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Example and definition

Sites: P :={p1,...,pn} C R?
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Example and definition

Sites: P :={p1,...,pn} C R?
Voronoi cell: g € V(p;) & dist(q, p;) < dist(q, p;), Vpj € P,j # i
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Example and definition

Sites: P :={p1,...,pn} C R?
Voronoi cell: g € V(p;) & dist(q, p;) < dist(q, p;), Vpj € P,j # i

[}
Georgy F. Voronoy
(1868 - 1908)
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Faces (edges) of Voronoi diagram
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Voronoi diagram
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Formalization

e sites: points P ={p1,...,pn} C R2.
e Voronoi cell/region V/(p;) of site p;:

qg e Vip) & dist(q,pi) < dist(q, p;), Vpj € P,j #i.

e Voronoi edge is the common boundary of two adjacent cells.

e Voronoi vertex is the common boundary of 3 adjacent cells, or the
intersection of > 2 (hence > 3) Voronoi edges.

Generically, of exactly 3 Voronoi edges.

Voronoi diagram of P = dual of Delaunay triangulation of P.

e Voronoi cell & vertex of Delaunay triangles: site

e neighboring cells (Voronoi edge) «» Delaunay edge, defined by
corresponding sites (line of Voronoi edge L line of Delaunay edge)
e Voronoi vertex < Delaunay triangle.
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Triangulation

A triangulation of a pointset (sites) P C R? is a collection of triplets from
P, namely triangles, s.t.

» The union of the triangles covers the convex hull of P.

» Every pair of triangles intersect at a (possibly empty) common face
(0, vertex, edge).

» Usually (CGAL): Set of triangle vertices = P.

I

Example: P, incomplete, invalid, subdivision, triangulation.
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Delaunay Triangulation: dual of Voronoi diagram
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Delaunay Triangulation: dual of Voronoi diagram




Delaunay Triangulation: dual of Voronoi diagram
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Delaunay Triangulation: dual of Voronoi diagram

Boris N. Delaunay
(1890 - 1980)
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Delaunay triangulation: projection from parabola

Definition/Construction of Delaunay triangulation:
> Lift sites p = (x) € R to p = (x,x?) € R?
» Compute the convex hull of the lifted points
» Project the lower hull to R
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Delaunay triangulation: going a bit higher. ..

Definition/Construction of Delaunay triangulation:
> Lift sites p = (x,y) € R? to p = (x, y, x*+y?) € R?
» Compute the convex hull of the lifted points
» Project the lower hull to R?: arbitrarily triangulate lower facets that
are polygons (not triangles)
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Applications

Nearest Neighbors
Reconstruction
Meshing
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Voronoi by Lift & Project

Lifting:

— Consider the paraboloid x3 = x? + x3.

— For every site p, consider its lifted image p on the parabola.
— Given p, 3 unique (hyper)plane tangent to the parabola at p.

Project:

— For every (hyper)plane, consider the halfspace above.

— The intersection of halfspaces is a (unbounded) convex polytope
— Its Lower Hull projects bijectively to the Voronoi diagram.

Proof:

— Let E : x? + x2 — x3 = 0 be the paraboloid equation.

- VE(a) = (3,85, 28) = (221,22, 1),

— Point x € plane h(x) & (x —a)-VE(a) =0 &

2a1(x1 — a1) +2ax(x0 — a2) — (x3 — az) = 0, which is h's equation.
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Lift & Project in 1D

y:

¢--—-----°
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Main Delaunay property: empty circle/sphere

I.Emiris (University of Athens) Voronoi diagram and Delaunay triangulation
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Main Delaunay property: empty circle/sphere
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Main Delaunay property: 1 picture proof

Thm (in R): S(p1, p2) is a Delaunay segment & its interior contains no p;.

Proof. Delaunay segment & (p1, p2) edge of the Lower Hull
& no p; “below” (p1, p2) on the parabola
& no p; inside the segment (p1, po).

R -
S

]

=
=
N

p3

=
IS

I.Emiris (University of Athens) Voronoi diagram and Delaunay triangulation




Main Delaunay property: 1 picture proof

Thm (in R?): T(p1, p2, p3) is a Delaunay triangle & the interior of the
circle through p1, p2, p3 (enclosing circle) contains no p;.

Proof. Circle(p1, p2, p3) contains no p; in interior

& plane of lifted py, po, p3 leaves all lifted p; on same halfspace
& CCW(p1, p2, p3, p;i) of same sign for all i.

Suffices to prove: p; lies on Circle(p1, p2, p3)

& pi lies on plane of p1, p2, p3 & CCW(p1, p2, p3, pi) = 0.

[ =/

I.Emiris (University of Athens) Voronoi diagram and Delaunay triangulation



Predicate InCircle

Given points p, g, r, s € R?, point s = (5xy5,) lies inside the circle
through p, q, r &

Px Py pg + pg
det dx Qy q)2< + q{
rx ry rg+ ry
Sx Sy sf + s)%

>0,

=

assuming p, q, r in clockwise order (otherwise det < 0).

