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Voronoi diagrams
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• A versatile geometric partitioning structure.

S: set of n simple geometric 
objects, called sites.

The Voronoi region of a site p 
is the locus of points closer to p 
than to any other site in S.

The Voronoi diagram of S is 
the resulting space subdivision

Voronoi diagram of points

S = set of n point sites
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Voronoi diagram of points

S = set of n point sites
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Voronoi diagram of points in Euclidean plane
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• A plane graph of linear (O(n)) size.

Voronoi regions are convex

Voronoi edges ⊆ line bisectors 
between two points

Voronoi vertices are points 
equidistant from 3 sites

Voronoi vertex: the center of a 
circle defined by 3 sites, which 
is empty of other sites.



Dual: Delaunay Graph / Triangulation
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The graph nodes are sites

Two nodes are joined by an 
edge if their Voronoi regions 
are neighboring. 

Equiv.: if there exists a circle 
passing through the two sites, 
which is empty of other sites 

Voronoi diagram of points
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Dual: Delaunay triangulation
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Voronoi diagrams
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• A versatile geometric partitioning structure.

Voronoi diagrams of 
different sites,

generalized metrics,

higher dimensions

Voronoi diagram of points

S = set of n point sites
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Voronoi diagram of segments
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• Well known differencesVoronoi diagram of segments

p

q
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S = set of n line segments

5

Bisectors (Voronoi edges) are 
not lines

Voronoi regions are not 
convex

Multiple adjacencies between 
the regions of two sites 

To better understand the di�culty, suppose that you are designing a plane sweep algorithm.
Behind the sweep line you have constructed the Voronoi diagram based on the sites that have
been encountered so far in the sweep. Now a site that lies beyond the sweep line (that is,
in the “future”) may generate a Voronoi vertex that lies behind the sweep line (in the past).
How can any reasonable sweep-line algorithm know of the existence events generated by sites
it has yet to encounter? It is these unanticipated events that make the design of a plane
sweep algorithm challenging (see Fig. 65).

sweep line

unantcipated events

Fig. 65: Unanticipated events generated by sites that lie beyond the current sweep line.

The Beach Line: To deal with the di�culties of unanticipated events, our sweeping process will
involve maintaining two di↵erent object. First, there will be a horizontal sweep line, moving
from top to bottom. We will also maintain an x-monotonic curve called a beach line. (It
is so named because it looks like waves rolling up on a beach.) The beach line lags behind
the sweep line in such a way that it is una↵ected by sites that lie beyond the current sweep
line. Thus, there can be no unanticipated events. The sweep-line status will be based on the
manner in which the Voronoi edges intersect the beach line, not the actual sweep line.

Let’s make this intuition more concrete. Given a point q 2 R2 and a nonempty set R of points
(which may be finite or infinite) define dist(q,R) to be the closest Euclidean distance from
q to any point in R, that is, dist(q,R) = minp2R kq � pk. Given the current location of the
sweep ` (which we assume to be horizontal and sweeping downwards) let P+(`) ✓ P denote
the subset of sites of P that lie strictly above `. Let us assume that P+(`) contains at least
one site. Define the beach line (for `) to be the set of points q 2 R2 (all above the sweep line)
whose distance to its nearest site in P 0 is equal to its distance from the sweep line (see the
blue curve in Fig. 66(a)). That is

beach(`) = {q 2 R2 | dist(q, P+(`)) = dist(q, `)}.

beach line
`

p

(b)(a)

p

`
sweep line

`

`

p

Fig. 66: (a) The beach line and (b) the evolution of a parabolic arc as the sweep line moves.

It is easy to see that for all points lying on or above the beach line, the closest site in P
must lie above the sweep line, that is, it must lie within P+(`). This means that it cannot be
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Voronoi diagram of circles 
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• Similar issues

Voronoi diagram of circles
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S = set of n circles (weighted points)

6

bisectors are hyperbolic arcs

Two regions may have multiple 
adjacencies between them 



Voronoi diagrams of higher order
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• k-nearest neighbor information, 1 ≤ k ≤ n−1

• Order-k Voronoi region: locus of points that have the same k closest sites
• Order-k Voronoi diagram: subdivision into maximal order-k Voronoi regions

The order-k Voronoi diagram
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della
Svizzera
italiana

9

here, k=3



Order-2 Voronoi diagram of segments
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• The (order-2) Voronoi region of two segments may be disconnected

• Order-k Voronoi region: locus of points that have the same k closest sites

Disconnected regions 
become a theme for non-
point VDs

For points, order-k regions 
are connected



• Farthest Voronoi region of a site p:  locus of points further away from p than 
from any other site.

