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ABSTRACT

Al gorithns for approximately optimal quantization of color

i mges are discussed. The distortion neasure used is the

di stance in RGB space. These algorithns are used to compute the
color map for lowdepth frane buffers in order to allow
high-quality static imges to be displayed. It is denonstrated
that nost col or images can be very well displayed using only 256
or 512 colors. Thus frame buffers of only 8 or 9 bits can

di splay inages that normally require 15 bits or nore per pixel.

Work reported herein was sponsored by the | BM Corporation though
a general grant agreement to MT dated July 1, 1979
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Chapter |
| NTRODUCTI ON

Most research in inmage quantization has been for the purpose of
data conpression in picture transn ssion systens. In these
systens, quantization is frequently used in conbination with

ot her conpression nmethods such as transform codi ng, DPCM and
coarse-sanpling (see Netravali and Linb [35]). Until recently,
nmost i mage processing work was on nmonochromatic inages. The
research described in this thesis addresses itself to the
probl em of col or image di splay rather than i mage transm ssion or
storage. To solve this problem we borrow sone nonochronmatic
quantization methods whi ch are di scussed thoroughly in the
literature.

The organi zation of this paper is as follows. First, sone
background into the architecture of frame buffers is given, and
the conputational problemof finding the optinal color map for
an inmage is defined. An abstraction of the problemis derived
in order to relate the work to previous research in nonochromatic
(1-di mensi onal) quantization. The history of that subject is

di scussed, and several algorithnms for optinmal and approxi mate
quantization are given. Then we advance to 2 and 3-di nensi ona
quanti zation, and discuss what research has been done in this
area. Several new algorithns for approxi mate col or quanti zation
are given. These new al gorithns represent the bulk of the
research presented. Finally, inprovenents to the current

quanti zation al gorithns are considered.

Chapter 11
FRAME BUFFERS AND COLORMAPS

Bef ore describing the hardware that is used in col or inmage
processing, it is helpful to define what we mean by "color".

For our purposes, we will define a color to be an ordered triple
of col or conponents in the Red-G een-Blue col or space

(Cr, Cg, Ch). Each conponent of the color is an integer in the
range [0, 255] requiring 8 bits of nenory. This is a comon
representation for colors in the i mage processing world. This
is not the same as the video standard used by broadcast
television in the United States. That standard, termed NTSC
encoding, is described in [28].

FRAME BUFFERS

A frame buffer, or picture nenory, is a conputer menory

organi zed into an mx n rectangular grid of dots, called picture
el ements, or pixels for short. Each pixel requires a certain
nunber of bits, varying from1 in bit-map displays to 24 or nore
in high-quality color displays. W call the nunmber of bits per
pi xel the "depth" of the frane buffer.

A common size of franme buffers is nFEn=512, at a depth of 8 bhits:
512x512x8. A picture this size takes up 256 Kil obytes. Wen
interfaced to a processor, it is possible to read and wite into
the frame buffer nuch |ike one reads and wite into standard
conputer nenories. The main difference is that this nenory is
scanned, usually 30 tines per second, to generate a video
picture which is displayed on a CRT nonitor. A magnified view
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of the pixels in a color image is shown in figure 1. Further
explanation of frame buffers, color displays, and other computer
graphics hardware can be found in Newman and Sproull [36].

There are several different raster-scan frame buffer

architectures commercially available at present. It is useful

to distinguish between two classes of color frame buffers: let's
call them "segregated” and "integrated”. In segregated frame
buffers, there are three independent memories for the red, green,
and blue components of an image. Typically 8 bits are used per
picture element (pixel). A color lookup table for each

component is inserted between the picture memory and display
device in order to allow contrast correction.

An integrated color frame buffer, on the other hand, stores a
single color number at each pixel rather than three separate
components. These color numbers (called pixel values in the
remainder of the paper) are used as addresses into a single
color lookup table. This "colormap" provides a level of
indirection between the data in the picture memory and the
actual displayed image. Also, it should be realized that the
order of colors in a colormap is arbitrary.

