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Approaches

@ Trees (and AVDs): S = O(dn), Q = o(n)- exp(d).
@ LSH: S = O(dn'*?), Q = O(dn®), p=1/(1 + €)%

@ Dimensionality reduction
...and k-ANNs beat the curse in optimal space
[Anagnostopoulos,E,Psarros:15-17]
o S=0(dn), Q = 0*(dn”), p=1—¢€>/(loglog n — log e).
o S=0%(dn), Q =0*(dn?), p=1+¢*/loge < 1.

... for LSH-able metrics [Avarikioti,E,Psarros,Samaras'17]:

o S =0%(dn), Q = 0*(dn*), p=1— O(€).
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Dimensionality reduction

Lemma (Johnson,Lindenstrauss'82)

Given pointset P C RY,
linear maps

P| = n, 0 < e < 1, there exists a distribution over
f:R? > R
withd' = O (Iog n/ez) s.t., for any p,q € R?, w/probability > 2/3:

(1 —e)llp = qlla < [If(p) — F(q)ll2 < (L + €)llp — gll2-

Proofs (Constructive): Random orthogonal projection [JL'84], Gaussian
matrix [Indyk,Motwani'98], i.i.d. entries € {—1,1} [Achlioptas’03], etc.

f oblivious to P i.e. defined over entire space.
Fast JL Transform using structured matrices [Chazelle et al.]
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@ Dimensionality reduction
@ Proof of JL Lemma
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Gaussian combinations

Lemma
Let g ~ N(0,1)?, i.e. with iid normal coordinates, x € SY~t. Then, their
innner product is normally distributed: (x, g) ~ N(0,1).

| A

Proof.
A linear combination of gaussian variables follows the gaussian
distribution. Hence, it suffices to compute the expectation and variance:

d
E(x.g) =Y Elg] x =0,
j=1

d d
E(x.g)* =Y Elgl-Eled x5 x+ Y _Elgf] ¢ =1,
k#j j=1

because the g;, j = 1,...,d are independent and x € St ]

v
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Squared gaussians

Let each G; ~ N(0,1)4, x € S971, and X = G - x.

Sum of squares

For X1,..., Xk i.id. rv.: X; = (x, Gj) ~ N(0,1), and
Yi = 3K, X?, we know Y follows the x? distribution
with k dof. Clearly E[Y,] = k.

For r.v. s, and t € R, E[e®™] is the moment generating function of s.

Let X ~ N(0,1) and Y) as above. Then, ift € (0,1/2),
1 1

= ]E[ety"] =

1-2t JI—2t°

E[e™] =
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Proof of JL Lemma (1)

lleoa
Let Y =||X|I3: Yk = Z, 1X2 Xi ~ N(0,1), so E[Yx] = k. Then,
o P[Yi > (1+ e)k] < e~ (€=)k/4,
o P[Y) < (1—e)k] < e~ (€=€)k/4,

Proof of first bound.
Markov's bound: P[x > a] < E[x]/a, x > 0. Then, for t € (0,1/2):

E[etY¥]

P[Yi > (1+ )kl=P[e* > e+t] < ot —

1 t=€/2(1+¢€) e 2
T (1-2t)k2. gk (1 + €)e )2 < e (€=)K/4

using 1+ x < exp(x — x2/2 + x3/3), for x € (—1,1). O

v
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Proof of JL Lemma (II)

Let G € N(0,1)k*9 je. the elements are i.i.d. r.v.’s that follow N(0,1).

Let A= ﬁG. Then, for a fixed vector x € RY,

P [||Ax|? ¢ [(1 — &)[Ix[|?, (1 + e)[Ix][?]] < 2- e~ (E=k/4,

Proof.
We apply the union bound. Notice that the stated probability equals

p [I1AXI?
1112

In other words, k - HllAX)Tl‘f = ||G(x/||x])||? follows the x? distribution with k

dof, where ||x|| is fixed. O

¢[l—¢€1+¢

v
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Consequences

Dimension vs set size

Can always assume d = o(n) or d = O(log n), otherwise apply JL Lemma
to get d’ = O(log n/¢€?).

v

Does not remedy the curse for ANN
o BBD-trees still require query time linear in n.
@ AVDs require pO(=loge/e?) space, prohibitive if € < 1 [HarPeled et al.12]
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Nearest-neighbor Preserving Embedding

