Geometric Data analysis

Random walks, Sampling, Volume

loannis Emiris

Dept Informatics & Telecoms, National Kapodistrian U. Athens
ATHENA Research & Innovation Center, Greece

May 20, 2022

I.Emiris (Athens, Greece) Geometric Data analysis May 20, 2022



Outline

© Sampling

I.Emiris (Athens, Greece) Geometric Data analysis May 20, 2022



@ Monte Carlo Integration (which generalizes volume)

Optimization

@ Sparse representation, check conjectures (# linear extensions)

Contingency tables, underconstrained linear systems

Systems biology [Chalkis et al.21], ...
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Simplex sampling

i
o.
Sample each coordinate uniformly and normalize is too naive.

miris (Athen
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Unit Simplex

Distinct uniform variables

1. Pick uniform distinct integers; then sort:
X0:O§X1<-~-<Xd§Xd+1:M.
2. Point [y; = (x; — x;_1)/M : i=1,...,d] is uniform.
Complexity = O(dlog d) [Smith, Tromble'04].
Fastest for d < 80 using Bloom filter (rather than hashing).

Exponential random variables

1. Pick uniform x; € (0,1); set y; = —Inx;, i=1,...,d + 1.
2. Let T = Z:-j;rll yi, then [y1/T,...,yq/ Tl is uniform.
Complexity = O(d) [Rubinstein,Melamed'98].

Arbitrary with vertices v;: x € unit simplex, Z?jll X;vj is uniform.
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Outline

e Random walks
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Geometric Random walks

@ Rejection shall not work: exponentially many points in bounding cube
/ simplex but outside P. Curse of dimensionality.

e Continuous (geometric) version of random walks on discrete
structures (graphs).

@ In arbitrary polytopes: Markov (memoryless) chains of points which
“mix" to the desired distribution (typically uniform); complexity
depends on (warm) start, roundedness of body.

@ Each point generated with desired probability distribution after a
number of steps: this number is the mixing time.

@ Continuous uniform distribution: point in A C P with probability
vol(A)/vol(P). Then, probability density function is 1/vol(P), and

dv
L wl(P) —
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Main existing walks

] year walk mixing time step cost ‘
87 Coordinate HnR ? m
06 Hit-and-Run d? md
09 Dikin md md?
14 Billiard ? Rmd
16 Geodesic md3/* md?
17 Ball d?>° md
17 Vaidya mt/2d3/2 md?
17 Riemmanian HMC md?/3 md?
18  HMC w/reflections ? md
19 sublinear Ball d?® m

dimension d, m facets, R bounds billiard reflections
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Random Directions Hit-and-Run (RDHR)

P Input: point x € P and polytope P C R
Output: a new point in P

’ 1. line { through x, uniform on B(x, 1)
‘ 2. new x uniform on PN¢{

Perform W steps, return x.

I.Emiris (Athens, Greece) Geometric Data analysis May 20, 2022 9/63



Random Directions Hit-and-Run (RDHR)

P Input: point x € P and polytope P C R
Output: a new point in P
1. line { through x, uniform on B(x, 1)
2. new x uniform on PN¢{

Perform W steps, return x.

I.Emiris (Athens, Greece) Geometric Data analysis May 20, 2022 9/63



Random Directions Hit-and-Run (RDHR)

Input: point x € P and polytope P C R
Output: a new point in P
1. line { through x, uniform on B(x, 1)
2. new x uniform on PN¢{

Perform W steps, return x.

o x is uniformly distributed in P after W ~ 1011 d® steps [LV'06].

I.Emiris (Athens, Greece) Geometric Data analysis May 20, 2022 9/63



Sample distribution

pu: distribution on taking one step from u: A C P reached w/prob. p,(A)

Theorem
For u € P, the pdf of point v € P at next step is

L2 1
~ volg—1(Sq) €(u, v)lv — uld-T

where £(u, v) = length of chord through u, v, sphere Sy C RY.

dv
v—uld—1

infinitesimally small A: {(u,v) = {, Vv € A; |v— u| = t. Given chord L
through u, Prob[v € A] = voli (AN L)/L. Now p,(A) = average over all L:

IEL<VOI1(AHL)> 2 vol(A) 2 L 1 dv

for

Proof. It suffices to prove p,(A) = vol 2 5)) Ja Wav)l
d—1{2d )

; T Vol(S)t T T 0 vol(S,) J4 et 1

because vol(Sg)t9~1 = vol(t-sphere) counts directions of L.