With an integrated frame buffer of 3*n bits per pixel, one can
simulate a segregated frame buffer having n bits per primary; an
integrated frame buffer is more general than a segregated one.
Unfortunately, the memory required for the colormap of a deep
integrated frame buffer gets to be prohibitive. The colormap of
a 24-bit integrated frame buffer, if one were to be built, would
require at least 48 Megabytes of memory. This would make the
colormap larger than the picture memory, which would require
approximately 0.8 Megabytes. For this reason, one rarely finds
integrated frame buffers with more than 8 or 9 bits per pixel.

Currently, segregated frame buffers are much more common than
integrated systems in the image processing world, probably
because of their simplicity and the higher quality of images.

This may change, however. At this moment, shallow, low-
resolution integrated graphic terminals such as the Apple are

making their way into the home computer market. They may become

much more common than the huge frame buffers one finds in
universities. If this were to happen, the demand for color
image quantization programs would certainly increase.

Most people feel that 6 to 8 bits per component are required
for high quality grayscale images. With fewer than 100
quantization levels, the eye is distracted by the artificial
edges called "contours." Figure 2 shows a 2-bit quantized
image.

Note that the colormap also allows some redundancy. For example,
there are many ways of displaying a totally black image. One

could black out the entire colormap and pepper the picture memory
with random pixel values, or one could zero the picture memory

and only set slot 0 of the color map to be black (R=G=B=0).

CURRENT HARDWARE:

The algorithms outlined in chapter IV were implemented for the
Ramtek 9300 Raster Display Frame Buffers at the Architecture
Machine Group (AMG) at MIT. These are integrated 9-bit systems
with 24-bit colors in the colormap. This implies that the

colormap (also called a color matrix) is a 9x24 table: 9 bits in,
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24 bits out. Colormaps for the Rantek require 2K of menory.
The resol ution of these picture nenories is m=640 pixels
horizontally by n=480 lines vertically, or a total of N=mx n=
307, 200 pi xel s.

Col or inmage separations conme from several sources: photographs
digitized by vidicon through red, green, and blue filters,
digitized video franes, and i mages from other | abs recorded on
magnetic tape. The quantization prograns described | ater take
the three 8-bit separations and quantize themdown to 8 or 9

OPTI M ZI NG THE COLORMAP

When an image is quantized, each of the 3-dinmensional colors

must be encoded into a single pixel value. At the AM5 there are
307,200 24-bit colors in the original inmge, each of which nust
be transformed into a pixel value. This is the quantizing step,
which will be done once (in software) before saving the imge on
disk or tape. Wen the image is |oaded into the frame buffer,
the di splay processor in the frane buffer does the decoding for
us through the colormap. This transforms our col or nunbers

(pi xel values) back into a 3-di nensi onal col or video signal

We wi sh the quantized, displayed inmage to approxi mate as closely
as possible the 24-bit original. Al though we cannot (at the AMY
display the 24-bit original for subjective conparison with the
quantized i mage, the "quality" of the approxi mation can be
measured with distortion formulas. This distortion fornula is a
measure of the simlarity of the quantized inmage with the
original. The fornula we will use is:

This is sinmply the distance squared between the colors of the
two pixels in RGB space.

We try to minimze D by varying the colormap. In other words,
we want to approximate a 24-bit-per-pixel image with an 8 or
9-bit one by mnimzing the sumof the distances between
correspondi ng pixels in the original and quantized i mages. This
is adifficult optimzation problemw th no fast sol ution

One di nmensi onal (nonochromatic) versions of the problemare
tractable; they are discussed in the next section. |In fact,
there are efficient algorithms for the fast solution of the
optimal quantization problemfor black and white images. The
problemis far from sol ved, however, in the color domain. As we
will see, the conplex topology and functional interdependence of
the color cells nakes the 3-d quantization probl em much nore
difficult. Therefore, we nmust be content with approximtions to
the optimal. Several algorithms for this purpose have been

i nvesti gat ed.

ARE VEE USI NG THE PROPER DI STORTI ON MEASURE?

