
Sparse Matrix Test Problems

IAIN S. DUFF
Harwell Laboratory
and
ROGER G. GRIMES
and
JOHN G. LEWIS
Boeing Computer Services

We describe the Hanvell-Boeing sparse matrix collection, a set of standard test matrices for sparse
matrix problems. Our test set comprises problems in linear systems, least squares, and eigenvalue
calculations from a wide variety of scientific and engineering disciplines. The problems range from
small matrices, used as counter-examples to hypotheses in sparse matrix research, to large test cases
arising in large-scale computation. We offer the collection to other researchers as a standard
benchmark for comparative studies of algorithms. The procedures for obtaining and using the test
collection are discussed. We also describe the guidelines for contributing further test problems to the
collection.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra-sparse
and very large systems; G.4 [Mathematics of Computing]: Mathematical Software

General Terms: Measurement, Performance

Additional Key Words and Phrases: Matrix collection, sparse matrices, test matrices

1. INTRODUCTION

Research in solving problems involving sparsity has always been motivated by
the need to solve practical large-scale problems. Thus it is important that the
evaluation of techniques for exploiting sparsity should be strongly influenced by
the performance of these techniques on realistic test problems. It is often hard
for research workers in universities to get access to such problems. People working
in a laboratory or industrial environment will usually be exposed to relatively

Part of this work was performed while I. S. Duff was visiting Argonne National Laboratory. The
work was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under contract W-31-109-Eng-38. The work of R. G. Grimes
and J. G. Lewis was supported in part by AFOSR grant F49620-87-C-0037.
Authors’ addresses: I. S. Duff, Computer Science and Systems Division, Harwell Laboratory, Oxford-
shire OX11 ORA, UK, R. G. Grimes and J. G. Lewis, Engineering and Scientific Services Division,
Boeing Computer Services, P.O. Box 24346, Seattle, WA 98124-0346.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1989 ACM 00983500/89/0300-0001$01.50

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989, Pages 1-14.

2 ’ I. S. Duff et al.

few applications and so will not easily know how general their techniques are.
Published results are often difficult to compare because the problems used for
evaluation are different. For these reasons we have organized and continue to
maintain a database of sparse matrices that we offer to other researchers.

The main goal of our work is to provide:

(i) an extensive collection of interesting and real test problems in a com-
mon, general, machine-readable form with detailed documentation on the
problems;

(ii) easy access to the test problems and to interesting subsets of the collection;
and

(iii) a simple mechanism for adding new problems to the collection.

Our intention is to allow this test set to be disseminated as widely as possible.
For most readers the most important issues are the contents of the collection
and how to access the collection. The current contents are outlined in Section 2.
The mechanisms for obtaining all or part of the collection are presented in
Section 3. Section 4 contains the general forms of the matrix representations in
the collection. Those three sections provide an overview of the current collection.
In Section 5 we offer readers the opportunity of contributing to the long-term
value of the collection, and we give guidelines for adding new problems to the
collection. We conclude with a discussion of the history of this collection and
remarks on some related areas. We also include as an appendix full details of the
storage structures and formats used to hold the data in our test set.

By the publication of this report, we intend to broadcast the availability of our
set of sparse matrix test problems and to provide information on what is contained
in our set. The nature of scientific computation changes rapidly, and so we do
not envisage this current collection as static or complete. For this reason full
details of the collection are not given in this paper. Instead we are publishing
separately a Users’ Guide for the Harwell-Boeing Sparse Matrix Collection [l],
which gives the finer details of the contents and formats of the collection. The
Users’ Guide is published as a technical report at each of our respective institu-
tions and will be updated periodically to reflect changes to the collection. The
Users’ Guide can be obtained by writing to any of the authors.

2. SUMMARY OF CURRENT CONTENTS

The Harwell-Boeing Sparse Matrix Collection currently comprises matrices from
more than 20 disciplines. These disciplines include structural analysis (static and
dynamic), partial differential equations, circuit analysis, power systems, atomic
spectra, oil reservoir modeling, linear programming, atmospheric pollution, finite-
element analysis, simulation, chemical kinetics, solution of stiff ordinary differ-
ential equations, chemical engineering, demography, and econometrics.

