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Approaches

Trees (and AVDs): S = O(dn), Q = o(n)· exp(d).

LSH: S = O(dn1+ρ), Q = O(dnρ), ρ = 1/(1 + ε)2.

Dimensionality reduction
. . . and k-ANNs beat the curse in optimal space
[Anagnostopoulos,E,Psarros:15-17]
S = O(dn), Q = O∗(dnρ), ρ = 1− ε2/(log log n − log ε).
S = O∗(dn), Q = O∗(dnρ), ρ = 1 + ε2/ log ε < 1.

. . . for LSH-able metrics [Avarikioti,E,Psarros,Samaras’17]:
S = O∗(dn), Q = O∗(dnρ), ρ = 1−Θ(ε2).
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Dimensionality reduction

Lemma (Johnson,Lindenstrauss’82)

Given pointset P ⊂ Rd , |P| = n, 0 < ε < 1, there exists a distribution over
linear maps

f : Rd → Rd ′

with d ′ = O
(
log n/ε2

)
s.t., for any p, q ∈ Rd , w/probability ≥ 2/3:

(1− ε)‖p − q‖2 ≤ ‖f (p)− f (q)‖2 ≤ (1 + ε)‖p − q‖2.

Proofs (Constructive): Random orthogonal projection [JL’84], Gaussian
matrix [Indyk,Motwani’98], i.i.d. entries ∈ {−1, 1} [Achlioptas’03], etc.

f oblivious to P i.e. defined over entire space.
Fast JL Transform using structured matrices [Chazelle et al.]
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Gaussian combinations

Lemma

Let g ∼ N(0, 1)d , i.e. with iid normal coordinates, x ∈ Sd−1. Then, their
innner product is normally distributed: 〈x , g〉 ∼ N(0, 1).

Proof.

A linear combination of gaussian variables follows the gaussian
distribution. Hence, it suffices to compute the expectation and variance:

E〈x , g〉 =
d∑

j=1

E[gj ] · xj = 0,

E〈x , g〉2 =
d∑

k 6=j

E[gj ] · E[gk ] · xj · xk +
d∑

j=1

E[g2
j ] · x2

j = 1,

because the gj , j = 1, . . . , d are independent and x ∈ Sd−1.
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Squared gaussians

Let each Gi ∼ N(0, 1)d , x ∈ Sd−1, and X = G · x .

Sum of squares

For X1, . . . ,Xk i.i.d. r.v.: Xi = 〈x ,Gi 〉 ∼ N(0, 1), and
Yk =

∑k
i=1 X

2
i , we know Yk follows the χ2 distribution

with k dof. Clearly E[Yk ] = k.

For r.v. s, and t ∈ R, E[ets ] is the moment generating function of s.

Fact

Let X ∼ N(0, 1) and Yk as above. Then, if t ∈ (0, 1/2),

E[etX
2
] =

1√
1− 2t

⇒ E[etYk ] =
1

√
1− 2t

k
.
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Proof of JL Lemma (I)

Lemma

Let Y = ‖X‖2
2 : Yk =

∑k
i=1 X

2
i , Xi ∼ N(0, 1), so E[Yk ] = k. Then,

P[Yk ≥ (1 + ε)k] < e−(ε2−ε3)k/4,

P[Yk ≤ (1− ε)k] < e−(ε2−ε3)k/4.

Proof of first bound.

Markov’s bound: P[x ≥ a] ≤ E[x ]/a, x ≥ 0. Then, for t ∈ (0, 1/2):

P[Yk ≥ (1 + ε)k]=P[etYk ≥ e(1+ε)tk ] ≤ E[etYk ]

e(1+ε)tk
=

=
1

(1− 2t)k/2 · e(1+ε)tk

t=ε/2(1+ε)
= ((1 + ε)e−ε)k/2 < e−(ε2−ε3)k/4,

using 1 + x ≤ exp(x − x2/2 + x3/3), for x ∈ (−1, 1).
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Proof of JL Lemma (II)

Theorem

Let G ∈ N(0, 1)k×d i.e. the elements are i.i.d. r.v.’s that follow N(0, 1).
Let A = 1√

k
G. Then, for a fixed vector x ∈ Rd ,

P
[
‖Ax‖2 /∈ [(1− ε)‖x‖2, (1 + ε)‖x‖2]

]
< 2 · e−(ε2−ε3)k/4.

Proof.

We apply the union bound. Notice that the stated probability equals

P

[
‖Ax‖2

‖x‖2
/∈ [1− ε, 1 + ε]

]
.

In other words, k · ‖Ax‖
2

‖x‖2 = ‖G (x/‖x‖)‖2 follows the χ2 distribution with k

dof, where ‖x‖ is fixed.
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Consequences

Dimension vs set size

Can always assume d = o(n) or d = O(log n), otherwise apply JL Lemma
to get d ′ = O(log n/ε2).

