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1 Introduction

The primary purpose of this collection is to provide a testbed for developing numerical
algorithms for solving nonsymmetric eigenvalue problems. It is a part of ongoing numeri-
cal linear algebra test matrix collection project. In addition, as with many other existing
collections of test matrices, our goal includes providing an easy access to “practical” eigen-
problems for researchers and educators who are interested in the origins of large scale
nonsymmetric eigenvalue problems, and in the development and testing of numerical algo-
rithms.

In this document, we describe the mechanism for obtaining a copy of the the matrices
and for using the collection. All test matrices currently included in the collection are
documented in Appendices A and B.

2 How to obtain the collection

The complete collection will be available through direct electronic transfer, anonymous ftp
and worldwide Web (HTML user interface). Currently, individual test matrices can be
obtained from Zhaojun Bai (bai@ms.uky.edu) or David Day (dday@ms.uky.edu).

3 Matrix Formats

There are two formats in which to represent the sparse matrices in the collection, namely
the standard sparse matrix format and the matrix-vector multiplication format.

3.1 Sparse column format

The matrices stored in data files are stored in sparse column format (i.e., Harwell-Boeing
format). In this section sparse column format is summarized. See the User’s Guide for the
Harwell-Boeing Sparse Matrix Collection for details.

In any sparse matrix format only the non-zero entries of a matrix are stored. An entry
is specified by its row index, column index, and value. In sparse column format a single
integer array and a single floating point array are used to store the row indices and the
values, respectively, for all columns. The data for each column are stored in consecutive
locations, the columns are stored in order, and there is no space between columns. An other
integer array points to the first entry in each column.



The sparse matrix A of order n and with nnz non-zero entries is represented by a floating
point array a(l : nnz) that stores the values, an integer array a(l : nnz) that stores the
row indices, and an integer array ja(l:n + 1) with the property that ja(k + 1) — 1 points
to the last element in column k.

3.2 Matrix-vector multiplication format

Many of the matrices in this collection are presented in a different format than the standard
Harwell-Boeing format. Instead of storing the matrix in a data file, the matrix is repre-
sented as a subroutine that computes the matrix-vector multiplications Az and ATy given
z and y. The calling sequences for the FORTRAN and C subroutines for the matrix-vector
multiplications Az and ATy are described with A.

4 How to use the collection

4.1 Sparse column format

The matrices stored in Harwell-Boeing format are accessed exactly as matrices in the
Harwell-Boeing collection. The matrices are read using code described in the Harwell-
Boeing Users Guide and available in SPARSKIT.

4.2 Matrix-vector multiplication format

For the matrices stored in the matrix-vector multiplication format, these matrix-vector
multiplications are computed directly by calling the corresponding subroutine.

4.3 Conversion

FORTRAN subroutines are available in SPARSKIT to convert the sparse column format
to other sparse matrix storage formats.

4.4 Other utilities

The following subroutines are available for

1. computing the matrix-vector multiplications Az and ATz where matrix A is stored
in sparse column format.

2. writing in sparse column format when the matrix A is in matrix vector multiplications
format.

3. converting Matlab sparse format to the sparse column format.

5 Related Work

e [. S. Duff, R. G. Grimes and J. G. Lewis, Sparse matrix test problems, ACM Trans.
Math. Softw. 15, 1-14, 1989

e [. S. Duff, R. G. Grimes and J. G. Lewis, User’s Guide for the Harwell-Boeing Sparse
Matrix Collection (Release I), CERFACS, TR/PA/92/86, Oct. 1992. It is available

via anonymous ftp: orion.cerfacs.fr, cd pub/harwell_boeing.



e Y. Saad, SPARSKIT: A basic tool kit for sparse matrix computation. It is available
via anonymous ftp: ftp.cs.umn.edu, cd ...