The problems range in order from 9 to 44,609. Many of these matrices stem
from actual applications and exhibit numerical pathologies that arise in practice.
Other matrices also come from practical problems, but we maintain only the
sparsity structure of these matrices for reasons of space or because the value of
the problems is strictly for evaluating sparsity-preserving techniques, At present
there are 292 matrices represented by over 110 Megabytes of data. In Table I, we
ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

Sparse Matrix Test Problems - 3

Table I. Summarv of Collection

Discioline
Number of

Largest matrix in set

matrices in set Order Number of entries

Counter-examples-small matrices 3
Original Harwell test set 36

Air traffic control 1
Astrophysics 2
Chemical engineering 16
Circuit simulation 1
Demography 3
Economic modeling 11
Nuclear reactor core modeling 3
Optimal power flow problems 3
Stochastic modeling 7

Acoustic scattering 4
Oil reservoir modeling 19
Stiff ODE problems 10

George and Liu test set-mesh problems 21
Model PDE problems 3
Navier-Stokes problems 7
Unassembled finite-element matrices 10

Oceanography 4
Power network matrices 14

Everstine test set-ship structures 30
Structures-eigenproblems 22
Structures-linear equations 36

Least-squares problems 4

11

a22

2,873
765

2,021
991

3,140
2,529
1,374
4,929
1,107

841
5,005

760

3,466
900

3,937
5,976

1,919
5,300

2,680
15,439
44,609

1,850

76
4,841

15,032
24,382

7,353
6,027

543,162
90,158

8,606
47,369

5,664

4,089
20,033

5,976

13,681
4,322

25,407
15,680

17,159
13,571

13,853
133,840

1,029,655

10,608

Source

Table II. Summary of Generator Programs

Description of generator

Duff and Grimes

Grimes

Generator for 5- or g-point discretization of the Laplacian operator
on a rectangular grid
Generator for 3-dimensional oil reservoir simulation

list these matrices in summary form by class. The Users’ Guide lists all of the
matrices in the collection with relevant information on their properties, history,
and use in the literature. In addition, we also provide parameterized families
of sparse matrices of arbitrary size through generator programs. Our present
generator programs are summarized in Table II.

3. SYSTEM FOR DISTRIBUTION

Requests for data from the collection should be made to one of the authors. At
present there is no charge for this service other than the cost of a tape and
postage. Requesters can offset this cost (and simplify our work) by supplying
their own tape. The data will be provided in card-image format in either ASCII
or EBCDIC blocked format, as requested.

The sheer size of the collection is an obstacle to its distribution and use. As it
stands today the total collection requires at least three 2,400-ft. reels of 1,600

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

4 l I. S. Duff et al.

BP1 tape (a single reel at 6,250 BPI). For most researchers the total collection is
not relevant. Unsymmetric matrices are not of interest to researchers studying
orderings for symmetric positive definite problems, for example. Workstation
users may find problems with millions of entries to be a challenge. Although we
can provide the complete collection, we have also developed a mechanism for
extracting subcollections. We discuss this mechanism in some detail in the Users’
Guide. In this paper, we describe only the salient features to give a flavor of the
kind of subsets that can be extracted.

The basis for extracting subcollections is a small database. For each matrix,
the information held in the database consists of the unique matrix name or
identifier, its type, its source and discipline, its order and number of entries, and
key words, From this information we can select any subset specified according
to any of the attributes held in the database. A typical request might be of the
form “all symmetric matrices from structures problems with order greater than
1,000 but with less than 100,000 entries.” One could also request all matrices
supplied by Boeing Computer Services, the original Harwell sparse matrix col-
lection, or matrices from other sources, perhaps with additional qualifications.
Any of the characteristics held in the database may be used in the selection
process.

