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Motivation

Monte Carlo Integration (which generalizes volume)

Optimization

c

Sparse representation, check conjectures (# linear extensions)

Contingency tables, underconstrained linear systems

Systems biology [Chalkis et al.21], . . .
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Simplex sampling

Sample each coordinate uniformly and normalize is too naive.
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Unit Simplex

Distinct uniform variables

1. Pick uniform distinct integers; then sort:
x0 = 0 ≤ x1 < · · · < xd ≤ xd+1 = M.

2. Point [yi = (xi − xi−1)/M : i = 1, . . . , d ] is uniform.

Complexity = O(d log d) [Smith,Tromble’04].
Fastest for d < 80 using Bloom filter (rather than hashing).

Exponential random variables

1. Pick uniform xi ∈ (0, 1); set yi = − ln xi , i = 1, . . . , d + 1.

2. Let T =
∑d+1

i=1 yi , then [y1/T , . . . , yd/T ] is uniform.

Complexity = O(d) [Rubinstein,Melamed’98].

Arbitrary with vertices vi : x ∈ unit simplex,
∑d+1

i=1 xivi is uniform.
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Geometric Random walks

Rejection shall not work: exponentially many points in bounding cube
/ simplex but outside P. Curse of dimensionality.

Continuous (geometric) version of random walks on discrete
structures (graphs).

In arbitrary polytopes: Markov (memoryless) chains of points which
“mix” to the desired distribution (typically uniform); complexity
depends on (warm) start, roundedness of body.

Each point generated with desired probability distribution after a
number of steps: this number is the mixing time.

Continuous uniform distribution: point in A ⊂ P with probability
vol(A)/vol(P). Then, probability density function is 1/vol(P), and∫

P

dv

vol(P)
= 1.
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Main existing walks

year walk mixing time step cost

87 Coordinate HnR ? m
06 Hit-and-Run d3 md
09 Dikin md md2

14 Billiard ? Rmd

16 Geodesic md3/4 md2

17 Ball d2.5 md

17 Vaidya m1/2d3/2 md2

17 Riemmanian HMC md2/3 md2

18 HMC w/reflections ? md
19 sublinear Ball d2.5 m

dimension d , m facets, R bounds billiard reflections
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Random Directions Hit-and-Run (RDHR)

P

x
B

`

Input: point x ∈ P and polytope P ⊂ Rd

Output: a new point in P

1. line ` through x , uniform on B(x , 1)

2. new x uniform on P ∩ `
Perform W steps, return x .
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Random Directions Hit-and-Run (RDHR)

P

`

x
Input: point x ∈ P and polytope P ⊂ Rd

Output: a new point in P

1. line ` through x , uniform on B(x , 1)

2. new x uniform on P ∩ `
Perform W steps, return x .

x is uniformly distributed in P after W ∼ 1011d3 steps [LV’06].

I.Emiris (Athens, Greece) Geometric Data analysis May 20, 2022 9 / 63



Sample distribution

pu: distribution on taking one step from u: A ⊂ P reached w/prob. pu(A)

Theorem

For u ∈ P, the pdf of point v ∈ P at next step is

fu(v) =
2

vold−1(Sd)

1

`(u, v)|v − u|d−1

where `(u, v) = length of chord through u, v , sphere Sd ⊂ Rd .

Proof. It suffices to prove pu(A) =
2

vold−1(Sd )

∫
A

dv
`(u,v)|v−u|d−1 for

infinitesimally small A: `(u, v) ≈ `, ∀v ∈ A; |v − u| ≈ t. Given chord L
through u, Prob[v ∈ A] = vol1(A ∩ L)/`. Now pu(A) = average over all L:

EL

(
vol1(A ∩ L)

`

)
=

2

vol(Sd)td−1

vol(A)

`
=

2

vol(Sd)

∫
A

1

`td−1
dv

because vol(Sd)t
d−1 = vol(t-sphere) counts directions of L.
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Stationary distribution

Recall pu is distribution obtained on taking one step from u ∈ P:
A ⊂ P is reached with probability pu(A), and pu(P) = 1.

Distribution Q on P is stationary if one step gives same distribution:∫
P
pu(A)dQ(u) = Q(A), for any A ⊂ P.