Appendix A

Matrices in Standard Sparse Matrix Format

Title

Keys

Transient stability analysis (Airfoils)
Bounded finline waveguide eigenmodes

Chuck
Quantum chemistry
Square dielectric waveguide

MHD Alfven spectrum

Quebec Hydro Power system
Compute system evaluation

Robotic control

Tubular reactor model
Reaction-diffusion Brusselator model
Olmstead model

Symmetrical pipe Poiseuille Flow

The following data files are also available, but the corresponding matrices are described
in Appendix B.

Title

AF23560

BFWA62, BEWB62, BEWA398,
BFWB398, BFWA782, BFWB782

CK104, CK400, CK656

QC324, QC2534

DW256A, DW256B, DW1024,

DW4096

MHDA416, MHDB416

MHDA1280, MHDB1280 (not included yet)
MHDA3200, MHDB3200 (not included yet)
MHDA4800, MHDB4800 (not included yet)
QH882

LOP163

RBSA480, RBSB480

TUB100, TUB1000

RDB968, RDB2048, RDB5000

OLM100, OLM500, OLM1000,

OLM2000, OLM5000

SPPxxxx (not included yet)

Keys

Brusselator wave model
Model eigenproblem of ODE

Model 2-D convection-diffusion operator

Markov chain modeling (random walk)

Model PDE

BWM200, BWM2000
ODEA400, ODEB400
CDDE1, CDDE2, CDDE3,
CDDE4, CDDES5

RW136, RW496, RW5151
PDE225, PDE2961




Title: Transient Stability Analysis of Navier-Stokes Solver
Key: AF23560

Source: A. Mahajan, NASA Lewis Research Center
Discipline: Computational fluid dynamics

Further details: This test matrix is from transient stability analysis of Navier-Stokes
solvers, supplied by Dr. A. Mahajan at NASA Lewis Research Center. The order
of the test matrix is 23,5660. The eigenvalues and eigenvectors are associated with
small perturbation analysis of a finite difference representation of the Navier-Stokes
equations for flows over airfoils. Such eigensystem information is central to stabil-
ity analysis of Navier-Stokes solvers, for determining the modal bahavior of fluid in
a fluid-structure interaction problem and for development of reduced order models
based on variational principles for Navier-Stokes solvers. A repensentative eigenvalue
constellation is reported in the references, where the Lanczos procedure with no re-
biorthogonalization is used. The number of Lanczos iteration is between 1,000 to

1,200.
Data files:
Filename/Key Order Number of entries
AF23560 23,560 484,256
References:

A. Mahajan, E. H. Dowell, and D. Bliss. Eigenvalue calculation procedure for an
Euler/Navier-Stokes solver with applications to flows over airfoils. J. of Comput.
Phy., 97:398-413, 1991.

A. Mahajan, E. H. Dowell, and D. Bliss. AIAA J., 29:555—xxx, 1991.



Title: Bounded Finline Dielectric Waveguide
Key: DWAG62

Source: B. Shultz and S. Gedney, Unviersity of Kentucky
Discipline: Electrical engineering

Further details: Mellimeter wave technology has been applied in radar, communication,
radiometry and intruements. Finline waveude is an example of a bounded waveguide
which operates extremely well in the millimeter wave spectrum. The generalized
eigenvalue problem

Az = ABz

studied in Shultz’s thesis is the discretization problem of the Maxwell’s equation by the
finite element method (see [Fernandez and Lu] and [Jin]) for finding the propagating
modes and magentic field profiles of a rectangular waveguide filled with dielectric
and PEC structures. The eigenvalues and corresponding eigenvectors of interest are
the ones with positive real parts, which correspond to the propagation modes of a
waveguide. The matrix A is non-symmetric and B is symmetric positive definite.
Although only real data is collected here, in application, complex matrices may be

involved.
Data files:
Filename/Key Order Number of entries

BFWAG62 62 450
BFWB62 62 342
BFWA398 398 3678
BFWB398 398 2910
BFWAT782 782 7514
BFWB782 782 5982

References:

B. Shultz, Bounded Waveguide Eigenmodes, Finite Element Method Solution, Masters
Thesis, Department of Electrical Engineering, Unviersity of Kentucky, 1994.