Farthest-site Voronoi diagram
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The farthest Voronoi diagram

p
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FVR(p, S)

8

Point-sites: 

only points on the convex 
hull have a non-empty 
farthest Voronoi region.

FVD: a tree structure

can be computed in 
linear time, after the 
convex hull is known



Farthest-segment Voronoi diagram 
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• Properties surprisingly different from points.

• Not related to convex hull.
• Disconnected Voronoi regions.
• A single segment may have Ω(n) disconnected faces!

• Tree structure (disconnected regions), size: O(n), n=|S|
• Can be constructed in O(nlog n) time

[Aurenhammer, Drysdale, Krasser, IPL 06]



Order-k segment Voronoi diagram
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• A single order-k Voronoi region may disconnect into Ω(n) faces
• Ω(n-k) bounded faces; for 1<k<n/2, Ω(n-k) = Ω(n)
• Ω(k) unbounded faces; for k > n/2, Ω(k) = Ω(n)

Order-2 Voronoi diagram of 6 segments

Region of red segments disconnects into 5 faces

For points, order-k 
regions are connected

[Pap., Zavershynskyi, ’14]



Classic Voronoi diagrams in the plane
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• Differences between VDs of points, vs segments/polygons/etc, sometimes 
forgotten

• Classic variants of VDs for line segments/ polygons/ circles had been 
surprisingly ignored in CG, until relatively recently

• farthest segment VD: [Aurenhammer, Drysdale, Kraser, ’06]
• order-k segment VD: [Pap., Zavershynskyi, ’14]
• order-k AVD, defined: [Bohler, Cheilaris, Klein, Liu, Pap., Zavershynskyi, ’15] 

• Higher-order Voronoi diagrams of polygons are still ignored (current research)
• only the farthest-polygon Voronoi Diagram has been considered

[Cheong, Everett, Glisse, Gudmundsson, Hornus, Lazard, Lee, and Na., 2011] 



Higher dimensions
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• Voronoi  diagrams / Delaunay triangulations in higher dimensions have an 
exponential dependency on the dimension, in the worst case

• For n points in Euclidean d-space the complexity can be 𝚯 𝐧
𝐝
𝟐

• It is expected Θ(n), if d is a constant    [Dwyer DCG’99]

• For n lines (or segments) the complexity is a major open problem, even in 3D: 
• lower bound  Ω 𝑛! [Aronov 02]
• upper bound 𝑂 𝑛"#$ ; [Sharir DCG’94]
• upper bound believed to be near quadratic  (open problem)

• Voronoi diagram of line segments / polyhedra in 3D – a major open problem



Powerful unifying framework 
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• General framework connecting Voronoi diagrams and arrangements of 
hypersurfaces, in a space one dimension higher
[Edelsbrunner, Seidel, DCG 1986]

• The set of sites S is a set of indices in a domain X; 
• For each site p, there is a real valued function 𝑓#: X → R .
• The graph of 𝑓# is a hypersurface in 𝑋×𝑅 : the Voronoi surface of site p
• The Voronoi diagram V(S)	is the lower envelope of the arrangement of Voronoi surfaces
• The order-k Voronoi diagram Vk(S)	is the level-k in this arrangement 

• Results on envelopes of hypersurfaces directly apply to Voronoi diagrams, 
e.g., [Sharir, DCG 94], [Sharir and Agarwal 95]

• Still, important differences between arrangements of general surfaces vs 
arrangements of planes



Abstract Voronoi Diagrams (AVDs)
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• Defined on bisecting curves satisfying axioms, rather than sites and distances

• Offer a unifying view to various concrete Voronoi diagrams in the plane

[R. Klein, Concrete and Abstract Voronoi Diagrams, 1989]

Abstract Voronoi diagram
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• O↵er a unifying framework to many concrete diagrams.
Defined on bisecting curves satisfying some axioms, rather than sites.

Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.
4



Abstract Voronoi diagrams 
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A bisector system in 2D (abstract sites (indices), no metrics) 
• Bisectors are unbounded simple curves.
• Bisectors intersect transversally (a finite # times).
• For every subset of sites S′ ⊆ S: 

• Voronoi regions are non-empty and connected
• Voronoi regions cover the plane

[R. Klein, Concrete and Abstract Voronoi Diagrams, 1989]

Abstract Voronoi diagrams

J(p, q)

p
q

No sites / No distances. Instead:
J = bisector system for a set of n abstract sites S, which is admissible:

bisector of
p, q 2 S

[Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.]
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(A1) Voronoi regions are non-empty and connected.

(A2) Voronoi regions cover the plane.

(A3) Bisectors are unbounded Jordan curves.

(A4) Transversal and finite # intersections.

For every S 0 ✓ S:
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Abstract Voronoi diagrams

p
q

No sites / No distances. Instead:
J = bisector system for a set of n abstract sites S, which is admissible:

Voronoi region:

[Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.]
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VR(p)

p

p
r

VR(p, S) =
T

q2S\{p} D(p, q)

(A1) Voronoi regions are non-empty and connected.
(A2) Voronoi regions cover the plane.
(A3) Bisectors are unbounded Jordan curves.
(A4) Transversal and finite # intersections.

For every S 0 ✓ S:

27

Abstract Voronoi diagrams

D(p, q)
J(p, q)

p
q

No sites / No distances. Instead:
J = bisector system for a set of n abstract sites S, which is admissible:

dominance region of p

bisector of
p, q 2 S

[Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.]
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(A1) Voronoi regions are non-empty and connected.
(A2) Voronoi regions cover the plane.
(A3) Bisectors are unbounded Jordan curves.
(A4) Transversal and finite # intersections.

For every S 0 ✓ S:
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Abstract Voronoi diagrams

J(p, q)

p
q

No sites / No distances. Instead:
J = bisector system for a set of n abstract sites S, which is admissible:

bisector of
p, q 2 S

[Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.]
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D(q, p)

dominance region of q

(A1) Voronoi regions are non-empty and connected.
(A2) Voronoi regions cover the plane.
(A3) Bisectors are unbounded Jordan curves.
(A4) Transversal and finite # intersections.

For every S 0 ✓ S:

27

𝐷(𝑞, 𝑝)

dominance region of q

Abstract Voronoi diagrams

No sites / No distances. Instead:
J = bisector system for a set of n abstract sites S, which is admissible:

Voronoi region:

Voronoi diagram:

[Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.]
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V(S) = R2 \
S

p2S VR(p, S)

VR(p)VR(p, S) =
T

q2S\{p} D(p, q)

(A1) Voronoi regions are non-empty and connected.
(A2) Voronoi regions cover the plane.
(A3) Bisectors are unbounded Jordan curves.
(A4) Transversal and finite # intersections.

For every S 0 ✓ S:

27



Abstract Voronoi diagrams 
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A bisector system in 2D (abstract sites (indices), no metrics) 
• Bisectors are unbounded simple curves.
• Bisectors intersect transversally (a finite # times).
• For every subset of sites S′ ⊆ S: 

• Voronoi regions are non-empty and connected
• Voronoi regions cover the plane

[R. Klein, Concrete and Abstract Voronoi Diagrams, 1989]

Abstract Voronoi diagrams

No sites / No distances. Instead:
J = bisector system for a set of n abstract sites S, which is admissible:

Voronoi region:

Voronoi diagram:

[Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.]
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V(S) = R2 \
S

p2S VR(p, S)

VR(p)VR(p, S) =
T

q2S\{p} D(p, q)

(A1) Voronoi regions are non-empty and connected.
(A2) Voronoi regions cover the plane.
(A3) Bisectors are unbounded Jordan curves.
(A4) Transversal and finite # intersections.

