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8.1 Introduction

• Lossless compression algorithms do not deliver compression

ratios that are high enough. Hence, most multimedia com-

pression algorithms are lossy.

• What is lossy compression ?

– The compressed data is not the same as the original data,

but a close approximation of it.

– Yields a much higher compression ratio than that of loss-

less compression.
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8.2 Distortion Measures

• The three most commonly used distortion measures in image
compression are:

– mean square error (MSE) σ 2,

σ 2 =
1

N

N∑
n=1

(xn − yn)
2 (8.1)

where xn, yn, and N are the input data sequence, reconstructed data
sequence, and length of the data sequence respectively.

– signal to noise ratio (SNR), in decibel units (dB),

SNR = 10 log10
σ2
x

σ2
d

(8.2)

where σ2
x is the average square value of the original data sequence

and σ2
d is the MSE.

– peak signal to noise ratio (PSNR),

PSNR = 10 log10

x2
peak

σ2
d

(8.3)

3 Li & Drew c©Prentice Hall 2003



Fundamentals of Multimedia, Chapter 8

8.3 The Rate-Distortion Theory

• Provides a framework for the study of tradeoffs between Rate

and Distortion.

R(D)

0

H

D max

D

Fig. 8.1: Typical Rate Distortion Function.
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8.4 Quantization

• Reduce the number of distinct output values to a much

smaller set.

• Main source of the “loss” in lossy compression.

• Three different forms of quantization.

– Uniform: midrise and midtread quantizers.

– Nonuniform: companded quantizer.

– Vector Quantization.
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Uniform Scalar Quantization

• A uniform scalar quantizer partitions the domain of input

values into equally spaced intervals, except possibly at the

two outer intervals.

– The output or reconstruction value corresponding to each interval is
taken to be the midpoint of the interval.

– The length of each interval is referred to as the step size, denoted by
the symbol ∆.

• Two types of uniform scalar quantizers:

– Midrise quantizers have even number of output levels.

– Midtread quantizers have odd number of output levels, including zero
as one of them (see Fig. 8.2).
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• For the special case where ∆ = 1, we can simply compute

the output values for these quantizers as:

Qmidrise(x) = dxe − 0.5 (8.4)

Qmidtread(x) = bx+ 0.5c (8.5)

• Performance of an M level quantizer. Let B = {b0, b1, . . . , bM}
be the set of decision boundaries and Y = {y1, y2, . . . , yM} be

the set of reconstruction or output values.

• Suppose the input is uniformly distributed in the interval

[−Xmax,Xmax]. The rate of the quantizer is:

R = dlog2Me (8.6)
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Fig. 8.2: Uniform Scalar Quantizers: (a) Midrise, (b) Midtread.
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Quantization Error of Uniformly Distributed
Source

• Granular distortion: quantization error caused by the quan-
tizer for bounded input.

– To get an overall figure for granular distortion, notice that decision
boundaries bi for a midrise quantizer are [(i − 1)∆, i∆], i = 1..M/2,
covering positive data X (and another half for negative X values).

– Output values yi are the midpoints i∆−∆/2, i = 1..M/2, again just
considering the positive data. The total distortion is twice the sum
over the positive data, or

Dgran = 2

M

2∑
i=1

∫ i∆

(i−1)∆

(
x− 2i− 1

2
∆

)2 1

2Xmax
dx (8.8)

• Since the reconstruction values yi are the midpoints of each
interval, the quantization error must lie within the values
[−∆

2 ,
∆
2 ]. For a uniformly distributed source, the graph of

the quantization error is shown in Fig. 8.3.
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Fig. 8.3: Quantization error of a uniformly distributed source.
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G −1

Uniform quantizerX X
^

G

Fig. 8.4: Companded quantization.

• Companded quantization is nonlinear.

• As shown above, a compander consists of a compressor func-

tion G, a uniform quantizer, and an expander function G−1.

• The two commonly used companders are the µ-law and A-law

companders.
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Vector Quantization (VQ)

• According to Shannon’s original work on information theory,

any compression system performs better if it operates on

vectors or groups of samples rather than individual symbols

or samples.

• Form vectors of input samples by simply concatenating a

number of consecutive samples into a single vector.

• Instead of single reconstruction values as in scalar quantiza-

tion, in VQ code vectors with n components are used. A

collection of these code vectors form the codebook.
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Fig. 8.5: Basic vector quantization procedure.
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8.5 Transform Coding

• The rationale behind transform coding:

If Y is the result of a linear transform T of the input vector

X in such a way that the components of Y are much less

correlated, then Y can be coded more efficiently than X.

• If most information is accurately described by the first few

components of a transformed vector, then the remaining

components can be coarsely quantized, or even set to zero,

with little signal distortion.

• Discrete Cosine Transform (DCT) will be studied first. In

addition, we will examine the Karhunen-Loève Transform

(KLT) which optimally decorrelates the components of the

input X.
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Spatial Frequency and DCT

• Spatial frequency indicates how many times pixel values

change across an image block.

• The DCT formalizes this notion with a measure of how much

the image contents change in correspondence to the number

of cycles of a cosine wave per block.