We use this extraction mechanism ourselves to generate subcollections that
we consider to be appropriate benchmarks for some standard requirements. On
request we will provide our benchmark subcollections for:

linear equation solvers (symmetric)
linear equation solvers (unsymmetric)
generalized symmetric eigepproblems
linear least-squares problems

The specific contents of each are described in the Users’ Guide. These collections
all contain systems of medium to large size. We also provide corresponding sets
of small matrices to assist in debugging.

4. REPRESENTATION OF MATRICES

We use three different modes for storing the sparse matrices. For most matrices
we use an explicit sparse matrix representation. A small number of our problems
were obtained from finite-element problems in original elemental matrix form.
We also include generator routines that can be used to provide families of sparse
matrices with certain regular properties. We give only an overview of the
representation in this section. Full details are presented in the Appendix.

All matrices held in explicit form in the sparse matrix test collection are stored
in a compact format where only the entries corresponding to nonzero values are
stored. The standard format for matrices uses a column-oriented form so that
only two vectors of length the number of nonzeros are required. We store only
the entries of the lower triangle (by columns including the diagonal) of symmetric
and Hermitian matrices. Our representation is a simple, general, compact scheme
that is widely used in sparse matrix research. Other schemes exist, but they are
generally less compact or specialized for specific applications. No provision
ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

Sparse Matrix Test Problems l 5

has been made at this time for the special requirements of an explicit hyper-
matrix partitioning or for data compression in areas where certain data appear
repeatedly.

Unassembled finite-element matrices are stored in a condensed format that
retains the elemental structure. The entries of each element are stored as a small
full matrix, where any zero entries are stored explicitly. Our elemental represen-
tation allows only structurally symmetric matrices, although the matrix and its
element matrices need not be symmetric. Symmetric storage is used for the
element matrices when all element matrices (and thus the assembled matrix) are
symmetric.

We also allow the storage of right-hand sides. The right-hand-side vectors are
stored either as full vectors or in a form similar to that for the matrix itself. To
facilitate comparison of iterative methods, our format permits the inclusion not
only of right-hand sides, but also of starting vectors and solution vectors.

For portability, each explicitly held matrix is represented on tape by a sequence
of card images. The card images contain header records that provide size and
formatting information and then the actual indices, pointers, and numerical data.
The specific formats used are described in the Appendix. A prospective user may
never need these details since we also provide a collection of utility subroutines
for using the collection. These subroutines include routines that can be called
from a Fortran program to read a matrix from its database form into the array
representation described above. Similar routines exist for writing matrices in our
database format for use by prospective contributors.

The third representation we have adopted is for easily generated families of
sparse matrices. The generator subroutines have a common interface that gives
the representation of a sparse matrix described above and the parameters
necessary to describe a specific member of the generated family. The generated
matrices are produced in exactly the same format as described for the explicitly
held matrices. The input parameters are passed to the subroutine through two
arrays-one of integer, one of numerical values. Thus all families can be generated
through a common interface.

5. GUIDELINES FOR CONTRIBUTIONS

It has always been our intention to generate a test collection that reflected the
features of many different application areas, and indeed a principal criterion
when deciding to augment the test set has been whether the application area is
already adequately represented.

In the early days of the collection, we were delighted to accept almost any
matrix and were prepared to accept it in any format, although it often involved
significant work to reorganize it into a standard format. Thus we were able to
build and establish our test collection in a reasonably short time. Now our
collection stands at nearly 300 matrices and over 110 Mbytes of data covering a
wide range of applications. We are therefore more particular about adding further
data to the collection. At the same time we realize that the characteristics of
interesting scientific problems evolve with time; this collection will maintain its
value only if new types of problems are added when they are encountered.

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

6 * I. S. Duff et al.

Therefore, we are still keen to augment the collection but would like any
prospective contributions to satisfy one (or more) of the following criteria:

(i) the matrices have unusual numerical or structural properties not currently
represented;

(ii) they represent some important or some unusual class of problems;
(iii) they demonstrate the effectiveness or ineffectiveness of particular solution

schemes;
(iv) they are samples of matrices available in parametric form, representing a

family of matrices, and can be used to demonstrate parametric effects on
solution techniques;

(v) they have been widely used as test problems or otherwise referenced in
existing literature; or

(vi) they have some other claim to fame!!