I.Emiris (Athens, Greece) Geometric Data analysis May 20, 2022 10/ 63



Stationary distribution

@ Recall p, is distribution obtained on taking one step from u € P:
A C P is reached with probability p,(A), and p,(P) = 1.

@ Distribution @ on P is stationary if one step gives same distribution:
J pu(A)dQ(u) = Q(A), forany AC P.
P

e Symmetry/reversibility: f,(v) = f,(u).
If Q is uniform on P then, Q(A) = vol(A)/vol(P), and:

J Pu(A)dQ(U)ZJ J fu(v)dQ(v)dQ(u) :J J fu(u)dQ(u)dQ(v) =
P PJa Alp

B B dv vol(A)

= JA pv(P)dQ(v) = JA (P~ vol(P) — Q(A).

@ Hence the uniform distribution is stationary. Is it unique?
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Uniform distribution

Theorem (Smith’86)

Any symmetric (has the reversibility property) random walk with positive
transition pdf converges to the uniform distribution, and it is the unique
such distribution.

Examples: RDHR, Billiard walk.

Similarly for non-negative transition pdf, e.g. CDHR.
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@ Qr : distribution after T steps.
e Mixing time: T steps s.t. ||Qr — Q|| <€, for e — 07,

T ~ 1011d3 for RDHR and uniform distribution Q. \

T = O(1/¢?), where ¢ is the conductance of a (geometric) random walk,
defined as:

. Japu(P\A)dQ(u)
¢ = ogorg\l)nglp Q(A) , out of some AC P.

I.Emiris (Athens, Greece) Geometric Data analysis May 20, 2022 13 /63



Coordinate Directions Hit-and-Run (CDHR)

Input: point x € P.
Output: a new point in P.

1. line £ through x, uniform on

{61,...,ed}, e,-:(...,O,l,O,..

2. x uniformly € PN L.

-)

14 /63
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Coordinate Directions Hit-and-Run (CDHR)

Input: point x € P.

Output: a new point in P.
1. line £ through x, uniform on
{e1y...,eq}, & =(...,0,1,0,...)
2. x uniformly € PN ¢.

Perform W steps, return x.

“Continuous” grid walk: Converges to uniform, mixing = O(d''R?)
[2020].
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Boundary oracle

Compute intersection of line £ with boundary 0P, given m hyperplanes:

@ RDHR step in O(md).
@ CDHR = O(m) per step: solve 1d (linear) problem per facet.

@ Duality reduces oracle to farthest point search (max inner product)
among m points: same asymptotics, practical if large m (16-dim
cross-polytope: m = 210, 40x speedup).
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Billiard walk

BW-step (polytope P, point p;, real T, integer R) [Polyak'14]

1. Set length of trajectory L = —tlnn, for random n ~ U(0, 1).
2. Pick uniform direction v to start the trajectory at p;.

3. When trajectory meets 0P with inner normal s, ||s|| =1,
the direction changes to v —2(v, s)s.

4. return the end of trajectory as p;1.
If number of reflections exceeds R then return p;.; = p;.
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Experimental comparison

Sampling the 100d cube with Ball Walk, RDHR, CDHR, Billiard walk.
Walk length = 1,20,40,60,80,100.
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Outline

© Convex Volumes
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Famous polytopes
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Easy cases

Some elementary polytopes have determinantal formulas.
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Convex polytope

@ Convex polytopes are defined by
— the set of all convex combinations of a finite set of points (V-rep):
easy point generation, membership requires LP;
— the intersection of a finite number of halfspaces (H-rep):
easy membership, ray-shooting reduces to F linear systems.

o Further representations include Minkowski (vector) sums:

— of a finite number of polytopes, 7 E : i
— of segments v;: zonotope (Z-rep) o - - N
"generated” as follows: : I =
N e @O

d N ¢ N

D Avi, 0<A <1 A 1 oem

i=1 N o
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Hardness

IN: H-polytope P:={x e R | Ax < b, Ac R™9 b c R™},
which has m linear inequalities (maybe some redundant).