Image quality and image simlarity is a very difficult
physi ol ogi cal and psychol ogi cal problem We will not attenpt
any new discoveries in this area. Instead, we will use the
sinmple distance fornula in order to speed the quantization
algorithms. A conplete evaluation of inmage sinlarity would
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i ncl ude such conplex topics as texture, continuity, contrast,
spatial frequency, color balance, and activity. Fortunately,
one can achieve relatively good results by ignoring nost of
these effects and conparing only correspondi ng pixels in the
original and quantized i mages. That is the approach used here.

C. F. Hall [19] and others have achi eved excel |l ent col or inmage
conpression though the use of perceptual transformcoding. By
transformng into a perceptual space, redundant spectral and
spatial data are conpressed. Hall achieved good results even at
1 bit per pixel. Unfortunately, these results are not
applicable to our franme buffer quantization problem because
state-of-the-art frame buffers cannot yet conpute spati al
transforms in real tine. The best one can do within the
constraints of integrated frame buffer architecture is to choose
the color quantization cells based on a perceptual distortion
nodel of color differences; no spatial effects are rel evant.

What sort of color distortions can we expect when we conpress

i mmges? \When highly continuous and col orful inages are
quantized, it is not possible to match every col or exactly, so
we anticipate contouring effects. The contouring effect can be
all eviated by the addition of color noise. Experinments with
noi se addition are presented in chapter |V.

We can now proceed to refornul ate our inmage processing probl em
into mathematical ternms. Let K be the nunber of colors to which
we are quantizing. One could use brute force: try al

possi bl e col ormaps, and choose the one with the |least distortion,
but this is a horrendous conputation which would require eons of
conputer tine. The natural approach is to derive our col ormap
fromthe color distribution of the imge being quanti zed.

Sone graphical representations of colormaps will be hel pful

See figure 3 for a cross-sectional view of the color quantization
cells of a colormap containing 16 colors. Figure 4 shows the
distribution of colors for an image. It is seen that the red,
green, and bl ue conponents are highly correlated in this imge.
Most natural scenes contain a majority of unsaturated colors -
colors close to the gray intensity axis.

The distribution of colors in an inmage is anal ogous to a
distribution of N points in the RG color cube. The color cube
is a discrete lattice because the colors of our original inmage
have integer conponents between 0 and 255. Thus there are
256x256x256 colors in the lattice, or a total of 16 million
colors. Although the nunber of possible colors is nmany tines
greater than the nunber of pixels in an image, it is highly
likely that there will be two pixels with the sane 24-bit col or

It is understood that we intend to generate a different col ormap
for each image depending on its color range. |n one sentence,
this is two-pass, adaptive intraframe tapered quantization

The al gorithns for color quantization described in chapter 1V
will use the follow ng four phases:
1. sanple inmage to determ ne color distribution
2. select colornap based on the distribution
3. conpute quantization table which maps 24-bit colors into
pi xel val ues
4. scan the inmage, quantizing each pixel

Choosing the color map is the major task. For once this is
done, comnputing the mapping table fromcolors to pixel values
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i s straightforward.

To sinplify the upcom ng quantization algorithns, we will first
define the function closest. Let C2 = closest(Cl) be the nunber
of the color in the colormap which nmnimzes distance(Cl, C2).
Wth this function, we can wite the quantizati on probl em as:

Choose the col ormap which mnim zes:

Several quantization algorithns will be described in detai
|later. But first, for practice, we will solve the sinpler
1-di mensi onal quanti zation probl em

Chapter 111
1- DI MENSI ONAL TAPERED QUANTI ZATI ON

One wi shes to approximate a distribution of N points on the
interval [0,255] with K points. The quantization cells here are
called intervals, and the partitions at either end, the decision
| evels. The representative for each interval is called the
reconstruction | evel, or output |evel

For nmonochromatic i mages, we sinply use the distribution of

gray levels in the image as our point distribution. Because

we are working with 8-bit graylevels, nost intensities between 0
and 255 will be repeated a number of tines.