• The role of the DCT is to decompose the original signal

into its DC and AC components; the role of the IDCT is to

reconstruct (re-compose) the signal.
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Definition of DCT:

Given an input function f(i, j) over two integer variables i and

j (a piece of an image), the 2D DCT transforms it into a new

function F(u, v), with integer u and v running over the same

range as i and j. The general definition of the transform is:

F (u, v) =
2C(u)C(v)√

MN

M−1∑
i=0

N−1∑
j=0

cos
(2i+ 1) · uπ

2M
· cos

(2j + 1) · vπ
2N

· f(i, j)

(8.15)

where i, u = 0,1, . . . ,M − 1; j, v = 0,1, . . . , N − 1; and the con-

stants C(u) and C(v) are determined by

C(ξ) =

{ √
2

2
if ξ = 0,

1 otherwise.
(8.16)
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2D Discrete Cosine Transform (2D DCT):

F (u, v) =
C(u)C(v)

4

7∑
i=0

7∑
j=0

cos
(2i+ 1)uπ

16
cos

(2j + 1)vπ

16
f(i, j) (8.17)

where i, j, u, v = 0,1, . . . ,7, and the constants C(u) and C(v) are

determined by Eq. (8.5.16).

2D Inverse Discrete Cosine Transform (2D IDCT):

The inverse function is almost the same, with the roles of f(i, j)

and F(u, v) reversed, except that now C(u)C(v) must stand in-

side the sums:

f̃(i, j) =
7∑

u=0

7∑
v=0

C(u)C(v)

4
cos

(2i+ 1)uπ

16
cos

(2j + 1)vπ

16
F (u, v) (8.18)

where i, j, u, v = 0,1, . . . ,7.
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1D Discrete Cosine Transform (1D DCT):

F (u) =
C(u)

2

7∑
i=0

cos
(2i+ 1)uπ

16
f(i) (8.19)

where i = 0,1, . . . ,7, u = 0,1, . . . ,7.

1D Inverse Discrete Cosine Transform (1D IDCT):

f̃(i) =
7∑

u=0

C(u)

2
cos

(2i+ 1)uπ

16
F (u) (8.20)

where i = 0,1, . . . ,7, u = 0,1, . . . ,7.
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Fig. 8.6: The 1D DCT basis functions.
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The 4th basis function (u = 4)
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Fig. 8.6 (cont’d): The 1D DCT basis functions.
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Fig. 8.7: Examples of 1D Discrete Cosine Transform: (a) A DC signal f1(i),

(b) An AC signal f2(i).
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Fig. 8.7 (cont’d): Examples of 1D Discrete Cosine Transform: (c) f3(i) =

f1(i) + f2(i), and (d) an arbitrary signal f(i).
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Fig. 8.8 An example of 1D IDCT.
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Fig. 8.8 (cont’d): An example of 1D IDCT.
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The DCT is a linear transform:

In general, a transform T (or function) is linear, iff

T (αp+ βq) = αT (p) + βT (q) (8.21)

where α and β are constants, p and q are any functions, variables

or constants.

From the definition in Eq. 8.17 or 8.19, this property can readily

be proven for the DCT because it uses only simple arithmetic

operations.
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The Cosine Basis Functions

• Function Bp(i) and Bq(i) are orthogonal, if∑
i

[Bp(i) ·Bq(i)] = 0 if p 6= q (8.22)

• Function Bp(i) and Bq(i) are orthonormal, if they are orthog-
onal and ∑

i

[Bp(i) ·Bq(i)] = 1 if p = q (8.23)

• It can be shown that:

7∑
i=0

[
cos

(2i+ 1) · pπ
16

· cos (2i+ 1) · qπ
16

]
= 0 if p 6= q

7∑
i=0

[
C(p)

2
cos

(2i+ 1) · pπ
16

· C(q)

2
cos

(2i+ 1) · qπ
16

]
= 1 if p = q

26 Li & Drew c©Prentice Hall 2003



Fundamentals of Multimedia, Chapter 8

Fig. 8.9: Graphical Illustration of 8× 8 2D DCT basis.
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2D Separable Basis

• The 2D DCT can be separated into a sequence of two, 1D
DCT steps:

G(i, v) =
1

2
C(v)

7∑
j=0

cos
(2j + 1)vπ

16
f(i, j) (8.24)

F (u, v) =
1

2
C(u)

7∑
i=0

cos
(2i+ 1)uπ

16
G(i, v) (8.25)

• It is straightforward to see that this simple change saves
many arithmetic steps. The number of iterations required is
reduced from 8× 8 to 8 + 8.
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Comparison of DCT and DFT

• The discrete cosine transform is a close counterpart to the
Discrete Fourier Transform (DFT). DCT is a transform that
only involves the real part of the DFT.