Does not remedy the curse for ANN

BBD-trees still require query time linear in n.

AVDs require nO(− log ε/ε2) space, prohibitive if ε� 1 [HarPeled et al.12]
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Nearest-neighbor Preserving Embedding

Definition (Indyk,Naor’07)

Let X ,Y be metric spaces, and P ⊆ X. A distribution over mappings

f : X → Y

is a NN-preserving embedding with distortion D ≥ 1 if, for any ε > 0 and
query q ∈ X, s.t. f (p) is an ε-ANN of f (q), p ∈ P then, with constant
probability,

p is a Dε-ANN of q.

Does it remedy the curse for ANN?

Yes, for low doubling dim (ddim). Not in general.

ddim= δ iff 2δ balls cover double-radius ball; ddim(`dp) = Θ(d), p > 1
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k-ANNs

Definition (k-ANNs)

Given query q, find a sequence S = [p1, · · · , pk ] ⊂ P of distinct points s.t.
pi is an ε-ANN of the i-th exact NN of q.

Property of tree-based search (*)

The solution to k-ANNs using BBD-trees implies, for every point x ∈ P
not visited during the search, (1 + ε)dist(x , q) > dist(pk , q).
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Locality-preserving Embedding

Definition

Let X ,Y be metric spaces, and P ⊆ X. A distribution over mappings

f : X → Y

is a locality-preserving embedding with parameter k, distortion D ≥ 1, and
success probability δ if, for ε > 0 and query q ∈ X, when
[f (p1), · · · , f (pk)] is a solution to k-ANNs of f (q) satisfying the property
of tree-based search (*) above then, with probability ≥ δ,

∃ i ∈ {1, . . . , k} : pi is a Dε-ANN of q.

[Anagnostopoulos,E,Psarros:SoCG’15-TALG17]
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Low quality embedding

Locality-preserving embeddings lead to an “aggressive” JL-type projection

Theorem

There exists a randomized mapping f : Rd → Rd ′
satisfying the definition

of locality-preserving embedding with parameter k for

d ′ = O

(
log(n/k)

ε2

)
,

distortion D = 1 + ε, ε ∈ (0, 1), and failure probability 1/3.

Eventually d ′ ∼ log n/(ε2 + log log n).
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Proof ingredients

Proof of JL by probabilistic argument [Dasgupta,Gupta’03]

For the Euclidean metric ‖ · ‖, ∃ distribution over linear maps

f : Rd → Rd ′
,

s.t. for p ∈ Rd , ‖p‖ = 1: If β2 6= 1, then

P[ ‖f (p)‖2 ≤ β2d ′/d ] ≤ exp(
d ′

2
(1− β2 + 2 lnβ)).

Two bad cases

#{“far-away” p ∈ P : f (p) within distance ' β2d ′/d } ≥ k,

nearest neighbor p∗: f (p∗) at distance ≥ (1 + ε/2)2d ′/d .
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Euclidean ANN

Recall: With BBD trees, find k-ANNs in O∗(((1 + d ′

ε )d
′

+ k) log n).

Lemma

There exists k s.t., for fixed ε, d1 + 6d ′/εed ′
+ k = O(nρ), where

ρ = 1−Θ(
ε2

log log n
).

Theorem (Main)

Given n points in Rd , our method employs a BBD-tree to report an
(2ε+ ε2)-ANN in O(dnρ log n), using space O(dn). Preprocessing takes
O(dn log n) and, for each query, it succeeds with constant probability.
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Projection and k Near neighbors

Definition (k Approximate Near Neighbors)

Given P ⊂ Rd , ε > 0, R > 0, build a data structure which, for any query
point q ∈ Rd :

if |{p ∈ P | dist(q, p) ≤ R}| ≥ k, report
S ⊆ {p ∈ P | dist(q, p) ≤ (1 + ε)R}: |S | = k,

if |{p ∈ P | dist(q, p) ≤ R}| < k, report
S ⊆ {p ∈ P | dist(q, p) ≤ (1 + ε)R} s.t.
|{p ∈ P | dist(q, p) ≤ R}| ≤ |S | ≤ k.

Theorem

There exists a linear space and linear preprocessing-time grid-based
randomised data structure reporting an Approximate Near Neighbor (or
failure) in Rd with query time in O(dnρ), ρ ' 1 + ε2/ log ε.
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Putting everything together

Corollary

The ε-ANN optimization problem in Rd is solved using space = O∗(dn),
query time

O∗(dnρ), ρ = 1 + ε2/ log ε < 1,

by a randomized algorithm with constant success probability.

Open

Exploit the sequence of k-ANNs: It’s not a set!
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Locality-Sensitive Hashing

Recall LSH.

