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Voronol diagrams

A versatile geometric partitioning structure.

S: set of n simple geometric
objects, called sites.

. o The Voronoi region of a site p
“ . IS the locus of points closer to p
o .“ ’ ) than to any other site in S.
\ % ' .
“‘8’4‘ ‘ B The Voronoi diagram of S is

%ﬁ' ) the resulting space subdivision
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Voronol diagram of points in Euclidean plane

A plane graph of linear (O(n)) size.

Voronoi regions are convex

Voronoi edges < line bisectors
between two points

Voronoi vertices are points
equidistant from 3 sites

Voronol vertex: the center of a
circle defined by 3 sites, which
IS empty of other sites.
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Dual: Delaunay Graph / Triangulation

R Sy The graph nodes are sites

~~3‘, Two nodes are joined by an
« Q ‘é ;4 edge if their Voronoi regions

are neighboring.

Equiv.: if there exists a circle
NN "X a» f passing through the two sites,
LN N e L TN e which is empty of other sites

: L,



I | orsita della Svizzera italiana

Voronol diagrams

A versatile geometric partitioning structure.

o Voronoi diagrams of
: . . different sites,
. "“" . generalized metrics,
\;6‘ o
“g’d"‘ - higher dimensions
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Voronoi diagram of segments

 Well known differences

S = set of n line segments

Bisectors (Voronoi edges) are
not lines

Voronoi regions are not
convex

Multiple adjacencies between
the regions of two sites
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Voronoi diagram of circles

* Similar issues S = set of n circles (weighted points)

Q. —

N—

[\
Q 'Q’ bisectors are hyperbolic arcs

&

Two regions may have multiple

- adjacencies between them
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Voronoi diagrams of higher order

* k-nearest neighbor information, 1 <k < n-1

>4\ o v here, k=3
an

* Order-k Voronoi region: locus of points that have the same k closest sites
» Order-k Voronoi diagram: subdivision into maximal order-k Voronoi regions
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Order 2 VVoronoi diagram of segments

* The (order-2) Voronoi region of two segments may be disconnected

Disconnected regions
become a theme for non-
point VDs

For points, order-k regions
are connected

* Order-k Voronoi region: locus of points that have the same k closest sites
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Farthest-site Voronoi diagram

» Farthest Voronoi region of a site p: locus of points further away from p than

from any other site.

Point-sites:

only points on the convex
hull have a non-empty
farthest Voronoi region.

FVD: a tree structure
can be computed In

linear time, after the
convex hull iIs known

10
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Farthest-segment Voronoi diagram

» Properties surprisingly different from points.

* Not related to convex hull. (5)
» Disconnected Voronoi regions.
* A single segment may have Q(n) disconnected faces! S1

 Tree structure (disconnected regions), size: O(n), n=ISl
» Can be constructed in O(nlog n) time

[Aurenhammer, Drysdale, Krasser, IPL 06]
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Order-k segment Voronoi diagram

* A single order-k Voronoi region may disconnect into Q(n) faces
* Q(n-k) bounded faces; for 1<k<n/2, QQ(n-k) = Q(n)
» Q(k) unbounded faces; for k > n/2, Q(k) = Q(n)

regions are connected

' /
For points, order-k
/
|

/

Order-2 Voronoi diagram of 6 segments

Region of red segments disconnects into 5 faces [Pap., Zavershynskyi, '14]
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Classic Voronoi diagrams in the plane

» Differences between VDs of points, vs segments/polygons/etc, sometimes
forgotten

» Classic variants of VDs for line segments/ polygons/ circles had been
surprisingly ignored in CG, until relatively recently

» farthest segment VD: [Aurenhammer, Drysdale, Kraser, *06]

» order-k segment VD: [Pap., Zavershynskyi, *14]
» order-k AVD, defined: [Bohler, Cheilaris, Klein, Liu, Pap., Zavershynskyi, ’15]

* Higher-order Voronoi diagrams of polygons are still ignored (current research)

» only the farthest-polygon Voronoi Diagram has been considered
[Cheong, Everett, Glisse, Gudmundsson, Hornus, Lazard, Lee, and Na., 2011}
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Higher dimensions