F. A. Fernandez and Y. Lu, Variational finite element analysis of dielectric waveguide
with non spurious solutions, Electron. Letter., 26(25):2125-2126, 1990.

J. Jin, The Finite Element Method in Electromagnetics, John Wiley & Sons, Inc.,
New York, 1993.



Title: Chuck Matrices
Key: CK104

Source: Chuck Siewert of North Carolina State.
Discipline: unknown

Further details: According to the following reference, this set of test matrices is supplied
by Chuck Siewert of North Carolina State. It is not clear what is the application
background of these matrices. The objective is to compute those eigenvalues with
magnitudes greater than 1. The matrices have several multiple eigenvalues and clus-
ters of eigenvalues. The eigenvalues occur in clusters of order 4; each cluster consists
of two pairs of very nearly multiple eigenvalues.

Data files:
Filename/Key Order Number of entries
CK104 104 992
CK400 400 2860
CK656 656 3884
References:

J. Cullum and R. A. Willoughby, A Practical Procedure for Computing Eigenvalues of
Large Sparse Nonsymmetric Matrices, In Large Scale Eigenvalue Problem, J. Cullum
and R. A. Willoughby eds. Elsevier Science Pub. North-Holland, 1986.



Title: Quantum Chemistry
Key: QC324

Source: S. Chu, Unviersity of Kansas
Discipline: Computational chemistry

Further details: The physical problem is to solve the eigenvalue problem for H?* in
an electro-magnetic field. The complex-scaling technique applied to the self-adjoint
Hamiltonian from quantium mechanics yields a non-self-adjoint eigenvalue problem.
To determine the stability of the system, the Floquet exponents are computed by the
standard Fourier-grid method. The two matrices given here are complex symmetric.

The computational task is to determine the eigenvalues nearest to or above the real
axis. The figure displays the eigenvalues computed by the QR algorithm for the matrix

QC2534.
Eigenvalues of QC2534
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real part
Data files:
Filename/Key Order Number of entries
QC324 324 26,730
QC2534 2534 463,360
References:

S.I. Chu, Journal of Chemical Physics, 94, 7901 — (1991)



Title: Square Dielectric Waveguide
Key: DW256A

Source: H. Dong, Unviersity of Minnesota
Discipline: Electrical engineering

Further details: Dielectric channel waveguide problems arise in many integrated circuit
applications. Discretization of the governing Helmholtz equation for the magnetic

field H,

VH, + k*n*(z,y)H, = B*H,,
V2ﬂy+k2n2(m,y)Hy = [32Hy,

by finite differences leads to a nonsymmetric eigenvalue problem of the form

Cu Chi2 H, _ B2 By, H,
Ca Ca Hy Baa Hy

where Cq; and Cyg are five- or tri-diagonal matrices, Cq2 and Ch; are (tri-) diago-
nal matrices, and By; and Bjy are nonsingular diagonal matrices. This generalized

eigenvalue problem is reduced to a standard eigenvalue problem Az = 2, where
A = B~1(C, since B is diagonal.

The computational task is to determine the right most eigenvalues and their corre-
sponding eigenvectors. In some cases, there are eigenvalues with negative real part
several orders of magnitude larger than the desired eigenvalues with positive real part.
This problem presents a challenge to existing numerical methods.

Data files:

Filename/Key Order Number of entries

DW256A 256 2816
DW256B 256 2816
DW1024 1024 11264
DW4096 4096 45056

Note that DW256A and DW256B are the matrices of same order but different pa-
rameters. Double check, the matrix sizes are double, as pointed by Michiel
Kooper

References:

H. Dong, A. Chronopoulos, J. Zou and A. Gopinath, Vectorial integrated finite-
difference analysis of dielectric waveguides, private communication, 1993

A. Galick, T. Kerhoven and U. Ravaioli, Iterative solution of the eigenvalue prob-
lem for a dielectric waveguid, IEEE Trans. Microwave Theory Tech. vol. MTT-40,
pp.699-705, 1992.



