Volume computation, sampling and applications

Vissarion Fisikopoulos

19 April 2024

National and Kapodistrian
UNIVERSITY OF ATHENS



Polytopes and applications Algorithms Applications
©0000000 0000000000000000 0000000

Volume computation problem

Given P a convex polytope in R? compute the volume of P.
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Volume computation problem

Given P a convex polytope in R? compute the volume of P.

1. What is convex?

2. What is a polytope? How can we represent it?
3. How large is d? e.g. d =2, 3, 50

Applications
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EasT cases: volume of elementary shapes
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EasT cases: volume of elementary shapes
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Easy cases: planar polygons

A planar simple polygon with a positively oriented (counter clock
wise) sequence of points Pi,..., Py, P; = (z;,vy:),i=1,...,n.
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Easy cases: planar polygons

A planar simple polygon with a positively oriented (counter clock

wise) sequence of points Pi,..., Py, P; = (z;,vy:),i=1,...,n.
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Easy cases: planar polygons

A planar simple polygon with a positively oriented (counter clock
wise) sequence of points Pi,..., P,, P, = (z;,y;),i=1,...,n
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Polytope Representations

A convex polytope P C R% can be represented as the
1. convex hull of a pointset {p1,...,pn} (V-representation)

2. intersection of halfspaces {x € R? : Az < b}
(H-representation)

vertex enumeration problem

-

_

convex hull problem

Faces of polytopes: vertices, edges, ..., facets
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Volume computation problem (revisited)

Given P a convex polytope in R? compute the volume of P.
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Volume computation problem (revisited)

Given P a convex polytope in R? compute the volume of P.

ChatGPT

Computing the volume of a convex polytope in B? can be done using various methods depending
on the representation of the polytope. Here's a general approach:

1. Vertex Representation: If the polytope is given by its vertices, you can use the formula for the
volume of a convex polytope known as the "mixed volume.” This formula generalizes the concept
of volume to higher dimensions and is defined in terms of determinants.

2. Half-space Representation: If the polytope is given by the intersection of half-spaces (i.e., in the
form {z € R : Az

h}). then you can compute the volume using techniques like the Monte
Carlo method or the Monte Carlo Markov Chain (MCMC) method. These methods involve

sampling points within the polytope and estimating the volume based on the density of points.
Convex Hull: If you have a set of points representing the polytope, you can compute the convex
hull of those points and then calculate the volume of the resulting convex hull.
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Volume via triangulation

Algorithm: compute a triangulation of the input polytope, then
sum up the volumes of simplices.
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Volume via triangulation

Algorithm: compute a triangulation of the input polytope, then
sum up the volumes of simplices.

Question: Which triangulation?

Problem: The size of the triangulation of n points could be
exponential in the dimension d i.e. O(n!%/?1)
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Volume via triangulation

Algorithm: compute a triangulation of the input polytope, then
sum up the volumes of simplices.

Question: Which triangulation?

Problem: The size of the triangulation of n points could be
exponential in the dimension d i.e. O(n!%/?1)

Reference: Biieler, Enge, Fukuda - Exact Volume Computation
for Polytopes: A Practical Study
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Implementations

» VINCI [Bueler et al'00], Latte [deloera et al], Quull [Barber
et al], LRS [Avis|, Normaliz [Bruns et al]
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Implementations

» VINCI [Bueler et al'00], Latte [deloera et al], Quull [Barber
et al], LRS [Avis|, Normaliz [Bruns et al]

> triangulation, sign decomposition methods

a

b




Polytopes and applications Algorithms Applications
00000000 0000000000000000 0000000

Implementations

» VINCI [Bueler et al'00], Latte [deloera et al], Quull [Barber
et al], LRS [Avis|, Normaliz [Bruns et al]

> triangulation, sign decomposition methods

a

b

» cannot compute in high dimensions (e.g. > 15) in general
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Volume via (naive) Monte Carlo

Rejections techniques (sample from bounding box)
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Question: how to sample points from a cube?
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Volume via (naive) Monte Carlo

Rejections techniques (sample from bounding box)

ST ERET

Question: how to sample points from a cube?

volume(unit cube) =1
volume(unit ball) ~ (¢/d)%? —drops exponentially with d

Applications
0000000
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Volumes, polytopes, applications
Algorithms and complexity
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Randomized algorithms

Volume algorithms parts

1. Multiphase Monte Carlo (MMC)
e.g. Sequence of balls, Annealing of functions

2. Sampling via geometric random walks
e.g. grid-walk, ball-walk, hit-and-run, billiard walk

Notes:
» MMC (1) at each phase solves a sampling problem (2)
» geometric random walks are (most of the times) Marcov
chains where each "event” is a d-dimensional point
» Algorithmic complexity is polynomial in d [Dyer, Frieze,
Kannan'91]
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Multiphase Monte Carlo