For every S 0 ✓ S:
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Abstract Voronoi diagrams

No sites / No distances. Instead:
J = bisector system for a set of n abstract sites S, which is admissible:

Voronoi region:

Voronoi diagram:

[Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.]
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V(S) = R2 \
S

p2S VR(p, S)

VR(p)VR(p, S) =
T

q2S\{p} D(p, q)

(A1) Voronoi regions are non-empty and connected.
(A2) Voronoi regions cover the plane.
(A3) Bisectors are unbounded Jordan curves.
(A4) Transversal and finite # intersections.

For every S 0 ✓ S:
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VR(q)

VR(r)

Abstract Voronoi diagrams

No sites / No distances. Instead:
J = bisector system for a set of n abstract sites S, which is admissible:

Voronoi region:

Voronoi diagram:

[Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.]
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V(S) = R2 \
S

p2S VR(p, S)

VR(p)VR(p, S) =
T

q2S\{p} D(p, q)

(A1) Voronoi regions are non-empty and connected.
(A2) Voronoi regions cover the plane.
(A3) Bisectors are unbounded Jordan curves.
(A4) Transversal and finite # intersections.

For every S 0 ✓ S:
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Points vs segments and AVDs
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• Point-sites are not representative of the AVD model while segments are.     
Why?

• Point bisectors are lines. Intersect once (unless parallel)

• Segment (or circle) bisectors are not even pseudo-lines.
• Simple curves of constant complexity, not pseudo-lines.

• Related segment (circle) bisectors intersect at most twice.

• Related abstract bisectors intersect at most twice.

Voronoi diagram of points

bisector
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Abstract Voronoi diagrams

p
q

p
r

q
r

No sites / No distances. Instead:
J = bisector system for a set of n abstract sites S, which is admissible:

[Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.]
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(A1) Voronoi regions are non-empty and connected.
(A2) Voronoi regions cover the plane.
(A3) Bisectors are unbounded Jordan curves.
(A4) Transversal and finite # intersections.

For every S 0 ✓ S:
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Points vs segments and AVDs
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• Related segment (circle) bisectors intersect at most twice.
• Related abstract bisectors intersect at most twice.

• 2 vs 1 intersections make a significant difference: properties, proof techniques

• A bound may turn out the same but reasons why can be different 
• Reasons of AVDs/segments apply to points but not vice versa

• > 2 intersections result in disconnected Voronoi regions – different model

Abstract Voronoi diagrams

p
q

p
r

q
r

No sites / No distances. Instead:
J = bisector system for a set of n abstract sites S, which is admissible:

[Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.]
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(A1) Voronoi regions are non-empty and connected.
(A2) Voronoi regions cover the plane.
(A3) Bisectors are unbounded Jordan curves.
(A4) Transversal and finite # intersections.

For every S 0 ✓ S:
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Research Goal
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• Generalize algorithmic techniques, combinatorial results, which are available for 
points, to Voronoi diagrams of generalized sites and metrics

• These diagrams are often driven by applications, but good tools are still missing, to 
date



Generalized Voronoi diagrams 
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• Generalized (non-point) Voronoi diagrams often driven by applications 

• Example from Microelectronics: VLSI Yield Prediction/ Critical Area Analysis 

• resulted in identifying some surprising holes in Computational Geometry literature, 
(filled out later)

• resulted in a VLSI CAD tool (Voronoi CAA) used widely in semiconductor industry 
through Cadence



VLSI Critical Area Analysis
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• VLSI Yield: Percentage of working chips over the chips manufactured
• Factors of Yield loss: Random defects and Systematic defects

• Random defects: dust/contaminants on materials and equipment

• Prediction of yield loss due to random defects: Critical Area Analysis

• Critical Area: Measure reflecting the sensitivity of a VLSI design to random 
defects during manufacturing
• Now a solved problem – but still essential to IC manufacturing 

• VLSI Layout: layers of different materials; each layer a collection of shapes; 
manufacturing: optical processing layer by layer
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Examples of faults due to random defects

Open MetalShorted Metal

Foreign Material Short Open Metal
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Critical Area
• Critical Area:

A(r) : area where if  a defect of radius r is          
centered causes a circuit failure

ò
¥

=
0

)()( drrDrAAc

D(r): density function of the defect size

3

2
0)(
r
rrD = Defect of size r = disk of radius r
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A(r) -- shorts for one defect size r

Critical Area

r
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A(r) – open faults for one defect size r 

Critical Area

r



Methods to compute Critical Area
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• Monte Carlo simulation [Initial work at  IBM [e.g. Stapper & Rosner Trans. Semic. Manuf. 95)]
• Randomly draw large number of defects following D(r); check for faults
• Oldest, widely implemented technique. Computationally, very intensive

• Shape shifting methods [AFFCA ’95 , Allan& Walton TCAD99, Zachariah & Chacravarty TVLSI 00]

• Based on shape expansion / shrinking - many variants
• Very expensive to compute A(r) for medium/large r, needed in integration.