Title: Magnetohydrodynamics
Key: MHD416

Source: A. Booten, M. N. Kooper, H. A. van der Vorst, S. Poedts and J. P. Goedbloed,
University of Utrecht, the Netherlands.

Discipline: Plasma Physics

Further details Large nonsymmetric generalized matrix eigenvalue problems (Az = ABz)
arise in the modal analysis of dissipative magnetohydrodynamics (MHD). The MHD
system combines Maxwell’s and fluid flow equations. The physical objective of these
MHD systems is to derive nuclear energy from the fusion of light nuclei. The plasmas
generated exhibit both the characteristics of an ordinary fluid and special features
caused by the magnetic field. The study of linearised motion in MHD has contributed
significantly to the understanding of resistive and nonadiabatics MHD plasma phe-
nomena, such as plasma stability, wave propagation and hearing.

The MHD equations are solved by applying the Galerkin method in conjunction with
finite elements, which leads to the generalized eigenvalue problem. The corresponding
eigenproblem comprises complicated eigenvalue patterns having different orders of
magnitude corresponding to the very different time scales of the behavior involved
in the system. Great details are given in literature on the problem formulation,
discretization, and numerical solution of the resulting generalized eigenvalue problem.

Kerner reports difficulties in numerically computing the eigenvalues of the Alfeven
wave operator. The spectrum of this operator consists of three branches. He reports
that the eigenvalues at the intersection of the branches are very hard to compute,
which is similar to the spectra of the Orr-Sommerfeld equation.

The Alfven spectra of the test problem
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Filename/Key Order Number of entries
MHDA416 416 8562
MHDB416 416 2312
MHDA1280 1280
MHDB1280 1280
MHDA3200 3200
MHDB3200 3200
MHDA4800 4800
MHDB4800 4800

References:
W. Kerner, Large-scale complex eigenvalue problem, J. of Comp. Phy. 85:1-85, 1989.

J. Cullum, W. Kerner and R. Willoughby, A generalized nonsymmetric Lanczos pro-
cedure, Comp. Phys. Comm., 53:19-48, 1989

M.N. Kooper, H.A. van der Vorst, S. Poedts, and J.P. Goedbloed, Application of the
implicitly updated Arnoldi methods with a complex shift and invert strategy in MHD,
Journal of Comp. Phys., 118, 320-328, 1995.

J. G. L. Booten, P. M. Meijer, H. J. J. te Riele and H. A. van der Vorst, Parallel
Arnoldi method for the construction of a Krylov subspace basis: an application in
magnetohydrodynamics. In Proceedings of International Conference and Exhibition
on High-Performance Computing and Networking, Munich, Germany, April, 1994.
Vol.II: Networking and Tools, W. Gentzsch and U. Harms, eds., Lecture Notes in
Computer Science 797, Springer-Verlag, Berlin, 1994.

J. G. L. Booten, H. A. van der Vorst, P. M. Meijer and J. J. te Riele, A preconditioned
Jacobi-Davidson method for solving large generalized eigenvalue problems, 1994

Z. Bai, D. Day and Q. Ye, ABLE: an adaptive block Lanczos method for non-
Hermitian eigenvalue problems, Research Report 95-04, Department of Mathematics,
University of Kentucky, May 1995
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Title: Quebec Hydroelectric Power System
Key: QHS882

Source: Deo Ndereyimana, Quebec, Canada
Discipline: Power systems simulations

Further details: QH882 represents the Hydro-Quebec power systems’s small-signal model.
In the application, one wants to compute all eigenvalues a+1b in a box of the complex
plane. Specifically, @min < @ < @max and in general, amin = —300 and apmax = 100.
bmin < b < bmax and in general, by = 0 and bpyax = 2 X 607.