* Voronoi diagrams / Delaunay triangulations in higher dimensions have an
exponential dependency on the dimension, in the worst case

d
* For n points in Euclidean d-space the complexity can be G)(n[ib
* |tis expected O(n), if d is a constant [Dwyer DCG’99]

 For n lines (or segments) the complexity is a major open problem, even in 3D:
 lower bound Q(n?) [Aronov 02]
* upper bound 0(n>*€); [Sharir DCG’94]
» upper bound believed to be near quadratic (open problem)

» Voronoi diagram of line segments / polyhedra in 3D — a major open problem

14
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Powerful unifying framework

» (General framework connecting Voronoi diagrams and arrangements of
hypersurfaces, in a space one dimension higher

[Edelsbrunner, Seidel, DCG 1986]

* The set of sites S is a set of indices in a domain X;
 For each site p, there is a real valued function f,: X - R.
* The graph of £, is a hypersurface in XxXR : the Voronoi surface of site p

* The Voronoi diagram V(S) is the lower envelope of the arrangement of Voronoi surfaces
* The order-k Voronoi diagram V,(S) is the level-k in this arrangement

» Results on envelopes of hypersurfaces directly apply to Voronoi diagrams,
e.g., [Sharir, DCG 94], [Sharir and Agarwal 95]

 Still, important differences between arrangements of general surfaces vs
arrangements of planes

15
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Abstract Voronoi Diagrams (AVDs)

» Defined on bisecting curves satisfying axioms, rather than sites and distances

 Offer a unifying view to various concrete Voronoi diagrams in the plane

[R. Klein, Concrete and Abstract Voronoi Diagrams, 1989]
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Abstract Voronol diagrams

A bisector system in 2D (abstract sites (indices), no metrics)
» Bisectors are unbounded simple curves.
» Bisectors intersect transversally (a finite # times). ... 3

* For every subset of sites S’ € S:
* Voronoi regions are non-empty and connected

» Voronoi regions cover the plane

'
—__—
-

-y,
- -

———----—

dominance region of p

Voronol region:

VR(p, S) = Nyes\ 1 PP:9)

J‘(@? 7@) B
biseettor off
pRgIeE>

dominance region of g

[R. Klein, Concrete and Abstract Voronoi Diagrams, 1989]
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Abstract Voronol diagrams

A bisector system in 2D (abstract sites (indices), no metrics)
» Bisectors are unbounded simple curves. VR(D)
» Bisectors intersect transversally (a finite # times).
* For every subset of sites S’ € S:
* Voronoi regions are non-empty and connected

» Voronoi regions cover the plane VR(a)
Voronol diagram: Voronoi region:
V(S) = R?\ Upes VR(p, S) VR(p, S) = Nyes\ i D01 @)

[R. Klein, Concrete and Abstract Voronoi Diagrams, 1989]
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Points vs segments and AVDs

» Point-sites are not representative of the AVD model while segments are.

Why?
o d
» Point bisectors are lines. Intersect once (unless parallel) e
« Segment (or circle) bisectors are not even pseudo-lines. - /
g T TN
» Simple curves of constant complexity, not pseudo-lines. R T
» Related segment (circle) bisectors intersect at most twice. .

 Related abstract bisectors intersect at most twice.

19
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Points vs segments and AVDs

r

* Related segment (circle) bisectors intersect at most twice.

* Related abstract bisectors intersect at most twice. ) '
q
q

« 2 vs 1 intersections make a significant difference: properties, proof techniques

* A bound may turn out the same but reasons why can be different
* Reasons of AVDs/segments apply to points but not vice versa

* > 2 Intersections result in disconnected Voronoi regions — different model

20




Research Goal

» Generalize algorithmic techniques, combinatorial results, which are available for
points, to Voronoi diagrams of generalized sites and metrics

* These diagrams are often driven by applications, but good tools are still missing, to
date

21
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Generalized Voronoi diagrams

» Generalized (non-point) Voronoi diagrams often driven by applications

« Example from Microelectronics: VLSI Yield Prediction/ Critical Area Analysis

 resulted in identifying some surprising holes in Computational Geometry literature,
(filled out later)

» resulted in a VLSI CAD tool (Voronoi CAA) used widely in semiconductor industry
through Cadence

22
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VLSI Critical Area Analysis

» VLSI Yield: Percentage of working chips over the chips manufactured
» Factors of Yield loss: Random defects and Systematic defects