Definition (Indyk,Naor'07)
Let X,Y be metric spaces, and P C X. A distribution over mappings

f:X—=Y

is a NN-preserving embedding with distortion D > 1 if, for any ¢ > 0 and

query q € X, s.t. f(p) is an e-ANN of f(q), p € P then, with constant
probability,

p is a De-ANN of q.

| A\

Does it remedy the curse for ANN?
@ Yes, for low doubling dim (ddim). Not in general.
o ddim= ¢ iff 29 balls cover double-radius ball; ddim(¢9) = ©(d),p > 1
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k-ANNs

Definition (k-ANNs)

Given query q, find a sequence S = [p1,--- , px| C P of distinct points s.t.
pi is an e-ANN of the i-th exact NN of q.

v

Property of tree-based search (*)

The solution to k-ANNs using BBD-trees implies, for every point x € P
not visited during the search, (1 + €)dist(x, q) > dist(px, q).

|.Emiris Geometric Data analysis Fall 2022 12 /31



Outline

© Random projections in Euclidean space
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© Random projections in Euclidean space
@ Projections and k-ANNs
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Locality-preserving Embedding

Definition
Let X, Y be metric spaces, and P C X. A distribution over mappings
f:X=>Y

is a locality-preserving embedding with parameter k, distortion D > 1, and
success probability § if, for e > 0 and query g € X, when

[f(p1), - ,f(pk)] is a solution to k-ANNSs of f(q) satisfying the property
of tree-based search (*) above then, with probability > §,

Jie{l,...,k}: p;jis a De-ANN of q.

[Anagnostopoulos,E,Psarros:SoCG'15-TALG17]
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Low quality embedding

Locality-preserving embeddings lead to an “aggressive” JL-type projection

Theorem

There exists a randomized mapping f : RY — RY" satisfying the definition
of locality-preserving embedding with parameter k for

= o(H0),

€2

distortion D =1 + ¢, € € (0,1), and failure probability 1/3.

Eventually d’ ~ log n/(¢? 4 log log n).

|.Emiris Geometric Data analysis Fall 2022 16 / 31



Proof ingredients

Proof of JL by probabilistic argument [Dasgupta,Gupta’'03]

For the Euclidean metric || - ||, 3 distribution over linear maps

f:RY - RY,

s.t. for p € RY, ||p|| = 1: If B2 # 1, then

PLIFP)I? < 62 /d] < expl((1 - 2+ 21n ).

v

Two bad cases
o #{“far-away” p € P : f(p) within distance ~ 32d’/d } > k,
@ nearest neighbor p*: f(p*) at distance > (1 + ¢/2)2d’/d.
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Euclidean ANN

Recall: With BBD trees, find k-ANNs in O*(((1 + d?/)d/ + k) log n).

There exists k s.t., for fixed ¢, [1+ 6d’/e|? + k = O(n”), where

62

p=1-0( )-

log log n

Theorem (Main)

Given n points in RY, our method employs a BBD-tree to report an
(2¢ 4 €2)-ANN in O(dn” log n), using space O(dn). Preprocessing takes
O(dnlog n) and, for each query, it succeeds with constant probability.
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© Random projections in Euclidean space

@ Decision problem
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Projection and k Near neighbors

Definition (k Approximate Near Neighbors)

Given P C RY, ¢ >0, R > 0, build a data structure which, for any query
point g € R9:
o if|{p € P|dist(q,p) < R}| > k, report
SC{pe P|dist(q,p) <(1+¢€)R}: |S| =k,
o if |[{p € P|dist(q,p) < R}| < k, report
SC{peP|dist(q,p) <(1+¢€)R} s.t.
{p e P | dist(q,p) < R} < |S| < k.

Theorem

There exists a linear space and linear preprocessing-time grid-based
randomised data structure reporting an Approximate Near Neighbor (or
failure) in RY with query time in O(dn?), p ~ 1 + €2/ loge.

|.Emiris Geometric Data analysis Fall 2022 20 / 31



Putting everything together

The e-ANN optimization problem in RY is solved using space = O*(dn),
query time

O*(dn®), p=1+¢€*/loge < 1,

by a randomized algorithm with constant success probability.

Exploit the sequence of k-ANNs: It's not a set!
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© LSH-able metrics
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Locality-Sensitive Hashing

Recall LSH.