• For a continuous signal, we define the continuous Fourier
transform F as follows:

F(ω) =
∫ ∞

−∞
f(t)e−iωt dt (8.26)

Using Euler’s formula, we have

eix = cos(x) + i sin(x) (8.27)

• Because the use of digital computers requires us to discretize
the input signal, we define a DFT that operates on 8 samples
of the input signal {f0, f1, . . . , f7} as:

Fω =
7∑

x=0

fx · e−
2πiωx

8 (8.28)
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Writing the sine and cosine terms explicitly, we have

Fω =
7∑

x=0

fx cos
(
2πωx

8

)
− i

7∑
x=0

fx sin
(
2πωx

8

)
(8.29)

• The formulation of the DCT that allows it to use only the

cosine basis functions of the DFT is that we can cancel out

the imaginary part of the DFT by making a symmetric copy

of the original input signal.

• DCT of 8 input samples corresponds to DFT of the 16 sam-

ples made up of original 8 input samples and a symmetric

copy of these, as shown in Fig. 8.10.
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Fig. 8.10 Symmetric extension of the ramp function.
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A Simple Comparison of DCT and DFT

Table 8.1 and Fig. 8.11 show the comparison of DCT and DFT

on a ramp function, if only the first three terms are used.

Table 8.1 DCT and DFT coefficients of the ramp function

Ramp DCT DFT
0 9.90 28.00
1 -6.44 -4.00
2 0.00 9.66
3 -0.67 -4.00
4 0.00 4.00
5 -0.20 -4.00
6 0.00 1.66
7 -0.51 -4.00
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Fig. 8.11: Approximation of the ramp function: (a) 3 Term

DCT Approximation, (b) 3 Term DFT Approximation.
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Karhunen-Loève Transform (KLT)

• The Karhunen-Loève transform is a reversible linear trans-

form that exploits the statistical properties of the vector

representation.

• It optimally decorrelates the input signal.

• To understand the optimality of the KLT, consider the au-

tocorrelation matrix RX of the input vector X defined as

RX = E[XXT ] (8.30)

=



RX(1,1) RX(1,2) · · · RX(1, k)
RX(2,1) RX(2,2) · · · RX(2, k)
... ... . . . ...
RX(k,1) RX(k,2) · · · RX(k, k)


 (8.31)
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• Our goal is to find a transform T such that the components
of the output Y are uncorrelated, i.e E[YtYs] = 0, if t 6= s.
Thus, the autocorrelation matrix of Y takes on the form of
a positive diagonal matrix.

• Since any autocorrelation matrix is symmetric and non-negative
definite, there are k orthogonal eigenvectors u1,u2, . . . ,uk and
k corresponding real and nonnegative eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λk ≥ 0.

• If we define the Karhunen-Loève transform as

T = [u1,u2, · · · ,uk]T (8.32)

• Then, the autocorrelation matrix of Y becomes

RY = E[YYT ] = E[TXXTT] = TRXTT (8.35)

=



λ1 0 · · · 0
0 λ2 · · · 0
0 ... . . . 0
0 0 · · · λk


 (8.36)
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KLT Example

To illustrate the mechanics of the KLT, consider the four 3D
input vectors x1 = (4,4,5), x2 = (3,2,5), x3 = (5,7,6), and
x4 = (6,7,7).

• Estimate the mean:

mx =
1

4


 18

20
23




• Estimate the autocorrelation matrix of the input:

RX =
1

M

n∑
i=1

xix
T
i −mxm

T
x (8.37)

=


 1.25 2.25 0.88

2.25 4.50 1.50
0.88 1.50 0.69



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• The eigenvalues of RX are λ1 = 6.1963, λ2 = 0.2147, and

λ3 = 0.0264. The corresponding eigenvectors are

u1 =


 0.4385

0.8471
0.3003


 , u2 =


 0.4460
−0.4952
0.7456


 , u3 =


 −0.7803

0.1929
0.5949




• The KLT is given by the matrix

T =


 0.4385 0.8471 0.3003

0.4460 −0.4952 0.7456
−0.7803 0.1929 0.5949



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• Subtracting the mean vector from each input vector and ap-
ply the KLT

y1 =


 −1.2916
−0.2870
−0.2490


 , y2 =


 −3.4242

0.2573
0.1453


 ,

y3 =


 1.9885
−0.5809
0.1445


 , y4 =


 2.7273

0.6107
−0.0408




• Since the rows of T are orthonormal vectors, the inverse
transform is just the transpose: T−1 = TT , and

x = TTy + mx (8.38)

• In general, after the KLT most of the “energy” of the trans-
form coefficients are concentrated within the first few com-
ponents. This is the “energy compaction” property of the
KLT.
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8.6 Wavelet-Based Coding

• The objective of the wavelet transform is to decompose the

input signal into components that are easier to deal with,

have special interpretations, or have some components that

can be thresholded away, for compression purposes.

• We want to be able to at least approximately reconstruct the

original signal given these components.

• The basis functions of the wavelet transform are localized in

both time and frequency.