 Random defects: dust/contaminants on materials and equipment
 Prediction of yield loss due to random defects: Critical Area Analysis

» Critical Area: Measure reflecting the sensitivity of a VLSI design to random
defects during manufacturing

* Now a solved problem — but still essential to IC manufacturing

» VLSI Layout: layers of different materials; each layer a collection of shapes;
manufacturing: optical processing layer by layer

: ;7



Examples of faults due to random defects
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Open Metal

Open Metal

Foreign Material Short
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Critical Area

* Critical Area:

o0

A = j A(r)D(r)dr
0 .
A(r) . area where If a defect of radius r is
centered causes a circuit failure

D(r). density function of the defect size

2
7

D(r) = r% Defect of size r = disk of radius r




A(r) -- shorts for one defect size r

Critical Area A. = /OmA(r)D(r)dr where D(r) = rg/rg

;7
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A(r) — open faults for one defect size r

| .

Critical Area A. = fom A(r)D(r)dr where D(r)=ry/r°

;7
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Methods to compute Critical Area

 Monte Carlo simulation [Initial work at IBM [e.g. Stapper & Rosner Trans. Semic. Manuf. 95)]
» Randomly draw large number of defects following D(r); check for faults
 Oldest, widely implemented technique. Computationally, very intensive

» Shape shifting methods [AFFCA 95 , Allan& Walton TCAD99, Zachariah & Chacravarty TVLSI 00]
» Based on shape expansion / shrinking - many variants
* Very expensive to compute A(r) for medium/large r, needed in integration.

 The Voronoi method [P. & Lee TCAD99, P. TCADO1, P. TCAD11, various patents]
» ldea: partition layout into regions where critical area integral can be computed
analytically

» Critical area computation is easy (trivial) once appropriate Voronoi diagram derived
« Combined with layout sampling techniques for fast critical area estimate at chip level

; ;7
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L., metric

» Algorithmic degree
* Degree d: tests - evaluation of multivariate polynomials of arithmetic degree < d.

In-circle test (segments): degree < 40
[Burnikel 96]

L., In-circle test (segments): degree < 5
[Papadopoulou & Lee |JCGA 01]

S VLSI shapes: typically, ortho-45: degree 1

* L, Voronoi diagram construction: significantly lower algorithmic degree
* Robust, faster, easier to derive implementation

29
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Shorts

» A defect on layer A forms a short if it overlaps two different shapes in different nets

 Critical radius of any point t: size of smallest defect centered at t causing a fault.

Model defects as squares = L., metric

Simplicity in computation

Much lower algorithmic degree
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Shorts

» Critical radius: distance from 2"9 nearest polygon (in different net)
* Need: 2"d nearest neighbor information




I | crsita della Svizzera ital

Voronol diagram for shorts

« 2"d order Voronoi diagram of polygons
* Every region has a unigue owner responsible for shorts within region
 Critical radius at any point t: distance to owner of region
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Critical Area Integration within a Voronoi region

R

» Subdivide Voronoi region into simple rectangles/ triangles
« Compute critical area within each analytically
» Add up formulas to derive critical area for entire region
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Critical Area Integration within a Voronoi region
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| = length of vertical side, r;, = max critical radius, 7; = min critical radius

: -
Add up formulas = internal terms -, In :—"3 cancel out
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Crltlcal Area Summation of Voronoi edges

Critical area within V:

r [ r r
A(V) = G(ZE 2. —+ 2 lﬂr_j_ > lﬂr_j)

red e; blue ey, red e4qr

Critical area computation: trivial once the Voronoi diagram computed

;7
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Critical Area via Voronoi diagrams

« Shorts: A_ < 2nd order Voronoi diagram of polygons
« Simple Open Faults: A. = Voronoi diagram of (additively weighted) segments
» Via Blocks: A, < Hausdorff Voronoi diagram (a Voronoi diagram of point clusters)

» General Open Faults: A_ < Higher order Voronoi diagram of (weighted) segments

* Analytical Critical Area integration — no error
* O(n log n) — type of algorithms in most cases

 All are variants of generalized Voronoi diagrams of polygons
» Higher order Voronoi diagrams of segments/shapes had not been available in CG literature