In uniformquantization, the decision levels are equally spaced,
and the reconstruction levels are placed at the m dpoint of each
i nterval .

I'n non-uniform or tapered quantization, the intervals are
shortened or |engthened according to the probability of each
part of the interval. 1In the comunications field, tapered
quantization is called conpandi ng, because it is achieved by
compressing, then uniformy quantizing a signal to be
transmitted. At the receiver, the signal is expanded to un-do
the conpression. The first mention of tapered quantization was
made by Panter and Dite [38].

Most of the previous work on quantization has been for the

pur pose of anal og-to-digital conversion in signal processing. In
the nmet hods described in the literature, instead of quantizing a
di screte variabl e using frequency histograns, one quantizes over
a continuous range whose statistics are given by the probability
density of a randomvariable. Elias [12] gives an excellent

hi story of the subject.

Max [30] was one of the first to wite about the subject of
optimal quantization. H's nethod was to approxi mate the
probability density of an analog signal with a gaussian
distribution, find the optinmal quantizer for the gaussian, and
use that quantizer on his signal. This is slightly different
from our approach; we intend to find a quantizer for each frame,
rat her than process a nunber of frames with a single quantizer.

Let the distribution be the set of points p(i) for 1<=i<=N

(where N= mx n) and each p is an integer in the interva
[0,255]. The quantization function y(x) has output val ue y[K]
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when x lies within the input range between x[k]+1 and x[ k+1].
(x[0] =-1, x[K] = 255). If f(x) is the nunber of points p[i]
with value x, then our goal is to mnimze

or, if we think of p as a continuous randomvariable, then f(x)
is the probability density of p at x. Then our sum becones the
i ntegral

We can derive a relation between y[k-1], y[k], and x[ k] which
reduces the number of independent variables in this optimzation
problem If y[k-1] and y[k] are fixed, then what val ue of x[Kk]
mnimzes the sumS = D[ k-1]+D  k]? The decision |evel should be
pl aced m dway between the output |evels on either side:

x[k] = (y[k-1]+y[k])/2. In addition, D k] is mnimzed when yJ[K]
is the centroid of its interval

Max used a trial-and-error method to find the opti num deci sion
and output levels. The first output level, y[0], is chosen, and
all subsequent |evels can be derived using (?) and (?).

Many different placenments for y[0] are tried until the |ast

out put | evel comes out to be the centroid of the interval from
x[k-1] to x[k].

Anot her approach is that used by Bruce [8], and redi scovered by
the author. It is a dynanmic programm ng al gorithm which takes
advant age of the independence of different quantization
intervals. Dynanmic programring is a process by which a conpl ex,
mul tivariate decision is broken down into a sequence of
decisions; it is called a nmultistage decision process [5], [6],
[31].

Netravali and Saigal [32] also devised an algorithm for optinma
1-di mensi onal quantization. Theirs is based on methods for
finding fixed points in nmappings.

FI NDI NG THE OPTI MAL QUANTI ZATI ON BY DYNAM C PROCRAMM NG

Because we are limting ourselves to one distortion fornula -

the squared distance in RGB space - our algorithmhere is
slightly sinpler than the general one described by Bruce. If the
deci sions levels x[k] are known, the y[k] can be derived by the
centroid formula given above. Therefore, to find a K-interva
quantization of a probability density function p, all we need do
is find the K-1 decision levels x[1], x[2], ..., X[K-1].

The Al gorithm

We will consider one decision |level at a time, advancing from
left toright (small k to large), accunulating infornmation about
the quality of different placenments of x[k]. G ven a placenent
of x[k] fromO to 254, we want to find the |ocation of x[k-1]
which nminimzes the distortion "so far": the sumD[ 0] + D 1] +
D2] +... + Dk-1]. This is facilitated by accunul ating t hese
partial suns of "left-distortions" in a table. W generate a
two-di nensi onal table containing, for all k and x*, the mininmum
| eft-distortion possible, given that x[k] = x*. In addition, we
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will need a "backpointer" table which holds the position of
X[k-1] which minimized the error to the left of x[K].