Data files:

Filename/Key Order Number of entries
QHB882 882 3354

References:

Deo Ndereyimana, private communication, 1994
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Title: LOPSI Stochastic Test Matrix
Key: LOP163

Source: W. J. Stewart, North Carolina State University and A. Jennings, Queen’s Univer-
sity, Belfast, North Ireland.

Discipline: Analysis and evaluation of computer systems

Further details: This stochastic matrix is derived from the application of Markov mod-
eling techniques to the analysis and evaluation of computer systems [?]. The matrix
is a 163 by 163 stochastic matrix with 935 nonzero entries. The object is to compute
a few dominant eigenvalues and their corresponding eigenvectors.

The following left figure shows the sparsity structure of the 163 by 163 stochastic
matrix, and the right figure shows the eigenvalue distribution.
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Data files:

Filename/Key Order Number of entries
LOP163 163 936

We note that the number of nonzero entries in our count is 936, however, the recorded
count shown in the paper of Stewart and Jennings is 1207. The 15 dominant eigenval-
ues computed from the resulting matrix agree, however, with the results in the paper
of Stewart and Jennings.

References:

W. J. Stewart, A comparison of numerical techniques in Markov modeling, Comm.
ACM 21(2):144-152,1978.

W. J. Stewart and A. Jennings, A simultaneous iteration algorithm for real matrices,
ACM Trans. Math. Soft. 7:184-198, 1981.

I. S. Duff and J. A. Scott, Computing selected eigenvalues of sparse unsymmetric
matrices using subspace iteration, ACM TOMS ...
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Title: Forward Kinematics for the Stewart platform of Robotics
Key: RBSA480

Source: J. Canny, I. Emris, H. Ren, UC Berkeley
Discipline: Robotic Control

Further details: The Stewart platform, also called left hand, is a parallel manipulator
with six prismatic joints connecting two rigid bodies, or platforms. The base platform
is considered fixed while the top platform, or end-effector, is moving in 3-dimensional
space, controlled by the lenghts of joints. Parallel robots are especially useful when
high stiffness and position precision are predominant requirements. The platform has
one degree of freedom per joint; the position and orientation of the top platform is
specified by six parameters, namely three for the orientation and three for the position
in 3D space. The forward kinematics assumes that the leg lengths are known and the
displacement of the top platform is to be found. The algrbraic problem reduces to
the solution of a well-constrained system of polynomial equations. By using resultant
(sparse resultant) method, solving the system of polynomial equations can reduce
to solve the eigenproblem of a matrix pencil. An interesting user request for this
problem is only the real eigenvalues and the corresponding eigenvectors are needed
but empirically, most of the eigenvalues are complex.

Data files:
Filename/Key Order Number of entries
RBSA480 480 17088
RBSB480 480 17088
References:

D. Manocha and J. Canny, MultiPolynomial Resultant Algorithms, Computer Science
Division Report, University of California, Berkeley.

I. Emiris, Sparse Elimination and Applications in Kinematics, Ph.D. thesis, Computer
Science Division, University of California at Berkeley, 1993.
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Title: Tubular Reactor Model
Subroutine name: TUB100

Source: K. Meerbergen and D. Roose, Katholieke Universiteit Leuven, Belgium
Discipline: computational fluid dynamics

Further details: The conservation of reactant and energy in a homogeneous tube of length
L in dimensionless form is modeled by

Ldy 1 0% Oy

= — 24+ -2 4+D S
v dt Pe. 9X2 T ox T yexp(y =T,
LdT 1 82T OT
-2 - -2 22 T —Ty) — BD R
> di PehaX2+aX+ﬂ( 0) yexp(y —yT77),

where y and T represent concentration and temperature and X € [0.1] denote the
spatial coordinate. Boundary conditions are y'(0) = Pen,y(0), T'(0) = Pe,T(0),
y'(1) = 0 and T'(1) = 0. Central differences are used to discretize in space. For
T = [y1, T1,y2, To, . . -»Yn/2, Tnijo]; the equations can be written as ¢ = f(z). The
parameters in the differential equation are set to Pe,, = Pep, =5, B = 0.5,y = 25,0 =
3.5 and D = 0.2662. One wants to compute the rightmost eigenvalues of the Jacobi
matrix A = 0f/0z. A is a banded matrix with bandwidth 5.

