which IMAGE is run, so we must compact it.  On
most images, only 2000 to 5000 of the 32768 possible colors
appear.  This means that we can store the data using less memory
by creating a linear list of colors and their frequencies. One
long list was not used, however, because of the long search time
to find a color.  To optimize search time, a hash table was used.

The low 3 bits of each 5-bit primary are concatenated into a
9-bit hash key.  This key is our index into 512 short lists.
Because the low 3 bits of each component are used instead of the
3 most significant bits, we are more likely to get a
uniformly-filled hash table, and the average search time will be
minimized.

Each hash element requires 6 bytes: 2 bytes for the 15-bit color,
2 for the frequency count, and a 2-byte offset to the next hash
element in the hash bucket.

PHASE 2:
This is the important phase.  It is where the frequency table is
used to choose the colormap.  IMAGE uses the popularity
algorithm.  That is done, as we mentioned, by finding the K most
frequent 15-bit colors - usually K=512 or 256.  After the
colormap is chosen, it is loaded into the hardware color lookup
table of the frame buffer, for use in phase 4.

PHASE 3:
During this phase we compute the mapping from colors to pixel
values. For each of the colors which were present during phase 1
(there were something like 2000 or 5000 of them), we use the
closest function to find the nearest of the K colors in the
colormap. In other words, we quantize.

IMPLEMENTING CLOSEST

The program for fast mapping of colors to pixel values is worth
describing.  The straightforward way to implement closest is to
search through the K colors in the colormap and find the one
which minimizes the distance from color P to Y[k].  But because
closest is a critical, low-level subroutine in IMAGE, it was
optimized.

The subroutine for this (called BEST), also uses hash tables,
though differently organized than those for the sampling phase.
The hash buckets for BEST are organized into 7x7x7=343 lists,
each containing the colors from a 64x64x64 cubical region of the
color space.  Since neighboring regions overlap by 32 units,
each color can be in as many as 8 lists.  This huge hashed color
table is built, after the colormap is computed in phase 2, and
all subsequent calls to the closest BEST use this table for fast
lookup.

Given any color in RGB color space, its closest match is computed
by finding which of the 343 cubes has its center closest to our
input color.  Then the BEST program searches through the short
list of colors for that cube.  For a colormap containing K=512
colors, the average list length is 12 colors. The distance
between the input color and each of these colors is computed,
and the color number (pixel value) of the closest is returned.
If the list is empty (this happens in sparse regions of the
color cube - usually the saturated colors) BEST does an
exhaustive search through all K colors.
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The author must confess that this algorithm does not always
return the closest color.  But if the closest color is within a
sphere of radius 16 or outside a sphere of radius 48, the correct
answer is guaranteed.  In this mid-range, the color found can be
up to 3 times more distant than the closest one.
In practice, no effects of its imperfection
have been noticed.

PHASE 4:
During the previous phase the sampling hash table is filled so
that along with each 15-bit color is found the new pixel value.
Now we scan the 15-bit original image, looking up each color in
the hash table to find its quantized pixel value. When this
pixel value is sent to the frame buffer, the image is painted on
the display.  This completes the IMAGE algorithm.

-----------------------------------------------------------------
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