» Sequence of convex bodies Cy D --- D (), intersecting P,
then:

vol(Py,—1)  vol(P;) vol(P)
vol(Py,) ~ vol(P) vol(Py)
where P, =C; NP fori=1,...,m.
» Estimate ratios by sampling.

vol(P) = vol(Pp,)
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Multiphase Monte Carlo

v

Sequence of k cocentric balls,
By = B(c,r) C P C Blc,p) = B

v

Set P, = PN B;

: I(P) wvol(P: . .
Estimate zZlEP;g, % ... via sampling

v

> vol(P) = vol(Py) [TE_, %

v

How large is k?
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Multiphase Monte Carlo
> B(c,2/h), i=a,a+1,...,5,
a = |dlogr|, = [dlogp]

» P:=PNB(,2/Y, i=a,a+1,...,3
P, = B(c,2%/%) C B(e,r)

» k = dlog(p/r) where p/r is the
"sandwitching ratio”
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Multiphase Monte Carlo

> B(C,Qi/d),i:a,a—l—l,...,ﬂ,
a = |dlogr|, B = [dlogp]

Pa = (07 2a/d) g B(Ca T)

» k = dlog(p/r) where p/r is the
"sandwitching ratio”

B(e,p)
Using sampling the polytope can be transformed into "near

isotropic position” such that p/r = O(d) [Lovasz et al.'97]

» P:=PNB(¢,2/Y, i=a,a+1,...
B

0



Polytopes and applications Algorithms Applications
00000000 00000@0000000000 0000000

How we sample uniformly?

For arbitrary polytopes we need random walks

» Ball walk

» Random directions hit and run (rdhr)

» Cooridnate directions hit and run (cdhr)
» Billiard walk
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Hit and run (random directions)

1. line ¢ through x, uniform on
B(z,1)

‘ 2. set z to be a uniform disrtibuted

point on PN ¢
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Hit and run (random directions)

P
. 1. line ¢ through z, uniform on
B(z,1)

2. set z to be a uniform disrtibuted
point on PN ¢
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Hit and run (random directions)

P 1. line ¢ through x, uniform on
B(z,1)
2. set x to be a uniform disrtibuted
point on PN ¢
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hit and run (coordinate directions)
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hit and run (coordinate directions)
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hit and run (coordinate directions)

N
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hit and run (coordinate directions)

N
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Billiard walk
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Billiard walk
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Billiard walk

Two important parameters: number of reflections, total length
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Ball walk

One important parameter: radius of the walk
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Ball walk

One important parameter: radius of the walk
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Questions on random walks

» What is the representation of the polytope needed for each
walk?

» How many steps needed to reach the target distribution?
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Explicit Polytope Representations

A convex polytope P C R? can be represented as the
1. convex hull of a pointset {p1,...,pm} (V-representation)

2. intersection of halfspaces {hi,...,h,} (H-representation)

vertex enumeration problem

-

_—

convex hull problem

Faces of polytopes: vertices, edges, ..., facets
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Implicit Polytope Representation (Oracles)

Membership oracle
Given point y € R%, return vyes if y € P otherwise return no.

Boundary oracle
Given point y € P and line ¢ goes through y return the points
LNoP
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Complexity [KannanLS'97]

Assuming B(c,1) C P C B(c, p), the volume algorithm returns an
estimation of vol(P), which lies between (1 — ¢)vol(P) and
(14 €)vol(P) with probability > 3/4, making

0"(d)
oracle calls, where p is the radius of a bounding ball for P.

Techniques:
Isotropic sandwitching: O*(v/d) and ball walk.

Runtime steps
» generates dlogd balls
» generate N = 400 2dlog d random points in each ball N P

» each point is computed after O*(d?) random walk steps
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State-of-the-art

Theory:
Authors-Year Complexity Algorithm
(oracle steps)
Dyer, Frieze, Kannan'91] O*(d?3) Seq. of balls + grid walk
Kannan, Lovasz, Simonovits'97] | O*(d®) Seq. of balls + ball walk + isotropy
Lovasz, Vempala'03] O*(d*) Annealing + hit-and-run
Cousins, Vempala'l5] O*(d?) Gaussian cooling (* well-rounded)
[Lee, Vempala'18] O*(Fdé) Hamiltonian walk (** H-polytopes)
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State-of-the-art

Theory:

Authors-Year Complexity Algorithm

(oracle steps)