Definition (Indyk,Motwani)

Letre R,0<e<landl>p; > pr>0. Wecall afamily F of hash
functions (p1, p2, r, (1 + €)r)-sensitive for a metric space X if, for any
x,y € X, and h; distributed uniformly in F:

e dist(x,y) <r = Prl[hi(x) = hi(y)] > p1,
o dist(x,y) > (14 €)r = Pr[hi(x) = hi(y)] < p2.

This definition is suitable for the (e, r)-Approximate Near Neighbor
decision problem.
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Hamming (0/1) Hypercube

Projection

@ Input: Metric space admitting family of LSH functions h;.
@ For each h; "hashtable”: let f; map buckets to {0,1} uniformly
o Overall projection f : x — [fi(h1(x)), ..., fyr(ha(x))] € {0,1}¢".

@ Preprocess: Project points to vertices of cube, dimension d’ = |lgn].

Here d’ is like k in LSH.

Approximate Near Neighbor

@ Query: Project query, check points in same and nearby vertices.

e Visit all 0/1 vertices v, s.t. |v — f(q)|l1 < 3d'(1 — p1), until:
x found, s.t. dist(x, q) < (1 + €)r, or threshold #points checked.

|.Emiris Geometric Data analysis Fall 2022 24 /31



Important topologies

For (1 and /> metrics, this solves the Approximate Near Neighbor decision
problem efficiently, thus yielding a solution for the e-ANN optimization
problem with space and preprocessing in O*(dn), and query time in
O*(dn?), p=1— ©(€?).

The data structure succeeds with constant probability.

Sketch for /5
Recall LSH family, for w € R:

e Bl = 2T

w

for v ~ N(0,1)9, t € [0, w).
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Basic property

Lemma (General, Technical)

Given a (p1, p2, r, (1 + €)r)-sensitive hash family for metric space X, there
exists a randomized data structure for the (e, r)-Near-Neighbor using space
O(dn), preprocessing time O(dn), and query time

O(dnl—e((p1—p2)2) e (1=p1))).

Given a query, preprocessing succeeds with constant probability.

Proof sketch
Let f : X — {0, 1}"/ be the projection defined above. Then for x,y € X:

o dist(x,y) < r == E[[|fi(hi(x)) = fi(hi(y)) 1] < 0.5(1 = p1) =
E[If(x) = f()lh] <0.5-d"- (1 = pu),
o dist(x,y) > c-r = E[||f(x) = f(y)|1] =05-d"- (1 - p2).

v
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Implementation for RY

Parameters

o d’: larger implies finer mapping so search can stop earlier; increases
storage and preprocessing.

@ Threshold #points to be checked in R?

Distance computation

o |Ix —ql|I> = |Ix|I> + |lg|l®> — 2q - x, where the first two can be stored.
May offer up to 10% speedup. Slight slowdown on MNIST.

u Project idea: ||x — g||> — ||y — q||* reduces to 2q - (y — x).

https://github.com/gsamaras/Dolphinn
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@ Experimental results
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Hypercube

@ Implements projection to hypercube, for Approximate Near Neighbors.J

@ 38-80 times faster than brute force.

Falconn implements hyperplane/crosspoly LSH (4748 lines) [AILRS'15].
Hypercube is worse/same in build, same/better in space, query (716 lines)

sift SIFT MNIST GIST

d,n || 128, 10% | 128, 10° | 784, 6 - 10* | 960, 10°
F (c) 2.5e-4 1.5e-2 3.0e-3 .34
F (h) | 8.6e5 | 9.0e3 6.2e-4 13
D 9.0e-5 | 9.0e-3 5.0e-4 13

Range search, in sec
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DolphinnPy

@ https://github.com/ipsarros/DolphinnPy [Psarros]
e Python 2.7, NumPy (pip install numpy)

e Hardcoded parameters (main.py):
K = new (projection) dimension,
num_of_probes = max #buckets searched,
M = max #candidate points examined.

@ python main.py: preprocesses data, runs Dolphinn (hyperplane
LSH) and exhaustive search on queries.

@ Print K, preprocessing and average-query time; multiplicative error
(approximation), #exact-answers.
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e Fix K, vary num_of _probes, M so as to improve accuracy
(#exact-answers), decrease multiplicative error.

Fix num_of _probes, M, vary K for same goal.

After reading files, the script calls isotropize on both sets (data,
queries). Compare algorithm after commenting out both lines.

siftsmall.tar.gz from http://corpus-texmex.irisa.fr/

contains datafile and queryfile in fvecs format, d = 128, n = 10*.
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