» |IBM Voronoi CAA CAD tool — (licensed to Cadence, used extensively in industry)

36




Research Goal

» Generalize algorithmic techniques or combinatorial results, which are available
for points, to generalized Voronoi diagrams

 Example: linear-time algorithms to compute tree Voronoi diagrams

E.g., Delaunay triangulation of a convex polygon — very simple randomized
incremental algorithm by [Chew 1990]

37
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Linear-time Voronol algorithms

» Voronoi diagram of points in convex position — a tree diagram
[Aggarwal, Guibas, Saxe and Shor, DCG’89]
[Chew 1990] randomized

Related problems:
* Delaunay triangulation of a convex polygon

 Site deletion in a point VD
» Farthest-point VD, given the convex hull
* |terative order-k Voronoi construction

Non-point-sites ? Segments? AVDs?

. %
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Linear-time Voronol algorithms

The randomized incremental algorithm of Chew is extremely simple:
» Consider a random permutation of the input points
* Phase 1: delete points 1-by-1, recording their neighbors at the time of deletion
* Phase 2: Insert points 1-by-1 in reverse order, updating their VD after each insertion

iInsertion point given by the stored neighbors —
no point-location

Each insertion performed in expected O(1) time

39
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Site deletion

» Given the Voronoi diagram VD(S) of a set of sites S, delete the region of a site
s and update the diagram

» Compute the red diagram in VR(s,S), which is VD(S\{s}) n VR(s,S)
(a tree for point sites)

Iy : B S

40
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Site deletion — non-points

For non-point sites (e.g., line segments, circles, AVDs), considerably more difficult
problem

* open problem since the late 80’s
* randomized linear time algorithm for AVDs [Junginger, Pap., SoCG 2018]
» deterministic linear-time algorithm still an open problem

* Why difficult?
» Disconnected Voronoi regions

41
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Incremental construction

» Compute the Voronoi diagram of segments in the shaded domain incrementally

(a tree)

* When we consider a new segment, many faces may need to be inserted

» Step | may trigger the insertion of ©(i) new faces in the diagram, whose location

we do not know In advance

\

Difficult to
avoid point
location

42
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Incremental construction

* In a different insertion order, we may need to split a region in two.
* not a major problem in general.

-_— -_—
— -_—
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A Voronol-like structure

* We need to compute the structure on right, which is a Voronoi-like diagram

* A Voronoi diagram of bits and pieces of these segments
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Voronol-like graph

* We call Voronoi-like any graph on the arrangement of a bisector system
whose vertices (other than its leaves) are locally Voronoi.

* A vertex is called locally Voronoi if it is a legal Voronoi vertex of 3 sites

* Any graph on an abstarct bisector arrangment whose non-leaf vertices are
locally correct Voronoi vertices is a Voronoi-like diagram

46
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Delaunay’s Theorem for AVDs

* Delaunay’s theorem (points, Euclidean metric) :
A triangulation is globally Delaunay iff it is locally Delaunay.

* Recent extension [P. SoCG23]: Under a bisector system of classic AVDs, any
Voronoi-like graph in the plane is the Voronoi diagram of the involved sites

* |If you have a graph whose vertices are legal Voronoi vertices of 3 sites, then this
graph is the Voronoi diagram of the involved sites.
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Voronol like graphs

» Voronoi—like graphs are useful to hold partial (flexible) Voronoi information

* They are as close as possible to being Voronoi diagrams subject to possibly
missing some faces.

» Extend Delaunay’s Theorem from Euclidean points to abstract Voronoi diagrams and
their duals

» Applications: simple (expected) linear-time algorithms for Voronoi tees and forests
 Site-deletion in abstract Voronoi diagrams (and related concrete VDs)
» Farthest abstract Voronoi diagram (given the order of Voronoi regions at infinity)
* Order-k abstract Voronoi diagram — iterative construction
» Updating a Constraint Delaunay Triangulation after a segment constraint insertion
« Computing a tree VD in a domain D, given the order of Voronoi faces on aD, 16DI=0O(1)
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Open Problem

Open problem:
* Deterministic linear-time technique for the same problems.
Combine Voronoi-like structures and the technique of [Aggarwal, Guibas Saxe, Shor, 89]

* Recent progress to the affirmative

Thank you for your attention!
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