LDIST(k,x*) = min sum D[j] - given that x[k]=x*
over all possible positions for x[k-1], x[k-2], ..., X[1]

PREV(k,x*) = position of x[k-1] which minimized LDIST (k,x*)

Generating this table level by level is similar to generating

Pascal's triangle row by row. They are both Dynamic Programming
methods because they avoid recursion by keeping a table of
accumulated results. The big win is that LDIST can be computed
at each level without a lot of recomputation:

LDIST(k,x*) = min D[k-1] + LDIST(k-1,x") over all possible x'

So when k=K-1 is reached, the backpointers are traced to find
the K reconstruction levels.

This is far superior to the brute-force method. It can find the
optimal 16 level quantization for a black and white image in one
or two minutes. Figure 6 shows a comparison between a 16-level
(4-bit) uniform quantization of "Pamela” and a tapered
quantization, also with 16 levels. Figure 7 shows the
quantization function, and another plot of the inverse of the
probability distribution, p(i).

RELATION TO FUNCTION APPROXIMATION

Plotting the distribution this way shows graphically that the
one-dimensional quantization problem is related to the
approximation of certain functions of one variable. That
relation can be explored mathematically:

Both the probability distribution and its inverse function are
non-decreasing. Approximation of p(i) by a staircase function
having K steps is equivalent to the quantization formulation.
This staircase function is a stepwise-constant function r(i)
defined by:

r()) = y[k] if x[k]+1 <= p(i) <= x[k+1]

or (equivalently) if t[k]+1 <=i <= t[k+1]
where t[K] = F(x[K]) and x[k] = p(t[k])

Minimizing the D in the quantization problem corresponds to the

least-squares best-fit, here in the function approximation
problem.

Why is this an equivalent problem? We can transform Max's
distortion formula into the one above:
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So we see that the nonochromatic col or-selection problemis related to
several others:
the anal og signal tapered-quantization problem
the approxi mati on of a random variable, or a point distribution
t he approxi mati on of non-decreasing functions with
stai rcase functions

Chapter 1V
3D TAPERED QUANTI ZATI ON

H STORY OF COLOR QUANTI ZATI ON

Col or quantization is usually done by treating the three color
coordi nates independently. Although the three col or conponents
can be decorrelated by transformng the col or space to YIQ or

Lab or sonme other col or space (see [28] and [41]), independent
quantization in these spaces is inefficient because much of

their space lies outside the RG color cube [24]. |In any event,
color transforns are of little use in quantization for display;
their proper place is in imge conpression systens. An excellent
review of the subject is Linb [28]. Miltidinensional quantization
is discussed by In Der Smitten [23], Stenger [47], and Zador[51].

RELATI ON TO SPHERE- PACKI NG

Col or quantization of a uniformy-distributed set of 3-d points
i s anal ogous to cl ose-packing of spheres into a cube. Coxeter
[11] describes enpirical experinents to determ ne the highest
density packing of spheres. Cubic close-packing is the densest
known, but just as in multi-dinensional quantization, there are
a nunber of unanswered questions in this field.

TAPERED QUANTI ZATI ON

When the quanti zation problemis generalized to 2 or 3

di nensions, it becomes much nore difficult. The reason for this
is the increased interdependency of quantization cells. Wile in
the one-di mensional case all intervals are determ ned by the two
decision levels at either end, in the two and three-di nensi ona
cases the quantization cells can be polygons (and pol yhedra)

wi th any nunber of sides. Because each quantization cel

contacts a nunmber of others (3 or nore), and the topol ogy of
quantization cells is variable, we can no |longer represent a
quantization by a list of decision levels x[k].

Qur only recourse is to derive the quantization decision |evels
fromthe quantization outputs, in contrast to the al gorithm
given previously for the 1-d case, which first found the
decision levels, and then conputed the reconstruction |evels.