Symmetry/reversibility: fu(v) = fv (u).

If Q is uniform on P then, Q(A) = vol(A)/vol(P), and:∫
P
pu(A)dQ(u) =

∫
P

∫
A
fu(v)dQ(v)dQ(u) =

∫
A

∫
P
fv (u)dQ(u)dQ(v) =

=

∫
A
pv (P)dQ(v) =

∫
A

dv

vol(P)
=

vol(A)

vol(P)
= Q(A).

Hence the uniform distribution is stationary. Is it unique?
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Uniform distribution

Theorem (Smith’86)

Any symmetric (has the reversibility property) random walk with positive
transition pdf converges to the uniform distribution, and it is the unique
such distribution.
Examples: RDHR, Billiard walk.

Similarly for non-negative transition pdf, e.g. CDHR.
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Mixing time

QT : distribution after T steps.

Mixing time: T steps s.t. ‖QT − Q‖ ≤ ε, for ε→ 0+.

Theorem

T ≈ 1011d3 for RDHR and uniform distribution Q.

Proof

T = O(1/φ2), where φ is the conductance of a (geometric) random walk,
defined as:

φ = min
0≤Q(A)≤1/2

∫
A pu(P \ A) dQ(u)

Q(A)
, out of some A ⊂ P.
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Coordinate Directions Hit-and-Run (CDHR)

x

`

P

B

Input: point x ∈ P.

Output: a new point in P.

1. line ` through x , uniform on
{e1, . . . , ed }, ei = (. . . , 0, 1, 0, . . . )

2. x uniformly ∈ P ∩ `.

I.Emiris (Athens, Greece) Geometric Data analysis May 20, 2022 14 / 63



Coordinate Directions Hit-and-Run (CDHR)

x
`P Input: point x ∈ P.

Output: a new point in P.

1. line ` through x , uniform on
{e1, . . . , ed }, ei = (. . . , 0, 1, 0, . . . )

2. x uniformly ∈ P ∩ `.

I.Emiris (Athens, Greece) Geometric Data analysis May 20, 2022 14 / 63



Coordinate Directions Hit-and-Run (CDHR)

x

`

P
Input: point x ∈ P.

Output: a new point in P.

1. line ` through x , uniform on
{e1, . . . , ed }, ei = (. . . , 0, 1, 0, . . . )

2. x uniformly ∈ P ∩ `.
Perform W steps, return x .

“Continuous” grid walk: Converges to uniform, mixing = O(d11R2)
[2020].
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Boundary oracle

Compute intersection of line ` with boundary ∂P, given m hyperplanes:

RDHR step in O(md).

CDHR = O(m) per step: solve 1d (linear) problem per facet.

Duality reduces oracle to farthest point search (max inner product)
among m points: same asymptotics, practical if large m (16-dim
cross-polytope: m = 216, 40x speedup).
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Billiard walk

BW-step (polytope P, point pi , real τ, integer R) [Polyak’14]

1. Set length of trajectory L = −τ lnη, for random η ∼ U(0, 1).

2. Pick uniform direction v to start the trajectory at pi .

3. When trajectory meets ∂P with inner normal s, ||s || = 1,
the direction changes to v − 2〈v , s〉s.

4. return the end of trajectory as pi+1.
If number of reflections exceeds R then return pi+1 = pi .
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Experimental comparison

Sampling the 100d cube with Ball Walk, RDHR, CDHR, Billiard walk.
Walk length = 1,20,40,60,80,100.
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Famous polytopes
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Easy cases

Some elementary polytopes have determinantal formulas.

∣∣∣∣∣∣
1 2 1
3 6 1
6 1 1

∣∣∣∣∣∣ /2! = 11

∣∣∣∣2 5
4 0

∣∣∣∣ = 20
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Convex polytope

Convex polytopes are defined by
– the set of all convex combinations of a finite set of points (V-rep):

easy point generation, membership requires LP;
– the intersection of a finite number of halfspaces (H-rep):

easy membership, ray-shooting reduces to F linear systems.