V-polytope defined by points (vertices) v; € R¢:
P::{?\lvl +"'+}\,,Vn € ]Rd | Z,-}\,' = 1,}\,' > 0}

OUT: Euclidean volume of P.
@ #-P hard for vertex, halfspace representations [Dyer,Frieze'38]
@ Open if both vertex & halfspace representations are available.

@ APX-hard in oracle model: deterministic poly-time approximations
have exponential error [Elekes'86]
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Volume Approximation (H-rep)

@ Curse of dimensionality:
— Triangulation is exponential in d.
— V(unit ball) = n92/T(1+d/2) = ©((2me/d)¥?/v/d) = O((1/d)9)
Hence rejection sampling does not scale.

@ det. poly-time approximation with error < d! [Betke,Henk'93]

e Fully Poly-time Randomized Approx. Scheme: arbitrarily small error

with high probability; grid random walk, telescoping sphere sequence
[D,F,Kannan'91] in O*(d*3).
e Ball walk [K,Lovdsz,Simonovits'97] O*(d®).
O*(d*m) [LVempala'04] by simulated annealing, Hit-and-Run.
If rounded O*(d®F) [CousinsV'14] by Gaussian cooling.
Hamiltonian walk O*(d?/3F) [LeeV'18].
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Implementations

Exact: VINCI [Bueler et al'00], Latte [deLoera et al], Qhull [Barber et al]

@ too slow in high dimensions (e.g. > 20)

Randomized for H-polytopes:

@ [Lovasz,Dedk'12] only in < 10 dimensions.
@ Zonotopes via LP oracles, shake-and-bake [Fukuda et al.]

@ Ours: based on Sampling [DFK'91], [Kannan,Lovész,Simonovits'97];
few hrs for few hundred dimensions.

e Matlab code by Cousins & Vempala based on [LV04], needs #facets.

@ Hit-and-run in non-convex regions [Abbasi-Yadkori et al.'17]
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Outline

© Convex Volumes
@ Poly-time approximation
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Algorithmic ingredients

v Sampling by Hit-and-Run

@ Telescoping (multiphase) sequence of balls;

@ Sandwiching input P between balls;

@ Rounding input P.
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Ball sequence

e Cocentric ball B(c,2"/9) sequence:
centered at point ¢ € P,
sequence of radii r,2r,...,p,
for i = |dlogr],...,[dlogp]
s.t. B(c,r) C P S B(c,p).

o Define convex P; := P N B(c,2//9).

[ log p] vol (P;)
VO/(P) = VO/(Pdlogr) ' H m [DFKgl]
i=|dlogr|+1
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Multiphase Monte Carlo

The P;'s are sampled uniformly.

Partial inverse point generation:
1. Let N uniform points in P;.
2. Count (+ keep) v in Pi_1.
3. Sample N—v in P;_3.

B'=B(c,p)

[dlog ] vol(P;)
vol(P) = vol (Pgiog r) ' H m.
i=|dlogr]+1

where each ratio is approximated by rejection sampling (step 2).
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Sandwiching (Schedule)

@ compute max inscribed ball B(c,r) of P, by LP:
max r: Aic+rl|Aill2 < b, i=1,...,m.

@ get uniformly distributed p € B(c, r); sample N uniform points € P

@ p = max distance between ¢ and N points: P € B(c, p)

B' = B(c,p)
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Well-Rounding

1. given set S of s uniformly distributed points € P

2. compute (approximate) min-volume ellipsoid E covering S:
SCE={x:(x—c)TLTL(x—c¢c) <1}
3. compute L mapping E to unit ball B: apply L to P

Iterate till ratio of max over min ellipsoid axes reaches threshold.
Note: Isotropic position (identity covarince) implies well-rounded.
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Complexity

Theorem (Kannan,Lovész,Simonovits'97; Lovasz'99)

Let a polytope P be well-rounded: B(c,r =1) C P C B(c,p), for c € P.
The algorithm computes, with probability > 3/4, an estimate of vol(P) in
[(1—€)vol(P),(1+ €)vol(P)], by

O*(d4p2) _ O*(d5)

oracle calls, with probability > 9/10, where p = O*(\/d) by isotropic
sandwiching, and € > 0 is fixed.

Runtime

e N =400dlog d/e? = O*(d) random points per P;,
@ each point computed after W ~ 1011 d3 walk steps.
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[E,Fisikopoulos'14-18|

@ CDHR: boundary oracle = O(m).

e Set W = |10+ d/10| walk steps, also [LovDedk]: achieves < 1%
error in d < 100. Hence our algorithm takes O*(md?®) ops.