We should formalize the nulti-di nensional quantization probl em
If our points are d-dinmensional, then |let

Plil=(x2[i],x2[i],...,xd[i]) for 1<=i<=N
be the list of (unordered) points. W w sh to choose the
colormap (a set of points Y[ k]=(yl[K],...,yd[k])) which m ninmnzes

the distortion nmeasure D

where (as before) closest(P) is the k which mnimzes the
di stance between P and Y[k]. k is the cell nunber, or
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pixel value.

The locus of points for which closest(P)=k is the quantization
cell having output k. An example is shown in figure 3.

Although it has not been proven, it seems certain that there is
no efficient (polynomial time) algorithm for the solution of the
optimal multidimensional quantization problem. All further
discussion is limited to approximations to optimal quantization.

ALGORITHMS FOR 3-D QUANTIZATION:
The Popularity Algorithm:

The popularity algorithm was invented by Tom Boyle and Andy
Lippman at the AMG in the Summer of 1978. In this scheme one
first quantizes the original colors down to 5 bits per primary.
(This reduces the total number of bits per color from 24 to 15,
thus allowing us to fit one color in two bytes of the computer

for storage.) This clumping, or grouping of the colors has the
effect of reducing the number of different colors, and

increasing the frequency of each color. The assumption is

that a good choice for the colormap can be made by finding the
densest regions in the color cube. The popularity algorithm
chooses the K clumps with the greatest popularity as its colormap.

Boyle's program, which was called the "Color Maker", was
rewritten by the author in July 1979. The new version is called

IMAGE. IMAGE has been coded in assembler, thoroughly debugged,

and is now in regular use at the AMG. It can complete all four
phases of the process in 2.5 minutes. More implementation
details for IMAGE are given in the appendix. Several examples of
its quantized images are displayed in figures 10-15.

TWO PROBLEMS AND THEIR SOLUTIONS:

Boyle's MAKER program used a different approach when mapping
those colors which were not among the lucky few to make it into
the colormap. Instead of using a function like closest which

finds the nearest color spectrally, it would choose the pixel's
neighbor spatially.

With this algorithm, color searching was done while the image
was being redrawn (during phase 4), and there was no phase 3 at
all. MAKER would examine each pixel to determine if its color
was among the chosen. If not, the program would simply write
the value of the pixel to its left (which it had just computed).

This method did not work well, as you can see from the image
below. Boyle frequently got streaks near vertical edges in his
images (see fig. 16).

To prevent these defects, MAKER was modified to use the closest
function.

IS HUMAN INTERACTION NECESSARY?

There are several cases in which IMAGE will neglect the colors

of high-interest areas of an image, such as eyeballs. To remedy
this, a method for manually weighting the sampling phase was
developed. The DOODLE program allows a user, employing a
digitizing tablet, to point to areas of the image he wants to
emphasize. These points will be multiply counted in the frequency
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tabl e, guaranteeing better representation in the col or map.
Generally this feature is not needed, but occasionally it is
very effective

MORE PROBLEMS W TH THE POPULARI TY ALGORI THM

It was found that | MAGE perforns poorly when extreme conpression
is desired (quantization to 6 or fewer bits). The shortconi ngs
of the popularity algorithmarise because it frequently neglects
sparse, but renote, regions of the color cube. The popul ous
regions are always well-represented, at the expense of

| ess- popul ar regi ons which do not have | arge cl unp-counts.

It is the grays and | ow saturation colors which are popul ar and
over-represented, and the highly-saturated primaries which are
negl ected in the col ormaps chosen by the popularity algorithm

One can draw a useful analogy to a political quantization
problem the selection of nmenbers to the |egislative branch of
governnent. The popularity algorithmis |ike the House of
Representatives - there are few representatives fromthe sparse
regions (eg. Al aska and Arkansas). The Senate, on the other
hand, is like uniformquantization. |t provides a better
representation of the Unites States because its makeup is nakeup
is determ ned by the spatial extent of states. W will borrow
this idea of enphasising the spatial over the popular in the
Medi an Cut al gorithm

The Median Cut Al gorithm

This algorithmwas invented by the author in December, 1979. It
was undertaken as an alternative to the popularity algorithm
The nedi an cut al gorithmrepeatedly subdivides the col or cube
into smaller and small er rectangul ar boxes.