Further representations include Minkowski (vector) sums:

– of a finite number of polytopes,
– of segments vi : zonotope (Z-rep)
”generated” as follows:

t∑
i=1

λivi , 0 ≤ λi ≤ 1.
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Hardness

IN: H-polytope P := {x ∈ Rd | Ax ≤ b, A ∈ Rm×d , b ∈ Rm},
which has m linear inequalities (maybe some redundant).

V-polytope defined by points (vertices) vi ∈ Rd :
P := { λ1v1 + · · ·+ λnvn ∈ Rd |

∑
i λi = 1, λi ≥ 0}

OUT: Euclidean volume of P.

#-P hard for vertex, halfspace representations [Dyer,Frieze’88]

Open if both vertex & halfspace representations are available.

APX-hard in oracle model: deterministic poly-time approximations
have exponential error [Elekes’86]
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Volume Approximation (H-rep)

Curse of dimensionality:
– Triangulation is exponential in d .
– V(unit ball) = πd/2/Γ(1+ d/2) = Θ((2πe/d)d/2/

√
d) = O((1/d)d)

Hence rejection sampling does not scale.

det. poly-time approximation with error ≤ d ! [Betke,Henk’93]

Fully Poly-time Randomized Approx. Scheme: arbitrarily small error
with high probability; grid random walk, telescoping sphere sequence
[D,F,Kannan’91] in O∗(d23).

Ball walk [K,Lovász,Simonovits’97] O∗(d5).
O∗(d4m) [LVempala’04] by simulated annealing, Hit-and-Run.
If rounded O∗(d3F ) [CousinsV’14] by Gaussian cooling.
Hamiltonian walk O∗(d2/3F ) [LeeV’18].
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Implementations

Exact: VINCI [Bueler et al’00], Latte [deLoera et al], Qhull [Barber et al]

too slow in high dimensions (e.g. > 20)

Randomized for H-polytopes:

[Lovász,Deák’12] only in ≤ 10 dimensions.

Zonotopes via LP oracles, shake-and-bake [Fukuda et al.]

Ours: based on Sampling [DFK’91], [Kannan,Lovász,Simonovits’97];
few hrs for few hundred dimensions.

Matlab code by Cousins & Vempala based on [LV04], needs #facets.

Hit-and-run in non-convex regions [Abbasi-Yadkori et al.’17]
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Algorithmic ingredients

X Sampling by Hit-and-Run

Telescoping (multiphase) sequence of balls;

Sandwiching input P between balls;

Rounding input P.
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Ball sequence

P0 = B(c, r)

B′ = B(c, ρ)

P

P1

Cocentric ball B(c , 2i/d) sequence:
centered at point c ∈ P,
sequence of radii r , 2r , . . . , ρ,
for i = bd log rc, . . . , dd log ρe
s.t. B(c , r) ⊂ P ⊂∼ B(c , ρ).

Define convex Pi := P ∩ B(c , 2i/d).

vol(P) = vol(Pd log r )

dd log ρe∏
i=bd log rc+1

vol(Pi )

vol(Pi−1)
[DFK91]
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Multiphase Monte Carlo

P0 = B(c, r)

B′ = B(c, ρ)

P

P1

The Pi ’s are sampled uniformly.

Partial inverse point generation:

1. Let N uniform points in Pi .

2. Count (+ keep) ν in Pi−1.

3. Sample N − ν in Pi−1.

vol(P) = vol(Pd log r )

dd log ρe∏
i=bd log rc+1

vol(Pi )

vol(Pi−1)
.

where each ratio is approximated by rejection sampling (step 2).
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Sandwiching (Schedule)

compute max inscribed ball B(c , r) of P, by LP:
max r : Aic + r‖Ai‖2 ≤ bi , i = 1, . . . ,m.

get uniformly distributed p ∈ B(c , r); sample N uniform points ∈ P

ρ = max distance between c and N points: P ⊂∼ B(c , ρ)

B = B(c, r)

B′ = B(c, ρ)

P
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Well-Rounding

1. given set S of s uniformly distributed points ∈ P

2. compute (approximate) min-volume ellipsoid E covering S :
S ⊂ E = {x : (x − c)TLTL(x − c) ≤ 1}

3. compute L mapping E to unit ball B: apply L to P

P

P ′

E

B

Iterate till ratio of max over min ellipsoid axes reaches threshold.
Note: Isotropic position (identity covarince) implies well-rounded.
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Complexity

Theorem (Kannan,Lovász,Simonovits’97; Lovász’99)

Let a polytope P be well-rounded: B(c , r = 1) ⊆ P ⊆ B(c , ρ), for c ∈ P.
The algorithm computes, with probability ≥ 3/4, an estimate of vol(P) in
[(1 − ε)vol(P), (1 + ε)vol(P)], by

O∗(d4ρ2) = O∗(d5)

oracle calls, with probability ≥ 9/10, where ρ = O∗(
√
d) by isotropic

sandwiching, and ε > 0 is fixed.