• The Voronoi method          [P. & Lee TCAD99, P. TCAD01, P. TCAD11, various patents]
• Idea: partition layout into regions where critical area integral can be computed 

analytically
• Critical area computation is easy (trivial) once appropriate Voronoi diagram derived 
• Combined with layout sampling techniques for fast critical area estimate at chip level



L∞ metric
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• Algorithmic degree
• Degree d: tests - evaluation of multivariate polynomials of arithmetic degree ≤ d.

• L∞ Voronoi diagram construction: significantly lower algorithmic degree
• Robust, faster, easier to derive implementation 

In-circle test (segments): degree ≤ 40 
[Burnikel 96]

L∞ in-circle test (segments): degree ≤ 5 
[Papadopoulou & Lee IJCGA 01]

VLSI shapes: typically, ortho-45: degree 1
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Shorts
• A defect on layer A forms a short if it overlaps two different shapes in different nets

• Critical radius of any point t: size of smallest defect centered at  t causing a fault. 

t

Model defects as squares ⇒ L∞ metric

Simplicity in computation

Much lower algorithmic degree  
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Shorts
• Critical radius: distance from 2nd nearest polygon (in different net)
• Need: 2nd nearest neighbor information

t
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Voronoi diagram for shorts
• 2nd order Voronoi diagram of polygons

• Every region has a unique owner  responsible for shorts within region
• Critical radius at any point t: distance to owner of region
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Critical Area Integration within a Voronoi region

• Subdivide Voronoi region into simple rectangles/ triangles
• Compute critical area within each analytically
• Add up formulas to derive critical area for entire region
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Critical Area Integration within a Voronoi region
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Critical Area = Summation of Voronoi edges

Critical area computation: trivial once the Voronoi diagram computed



Critical Area via Voronoi diagrams
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• Shorts: Ac ≤ 2nd order Voronoi diagram of polygons  

• Simple Open Faults: Ac ≤  Voronoi diagram of (additively weighted) segments  

• Via Blocks: Ac ≤  Hausdorff Voronoi diagram (a Voronoi diagram of point clusters)

• General Open Faults: Ac ≤  Higher order Voronoi diagram of (weighted) segments

• Analytical Critical Area integration – no error
• O(n log n) – type of algorithms in most cases

• All are variants of generalized Voronoi diagrams of polygons 
• Higher order Voronoi diagrams of segments/shapes had not been available in CG literature

• IBM Voronoi CAA CAD tool – (licensed to Cadence, used extensively in industry)



Research Goal
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• Generalize algorithmic techniques or combinatorial results, which are available 
for points, to generalized Voronoi diagrams

• Example:  linear-time algorithms to compute tree Voronoi diagrams

E.g., Delaunay triangulation of a convex polygon – very simple randomized 
incremental algorithm by [Chew 1990] 



Linear-time Voronoi algorithms

38

• Voronoi diagram of points in convex position – a tree diagram 
[Aggarwal, Guibas, Saxe and Shor, DCG’89]
[Chew 1990] randomized

VD of a convex polygon
Università
della
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V(S) is a tree.

14

Related problems:
• Delaunay triangulation of a convex polygon

• Site deletion in a point VD
• Farthest-point VD, given the convex hull
• Iterative order-k Voronoi construction

Non-point-sites ? Segments? AVDs?



Linear-time Voronoi algorithms
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The randomized incremental algorithm of Chew is extremely simple:
• Consider a random permutation  of the input points 
• Phase 1: delete points 1-by-1, recording their neighbors at the time of deletion
• Phase 2: Insert points 1-by-1 in reverse order, updating their VD after each insertionVD of a convex polygon

Università
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V(S) is a tree.