• There are two types of wavelet transforms: the continuous

wavelet transform (CWT) and the discrete wavelet transform

(DWT).
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The Continuous Wavelet Transform

• In general, a wavelet is a function ψ ∈ L2(R) with a zero
average (the admissibility condition),∫ +∞

−∞
ψ(t)dt = 0 (8.49)

• Another way to state the admissibility condition is that the
zeroth moment M0 of ψ(t) is zero. The pth moment is
defined as

Mp =
∫ ∞

−∞
tpψ(t)dt (8.50)

• The function ψ is normalized, i.e., ‖ψ‖ = 1 and centered at
t = 0. A family of wavelet functions is obtained by scaling
and translating the “mother wavelet” ψ

ψs,u(t) =
1
√
s
ψ

(
t− u

s

)
(8.51)
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• The continuous wavelet transform (CWT) of f ∈ L2(R) at

time u and scale s is defined as:

W(f, s, u) =
∫ +∞

−∞
f(t)ψs,u(t) dt (8.52)

• The inverse of the continuous wavelet transform is:

f(t) =
1

Cψ

∫ +∞

0

∫ +∞

−∞
W(f, s, u)

1
√
s
ψ

(
t− u

s

)
1

s2
du ds (8.53)

where

Cψ =
∫ +∞

0

|Ψ(ω)|2
ω

dω < +∞ (8.54)

and Ψ(ω) is the Fourier transform of ψ(t).
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The Discrete Wavelet Transform

• Discrete wavelets are again formed from a mother wavelet,

but with scale and shift in discrete steps.

• The DWT makes the connection between wavelets in the

continuous time domain and “filter banks” in the discrete

time domain in a multiresolution analysis framework.

• It is possible to show that the dilated and translated family

of wavelets ψ

{
ψj,n(t) =

1√
2j

ψ

(
t− 2jn

2j

)}
(j,n)∈Z2 (8.55)

form an orthonormal basis of L2(R).
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Multiresolution Analysis in the Wavelet Domain

• Multiresolution analysis provides the tool to adapt signal res-

olution to only relevant details for a particular task.

The approximation component is then recursively decom-

posed into approximation and detail at successively coarser

scales.

• Wavelet functions ψ(t) are used to characterize detail infor-

mation. The averaging (approximation) information is for-

mally determined by a kind of dual to the mother wavelet,

called the “scaling function” φ(t).

• Wavelets are set up such that the approximation at resolution

2−j contains all the necessary information to compute an

approximation at coarser resolution 2−(j+1).
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• The scaling function must satisfy the so-called dilation equa-

tion:

φ(t) =
∑
n∈Z

√
2h0[n]φ(2t− n) (8.56)

• The wavelet at the coarser level is also expressible as a sum

of translated scaling functions:

ψ(t) =
∑
n∈Z

√
2h1[n]φ(2t− n) (8.57)

ψ(t) =
∑
n∈Z

(−1)nh0[1− n]φ(2t− n) (8.58)

• The vectors h0[n] and h1[n] are called the low-pass and high-

pass analysis filters. To reconstruct the original input, an

inverse operation is needed. The inverse filters are called

synthesis filters.
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Block Diagram of 1D Dyadic Wavelet
Transform

x[n]

2 1h  [n]

1h  [n]

0h  [n]

0h  [n]

1h  [n]

0h  [n]

2

2

2

2

2

y[n]

h  [n]

0h  [n]

2

2

2

2

2

2

0

1h  [n]

1h  [n]

1h  [n] 0h  [n]

Fig. 8.18: The block diagram of the 1D dyadic wavelet transform.
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Wavelet Transform Example

• Suppose we are given the following input sequence.

{xn,i} = {10,13,25,26,29,21,7,15}

• Consider the transform that replaces the original sequence

with its pairwise average xn−1,i and difference dn−1,i defined

as follows:
xn−1,i =

xn,2i + xn,2i+1

2

dn−1,i =
xn,2i − xn,2i+1

2

• The averages and differences are applied only on consecutive

pairs of input sequences whose first element has an even in-

dex. Therefore, the number of elements in each set {xn−1,i}
and {dn−1,i} is exactly half of the number of elements in the

original sequence.
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• Form a new sequence having length equal to that of the orig-

inal sequence by concatenating the two sequences {xn−1,i}
and {dn−1,i}. The resulting sequence is

{xn−1,i, dn−1,i} = {11.5,25.5,25,11,−1.5,−0.5,4,−4}

• This sequence has exactly the same number of elements as

the input sequence — the transform did not increase the

amount of data.

• Since the first half of the above sequence contain averages

from the original sequence, we can view it as a coarser ap-

proximation to the original signal. The second half of this

sequence can be viewed as the details or approximation errors

of the first half.
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• It is easily verified that the original sequence can be recon-

structed from the transformed sequence using the relations
xn,2i = xn−1,i + dn−1,i
xn,2i+1 = xn−1,i − dn−1,i

• This transform is the discrete Haar wavelet transform.

(b)

1.510
−2

−1

0

1

2

−2

−1

0

1

2

−0.5 1.510−0.5

(a)

0.50.5

Fig. 8.12: Haar Transform: (a) scaling function, (b) wavelet function.
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Fig. 8.13: Input image for the 2D Haar Wavelet Transform.