It starts by finding the mni rumand maxi numred, green, and
bl ue anong all N colors (N usually 307200).

Iteration step: Split a box.

For each box, the m ni mum and maxi nrum val ue of each conponent is
found. The | argest of these three determ nes the dom nant

di mensi on - the dinmension along which we would want to split the
box. The box with the |argest dom nant dinension is found, and
that box is split in two. The split point is the median point -
the pl ane which divides the box into two halves so that equa
numbers of colors are on each side. The colors within the box are
segregated into two groups dependi ng on which half of the box
they fall.

The above step is repeated until the desired nunber of boxes is
generated. Then the representative for that cell (the
quantization output) is conputed by averaging the colors
contained. The list of reconstruction levels is our col ornmap.

The CUT program was i npl enented by taking | MAGE and repl aci ng
step 2 (the colormap sel ection phase), with the nedian cut

al gorithm descri bed above. An exanple of its output is figure
17.

The Variance Bisection Al gorithm
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This algorithmis a variation on the Median Cut algorithm There
is only one change: instead of splitting at the median point, we
split spatially. The program considers all possible split planes
per pendi cul ar to the donmi nant dinmension, and for each finds the
variance of colors in the left and right halves of the box. The
split point is chosen in order to mnimze that sum This

should tend to m nimze the mean squared error rmuch better than
the medi an cut nmethod. The variance bisection nmethod has not
been i npl enented yet.

THE ADDI TI ON OF NO SE

As nentioned before, the addition 49 noise to a severely
quantized i mage can hel p renove quantization distortion. This
was tried for nmonochromatic i nages by Goodall [16] and Roberts
[42]. They found that black and white i mages can be quantized to
3 or 4 bits with good results. Huang et al. [20] point out

that this noise addition succeeds because the eye objects nore to
structured noi se than unstructured noise. The lesson is that it
is best to transform quanti zation noise into random noi se.

Two exanpl es of the addition of color noise are shown in figures
19 and 20.

Chapter V
CONCLUSI ONS AND | DEAS FOR FURTHER STUDY

| MPROVEMENTS TO THE DI STORTI ON FORMULA:

The error criterion used in all of the research described above
is a squared error fornula in RGB space:

This fornmula is not ideal, since it does not conformto the

subj ective sensitivity of viewers. The ideal distortion neasure
woul d be based on the perceptual properties of human viewers,
since it is they who ultinately use the images [47].

MacAdam (see [28]) has carried out extensive physiological tests
to determ ne the perceptual differences between colors. Ideally,
a di stance neasure, or color netric, should be defined using his
enpirical measurenents. This would provide a nore accurate node
of the sensitivity of the eye and brain to different col or
ranges. Unfortunately, the formula for such a nodel would be
spatially variant, unlike the sinple distance formula used in
our nodel. Thus the distance between two colors would be a
function of six variabl es:

so we would no | onger be working in a Euclidean space. This
makes computation nmuch nore difficult.

If a conplete perceptual distortion nodel is not feasible, then
what inprovenents our sinple the distance fornula could be nade?
One inprovenent on our formula would be the addition of
coefficients to weight the three conponents differentially:

Linb et al. [28] indicate that the proper coefficients here
shoul d be approxinmately: ar = 1.0, ag = 1.2, ab = 0.8.
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Another improvement could be achieved by using the logarithm of
intensity rather than the intensity itself, since humans are

more sensitive to intensity differences at low intensities than

at high ones (the Weber-Fechner law - see [9] and [25]).

GENERAL CONCLUSIONS

We found that the architecture of integrated frame buffers
forces certain restrictions on any attempt to display color
images. One is naturally led to the non-separable
multidimensional quantization problem. Although the optimal
solution of this problem is computationally intractable, there
are approximate techniques which allow high-quality color
quantization to be done efficiently. Using one of the
algorithms described, it is possible to display a full-color
image using only 256 colors, thus tripling memory efficiency.
It is conjectured that the use of random noise could improve
efficiency even further.
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Appendix
THE IMAGE PROGRAM

PHASE 1:
Sample the 5-bit separations of the image, accumulating
the frequency counts of each of the possible 2/015=32768 colors.