14

insertion point given by the stored neighbors –
no point-location

Each insertion performed in expected O(1) time



Site deletion
• Given the Voronoi diagram VD(S) of a set of sites S, delete the region of a site 

s and update the diagram
• Compute the red diagram in VR(s,S), which is VD(S\{s}) ∩ VR(s,S)                   

(a tree for point sites)
Deletion of a site

s

• Delete site s 2 S.
• Update V(S) to V(S \ s) by computing the tree V(S \ s) \ VR(s, S).
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Deletion of a site

s

• Delete site s 2 S.
• Update V(S) to V(S \ s) by computing the tree V(S \ s) \ VR(s, S).
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VR(s,S)



Site deletion – non-points
For non-point sites (e.g., line segments, circles, AVDs), considerably more difficult 
problem

• open problem since the late 80’s
• randomized linear time algorithm for AVDs  [Junginger, Pap., SoCG 2018]
• deterministic linear-time algorithm still an open problem

• Why difficult?
• Disconnected Voronoi regions

41

What is di�cult?

For abstract Voronoi diagrams and non-point sites (line segments, circles):

VR(s)
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One Voronoi region can have multiple faces within VR(s).
– The sites along @VR(s) can repeat.

(AVDs: @VR(s) is a Davenport-Schinzel sequence of order 2.)

@VR(s)

4



Incremental construction 

42

• Compute the Voronoi diagram of segments in the shaded domain incrementally 
(a tree)

• When we consider a new segment, many faces may need to be inserted
• Step i may trigger the insertion of Θ(i) new faces in the diagram, whose location 

we do not know in advance

Difficult to 
avoid point 
location



Incremental construction 
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• In a different insertion order, we may need to split a region in two. 
• not a major problem in general.



A Voronoi-like structure
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• We need to compute the structure on right, which is a Voronoi-like diagram

• A Voronoi diagram of bits and pieces of these segments 



• We call Voronoi-like any graph on the arrangement of a bisector system 
whose vertices (other than its leaves) are locally Voronoi.

• A vertex is called locally Voronoi if it is a legal Voronoi vertex of 3 sites 

• Any graph on an abstarct  bisector arrangment whose non-leaf vertices are 
locally correct Voronoi vertices is a Voronoi-like diagram

Voronoi-like graph

46

Abstract Voronoi diagrams

p
q

p
r

q
r

No sites / No distances. Instead:
J = bisector system for a set of n abstract sites S, which is admissible:

[Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.]
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(A1) Voronoi regions are non-empty and connected.
(A2) Voronoi regions cover the plane.
(A3) Bisectors are unbounded Jordan curves.
(A4) Transversal and finite # intersections.

For every S 0 ✓ S:

27



Delaunay’s Theorem for AVDs
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• Delaunay’s theorem (points, Euclidean metric) : 
A triangulation is globally Delaunay iff it is locally Delaunay.

• Recent extension [P. SoCG23]: Under a bisector system of classic AVDs,  any 
Voronoi-like graph in the plane is the Voronoi diagram of the involved sites

• If you have a graph whose vertices are legal Voronoi vertices of 3 sites, then this 
graph is the Voronoi diagram of the involved sites.



Voronoi like graphs
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• Voronoi–like graphs are useful to hold partial (flexible) Voronoi information

• They are as close as possible to being Voronoi diagrams subject to possibly 
missing some faces.  

• Extend Delaunay’s Theorem from Euclidean points to abstract Voronoi diagrams and 
their duals

• Applications: simple (expected) linear-time algorithms for Voronoi tees and forests
• Site-deletion in abstract Voronoi diagrams (and related concrete VDs) 
• Farthest abstract Voronoi diagram (given the order of Voronoi regions at infinity) 
• Order-k abstract Voronoi diagram – iterative construction
• Updating a Constraint Delaunay Triangulation after a segment constraint insertion
• Computing a tree VD in a domain D, given the order of Voronoi faces on 𝜕D, |𝜕D|=O(1)



Open Problem 
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Open problem:
• Deterministic linear-time technique for the same problems. 

Combine Voronoi-like structures and the technique of [Aggarwal, Guibas Saxe, Shor, 89]

• Recent progress to the affirmative

Thank you for your attention! 