(a) The pixel values. (b) Shown as an 8× 8 image.
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Fig. 8.14: Intermediate output of the 2D Haar Wavelet Trans-

form.
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Fig. 8.15: Output of the first level of the 2D Haar Wavelet

Transform.
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Fig. 8.16: A simple graphical illustration of Wavelet Transform.
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Fig. 8.17: A Mexican Hat Wavelet: (a) σ = 0.5, (b) its Fourier

transform.

53 Li & Drew c©Prentice Hall 2003



Fundamentals of Multimedia, Chapter 8

Biorthogonal Wavelets

• For orthonormal wavelets, the forward transform and its in-

verse are transposes of each other and the analysis filters are

identical to the synthesis filters.

• Without orthogonality, the wavelets for analysis and synthe-

sis are called “biorthogonal”. The synthesis filters are not

identical to the analysis filters. We denote them as h̃0[n] and

h̃1[n].

• To specify a biorthogonal wavelet transform, we require both

h0[n] and h̃0[n].

h1[n] = (−1)nh̃0[1− n] (8.60)

h̃1[n] = (−1)nh0[1− n] (8.61)
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Table 8.2 Orthogonal Wavelet Filters

Wavelet Num. Start Coefficients

Taps Index

Haar 2 0 [0.707, 0.707]

Daubechies 4 4 0 [0.483, 0.837, 0.224, -0.129]

Daubechies 6 6 0 [0.332, 0.807, 0.460, -0.135,

-0.085, 0.0352]

Daubechies 8 8 0 [0.230, 0.715, 0.631, -0.028,

-0.187, 0.031, 0.033, -0.011]
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Table 8.3 Biorthogonal Wavelet Filters

Wavelet Filter Num. Start Coefficients

Taps Index

Antonini 9/7 h0[n] 9 -4 [0.038, -0.024, -0.111, 0.377, 0.853,

0.377, -0.111, -0.024, 0.038]

h̃0[n] 7 -3 [-0.065, -0.041, 0.418, 0.788, 0.418, -0.041, -0.065]

Villa 10/18 h0[n] 10 -4 [0.029, 0.0000824, -0.158, 0.077, 0.759,

0.759, 0.077, -0.158, 0.0000824, 0.029]

h̃0[n] 18 -8 [0.000954, -0.00000273, -0.009, -0.003,

0.031, -0.014, -0.086, 0.163, 0.623,

0.623, 0.163, -0.086, -0.014, 0.031,

-0.003, -0.009, -0.00000273, 0.000954]

Brislawn h0[n] 10 -4 [0.027, -0.032, -0.241, 0.054, 0.900,

0.900, 0.054, -0.241, -0.032, 0.027]

h̃0[n] 10 -4 [0.020, 0.024, -0.023, 0.146, 0.541,

0.541, 0.146, -0.023, 0.024, 0.020]
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2D Wavelet Transform

• For an N by N input image, the two-dimensional DWT pro-

ceeds as follows:

– Convolve each row of the image with h0[n] and h1[n], discard the odd
numbered columns of the resulting arrays, and concatenate them to
form a transformed row.

– After all rows have been transformed, convolve each column of the
result with h0[n] and h1[n]. Again discard the odd numbered rows
and concatenate the result.

• After the above two steps, one stage of the DWT is com-

plete. The transformed image now contains four subbands

LL, HL, LH, and HH, standing for low-low, high-low, etc.

• The LL subband can be further decomposed to yield yet an-

other level of decomposition. This process can be continued

until the desired number of decomposition levels is reached.
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LL2

HL

HH

LL

LH

(a) (b)

LH2

HL2

HH2

LH1 HH1

HL1

Fig. 8.19: The two-dimensional discrete wavelet transform

(a) One level transform, (b) two level transform.
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2D Wavelet Transform Example

• The input image is a sub-sampled version of the image Lena.

The size of the input is 16×16. The filter used in the example

is the Antonini 9/7 filter set

(b)(a)

Fig. 8.20: The Lena image: (a) Original 128× 128 image.

(b) 16× 16 sub-sampled image.
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• The input image is shown in numerical form below.
I00(x, y) =



158 170 97 104 123 130 133 125 132 127 112 158 159 144 116 91
164 153 91 99 124 152 131 160 189 116 106 145 140 143 227 53
116 149 90 101 118 118 131 152 202 211 84 154 127 146 58 58
95 145 88 105 188 123 117 182 185 204 203 154 153 229 46 147

101 156 89 100 165 113 148 170 163 186 144 194 208 39 113 159
103 153 94 103 203 136 146 92 66 192 188 103 178 47 167 159
102 146 106 99 99 121 39 60 164 175 198 46 56 56 156 156
99 146 95 97 144 61 103 107 108 111 192 62 65 128 153 154
99 140 103 109 103 124 54 81 172 137 178 54 43 159 149 174
84 133 107 84 149 43 158 95 151 120 183 46 30 147 142 201
58 153 110 41 94 213 71 73 140 103 138 83 152 143 128 207
56 141 108 58 92 51 55 61 88 166 58 103 146 150 116 211
89 115 188 47 113 104 56 67 128 155 187 71 153 134 203 95
35 99 151 67 35 88 88 128 140 142 176 213 144 128 214 100
89 98 97 51 49 101 47 90 136 136 157 205 106 43 54 76
44 105 69 69 68 53 110 127 134 146 159 184 109 121 72 113




