PRACNIQUES

The Techniques Department is interested in publishing short de-
scriptions of Techniques which improve the logistics of tnformation
processing. To quote from the policy statement, Communications of
the ACM 1 (Jan. 1958), 5: “It is preferable that techniques con-
tributed be factual and in successful usage, rather than speculative
or theoretical. One of the major criteria for acceplance and the ques-
tion one should answer before submitting any material is—Can the
reader use this tomorrow?” Clear, concise statements of fairly well-
known but rarely documented methods will contribute significantly
to raising the general level of professional competence.—C.L.McC.

]

CLOSING OUT A PRINT TAPE

Some computer operating systems have a bad habit of inserting
tape marks into the output stream willy-nilly. This often results
in loss of output when a tape is scratched after its first file has
been printed. Other operating systems, notably those recently
distributed by IBM for use with the 7090, put tape marks on print
tapes only on command, so that frequently a print tape is removed
from the computer without any tape mark, and extraneous
material is printed.

There is a simple procedure which eliminates these difficulties.
Whenever a computer halt is imminent,

WRITE A TAPE MARK ON THE PRINT TAPE
AND BACKSPACE.
DonaLp P. MOORE
Computer Concepts, Inc.
Los Angeles, Calif.

A NOTE ON A SET OF TEST MATRICES
FOR INVERSION

An additional set of test matrices to those presented by M. L.
Pei [Comm. ACM 5,10 (Oct., 1962)] and discussed by W. S. La Sor
[Comm. ACM 6,3 Mar. 1963)] but having one further property is:
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As in Pei’s matrix, @ has an easily computed inverse:
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Using La Sor’s argument it is easily shown that:
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Ae=1+Fnt— ¢
where \; is an eigenvalue of Q.

The additional property of @ which makes it useful for certain
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classes of problems (e.g., a monteecarlo inversion) is:
max; MI—Q)| = | t(n—1)|,

where \;(/—Q) is an eigenvalue of the matrix I — Q. Indeed, the
eigenvalues of I — @ are:

MI=Q) =2M{I-Q) = - \Ma(-Q) = ¢, M(I-Q) =t(-n)

e.g., by varying ¢ appropriately one might observe how the rate of
convergence of a Monte Carlo inversion changes.

RoBErT D. RopmMaN
Burroughs Corp.
Pasadena, Calif.

PEI MATRIX EIGENVECTORS

M. L. Pei [Comm. ACM 5, 10 (Oct. 1962)] gave an explicit
inverse for a matrix of the form M + sI, where M is an n-square
matrix of ones and & is a nonzero parameter. The eigenvalues of
the Pei matrix were given by W. 8. LaSor [Comm. ACM 6,3 (Mar.
1963)]. The eigenvectors may be obtained by considering the
system (M4-6I)% = AZ, the jth equation of which is

8+ 8z; = \z;, e

where S denotes Y i+ #; . On summing the equations for j = 1,
2, -+ ,n, we obtain nS + S = AS. From this we conclude that
() S=0o0r (b) A =n+ 4.

Corresponding to case (a) we can construct n — 1 orthogonal
eigenvectors V., t =2,3, .- ,n, with all components zero
except the first and the kth, which are 1, —1 respectively. These
vectors satisfy (1) for all j, provided A = 8. The eigenvector for
case (b) is uniquely determined in direction by the requirement
that it must be orthogonal to all the ¥; . In summary therefore,
we find that: é is an (n—1)-fold eigenvalue whose corresponding
eigenvectors have the property that the algebraic sum of their
components is zero. The remaining eigenvalue is né; the com-
ponents of the corresponding eigenvector are all equal.

A. C. R. NEWBERY*
The Boeing Company
Seatile, Wash.

* Present address: University of Alberta, Calgary, Alt., Can-
ada.

NOTE ON STOCHASTIC MATRICES

There are systems which consist of a number of states, any one
of which may be reached, in due course, from any other. In addi-
tion, the path through the system, of anything entering it, can be
described probabilistically.

Such systems are sometimes represented by trees, or state dia-
grams, and often more compactly by transition matrices. If the
matrix is regular stochastic, there is the advantage that the fixed
point can be found, and also an equilibrium condition of the
system thus described.

If, however, each state s; has associated with it some time ¢;
so that any element entering s; remains in that state for time ¢,
the description in the last paragraph becomes less satisfying. In
fact, the above transition matrix eannot be used if, for example,
it was desired to investigate the behavior of the system from some
starting situation (veetor) for a certain number of units of time.
For now any state s; becomes as many states as there are units of
time in ¢; , with the probability 1 of an element remaining in s;
during all units of time except the last one.

A matrix showing all intermediate states can become inor-
dinately large. However, a simple relation between the large and
reduced matrices will be shown, which will give one the choice of
using one or the other as the need arises.
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Consider the r X r stochastic matrix, P = (pi;), where
-
Z pij =1, 4=1,2,---,r, and p:;; = 0, and suppose that
=1

there exists a 1 X r matrix (vector) a’ = (a1, az, ---
that a’P =a’,a, +as+ --- +a, = 1.