Definition (Indyk,Motwani)

Let r ∈ R, 0 < ε < 1 and 1 > p1 > p2 > 0. We call a family F of hash
functions (p1, p2, r , (1 + ε)r)-sensitive for a metric space X if, for any
x , y ∈ X, and hi distributed uniformly in F :

dist(x , y) ≤ r =⇒ Pr [hi (x) = hi (y)] ≥ p1,

dist(x , y) ≥ (1 + ε)r =⇒ Pr [hi (x) = hi (y)] ≤ p2.

This definition is suitable for the (ε, r)-Approximate Near Neighbor
decision problem.
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Hamming (0/1) Hypercube

Projection

Input: Metric space admitting family of LSH functions hi .

For each hi “hashtable”: let fi map buckets to {0, 1} uniformly

Overall projection f : x 7→ [ f1(h1(x)), . . . , fd ′(hd ′(x)) ] ∈ {0, 1}d ′
.

Preprocess: Project points to vertices of cube, dimension d ′ = blg nc.

Here d ′ is like k in LSH.

Approximate Near Neighbor

Query: Project query, check points in same and nearby vertices.

Visit all 0/1 vertices v , s.t. ‖v − f (q)‖1 ≤ 1
2d
′(1− p1), until:

x found, s.t. dist(x , q) ≤ (1 + ε)r , or threshold #points checked.
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Important topologies

Theorem

For `1 and `2 metrics, this solves the Approximate Near Neighbor decision
problem efficiently, thus yielding a solution for the ε-ANN optimization
problem with space and preprocessing in O∗(dn), and query time in
O∗(dnρ), ρ = 1−Θ(ε2).
The data structure succeeds with constant probability.

Sketch for `2

Recall LSH family, for w ∈ R:

x 7→ hvt(x) = bx · v + t

w
c,

for v ∼ N (0, 1)d , t ∈R [0,w).
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Basic property

Lemma (General, Technical)

Given a (p1, p2, r , (1 + ε)r)-sensitive hash family for metric space X , there
exists a randomized data structure for the (ε, r)-Near-Neighbor using space
O(dn), preprocessing time O(dn), and query time

O(dn1−Θ((p1−p2)2) + n− log(p1(1−p1))).

Given a query, preprocessing succeeds with constant probability.

Proof sketch

Let f : X → {0, 1}d ′
be the projection defined above. Then for x , y ∈ X :

dist(x , y) ≤ r =⇒ E [ ‖fi (hi (x))− fi (hi (y))‖1] ≤ 0.5(1− p1) =⇒
E [‖f (x)− f (y)‖1] ≤ 0.5 · d ′ · (1− p1),

dist(x , y) ≥ c · r =⇒ E [ ‖f (x)− f (y)‖1] ≥ 0.5 · d ′ · (1− p2).
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Implementation for Rd

Parameters

d ′: larger implies finer mapping so search can stop earlier; increases
storage and preprocessing.

Threshold #points to be checked in Rd

Distance computation

‖x − q‖2 = ‖x‖2 + ‖q‖2 − 2q · x , where the first two can be stored.
May offer up to 10% speedup. Slight slowdown on MNIST.

Project idea: ‖x − q‖2 − ‖y − q‖2 reduces to 2q · (y − x).

https://github.com/gsamaras/Dolphinn
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Hypercube

Implements projection to hypercube, for Approximate Near Neighbors.

8-80 times faster than brute force.

Falconn implements hyperplane/crosspoly LSH (4748 lines) [AILRS’15].
Hypercube is worse/same in build, same/better in space, query (716 lines)

sift SIFT MNIST GIST

d , n 128, 104 128, 106 784, 6 · 104 960, 106

F (c) 2.5e-4 1.5e-2 3.0e-3 .34
F (h) 8.6e-5 9.0e-3 6.2e-4 .13
D 9.0e-5 9.0e-3 5.0e-4 .13

Range search, in sec
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DolphinnPy

https://github.com/ipsarros/DolphinnPy [Psarros]

Python 2.7, NumPy (pip install numpy)

Hardcoded parameters (main.py):
K = new (projection) dimension,
num of probes = max #buckets searched,
M = max #candidate points examined.

python main.py: preprocesses data, runs Dolphinn (hyperplane
LSH) and exhaustive search on queries.

Print K , preprocessing and average-query time; multiplicative error
(approximation), #exact-answers.
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Tests

Fix K , vary num of probes,M so as to improve accuracy
(#exact-answers), decrease multiplicative error.

Fix num of probes,M, vary K for same goal.

After reading files, the script calls isotropize on both sets (data,
queries). Compare algorithm after commenting out both lines.

siftsmall.tar.gz from http://corpus-texmex.irisa.fr/

contains datafile and queryfile in fvecs format, d = 128, n = 104.
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