All submissions should, in any case, conform to the standard data representation
described in Section 4 and the Appendix. Submissions, like requests for the
collection, may be addressed to any of the authors. Prospective contributors
should contact any of the authors to discuss the suitability of their material
before sending any data.

6. HISTORICAL COMMENTS AND CONCLUDING REMARKS

Historically, sample test problems have been collected and maintained by indi-
viduals in various disciplines, with widely differing representations, formats, and
availability. Curtis and Reid used some test examples generated from the solution
of ordinary differential equations, supplemented by others from colleagues and
conferences, in the development of the Harwell MA18 code in 1971. Duff and
Reid [3] then organized the collection and augmented it. This was known as the
Harwell collection of sparse matrices and represented the only collection in a
uniform format covering several disciplines. Despite its lack of coverage in some
important areas, it has been widely distributed. Researchers at Boeing Computer
Services were also generating test examples, partly through their development of
software for finite-element packages and partly through work with the Electric
Power Research Institute. It was natural to coordinate these efforts, and Duff et
al. [2] presented the combined Harwell-Boeing collection at the Sparse Matrix
Meeting at Fairfield Glade, Tennessee. Since then there have been many requests
for data from that collection. The work reported on here is intended to increase
the value and coverage of the collection and make the handling of such requests
easier and more routine.

We do not know of any comparable set of test matrices, although there are
collections of large systems from particular application areas. For example, Gay,
Reid, and Saunders all have sets of linear programming problems held in the
now standard MPS format. There is also a great need for and interest in
the creation of a set of problems for large-scale nonlinear programming.
Although sets for small-scale problems exist (for example, [5]), we know of
no satisfactory database for the large-scale case. We hope that this organization
and collection of a linear set will encourage efforts for the nonlinear case,
although it is not yet clear in what format nonlinear problems should be stored.

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

Sparse Matrix Test Problems * 7

Very recently Toint [6] and Lenard [4] have presented some initial suggestions
in this area.

APPENDIX. SPARSE MATRIX TEST COLLECTION-MATRIX FORMAT

Each matrix held in explicit form in the sparse matrix test collection is stored in
one of two compact formats. The first is for arbitrary matrices in standard sparse
matrix formulation. The second format is used to represent unassembled finite-
element matrices in an elemental formulation.

Each matrix in the collection is held as a sequence of formatted records that
can be read conveniently into FORTRAN arrays. In Sections Al thA, .:h A3, we
describe the resulting matrix representation. In Section A4, we describe the
format itself and give two example programs that read it.

Al. Standard Sparse Matrix Format

The standard sparse matrix format is column-oriented. That is, the matrix is
represented by a sequence of columns. Each column is held as a sparse vector,
represented by a list of the row indices of the entries in an integer array and a
list of the corresponding values in a separate real array. A single integer array
and a single real array are used to store the row indices and the values,
respectively, for all of the columns. (Throughout, we use the term “real” in a
generic sense so that it should be read as a FORTRAN real, double precision,
complex, or double-precision complex as appropriate.) Data for each column are
stored in consecutive locations, the columns are stored in order, and there is no
space between the columns. A separate integer array holds the location of the
first entry of each column and the first free location. For symmetric and
Hermitian matrices, we store only the entries of the lower triangle (including the
diagonal). For skew symmetric matrices, we hold only the strict lower triangle.

We illustrate the storage scheme with the following example. The 5 x 5 matrix

1. -3. 0 -1. 0
0 0 -2. 0 3. i 1 2. 0 0 0 0
0 4. 0 -4. 0
5. 0 -5. 0 6.

would be stored in the arrays COLPTR (location of first entry), ROWIND (row
indices), and VALUES (numerical values) according to the following prescription:

Subscripts 1 2 3 4 5 6 7 8 9 10 11

COLPTR 1 4 6 8 10 12

1
ROWIND

1-p
1 3 5 1 4 2 5 1 4 2 5

VALUES 1. 2. 5. -3. 4. -2. -5. -1. -4. 3. 6.