@ sample partial generations of < N points per ball N P, starting from
largest; saves constant fraction per ball.

e rounding = O*(sd?) = O*(d3) [Khachiyan'96]; k iterations in
O*(k(md + d3)), typically k = 1.

@ 25K lines C++, github.com/GeomScale
@ CGAL for LP, min-ellipsoid; Eigen for linear algebra
@ Google summer of code 2018: R interface [Chalkis]
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github.com/GeomScale

Experimental results

@ approximate the volume of polytopes (cubes, random, cross, Birkhoff)
up to dimension 100 in < 2hrs with mean error < 1%

@ estimate always in [(1 — €)vol(P), (1 + €)vol(P)], with W = O(d)
o CDHR faster (and more accurate) than RDHR

@ volume of Birkhoff polytopes Bii,..., Bis in few hrs; exact
specialized software computed Bjg in ~1 year [BeckPixton03]
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Runtime vs. dimension
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Birkhoff polytopes

By ={xeR™"| x; >0, > ,x;j =1, ZJ-X,-J-:l, 1<i,j<n}k
perfect matchings of K, ,, or Newton polytope of determinant.

asymptotic  estimate exact
—_— exact ———
[CanfieldMcKay09] asympt. asympt.
9 6.79E-002 7.61E-002 0.89194 6.21E-002 0.81593
16 1.41E-004 1.69E-004 0.83444 1.41E-004 0.83419

4
5
6 25 7.41E-009 8.62E-009  0.85987 7.35E-009  0.85279
7
8

n d estimate

36 5.67E-015 6.51E-015  0.87139 5.64E-015 0.86651

49  4.39E-023 5.03E-023  0.87295 4.42E-023 0.87786

9 64 2.62E-033 2.93E-033  0.89608 2.60E-033 0.88741
10 81 8.14E-046 9.81E-046  0.83052 8.78E-046  0.89555
11 100 1.40E-060 1.49E-060  0.93426 7 ?
12 121 7.85E-078 8.38E-078  0.93705
13 144 1.33E-097 1.43E-097  0.93315
14 169 5.96E-120 6.24E-120  0.95501
15 196 5.70E-145 5.94E-145  0.95938

RS AEL S LS RRLN]

All volumes in few hrs; exact V/(Big) in ~1 year [BeckPixton03].
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Outline

© Convex Volumes

@ V-polytopes
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Open: V-polytopes

Given by optimization oracle
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github/GeomScale

H-polytopes [E-Fisikopoulos14]
o CDHR amortized O(1), |10 + d/10] vs. ~ 101 d® random walks.
o d <100: < 2hrs, < 1% error.

H/V-polytopes, zonotopes [Chalkis-E-Fisikopoulos'19]
@ Sequence of convex bodies: good fit, easy sampling (rejection)
@ Simulated annealing to construct sequence
@ Statistical criterion of convergence

methods = CoolingGaussian = CoolingHpoly ~ SeqOfBalls
methods ~ CoolingBall ~ CoolingGaussian ~ SeqOfBalls 9 ghpoly o

1e+08 e 16406
@ . //’
Q p 8 1e+05 _
21e+06 = Y 9 Vi I ’
k5 / - g ] 7 —
. /
P i 1e+04 = —
tes0s: o
] 10403 7
25 50 75 100 20 40 60 80
dimension dimension
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New Multiphase Monte Carlo

0.4
04 03 02 -01 0 01 02 03 04 05

Convex C; D --- D Cpintersect P=Py, Pi=CnNP,i=1,...,m:

_vol(Py)  vol(Pp_1) vol(Pp,)
vol(P) = ol P) . Vol vollCo) -vol(Cp),

is good sequence provided ratios computed fast, m small;
inner ratio may be approximated by rejection sampling.

I.Emiris (Athens, Greece) Geometric Data analysis May 20, 2022 39/63



Annealing schedule: body sequence

Employ (ideas of) simulated annealing to reduce length of sequence by
adapting to the problem: non-deterministic, varying steps.

Input: Polytope P, error €, cooling parameters r,d >0st. 0 < r+06 < 1.