Because of the word-size on our computers (Interdata 7/32's),
the frequency counts cannot exceed 32767, so only a fraction
(usually 1/20) of the pixels in an image are actually counted in
the frequency table. The sampling pattern used is a random
sprinkling. There is also a method of manually choosing the
sampling points which was described in chapter IV.

Another hardware-related problem is the huge size of the
frequency table. There is no room for a 64K frequency table in
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the processor on which IMAGE is run, so we mnust conpact it. On
nmost i mages, only 2000 to 5000 of the 32768 possible colors
appear. This neans that we can store the data using | ess nenory
by creating a linear list of colors and their frequencies. One
long Iist was not used, however, because of the long search tine
to find a color. To optinize search tine, a hash table was used

The low 3 bits of each 5-bit primary are concatenated into a
9-bit hash key. This key is our index into 512 short |ists.
Because the low 3 bits of each conmponent are used instead of the
3 nost significant bits, we are nore likely to get a
uniformy-filled hash table, and the average search tine will be
m ni m zed.

Each hash el enent requires 6 bytes: 2 bytes for the 15-bit col or,
2 for the frequency count, and a 2-byte offset to the next hash
el ement in the hash bucket.

PHASE 2:
This is the inportant phase. It is where the frequency table is
used to choose the colormap. | MAGE uses the popularity

algorithm That is done, as we nentioned, by finding the K nost
frequent 15-bit colors - usually K=512 or 256. After the
colormap is chosen, it is |loaded into the hardware col or | ookup
table of the frane buffer, for use in phase 4.

PHASE 3:

During this phase we conpute the mapping fromcolors to pixe

val ues. For each of the colors which were present during phase 1
(there were sonething like 2000 or 5000 of them), we use the
closest function to find the nearest of the Kcolors in the
colormap. In other words, we quantize.

| MPLEMENTI NG CLOSEST

The program for fast mapping of colors to pixel values is worth
describing. The straightforward way to inplenent closest is to
search through the K colors in the colormap and find the one
whi ch nminimzes the distance fromcolor P to Y[k]. But because
closest is a critical, |lowlevel subroutine in IMAGE, it was
optin zed.

The subroutine for this (called BEST), also uses hash tabl es,
though differently organized than those for the sanpling phase.
The hash buckets for BEST are organized into 7x7x7=343 li sts,
each containing the colors froma 64x64x64 cubi cal regi on of the
col or space. Since neighboring regions overlap by 32 units,
each color can be in as many as 8 lists. This huge hashed col or
table is built, after the colormap is conmputed in phase 2, and
all subsequent calls to the closest BEST use this table for fast
| ookup.

G ven any color in RGB color space, its closest match is conputed
by finding which of the 343 cubes has its center closest to our

i nput color. Then the BEST program searches through the short
list of colors for that cube. For a col ormap containing K=512
colors, the average list length is 12 colors. The distance

bet ween the input color and each of these colors is conputed,

and the col or nunber (pixel value) of the closest is returned.

If the list is enpty (this happens in sparse regions of the

color cube - usually the saturated col ors) BEST does an
exhaustive search through all K colors.
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The author nust confess that this algorithm does not always
return the closest color. But if the closest color is within a
sphere of radius 16 or outside a sphere of radius 48, the correct
answer is guaranteed. In this mid-range, the color found can be
up to 3 tines nore distant than the cl osest one.

In practice, no effects of its inperfection

have been noti ced.

PHASE 4:

During the previous phase the sampling hash table is filled so
that along with each 15-bit color is found the new pi xel val ue.
Now we scan the 15-bit original image, |ooking up each color in
the hash table to find its quantized pi xel value. Wen this

pi xel value is sent to the frane buffer, the inage is painted on
the display. This conpletes the | MAGE al gorithm
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