Data files:
Filename/Key Order Number of entries
TUB100 100 396
TUB1000 1000 3996
References:

R. F. Heinemann and A. B. Poore, Multiplicity, stability, and oscillatory dynamics of
a tubular reactor, Chem. Eng. Sci. 36:1411-1419, 1981

T. J. Garratt, The numerical detection of Hopf bifurcations in large systems arising
in fluid mechanics, PhD thesis, University of Bath, UK, 1991

K. Meerbergen and D. Roose, Matrix transformation for computing rightmost eigen-
values of large sparse nonsymmetric matrices, Report TW 206, Department of Com-
puter Science, Katheolieke Universiteit Leuven, Belgium, 1994 (revised April 1995).
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Title: Olmstead model
Subroutine name: OLM1000

Source: K. Meerbergen, Katholieke Universiteit Leuven, Belgium
Discipline: Hydrodynamics

Further details: Olmstead model represents the flow of a layer of viscoelastic fluid heated
from below. The equations are

ou 8% 9%u 3
g~ O+l tRu-u
ov

BE = U—-v

with boundary conditions %(0) = u(1) = 0 and v(0) = v(1) = 0. wu represents the
speed of the fluid and v is related to viscoelastic forces. The equation was discretised
with central differences with grid size h = 1/(N/2). After discretization the equation
can be written as ¢ = f(z) with 27 = [ug,v1, ug, v2, .. ., UN/2,Vny2)- One wants to
compute the rightmost eigenvalues of the Jacobi matrix A = §f/0z with parameters
B=2,C=0.1and R=4.7.

Subroutine: FORTRAN calling sequences for forming matrix-vector Jz and J7

Data files:
Filename/Key Order Number of entries
OLM100 100 396
OLMS500 500 1996
OLM1000 1000 3996
OLM?2000 2000 7996
OLM5000 5000 19996
References:

W. E. Olmstead, W. E. Davis, S. H. Rosenblat and W. L. Kath, Bifurcation with
memory, SIAM J. Appl. Math. 46:171-188, 1986

K. Meerbergen and A. Spence, A spectral transformation for finding complex eigenval-
ues of large sparse nonsymmetric matrices, Report TW 219, Department of Computer
Science, Katheolieke Universiteit Leuven, Belgium, 1994

K. Meerbergen and D. Roose, Matrix transformation for computing rightmost eigen-
values of large sparse nonsymmetric matrices, Report TW 206, Department of Com-
puter Science, Katheolieke Universiteit Leuven, Belgium, 1994 (revised April 1995).
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Title: Reaction-diffusion Brusselator Model
Subroutine name: RDB968

Source: K. Meerbergen, Katholieke Universiteit Leuven, Belgium and A. Spence, Univer-
sity of Bath, UK.

Discipline: Chemical engineering
Further details: The equations
ou D, [ 0*u 4+ 0%u
ot L2 \9X?  9Y?

2 2
% %(3v+ﬂ>—u2v+3u

)—(B—I—l)u—l—uzv—l—c

0X?  9Y?

for w and v € (0,1) x (0,1) with homogeneous Dirichlet boundary conditions form
a 2D reaction-diffusion model where u and v represent the concentrations of two
reactions. The equatiosn are discretized with central differences with grid size h, =
hy =1/(n+ 1) with n = (N/2)1/2. For zT = [¥1,1,V1,1,%1,2,V1,2; - - s Un,ny Un,n), the
disretized equations can be written as ¢ = f(z). One wants to compute the rightmost
eigenvalues of the Jacobi matrix A = §f/0z. Where the parameters B = 5.45,C =
2,D, = 0.004, D, = 0.008 and L = 1.