Output: A sequence of convex bodies C; O --- D C,, s.t.

vol(Pjy1)/vol(P;) € [r, r + 8] with high probability

where P,=CNP, i=1,...,mand Pp = P.
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Annealing schedule: reduce number of phases

Ci

0.4
0.6 0.4 0.2 0 0.2 0.4 0.6 04 03 02 01 0 01 02 03 04 05

Six balls C; (left), one by annealing r=0.25, 5=0.05 (right)

e Classic MMC [LKS97]: xg:gggg xg:ggzgg vol(Cy).

voliGnp) - _volP) 1y,

@ Annealing schedule: vol(c,) ~ vol(GinP)
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Statistical tests to estimate volume ratio

Given P; O P11, r,0 >0, 0 < r+ 6 < 1, define null hypotheses Hp:

testLeft: Hy : vol(P;q)/vol(P;) < r+5
testRight: Hy : vol(P;y1)/vol(P;) <'r

1. Sample set of N points from P;, repeat v times.

2. VY set, binomial r.v. X counts points in Pj.1, success probability is
unknown ratio r; = vol(P;;1)/vol(P;).

3. Use {t = mean of v ratios.
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Statistical tests

testL(P;, P11, r,0): testR(P;, Piy1,r,0):
Hy : vol(Piy1)/vol(P;) > r+6 Hy : vol(P;y1)/vol(P;) <r
Successful if we reject Hy Successful if we reject Hy

@ If both successful then r; = vol(P;.1)/vol(P;) € [r,r + 8] whp.
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Statistical tests

testL(P;, P11, r,0): testR(P;, Piy1,r,0):
Hy : vol(Piy1)/vol(P;) > r+6 Hy : vol(P;y1)/vol(P;) <r
Successful if we reject Hy Successful if we reject Hy

@ If both successful then r; = vol(P;.1)/vol(P;) € [r,r + 8] whp.

Figure: testL: succeeds, testR: fails

@ Binary search a radius in [fpax, fmin] until both tests are successful.
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Statistical tests

testL(P;, P11, r,0): testR(P;, Piy1,r,0):
Hy : vol(Piy1)/vol(P;) > r+6 Hy : vol(P;y1)/vol(P;) <r
Successful if we reject Hy Successful if we reject Hy

@ If both successful then r; = vol(P;.1)/vol(P;) € [r,r + 8] whp.

Figure: testL: fails, testR: succeeds

@ Binary search a radius in [fpax, fmin] until both tests are successful.
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Statistical tests

testL(P;, P11, r,0): testR(P;, Piy1,r,0):
Hy : vol(Piy1)/vol(P;) > r+6 Hy : vol(P;y1)/vol(P;) <r
Successful if we reject Hy Successful if we reject Hy

@ If both successful then r; = vol(P;.1)/vol(P;) € [r,r + 8] whp.
Figure: testL: succeeds, testR: succeeds

@ Binary search a radius in [fpax, fmin] until both tests are successful.
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Statistical tests

Given convex bodies P; O P;, 1, we define two statistical tests:

testL(P;, Pii1,r,8): testR(P;, Pii1,r,0):
Hy : vol(Piy1)/vol(P;) > r+ 96 Hy : vol(Piy1)/vol(P;) < r
Successful if we reject Hy Successful if we reject Hy

o If both successful then r; = vol(P;1)/vol(P;) € [r,r + 8] whp.

Figure: testL: succeeds, testR: succeeds

@ Binary search a radius in [fnax, fmin) until both tests are successful.
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Bound #phases

@ The annealing schedule terminates with constant probability.
@ #phases m = O(Iog(voI(P)/voI(C’ N P))).

o If the body we use in MMC is a "good fit" to P, then vol(C’' N P)
increases and m decreases.
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Outline

© Convex Volumes

@ Nonlinear bodies
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Nonlinear bodies

For ellipsoids we generalized:
@ Boundary oracle: univariate quadratic equation.
@ Compute internal point, inscribed ball, enclosing ball.

@ Sequence of concentric balls: Stop when all rays first hit inscribed ball
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Internal point

@ Transform ellipsoid to sphere Hy, transform simplex similarly.

e Find B(p, r) of max radius r, satisfying constraints:
dist(p, H) > r & a/ p+ b > r|ail],

dist(p, Ho) = r & [[p—col[ <o — .
This is a Second Order Cone Program. In general, polytope
intersection with O(1) balls.
@ Solved by SDP / interior-point method in poly-time.