Runtime

N = 400d log d/ε2 = O∗(d) random points per Pi ,

each point computed after W ∼ 1011d3 walk steps.
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[E,Fisikopoulos’14-18]

CDHR: boundary oracle = O(m).

Set W = b10 + d/10c walk steps, also [LovDeák]: achieves < 1%
error in d ≤ 100. Hence our algorithm takes O∗(md3) ops.

sample partial generations of ≤ N points per ball ∩P, starting from
largest; saves constant fraction per ball.

rounding = O∗(sd2) = O∗(d3) [Khachiyan’96]; k iterations in
O∗(k(md + d3)), typically k = 1.

2.5K lines C++, github.com/GeomScale

CGAL for LP, min-ellipsoid; Eigen for linear algebra

Google summer of code 2018: R interface [Chalkis]
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Experimental results

approximate the volume of polytopes (cubes, random, cross, Birkhoff)
up to dimension 100 in < 2hrs with mean error < 1%

estimate always in [(1 − ε)vol(P), (1 + ε)vol(P)], with W = Θ(d)

CDHR faster (and more accurate) than RDHR

volume of Birkhoff polytopes B11, . . . ,B15 in few hrs; exact
specialized software computed B10 in ∼1 year [BeckPixton03]
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Runtime vs. dimension
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Birkhoff polytopes

Bn = {x ∈ Rn×n | xij ≥ 0,
∑

i xij = 1,
∑

j xij = 1, 1 ≤ i , j ≤ n}:
perfect matchings of Kn,n, or Newton polytope of determinant.

n d estimate
asymptotic estimate

asympt.
exact

exact
asympt.[CanfieldMcKay09]

4 9 6.79E-002 7.61E-002 0.89194 6.21E-002 0.81593
5 16 1.41E-004 1.69E-004 0.83444 1.41E-004 0.83419
6 25 7.41E-009 8.62E-009 0.85987 7.35E-009 0.85279
7 36 5.67E-015 6.51E-015 0.87139 5.64E-015 0.86651
8 49 4.39E-023 5.03E-023 0.87295 4.42E-023 0.87786
9 64 2.62E-033 2.93E-033 0.89608 2.60E-033 0.88741

10 81 8.14E-046 9.81E-046 0.83052 8.78E-046 0.89555
11 100 1.40E-060 1.49E-060 0.93426 ? ?
12 121 7.85E-078 8.38E-078 0.93705 ? ?
13 144 1.33E-097 1.43E-097 0.93315 ? ?
14 169 5.96E-120 6.24E-120 0.95501 ? ?
15 196 5.70E-145 5.94E-145 0.95938 ? ?

All volumes in few hrs; exact V (B10) in ∼1 year [BeckPixton03].
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Open: V-polytopes

Given by optimization oracle

P

`

x
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Open: V-polytopes

Given by optimization oracle
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github/GeomScale

H-polytopes [E-Fisikopoulos14]

CDHR amortized O(1), b10 + d/10c vs. ' 1011d3 random walks.

d ≤ 100: < 2hrs, < 1% error.

H/V-polytopes, zonotopes [Chalkis-E-Fisikopoulos’19]

Sequence of convex bodies: good fit, easy sampling (rejection)

Simulated annealing to construct sequence

Statistical criterion of convergence
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New Multiphase Monte Carlo

Convex C1 ⊇ · · · ⊇ Cm intersect P = P0, Pi = Ci ∩ P, i = 1, . . . ,m:

vol(P) =
vol(P0)

vol(P1)
· · · vol(Pm−1)

vol(Pm)
· vol(Pm)

vol(Cm)
· vol(Cm),

is good sequence provided ratios computed fast, m small;
inner ratio may be approximated by rejection sampling.
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Annealing schedule: body sequence

Employ (ideas of) simulated annealing to reduce length of sequence by
adapting to the problem: non-deterministic, varying steps.