We can generate column 5, say, by observing that its first entry is in posi-
tion COLPTR(5) = 10 of arrays ROWIND and VALUES. This entry is .
in row ROWIND(lO) = 2 and has value VALUES(10) = 3. Other entries
in column 5 are found by scanning ROWIND and VALUES to position

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

8 l I. S. Duff et al.

COLPTR(6) -1, that is position 11. Thus, the only other entry in column 5
is in row ROWIND(ll) = 5 with value VALUES(ll) = 6.

A2. Finite-Element Matrices in Unassembled Format

Matrices arising in finite-element applications are usually assembled from nu-
merous small elemental matrices. Our collection includes a few sparse matrices
in original unassembled form. The storage of the unassembled matrices is
analogous to the explicit form above, which stores each matrix as a list of matrix
columns. The elemental representation stores the matrix as a list of elemental
matrices. Each elemental matrix is represented by a list of the row/column
indices (variables) associated with the element and by a small, dense matrix
giving the numerical values by columns (in the symmetric case only the lower
triangular part). The lists of indices are held contiguously, just as for the lists of
row indices in the standard format. The dense matrices are held contiguously in
a separate array, with each matrix held by columns. Although there is not a 1: 1
correspondence between the arrays of integer and numerical values, our repre-
sentation does not hold the pointers to the beginning of the real values for each
element. These pointers can be created from the index start pointers (ELTPTR)
after noting that an element with u variables has u2 real values (u X (u + 1)/2 in
the symmetric case).

We illustrate the elemental storage scheme with a small example. Consider a
5 X 5 symmetric matrix

5. 0. 0. 1. 2.
0. 4. 3. 0. 6. I 1 0. 3. 7. 8. 3.. ,
1. 0. 8. 9. 0.
2. 6. 1. 0. 10.

generated from four elemental matrices,

where the variable indices are indicated by the integers before each matrix
(columns are identified symmetrically to rows). This matrix would be stored
in arrays ELTPTR (location of first entry), VARIND (variable indices), and
VALUES (numerical values) according to the following prescription:

Subscripts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ELTPTR 1 3 5 8 10

VARIND 1, !i-i+m
VALUES 2. 1. 7. 3. 2. 8. 4. 3. 6. 5. 1. 2. 2. 8. 2.

A3. Right-Hand Sides

Where the matrices originate in the solution of linear equations and the right-
hand sides are available, the right-hand-side vectors are stored with the matrices.
ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

Sparse Matrix Test Problems l 9

Usually the right-hand-side vectors are dense, in which case they are stored
contiguously (as in ordinary FORTRAN array storage). Multiple right-hand sides
are stored as consecutive vectors, so that the right-hand sides are accessible as
the columns of a FORTRAN array.

An alternative form is available in which right-hand sides are represented in
the same format as the matrix. For unassembled matrices the associated right-
hand sides can be represented by elemental contributions. Right-hand sides in
elemental form are stored as a sequence of small dense matrices, each small
matrix having as many columns as the number of right-hand sides, and with as
many rows as the corresponding element in the matrix representation. Within
each elemental right-hand side, the rows correspond to the entries in the variable
index vector for that element.

The format for assembled sparse matrices is used to store sparse right-hand
sides. Applications with sparse right-hand sides are less common, but the sparsity
can be used to advantage in direct solution techniques. We only allow sparse
right-hand sides for assembled matrices, in which case we store the right-hand
sides exactly as a standard sparse matrix, with the same number of rows as the
coefficient matrix and the same number of columns as right-hand sides.

We allow the specification of a starting guess for the solution of the problem
and a vector that purports to be the exact solution. These can only be supplied
as full arrays and only when right-hand side(s) are present. Either or both of
these arrays can be present. The starting vector(s) precede the solution vector(s)
if both are given and the number of such vectors must be equal to the number of
right-hand sides.