@ Inverse transform yields inscribed ellipsoid, maybe not max. Center is
good internal point.

@ Get max inscribed ball by taking distance of p to H;'s.
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Outline

© Convex Volumes

@ Oracles by ANN
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Polytope Oracles

Membership oracle

Given point y € RY, return yes if y € P otherwise return no.

Boundary oracle

Given y € P, ray £ through y, return points £ N dP.
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Given is polytope P C R? and approximation parameter € € (0, 1):

Definition (Approximate Polytope Membership)

Preprocess P into data-structure so that, given query point g, decide
whether g € P or not. If d(q,0P) < € - diam(P) the data structure can
answer either way.

Definition (Approximate Polytope Boundary)

Preprocess P into data-structure so that given query ray r emanating from
y € P, compute point r*, s.t.

r* € randd(rf,0P) < e-diam(P).

Previous approaches have complexity exponential in d.
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Reduction

Exact setting [Aurenhammer'87|

Let P C RY have n facets. Vp* € P\ P, compute set S of n points:
membership of g reduces to finding its Nearest Neighbor in S U {p*}

])
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Approximate membership

Let P~ ={x € P | d(x,dP) > ¢ - diam(P)} # 0.

Approximate Membership reduces to eANN on S U{p*}, p* € P~€. J

Theorem (Complexity)

We answer Approximate Membership queries in O*(dn®+°()), using
O*(n'tPto(l) 4 dn) space, whp, where p < 1/(1 + 4€2) < 1.

[Anagnostopoulos-E-Fisikopoulos'17]
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Membership experiments
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Approximate Boundary Oracle

1. Compute t; € P, t; € r, where r is ray shooting query.
2. For t; € P, compute t;,1 closer to apex: p; := NN(¢;).
o hyperplane H; supports facet F; defining p;; tiy1:=H;Nr.

3. Terminate by checking (approximate) membership oracle.

May get in local “optimum™: If t; does not decrease distance to apex, set

ti := (ti_1 — r.apex) — r.unitdir - €.
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Outline

@ Financial modeling
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Financial markets

Stock markets exhibit 3 types of behavior:
@ Normal: slightly positive returns, moderate volatility.
@ Up-market (bubbles): high returns, low volatility.

o Crises: strongly negative returns, high volatility.

Portfolio density
o N
< m =
=)
8
Z
2
g
5
2
o
@
o
o
Retum (b percentie, ncreasing)

Return quantiles

The copula is a volatility-return probability distribution.
Figure: up-market and crisis: bubble burst in Sep. 2000.
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Financial modeling

@ Portfolios of d + 1 assets represented by simplex A9 C R9*1,

@ For portfolio w € A9, returns R € R, total return
f(w,R) = RTw is linear combination of returns.

e Cross-sectional score of portfolio w* is vol(A*)/vol(A9) s.t.
A" ={weA?: fw,R) < f(w*,R)}.

Score corresponds to cumulative distribution of f(w, C).

o Volatility is quadratic form of returns.
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Families of constraints

@ Let Rj be the return at day / of asset j. Consider compound returns
over k days starting at day /: define (d + 1)-vector v whose j-th
coordinate, j =1,...,d + 1, equals

vi=(14+Rij)(14+ Riy1j) - (1 + Rijk—1j) — 1.

Normal vector v defines family of hyperplanes.

@ Volatility requires estimation of the returns’ variance — covariance
matrix, yielding concentric ellipsoids.

e Copula populated by intersecting A9 along asset characteristics:
Hyperplane families normal to two compound vectors, or to one
vector and concentric ellipsoids.
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Formula for single halfspace

Let H:a"x < ag, a=(a1,...,aq), let S be the unit simplex.

1. Letyj=a;—a if >0,i=1,...,K,
xp=aj—aif<0,i=1,...,J,st. J+ K=d.

2. Initialize Ap =1,A; =--- = Ak =0.

3. Forj=1,...,J do:

YAk — XjAk—1
Yk — Xj

A — k=1,..., K.

For j = J,
Ax =vol(SN H)/vol(S).

Complexity = O(d?) [Varsi'73,Ali'73,Gerber'81].

I.Emiris (Athens, Greece) Geometric Data analysis May 20, 2022



Thank you!
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