Dyer, Frieze, Kannan'91] O*(d?3) Seq. of balls + grid walk

Kannan, Lovasz, Simonovits'97] | O*(d®) Seq. of balls + ball walk + isotropy

Lovasz, Vempala'03] O*(d*) Annealing + hit-and-run

Cousins, Vempala'l5] O*(d?) Gaussian cooling (* well-rounded)

[Lee, Vempala'18] O*(Fdé) Hamiltonian walk (** H-polytopes)
Software:

1. [Emiris, F'14] Sequence of balls + coordinate hit-and-run
2. [Cousins, Vempala'l6] Gaussian cooling + hit-and-run
3. [Chalikis, Emiris, F'20] Convex body annealing + billiard walk
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State-of-the-art

Theory:
Authors-Year Complexity Algorithm
(oracle steps)
Dyer, Frieze, Kannan'91] O*(d?3) Seq. of balls + grid walk
Kannan, Lovasz, Simonovits'97] | O*(d®) Seq. of balls + ball walk + isotropy
Lovasz, Vempala'03] O*(d*) Annealing + hit-and-run
Cousins, Vempala'l5] O*(d?) Gaussian cooling (* well-rounded)
[Lee, Vempala'18] O*(Fdé) Hamiltonian walk (** H-polytopes)

Software:
1. [Emiris, F'14] Sequence

Notes:

v

vV VY

of balls 4+ coordinate hit-and-run
2. [Cousins, Vempala’'16] Gaussian cooling + hit-and-run
3. [Chalikis, Emiris, F'20] Convex body annealing + billiard walk

(2) is (theory + practice) faster than (1)

(1),(2) efficient only for H-polytopes

(3) efficient also for V-,Z-polytope, non-linear convex bodies
C++ implementation of (2) x10 faster than original (MATLAB)
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Problem complexity
Input: Polytope P := {r € R | Ax <b} A€ R™4 pecR™

Output: Volume of P
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Problem complexity
Input: Polytope P := {z € R?| Az < b} Ac R™*4 pc R™
Output: Volume of P
Complexity
» #P-hard for vertex and for halfspace repres. [DyerFrieze'88]
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Problem complexity
Input: Polytope P := {x ¢ R | Az < b} Ac R™4 phcR™
Output: Volume of P
Complexity
» #P-hard for vertex and for halfspace repres. [DyerFrieze'88]

» open if both vertex (V-rep) & halfspace (H-rep)
representation is available
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Applications

Problem complexity
Input: Polytope P := {x ¢ R | Az < b} Ac R™4 phcR™

Output: Volume of P
Complexity

» #P-hard for vertex and for halfspace repres. [DyerFrieze'88]

» open if both vertex (V-rep) & halfspace (H-rep)
representation is available

» no deterministic poly-time algorithm can compute the volume
with less than exponential relative error [Elekes'86]
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Problem complexity
Input: Polytope P := {x ¢ R | Az < b} Ac R™4 phcR™

Output: Volume of P
Complexity
» #P-hard for vertex and for halfspace repres. [DyerFrieze'88]

» open if both vertex (V-rep) & halfspace (H-rep)
representation is available

» no deterministic poly-time algorithm can compute the volume
with less than exponential relative error [Elekes'86]

» randomized poly-time approximation of volume of a convex
body with high probability and arbitrarily small relative
error [DyerFriezeKannan'91]

O*(d**) — O*(m?d*~1/3) [LeeVempala'18],
O*(md*® + md*) [MangoubiVishnoi'19]
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Birkhoff polytopes

» Given the complete bipartite graph K, ,, = (V, E) a perfect
matching is M C E s.t. every vertex meets exactly one
member of M
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Birkhoff polytopes
» Given the complete bipartite graph K, ,, = (V, E) a perfect

matching is M C E s.t. every vertex meets exactly one
member of M

» SCE, xJ ={lifec 8,0 otherwise}
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Birkhoff polytopes

» Given the complete bipartite graph K, ,, = (V, E) a perfect
matching is M C E s.t. every vertex meets exactly one
member of M

» SCE, xJ ={lifec 8,0 otherwise}

> B, = conv{x™ | M is a perfect matching of K, ,}
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Birkhoff polytopes

Given the complete bipartite graph K, , = (V, E) a perfect
matching is M C E s.t. every vertex meets exactly one
member of M

S CE, x5 ={1ifec S, 0 otherwise}

B, = conv{xM | M is a perfect matching of K, ,}

TS IR e AKX
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Birkhoff polytopes

Given the complete bipartite graph K, , = (V, E) a perfect
matching is M C E s.t. every vertex meets exactly one
member of M