• First, we need to compute the analysis and synthesis high-
pass filters.

h1[n] = [−0.065,0.041,0.418,−0.788,0.418,0.041,−0.065]

h̃1[n] = [−0.038,−0.024,0.111,0.377,−0.853,0.377,

0.111,−0.024,−0.038]
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• Convolve the first row with both h0[n] and h1[n] and dis-

carding the values with odd-numbered index. The results of

these two operations are:

(I00(:,0) ∗ h0[n]) ↓ 2 = [245,156,171,183,184,173,228; 160],
(I00(:,0) ∗ h1[n]) ↓ 2 = [−30,3,0,7,−5,−16,−3,16].

• Form the transformed output row by concatenating the re-

sulting coefficients. The first row of the transformed image

is then:

[245,156,171,183,184,173,228,160,−30,3,0,7,−5,−16,−3,16]

• Continue the same process for the remaining rows.
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The result after all rows have been processed

I10(x, y) =




245 156 171 183 184 173 228 160 −30 3 0 7 −5 −16 −3 16
239 141 181 197 242 158 202 229 −17 5 −20 3 26 −27 27 141
195 147 163 177 288 173 209 106 −34 2 2 19 −50 −35 −38 −1
180 139 226 177 274 267 247 163 −45 29 24 −29 −2 30 −101 −78
191 145 197 198 247 230 239 143 −49 22 36 −11 −26 −14 101 −54
192 145 237 184 135 253 169 192 −47 38 36 4 −58 66 94 −4
176 159 156 77 204 232 51 196 −31 9 −48 30 11 58 29 4
179 148 162 129 146 213 92 217 −39 18 50 −10 33 51 −23 8
169 159 163 97 204 202 85 234 −29 1 −42 23 37 41 −56 −5
155 153 149 159 176 204 65 236 −32 32 85 39 38 44 −54 −31
145 148 158 148 164 157 188 215 −55 59 −110 28 26 48 −1 −64
134 152 102 70 153 126 199 207 −47 38 13 10 −76 3 −7 −76
127 203 130 94 171 218 171 228 12 88 −27 15 1 76 24 85
70 188 63 144 191 257 215 232 −5 24 −28 −9 19 −46 36 91

129 124 87 96 177 236 162 77 −2 20 −48 1 17 −56 30 −24
103 115 85 142 188 234 184 132 −37 0 27 −4 5 −35 −22 −33



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• Apply the filters to the columns of the resulting image. Apply both h0[n]
and h1[n] to each column and discard the odd indexed results:

(I11(0, :) ∗ h0[n]) ↓ 2 = [353,280,269,256,240,206,160,153]T

(I11(0, :) ∗ h1[n]) ↓ 2 = [−12,10,−7,−4,2,−1,43,16]T

• Concatenate the above results into a single column and apply the same
procedure to each of the remaining columns.

I11(x, y) =




353 212 251 272 281 234 308 289 −33 6 −15 5 24 −29 38 120
280 203 254 250 402 269 297 207 −45 11 −2 9 −31 −26 −74 23
269 202 312 280 316 353 337 227 −70 43 56 −23 −41 21 82 −81
256 217 247 155 236 328 114 283 −52 27 −14 23 −2 90 49 12
240 221 226 172 264 294 113 330 −41 14 31 23 57 60 −78 −3
206 204 201 192 230 219 232 300 −76 67 −53 40 4 46 −18 −107
160 275 150 135 244 294 267 331 −2 90 −17 10 −24 49 29 89
153 189 113 173 260 342 256 176 −20 18 −38 −4 24 −75 25 −5
−12 7 −9 −13 −6 11 12 −69 −10 −1 14 6 −38 3 −45 −99
10 3 −31 16 −1 −51 −10 −30 2 −12 0 24 −32 −45 109 42
−7 5 −44 −35 67 −10 −17 −15 3 −15 −28 0 41 −30 −18 −19
−4 9 −1 −37 41 6 −33 2 9 −12 −67 31 −7 3 2 0
2 −3 9 −25 2 −25 60 −8 −11 −4 −123 −12 −6 −4 14 −12

−1 22 32 46 10 48 −11 20 19 32 −59 9 70 50 16 73
43 −18 32 −40 −13 −23 −37 −61 8 22 2 13 −12 43 −8 −45
16 2 −6 −32 −7 5 −13 −50 24 7 −61 2 11 −33 43 1



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• This completes one stage of the discrete wavelet transform.