A4. Detailed Formats

Our collection is held in an SO-column, fixed-length format for portability. Each
matrix begins with a multiple-line header block, which is followed by two, three,
or four data blocks. The header block contains summary information on the
storage formats and space requirements. From the header block alone, the user
can determine how much space will be required to store the matrix. Information
on the size of the representation in lines is given for ease in skipping past
unwanted data.

If there are no right-hand side vectors, the matrix has a four-line header block
followed by two or three data blocks containing, in order, the column (or element)
start pointers, the row (or variable) indices, and the numerical values. If right-
hand sides are present, there is a fifth line in the header block and a fourth data
block containing the right-hand side(s). The blocks containing the numerical
values and right-hand side(s) are optional. The right-hand side(s) can be present
only when the numerical values are present. If right-hand sides are present, then
vectors for starting guesses and the solution can also be present; if so, they appear
as separate full arrays in the right-hand-side block following the right-hand-side
vector(s).

The first line contains the 72-character title and the B-character identifier by
which the matrix is referenced in our documentation. The second line contains
the number of lines for each of the following data blocks as well as the total
number of lines, excluding the header block. The third line contains a three-
character string denoting the matrix type, as well as the number of rows, columns

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

10 l I. S. Duff et al.

(or elements), entries, and, in the case of unassembled matrices, the total number
of entries in elemental matrices. The fourth line contains the variable FORTRAN
formats for the following data blocks. The fifth line is present only if there are
right-hand sides. It contains a one-character string denoting the storage format
for the right-hand sides, as well as the number of right-hand sides, and the
number of row index entries (for the assembled case). The exact format is given
by the following, where the names of the FORTRAN variables in the subsequent
programs are given in parentheses:

Line 1 (A72, A8)
Col. l-72 Title (TITLE)
Col. 73-80 Key (KEY)

Line 2 (5114)
Col. 1-14 Total number of lines excluding header (TOTCRD)
Col. 15-28 Number of lines for pointers (PTRCRD)
Col. 29-42 Number of lines for row (or variable) indices (INDCRD)
Col. 43-56 Number of lines for numerical values (VALCRD)
Col. 57-70 Number of lines for right-hand sides (RHSCRD)

(including starting guesses and solution vectors if present)
(zero indicates no right-hand-side data are present)

Line 3 (A3, 11X, 4114)
Col. l- 3 Matrix type (see below) (MXTYPE)
Col. 15-28 Number of rows (or variables) (NROW)
Col. 29-42 Number of columns (or elements) (NCOL)
Col. 43-56 Number of row (or variable) indices (NNZERO)

(equal to number of entries for assembled matrices)
Col. 57-70 Number of elemental matrix entries (NELTVL)

(zero in the case of assembled matrices)

Line 4 (2A16, 2A20)
Col. 1-16 Format for pointers (PTRFMT)
Col. 17-32 Format for row (or variable) indices (INDFMT)
Col. 33-52 Format for numerical values of coefficient matrix (VALFMT)
Col. 53-72 Format for numerical values of right-hand sides (RHSFMT)

Line 5 (A3, 11X, 2114)
Only present if there are right-hand sides present.

Cal. 1 Right-hand side type:
F for full storage or
M for same format as matrix (RHSTYP)

Cal. 2 G if a starting vector(s) (Guess) is supplied.
Cal. 3 X if an exact solution vector(s) is supplied.
Col. 15-28 Number of right-hand sides (NRHS)
Col. 29-42 Number of row indices (NRHSIX)

(ignored in case of unassembled matrices)

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

Sparse Matrix Test Problems - 11

The three character type field on line 3 describes the matrix type. The following
table lists the permitted values for each of the three characters. As an example
of the type field, RSA denotes that the matrix is real, symmetric, and assembled.