S CE, x$={1ifeecS,0 otherwise
e

B, = conv{xM | M is a perfect matching of K, ,}

TS IR e AKX

# faces of Bs: 6, 15, 18, 9; vol(B3) = 9/8
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Birkhoff polytopes

» Given the complete bipartite graph K, ,, = (V, E) a perfect
matching is M C E s.t. every vertex meets exactly one
member of M

» SCE, xJ ={lifec 8,0 otherwise}

> B, = conv{x™ | M is a perfect matching of K, ,}

> o—o *——o & :><: %
» # faces of Bs: 6, 15, 18, 9; vol(B3) = 9/8

» there exist formulas for the volume [delLoera et al '07] but
values only known for n < 10 after lyr of parallel computing
[Beck et al '03]
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Volumes and counting

» Given n elements & partial order; order polytope Pp C [0, 1]™
coordinates of points satisfies the partial order

€

b a,b,c
Rt partial order: a < b
3 linear extensions: abc, ach, cab
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Volumes and counting

» Given n elements & partial order; order polytope Pp C [0, 1]™

coordinates of points satisfies the partial order

€

b a,b,c
Rt partial order: a < b
3 linear extensions: abc, ach, cab

> # linear extensions = volume of order polytope - n!
[Stanley'86]
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Volumes and counting

» Given n elements & partial order; order polytope Pp C [0, 1]™

coordinates of points satisfies the partial order

€

b a,b,c
Rt partial order: a < b
3 linear extensions: abc, ach, cab

> # linear extensions = volume of order polytope - n!
[Stanley'86]

» Counting linear extensions is #P-hard [Brightwell'91]
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Minkowski sum

The Minkowski sum of two convex sets P and @ is:

P+Q={p+qlpePqecQ}

L ] 3 . L]
- ,,/' -
I
77 =
L] > . L]
Q) P+@Q

Volume of zonotopes (sums of segments) is used to test methods
for order reduction which is important in several areas:
autonomous driving, human-robot collaboration and smart grids
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Mixed volume
Let Py, P, ..., P; be polytopes in R? then the mixed volume is

M(Py,...,Py) = Z (_1)(d_|1‘).\/‘01(2pi)

IC{1,2,...d} il

where the sum is the Minkowski sum.
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Mixed volume
Let Py, P, ..., P; be polytopes in R? then the mixed volume is

M(Py,...,Py) = Z (_1)(d_|1|).VOI(ZPi)

IC{1,2,...d} il

where the sum is the Minkowski sum.

Example
For d = 2: M(Pl, P2) = VOI(Pl + P2) — VO](Pl) — VOI(P2)

P+ P
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Applications

Computing integrals for Al

In Weighted Model Integration (WMI), given is a SMT
formula and a weight function, then we want to compute the
weight of the SMT formula.

e.g. SMT formula:

(A& (X >20)| (X >30)) & (X < 40)

Boolean formula 4+ comparison operations. Let X has a
weight function of w(X) = X? and w(A) = 0.3.

WMI answers the question of the weight of this formula i.e.
integration of a weight function over convex sets.

[P.Z.D. Martires et al.2019]


https://arxiv.org/pdf/2001.04566v1.pdf
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Applications in finance

When is the next financial crisis?

period = crisis ~ normal ~ warning
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Dates

Cales, Chalkis, Emiris, Fisikopoulos - Practical volume computation of
structured convex bodies, and an application to modeling portfolio
dependencies and financial crises, SoCG 2018


https://drops.dagstuhl.de/opus/volltexte/2018/8732/pdf/LIPIcs-SoCG-2018-19.pdf
https://drops.dagstuhl.de/opus/volltexte/2018/8732/pdf/LIPIcs-SoCG-2018-19.pdf
https://drops.dagstuhl.de/opus/volltexte/2018/8732/pdf/LIPIcs-SoCG-2018-19.pdf
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Software

. Main library is volesti (C++):
https://github.com/GeomScale/volesti

. Two interfaces available: Python
(https://github.com/GeomScale/dingo) and R
(https://github.com/GeomScale/Rvolesti)

. Google summer of code "internships” are available every year
(applications in Spring, work on Summer)

. Project topics for Google summer of code 2024:
https://github.com/GeomScale/gsoc24/wiki/
table-of-proposed-coding-projects

. How to participate:
https://github.com/GeomScale/gsoc24/wiki


https://github.com/GeomScale/volesti
https://github.com/GeomScale/dingo
https://github.com/GeomScale/Rvolesti
https://github.com/GeomScale/gsoc24/wiki/table-of-proposed-coding-projects
https://github.com/GeomScale/gsoc24/wiki/table-of-proposed-coding-projects
https://github.com/GeomScale/gsoc24/wiki
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