Lemma. InCircle(p, q,r,s) =0 & 3 circle through p, g, r,s.
Proof. InCircle(p,q,r,s) =0& CCW(p,q,r,5) =0
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Delaunay faces

Theorem. Let P be a set of sites € R?:
(i) Sites pi, pj, px € P are vertices of a Delaunay triangle & the circle
through p;, pj, px contains no site of P in its interior.
(i) Sites pj, pj € P form an edge of the Delaunay triangulation & there

is a closed disc C that contains p;, p; on its boundary and does not
contain any other site of P.
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Triangulations of planar pointsets

Thm. Let P be set of n points in R?, not all colinear, k = #points on
boundary of CH(P). Any triangulation of P has 2n — 2 — k triangles and
3n—3 — k edges.

Proof.
> f: #facets (except 00)
> e #edges
> n: #vertices

1. Euler: n—e+ (f +1)—1=1; for d-polytope: Z;j:o(—l)"f; =1
2. Any planar triangulation: total degree = 3f 4+ k = 2e.
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Properties of Voronoi diagram

Lemma. |V|<2n—5, |E|<3n—6,n=|P|,

by Euler's theorem for planar graphs: |V|—|E|+n—1=1.

Max Empty Circle Cp(q) centered at g: no interior site p; € P.
Lem: g € R? is Voronoi vertex < C(q) has > 3 sites on perimeter

Any perpendicular bisector of segment (pj, p;) defines a Voronoi edge &
3 g on bisector s.t. C(q) has only p;, p; on perimeter
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Delaunay maximizes the smallest angle

Let T be a triangulation with m triangles.
Sort the 3m angles: a1 < ax < -+ < asm. To:={a1,32,...,33m})
Edge e = (pj, pj) is illegal & minicjcea; < minicice a;.

T’ obtained from T by flipping illegal e, then T, > Ta.

Flips yield triangulation without illegal edges.
The algorithm terminates (angles decrease), but is O(n?).
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Insertion by flips
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Lower bound

Q(nlog n) by reduction from sorting
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Delaunay triangulation

Let P be a set of points € R2. A triangulation 7 of P has no illegal edge
& T is a Delaunay triangulation of P.

Cor. Constructing the Delaunay triangulation is a fast (optimal) way of
maximizing the min angle.

Algorithms in R?:

— Lift, CH3, project the lower hull: O(nlog n)
— Incremental algorithm: O(nlog n) exp., O(n?) worst
— Voronoi diagram (Fortune’s sweep): O(nlog n)
— Divide 4+ Conquer: O(nlog n)

See Voronoi algo’s below.
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Incremental Delaunay
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Incremental Delaunay
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Incremental Delaunay
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Incremental Delaunay

Delete triangles in conflict
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Incremental Delaunay

Triangulate hole
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Divide & Conquer
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Fortune's sweep
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Vertex, and Site events
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General dimension polytopes

Faces of a polytope are polytopes forming its extreme elements.
A facet of a d-dimensional polytope is (d — 1)-dimensional face:
e The facets of a segment are vertices (0-faces).

The facets of a polygon are edges (1-faces)

The facets of a 3-polyhedron are polygons.

The facets of a 4d polytope are 3d polytopes.
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General dimension triangulation

A triangulation of a pointset (sites) P C R is a collection of
(d + 1)-tuples from P, namely simplices, s.t.

» The union of the simplices covers the convex hull of P.
» Every pair of simplices intersect at a (possibly empty) common face.
» Usually: Set of simplex vertices = P.

» Delaunay: no site lies in the circum-hypersphere inscribing any
simplex of the triangulation.

In 3d, two simplices may intersect at: (), vertex, edge, facet.

The triangulation is unique for generic inputs, i.e. no d + 2 sites lie on
same hypersphere, i.e. every d + 1 sites define unique simplex.

A Delaunay facet belongs to: exactly one simplex iff it belongs to CH(P),
otherwise belongs to exactly two (neighboring) simplices.
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Complexity in general dimension

Delaunay triangulation in R ~ convex hull in RI+1.

Convex Hull of n points in R is O(nlog n+ nLd/2J)
Hence d-Del = @(nlog n+ nld/21)

Lower bound [McMullen] on space Complexity

v

v

v

optimal deterministic [Chazelle], randomized [Seidel| algorithms

v

Optimal algorithms by lift/project: R?: @(nlogn), R3: @(n?).
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Generalized constructions

In R?: Various geometric graphs defined on P are subgraphs of DT (P),
e.g. Euclidean minimum spanning tree (EMST) of P.

Delaunay triangulation D7 (P) of pointset P C R?: triangulation s.t. no
site in P lies in the hypersphere inscribing any simplex of DT (P).

» DT (P) contains d-dimensional simplices.
» hypersphere = circum-hypersphere of simplex.

» DT (P) is unique for generic inputs, i.e. no d + 2 sites lie on the same
hypersphere, i.e. every d + 1 sites define unique Delaunay “triangle”.

» RY: Delaunay facet belongs to exactly one simplex & belongs to
CH(P)
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Plane Decomposition Representation

e Doubly Connected Edge List (DCEL)
— stores: vertices, edges and cells (faces); \

— (undirected) edge: 2 twin (directed) half-edges

e Space complexity: O(|V|+ |E| + n),

|V| = #tvertices, |E| = #edges, n = #input sites.
—v: O(1): coordinates, pointer to half-edge where v is starting.

— half-e O(1): start v, right cell, pointer next/previous/twin half-e

e Operations:

— Given cell ¢, edge e C ¢, find (neighboring) cell ¢’: e C ¢’: O(1)
— Given cell, print every edge of cell: O(|E|).

— Given vertex v find all incident edges: O(#neighbors).
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