First Character:
R Real matrix
C Complex matrix
P Pattern only (no real values supplied)

Second Character:
S Symmetric
U Unsymmetric
H Hermitian
Z Skew symmetric
R Rectangular

Third Character:
A Assembled
E Elemental matrices (unassembled)

To formalize the logical block structure of the data, we have included two
pieces of sample FORTRAN code for reading a matrix in the format of the sparse
matrix test collection. Both codes assume the data comes from input unit LUNIT.
Neither is a complete code. Real code should include error checking to ensure
that the target arrays into which the data are read are large enough. The design
allows the arrays to be read by a separate subroutine that can avoid the use of
possibly inefficient implicit DO-loops. A complete FORTRAN subroutine for
reading matrices from the tape is supplied with the collection.

The first sample code is for the standard case, a sparse matrix in standard
format with no right-hand sides.

E SAMPLE CODE FOR READING A SPARSE MATRIX IN STANDARD
C ~GRMAT
C

CHARACTER TITLE*72, KEY*8 MXTYPE*3,
1 PTRFMT*16, INDFMT*16, VALFMT*20, RHSFMT*20

INTEGER TOTCRD, PTRCRD, INDCRD, VALCRD, RHSCRD,
1 NROW, NCOL, NNZERO, NELTVL

INTEGER COLPTR (*), ROWIND (*)
REAL VALUES (*)

C

: ...
READ IN HEADER BLOCK

READ (LUNIT, 1000) TITLE, KEY,
1 TOTCRD, PTRCRD, INDCRD, VALCRD, RHSCRD,
2 MXTYPE, NROW, NCOL, NNZERO, NELTVL,
3 PTRFMT, INDFMT, VALFMT, RHSFMT

1000 FORMAT (A72, A8 / 5114 / A3,11X, 4114 / 2A16,2A20)

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

12 * I. S. Duff et al.

C
C . . . READ MATRIX STRUCTURE
C

READ (LUNIT, PTRFMT) (COLPTR (I), I = 1, NCOL + 1)
READ (LUNIT, INDFMT) (ROWIND (I), I = 1, NNZERO)
IF (VALCRD .GT 0) THEN

C
C . . . READ MATRIX VALUES
C

READ (LUNIT, VALFMT) (VALUES (I), I = 1, NNZERO)
ENDIF

The second sample code illustrates the full generality of the representation.

C
C . . . SAMPLE CODE FOR READING A GENERAL SPARSE MATRIX, POS-
C SIBLY WITH RIGHT-HAND-SIDE VECTORS
C

CHARACTER TITLE*72, KEY*& MXTYPE*3, RHSTYP*3,
1 PTRFMT*16, INDFMT*16, VALFMT*20, RHSFMT*20

INTEGER TOTCRD, PTRCRD, INDCRD, VALCRD, RHSCRD,
1 NROW, NCOL, NNZERO, NELTVL,
2 NRHS, NRHSIX, NRHSVL, NGUESS, NEXACT

INTEGER POINTR (*), ROWIND (*), RHSPTR (*), RHSIND (*)
REAL VALUES (*), RHSVAL (*), XEXACT (*), SGUESS (*)

C
C . . . READ IN HEADER BLOCK
C

READ (LUNIT, 1000) TITLE, KEY,
1 TOTCRD, PTRCRD, INDCRD, VALCRD, RHSCRD,
2 MXTYPE, NROW, NCOL, NNZERO, NELTVL,
3 PTRFMT, INDFMT, VALFMT, RHSFMT

IF (RHSCRD .GT. 0)
1 READ (LUNIT, 1001) RHSTYP, NRHS, NRHSIX

1000 FORMAT (A72, A8 / 5114 / A3,11X, 4114 / 2A16,2A20)
1001 FORMAT (A3, 11X, 2114)

C
C . . . READ MATRIX STRUCTURE
C

READ (LUNIT, PTRFMT) (POINTR (I), I = 1, NCOL + 1)
READ (LUNIT, INDFMT) (ROWIND, (I), I = 1, NNZERO)
IF (VALCRD .GT. 0) THEN

C
C . . . READ MATRIX VALUES
C

IF (MXTYPE (3:3) .EQ. ‘A’) THEN
READ (LUNIT, VALFMT) (VALUES (I), I = 1, NNZERO)