Input: Polytope P, error ε, cooling parameters r , δ > 0 s.t. 0 < r + δ� 1.

Output: A sequence of convex bodies C1 ⊇ · · · ⊇ Cm s.t.

vol(Pi+1)/vol(Pi ) ∈ [r , r + δ] with high probability

where Pi = Ci ∩ P, i = 1, . . . ,m and P0 = P.
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Annealing schedule: reduce number of phases

Six balls Ci (left), one by annealing r=0.25, δ=0.05 (right)

Classic MMC [LKS97]: vol(C2∩P)

vol(C1∩P)
· · · vol(C6∩P)

vol(C5∩P)
vol(C1).

Annealing schedule: vol(C1∩P)

vol(C1)
· vol(P)

vol(C1∩P)
· vol(C1).
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Statistical tests to estimate volume ratio

Given Pi ⊇ Pi+1, r , δ > 0, 0 < r + δ� 1, define null hypotheses H0:

testLeft: H0 : vol(Pi+1)/vol(Pi) ≤ r + δ
testRight: H0 : vol(Pi+1)/vol(Pi) ≤ r

1. Sample set of N points from Pi , repeat ν times.

2. ∀ set, binomial r.v. X counts points in Pi+1, success probability is
unknown ratio ri = vol(Pi+1)/vol(Pi ).

3. Use µ̂ = mean of ν ratios.
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Statistical tests

testL(Pi ,Pi+1, r , δ): testR(Pi ,Pi+1, r , δ):
H0 : vol(Pi+1)/vol(Pi ) ≥ r + δ H0 : vol(Pi+1)/vol(Pi ) ≤ r
Successful if we reject H0 Successful if we reject H0

If both successful then ri = vol(Pi+1)/vol(Pi ) ∈ [r , r + δ] whp.

Figure: testL: succeeds, testR: fails

Binary search a radius in [rmax, rmin] until both tests are successful.
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H0 : vol(Pi+1)/vol(Pi ) ≥ r + δ H0 : vol(Pi+1)/vol(Pi ) ≤ r
Successful if we reject H0 Successful if we reject H0
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Binary search a radius in [rmax, rmin] until both tests are successful.
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Statistical tests

Given convex bodies Pi ⊇ Pi+1, we define two statistical tests:

testL(Pi ,Pi+1, r , δ): testR(Pi ,Pi+1, r , δ):
H0 : vol(Pi+1)/vol(Pi ) ≥ r + δ H0 : vol(Pi+1)/vol(Pi ) ≤ r
Successful if we reject H0 Successful if we reject H0

If both successful then ri = vol(Pi+1)/vol(Pi ) ∈ [r , r + δ] whp.

Figure: testL: succeeds, testR: succeeds

Binary search a radius in [rmax, rmin] until both tests are successful.
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Bound #phases

The annealing schedule terminates with constant probability.

#phases m = O

(
log(vol(P)/vol(C ′ ∩ P))

)
.

If the body we use in MMC is a ”good fit” to P, then vol(C ′ ∩ P)
increases and m decreases.
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Nonlinear bodies

For ellipsoids we generalized:

Boundary oracle: univariate quadratic equation.

Compute internal point, inscribed ball, enclosing ball.

Sequence of concentric balls: Stop when all rays first hit inscribed ball
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Internal point

Transform ellipsoid to sphere H0, transform simplex similarly.

Find B(p, r) of max radius r , satisfying constraints:

dist(p,Hi ) ≥ r ⇔ aTi p + bi ≥ r‖ai‖,

dist(p,H0) ≥ r ⇔ ‖p − c0‖ ≤ r0 − r .

This is a Second Order Cone Program. In general, polytope
intersection with O(1) balls.

Solved by SDP / interior-point method in poly-time.

Inverse transform yields inscribed ellipsoid, maybe not max. Center is
good internal point.

Get max inscribed ball by taking distance of p to Hi ’s.
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Polytope Oracles

Membership oracle

Given point y ∈ Rd , return yes if y ∈ P otherwise return no.