We can perform another stage of the DWT by applying the

same transform procedure illustrated above to the upper left

8× 8 DC image of I12(x, y). The resulting two-stage trans-

formed image is

I22(x, y) =




558 451 608 532 75 26 94 25 −33 6 −15 5 24 −29 38 120
463 511 627 566 66 68 −43 68 −45 11 −2 9 −31 −26 −74 23
464 401 478 416 14 84 −97 −229 −70 43 56 −23 −41 21 82 −81
422 335 477 553 −88 46 −31 −6 −52 27 −14 23 −2 90 49 12
14 33 −56 42 22 −43 −36 1 −41 14 31 23 57 60 −78 −3

−13 36 54 52 12 −21 51 70 −76 67 −53 40 4 46 −18 −107
25 −20 25 −7 −35 35 −56 −55 −2 90 −17 10 −24 49 29 89
46 37 −51 51 −44 26 39 −74 −20 18 −38 −4 24 −75 25 −5

−12 7 −9 −13 −6 11 12 −69 −10 −1 14 6 −38 3 −45 −99
10 3 −31 16 −1 −51 −10 −30 2 −12 0 24 −32 −45 109 42
−7 5 −44 −35 67 −10 −17 −15 3 −15 −28 0 41 −30 −18 −19
−4 9 −1 −37 41 6 −33 2 9 −12 −67 31 −7 3 2 0
2 −3 9 −25 2 −25 60 −8 −11 −4 −123 −12 −6 −4 14 −12

−1 22 32 46 10 48 −11 20 19 32 −59 9 70 50 16 73
43 −18 32 −40 −13 −23 −37 −61 8 22 2 13 −12 43 −8 −45
16 2 −6 −32 −7 5 −13 −50 24 7 −61 2 11 −33 43 1



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Fig. 8.21: Haar wavelet decomposition.
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8.7 Wavelet Packets

• In the usual dyadic wavelet decomposition, only the low-pass

filtered subband is recursively decomposed and thus can be

represented by a logarithmic tree structure.

• A wavelet packet decomposition allows the decomposition to

be represented by any pruned subtree of the full tree topol-

ogy.

• The wavelet packet decomposition is very flexible since a

best wavelet basis in the sense of some cost metric can be

found within a large library of permissible bases.

• The computational requirement for wavelet packet decom-

position is relatively low as each decomposition can be com-

puted in the order of N logN using fast filter banks.
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8.8 Embedded Zerotree of Wavelet Coefficients

• Effective and computationally efficient for image coding.

• The EZW algorithm addresses two problems:

1. obtaining the best image quality for a given bit-rate, and

2. accomplishing this task in an embedded fashion.

• Using an embedded code allows the encoder to terminate the

encoding at any point. Hence, the encoder is able to meet

any target bit-rate exactly.

• Similarly, a decoder can cease to decode at any point and

can produce reconstructions corresponding to all lower-rate

encodings.
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The Zerotree Data Structure

• The EZW algorithm efficiently codes the “significance map”

which indicates the locations of nonzero quantized wavelet

coefficients.

This is is achieved using a new data structure called the

zerotree.

• Using the hierarchical wavelet decomposition presented ear-

lier, we can relate every coefficient at a given scale to a set

of coefficients at the next finer scale of similar orientation.

• The coefficient at the coarse scale is called the “parent”

while all corresponding coefficients are the next finer scale of

the same spatial location and similar orientation are called

“children”.
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Fig. 8.22: Parent child relationship in a zerotree.
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Fig. 8.23: EZW scanning order.
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• Given a threshold T , a coefficient x is an element of the

zerotree if it is insignificant and all of its descendants are

insignificant as well.

• The significance map is coded using the zerotree with a four-

symbol alphabet:

– The zerotree root: The root of the zerotree is encoded

with a special symbol indicating that the insignificance of

the coefficients at finer scales is completely predictable.

– Isolated zero: The coefficient is insignificant but has

some significant descendants.

– Positive significance: The coefficient is significant with

a positive value.

– Negative significance: The coefficient is significant with

a negative value.
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Successive Approximation Quantization

• Motivation:

– Takes advantage of the efficient encoding of the signifi-

cance map using the zerotree data structure by allowing

it to encode more significance maps.
– Produce an embedded code that provides a coarse-to-

fine, multiprecision logarithmic representation of the scale

space corresponding to the wavelet-transformed image.

• The SAQ method sequentially applies a sequence of thresh-

olds T0, . . . , TN−1 to determine the significance of each coef-

ficient.

• A dominant list and a subordinate list are maintained during

the encoding and decoding process.
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Dominant Pass

• Coefficients having their coordinates on the dominant list

implies that they are not yet significant.

• Coefficients are compared to the threshold Ti to determine

their significance. If a coefficient is found to be significant,

its magnitude is appended to the subordinate list and the

coefficient in the wavelet transform array is set to 0 to en-

able the possibility of the occurrence of a zerotree on future

dominant passes at smaller thresholds.

• The resulting significance map is zerotree coded.
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Subordinate Pass

• All coefficients on the subordinate list are scanned and their

magnitude (as it is made available to the decoder) is refined

to an additional bit of precision.

• The width of the uncertainty interval for the true magnitude

of the coefficients is cut in half.

• For each magnitude on the subordinate list, the refinement

can be encoded using a binary alphabet with a “1” indicating

that the true value falls in the upper half of the uncertainty

interval and a “0” indicating that it falls in the lower half.