ELSE
READ (LUNIT, VALFMT) (VALUES (I), I = 1, NELTVL)

ENDIF

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

Sparse Matrix Test Problems l 13

C
C
C

:
C

C
C
C

C
C
C

C
C
C

. . . READ RIGHT-HAND SIDES

IF (NRHS .GT. 0) THEN
IF (RHSTYP (1:l) .EQ. ‘F’) THEN

. . . READ DENSE RIGHT-HAND SIDES

NRHSVL = NROW * NRHS
READ (LUNIT, RHSFMT) (RHSVAL (I), I = 1, NRHSVL)

ELSE

. . . READ SPARSE OR ELEMENTAL RIGHT-HAND SIDES

IF (MXTYPE (3:3) .EQ. ‘A’) THEN

. . . SPARSE RIGHT-HAND SIDES-READ POINTER ARRAY

READ (LUNIT, PTRFMT) (RHSPTR (I), I = 1, NRHS + 1)

. . . READ SPARSITY PATTERN FOR RIGHT-HAND SIDES

READ (LUNIT, INDFMT) (RHSIND (I), I = 1, NRHSIX)

. . . READ SPARSE RIGHT-HAND SIDE VALUES

READ (LUNIT, RHSFMT) (RHSVAL (I), I = 1, NRHSIX)
ELSE

. . . READ ELEMENTAL RIGHT-HAND SIDES

NRHSVL = NNZERO * NRHS
READ (LUNIT, RHSFMT) (RHSVAL (I), I = 1, NRHSVL)

ENDIF

END IF

IF (RHSTYP (2:2) .EQ. ‘G’) THEN

. . . READ STARTING GUESSES

NGUESS = NROW * NRHS
READ (LUNIT, RHSFMT) (SGUESS (I), I = 1, NGUESS)

END IF

IF (RHSTYP (3:3) .EQ. ‘X’) THEN

. . . READ SOLUTION VECTORS

NEXACT = NROW * NRHS
READ (LUNIT, RHSFMT) (XEXACT (I), I = 1, NEXACT)

END IF
END IF

END IF

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

14 * 1. S. Duff et al.

The code above outlines the structure of the data. The interpretation of the
row (or variable) index arrays will require knowledge of the matrix and right-
hand-side types, as read in this code.

ACKNOWLEDGMENTS

We would like to thank John Reid for his comments when we were setting up
this current collection, and for his remarks on a draft of this paper, Gail Pieper
for stylistic and grammatical comment, and the editor, Michael Saunders, and
the anonymous referees for their helpful comments.

REFERENCES

1. DUFF, I. S., GRIMES, R. G., AND LEWIS, J. G. Users’ Guide for the Harwell-Boeing sparse matrix
collection. To appear as Harwell Report and Boeing Report.

2. DUFF, I. S., GRIMES, R. G., LEWIS, J. G., AND POOLE, W. G. JR. Sparse matrix test problems.
SIGNUM Newsl. 17, 2, (1982), p. 22.

3. DUFF, I. S., AND REID, J. K. Performance evaluation of codes for sparse matrix problems. In
Performance Eualuation of Numerical Software. Fosdick, L. D., ed. Elsevier, North-Holland, New
York, 1979, pp. 121-135.

4. LENARD, M. L. Standardizing the interface with nonlinear optimizers. Presented at TIMS/
ORSA Joint National Meeting (Washington, D.C., Apr. 25-27, 1989). Paper WC 36.1,
TIMSIORSA Bull. 25.

5. MoRB, J. J., GARBOW, B. S., AND HILLSTROM, K. E. Testing unconstrained optimization
software. ACM Trans. Math. Softw. 7 (1981), 17-41.

6. TOINT, PH. L. Call for test problems in large scale nonlinear optimization. Report 87/9,
Department of Mathematics, Facult& Universitaires ND de la Paix, Namur, Belgium, 1987.

Received December 1987; revised July 1988; accepted July 1988

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989