Boundary oracle

Given y ∈ P, ray ` through y , return points ` ∩ ∂P.

P P

y

`

y
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Approximation

Given is polytope P ⊂ Rd and approximation parameter ε ∈ (0, 1):

Definition (Approximate Polytope Membership)

Preprocess P into data-structure so that, given query point q, decide
whether q ∈ P or not. If d(q, ∂P) ≤ ε · diam(P) the data structure can
answer either way.

Definition (Approximate Polytope Boundary)

Preprocess P into data-structure so that given query ray r emanating from
y ∈ P, compute point r∗, s.t.

r∗ ∈ r and d(r∗, ∂P) ≤ ε · diam(P).

Previous approaches have complexity exponential in d .
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Reduction

Exact setting [Aurenhammer’87]

Let P ⊂ Rd have n facets. ∀p∗ ∈ P \ ∂P, compute set S of n points:
membership of q reduces to finding its Nearest Neighbor in S ∪ {p∗}
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Approximate membership

Let P−ε = {x ∈ P | d(x , ∂P) > ε · diam(P)} 6= ∅.

Approximate Membership reduces to εANN on S ∪ {p∗}, p∗ ∈ P−ε.

Theorem (Complexity)

We answer Approximate Membership queries in O∗(dnρ+o(1)), using
O∗(n1+ρ+o(1) + dn) space, whp, where ρ ≤ 1/(1 + 4ε2) < 1.

[Anagnostopoulos-E-Fisikopoulos’17]
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Membership experiments
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Approximate Boundary Oracle

1. Compute t1 /∈ P, t1 ∈ r , where r is ray shooting query.

2. For ti 6∈ P, compute ti+1 closer to apex: pi := NN(ti ).

hyperplane Hi supports facet Fi defining pi ; ti+1 := Hi ∩ r .

3. Terminate by checking (approximate) membership oracle.

May get in local “optimum”: If ti does not decrease distance to apex, set
ti := (ti−1 − r .apex) − r .unitdir · ε.
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Financial markets

Stock markets exhibit 3 types of behavior:

Normal: slightly positive returns, moderate volatility.

Up-market (bubbles): high returns, low volatility.

Crises: strongly negative returns, high volatility.

The copula is a volatility-return probability distribution.
Figure: up-market and crisis: bubble burst in Sep. 2000.
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Financial modeling

Portfolios of d + 1 assets represented by simplex ∆d ⊂ Rd+1.

For portfolio ω ∈ ∆d , returns R ∈ Rd+1, total return
f (ω,R) = RTω is linear combination of returns.

Cross-sectional score of portfolio ω∗ is vol(∆∗)/vol(∆d) s.t.

∆∗ = {ω ∈ ∆d : f (ω,R) ≤ f (ω∗,R)}.

Score corresponds to cumulative distribution of f (ω,C ).

Volatility is quadratic form of returns.
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Families of constraints

Let Rij be the return at day i of asset j . Consider compound returns
over k days starting at day i : define (d + 1)-vector v whose j-th
coordinate, j = 1, . . . , d + 1, equals

vj = (1 + Ri ,j)(1 + Ri+1,j) · · · (1 + Ri+k−1,j) − 1.

Normal vector v defines family of hyperplanes.

Volatility requires estimation of the returns’ variance – covariance
matrix, yielding concentric ellipsoids.

Copula populated by intersecting ∆d along asset characteristics:
Hyperplane families normal to two compound vectors, or to one
vector and concentric ellipsoids.
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Formula for single halfspace

Let H : aT x ≤ a0, a = (a1, . . . , ad), let S be the unit simplex.

1. Let yi = ai − a0 if ≥ 0, i = 1, . . . ,K ,
xi = ai − a0 if < 0, i = 1, . . . , J, s.t. J + K = d .

2. Initialize A0 = 1,A1 = · · · = AK = 0.

3. For j = 1, . . . , J do:

Ak ←− ykAk − xjAk−1

yk − xj
, k = 1, . . . ,K .

For j = J,
AK = vol(S ∩ H) / vol(S).

Complexity = O(d2) [Varsi’73,Ali’73,Gerber’81].
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Thank you!
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