• After the completion of the subordinate pass, the magnitudes

on the subordinate list are sorted in decreasing order to the

extent that the decoder can perform the same sort.
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EZW Example
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Fig. 8.24: Coefficients of a three-stage wavelet transform used

as input to the EZW algorithm.
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Encoding

• Since the largest coefficient is 57, the initial threshold T0 is

32.

• At the beginning, the dominant list contains the coordinates

of all the coefficients.

• The following is the list of coefficients visited in the order of

the scan:

{57,−37,−29,30,39,−20,17,33,14,6,10,

19,3,7,8,2,2,3,12,−9,33,20,2,4}

• With respect to the threshold T0 = 32, it is easy to see that

the coefficients 57 and -37 are significant. Thus, we output

a p and a n to represent them.
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• The coefficient −29 is insignificant, but contains a significant
descendant 33 in LH1. Therefore, it is coded as z.

• Continuing in this manner, the dominant pass outputs the
following symbols:

D0 : pnztpttptzttttttttttpttt

• There are five coefficients found to be significant: 57, -37,
39, 33, and another 33. Since we know that no coefficients
are greater than 2T0 = 64 and the threshold used in the first
dominant pass is 32, the uncertainty interval is thus [32,64).

• The subordinate pass following the dominant pass refines the
magnitude of these coefficients by indicating whether they lie
in the first half or the second half of the uncertainty interval.

S0 : 10000
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• Now the dominant list contains the coordinates of all the co-

efficients except those found to be significant and the sub-

ordinate list contains the values:

{57,37,39,33,33}.

• Now, we attempt to rearrange the values in the subordinate

list such that larger coefficients appear before smaller ones,

with the constraint that the decoder is able do exactly the

same.

• The decoder is able to distinguish values from [32,48) and

[48,64). Since 39 and 37 are not distinguishable in the de-

coder, their order will not be changed.
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• Before we move on to the second round of dominant and

subordinate passes, we need to set the values of the signifi-

cant coefficients to 0 in the wavelet transform array so that

they do not prevent the emergence of a new zerotree.

• The new threshold for second dominant pass is T1 = 16. Us-

ing the same procedure as above, the dominant pass outputs

the following symbols

D1 : zznptnpttztptttttttttttttptttttt (8.65)

• The subordinate list is now:

{57,37,39,33,33,29,30,20,17,19,20}
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• The subordinate pass that follows will halve each of the three
current uncertainty intervals [48,64), [32,48), and [16,32).
The subordinate pass outputs the following bits:

S1 : 10000110000

• The output of the subsequent dominant and subordinate
passes are shown below:

D2 : zzzzzzzzptpzpptnttptppttpttpttpnppttttttpttttttttttttttt

S2 : 01100111001101100000110110

D3 : zzzzzzztzpztztnttptttttptnnttttptttpptppttpttttt

S3 : 00100010001110100110001001111101100010

D4 : zzzzzttztztzztzzpttpppttttpttpttnpttptptttpt

S4 : 1111101001101011000001011101101100010010010101010

D5 : zzzztzttttztzzzzttpttptttttnptpptttppttp

80 Li & Drew c©Prentice Hall 2003



Fundamentals of Multimedia, Chapter 8

Decoding

• Suppose we only received information from the first dominant

and subordinate pass. From the symbols in D0 we can obtain

the position of the significant coefficients. Then, using the

bits decoded from S0, we can reconstruct the value of these

coefficients using the center of the uncertainty interval.
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Fig. 8.25: Reconstructed transform coefficients from the first pass.
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• If the decoder received only D0, S0, D1, S1, D2, and only the

first 10 bits of S2, then the reconstruction is
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Fig. 8.26: Reconstructed transform coefficients from D0,

S0, D1, S1, D2, and the first 10 bits of S2 .
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8.9 Set Partitioning in Hierarchical Trees
(SPIHT)

• The SPIHT algorithm is an extension of the EZW algorithm.

• The SPIHT algorithm significantly improved the performance

of its predecessor by changing the way subsets of coefficients

are partitioned and how refinement information is conveyed.

• A unique property of the SPIHT bitstream is its compact-

ness. The resulting bitstream from the SPIHT algorithm is

so compact that passing it through an entropy coder would

only produce very marginal gain in compression.

• No ordering information is explicitly transmitted to the de-

coder. Instead, the decoder reproduces the execution path

of the encoder and recovers the ordering information.
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8.10 Further Explorations

• Text books:

– Introduction to Data Compression by Khalid Sayood

– Vector Quantization and Signal Compression by Allen Gersho and
Robert M. Gray

– Digital Image Processing by Rafael C. Gonzales and Richard E. Woods

– Probability and Random Processes with Applications to Signal Pro-
cessing by Henry Stark and John W. Woods

– A Wavelet Tour of Signal Processing by Stephane G. Mallat

• Web sites: −→ Link to Further Exploration for Chapter 8.. including:

– An online graphics-based demonstration of the wavelet transform.

– Links to documents and source code related to quantization, Theory
of Data Compression webpage, FAQ for comp.compression, etc.

– A link to an excellent article Image Compression – from DCT to
Wavelets : A Review.
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