Let us enlarge the matrix P by replacing the diagonal element
p:i by the n; X n; matrix

, @;) such

0100 +-«ve- 0
0010 +«-v--- 0
e o
0000 «-vv-- 1
Psi000- - - - - - 0 J
and element p;; by the n; X n; matrix
000 «--v--- 0
000 +ccvvn- 0
e
000 ««vvv-- 0
Pij00- - 0

Now set n = ny + n2 + n3 + -+ 4 n, and denote the enlarged
n X nmatrix by Q, that is, Q = (P;;). Note that Q is clearly also
a stochastic matrix.

Under the conditions stated above there exists a 1 X n matrix
(vector) b’ = (b1 ,bs, --- , bs) such that b’Q =b’, b, + b, +
cor 4+ b, =1, and b; = a;/(mar+neazt--<+n.a,) where n; 4+
et IS iS At o b b, 1=1,2, 0,0

For convenience in presentation, let us illustrate the method
of proof for the case r =3, n; =4, n2 =3, n; = 2. The equa-
tions a’P = o’ are:

mpu + G2Pa1 + AP = G

Wmp1z + APz + asps: = a2

a1p1s + azpes + aspss = as
and the equations b’Q = b’ are:

bapur + bipar + bepu = by

by = b
by = bs
by = by
bipiz + bipsz + bopse = bs
bs = be
be = by
bspis + bipes -+ bopss = bs
by = by

It is clear that by = bs = by = by, bs = bg = by and bg = by .

Were we to set by = a1, bs = a2 and by = a3 and make like sub-
stitutions for their equals, the vector would still be transformed
into itself. However, the sum of the elements of the vector would
be larger than 1. The correction is made by multiplying each
element of the vector by the reciprocal of the sum, or
1/(4a:14-3as+2as).

The foregoing was very useful directly and as a check, in a
practical problem of some importance. It is hoped that it may be
to other users. The writer would be interested to learn whether this
point has been clearly covered anywhere; he has not been able to
find anything on it. This is the kind of thing that has become
important or practical only since the development of large secale
computing facilities.
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Incidentally, many observations in matrix theory are originally
arrived at by other means; in this case, through common algebra.

Arxorp I. DumEYy
Consultant
Roslyn Heights, N. Y.

A SEMI-ITERATIVE PROCESS FOR
EVALUATING ARCTANGENTS

The technique of obtaining arctangents by inverse interpolation
[1] is a relatively long process not suitable for a subroutine. The
Taylor series expansion for arguments less than unity converges
rather slowly for those near unity. The method of small incre-
ments of the argument [2] is again inconvenient for a subroutine.
A more rapid series expansion in terms of Chebyshev polynomial
[3] is given in terms of a new argument, which is less than 0.1989.
This method requires the storage of =, v/2 — 1 and seven co-
efficients and is perhaps widely used. However, for multiple
precision not only the coefficients have to be evaluated to the
precision desired, but more must be used. Therefore the following
alternative method may prove to be convenient and efficient.

First, the argument will be decreased to a desired value by an
iterative scheme. Without loss of generality the argument A may
be taken in the range 0 £ A =< 1. Consider

24,

tan A = 2tan™! 4;, A = tan(2 tan™ A4,) = AT (1a)
- 1
Thus,

A
A= —m—7— , 1b)t
P4 VI F A (b)

If the process is repeated n times,
tant A = 2" tan™ 4, (2)

An—l
An e R = —— A = A.

1+ _\/1 T Az_l’ 0 (3)

Since A, éiAn_l/Q-é Ao/2¢ £ 1/2*, the argument is quickly
reduced.

A pure iterative scheme as described with tan™ A, = 4. is
inefficient to obtain an answer, as for each iteration the square
root routine must be employed and it only converges as 1/2".
The next step is then to apply truncated Taylor’s series? to the
arctangent of the reduced argument A, . The truncation error can
be easily estimated. One has

M At
tant 4 = 20 -
an Ziom 1 @
of which the percentage error is less than
A 1
E = < G
eM+1i1 11 22 (20 + 1) 1 L
3 Q2n 3 92n
For single precision with percentage error less than 1079, say,
. . 1 192
n = 3, M = 5 is sufficient, as £ < —2% (m) , 210 = 1024,
For double precision with percentage error less than 107, say,
1 768
n=4 M =7issufficientas E < — | —————}, 10717 < 27%,
256\ 15 X 767

! This expression is preferable to the alternative form
[V (A+A2)—1]/4, as the latter may lose some significant figure
for small values of A.

2 “Telescoped’ Taylor series can be used if so desired [4], but
a few more storage spaces are required than for a simple truncated
series.
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