Data files:
Filename/Key Order Number of entries
RDB968 968 5632
RDB2048 2048 12032
RDB5000 5000 29600
References:

B. D. Hassard, N. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bi-
furcation, Cambridge University Press, Cambridge, 1981

K. Meerbergen and A. Spence, A spectral transformation for finding complex eigenval-
ues of large sparse nonsymmetric matrices, Report TW 219, Department of Computer
Science, Katheolieke Universiteit Leuven, Belgium, 1994
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Appendix B

Matrices in Matrix-Vector Multiplication Format

Title

Subroutine Names

Random Sparse Matrix

Brusselator wave model in chemical reaction
Model 2-D convection-diffusion problem

Grcar matrix

Ising model of ferromagnetic materials

Model eigenproblem of ODE
Model PDE

Markov chain modeling (random walk)

Tolosa matrix

18

MVMRAN
MVMBWM
MVMMCD
MVMGRA
MVMISI
MVPODE
MVMPDE
MVMRW
MVMTLS



Title: Random Sparse Matrix
Subroutine name: MVMRAN

Source: J. Cullum, IBM T. J. Watson Research Center
Discipline: numerical linear algebra

Further details: Random matrices are always the favorite test matrices in an algorithm
test suit. We provide a subroutine which generates a random sparse matrix. Users can
specify the matrix size, the number of nonzero entries in each column, the distribution
of random numbers, and the norm (scale) of the generated matrix.

The following figure shows an example of the sparsity pattern of a random 100 by 100
matrix with 10 nonzero entries in each column.
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Subroutine: FORTRAN calling sequences for forming matrix-vector Jz and JTz is
SUBROUTINE MVMRAN( TRANS, N, X, Z )
with

TRANS (input) CHARACTER*1
if TRANS = ’N’, computes the product Az,
if TRANS = ’T’, computes the product ATz,

N (input) INTEGER
The order of the matrix J.

X (input) REAL array, dimension ( N )
contains the vector z.

VA (output) REAL array, dimension ( N )

On return, Z contains the product Az if TRANS = ’N°, or the product
ATz if TRANS = °T°,

In addition, the parameters k& should be passed using a common block.
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References:

J. Cullum, private communication, 1992
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Title: Brusselator wave model in chemical reaction
Subroutine name: MVMBWM

Source: Y. Saad, University of Minnesota
Discipline: Chemical engineering

Further details: This problem models the concentration waves for reaction and transport
interaction of chemical solutions in a tubular reactor. The concentrations z(¢, z) and
y(t, z) of two reacting and diffusing components are modeled by the system

oz & 0%z
T ﬁ%—kf(m,y), (1)
dy 6 0%
9t 1202 +9(z,y), (2)

with the initial conditions (0, z) = zo(z), y(0,2) = yo(2z) and the Dirichlet boundary
conditions z(¢,0) = z(¢,1) = z*, y(¢,0) = y(¢,1) = y*, where 0 < z < 1 is the space
coordinate along the tube, and ¢ is time. Raschman et al considered in particular the
so-called Brusselator wave model in which

flz,y)=a- (B+1z+z2%, g(z,y)=pz -z’

Then, the above system admits the trivial stationary solution z* = &, y* = f/a. In
this problem one is primarily interested in the existence of stable periodic solutions to
the system as the bifurcation parameter L varies. This occurs when the eigenvalues
of largest real parts of the Jacobian of the right hand side of (1) and (2), evaluated at
the steady station solution, is purely imaginary. For the purpose of verifying this fact
numerically, one first needs to discretize the equations with respect to the variable z
and compute the eigenvalues with largest real parts of the resulting discrete Jacobian.

If we discretize the interval [0, 1] using n interior points with the mesh size A =
1/(m+1). Then the discretized Jacobian of the system is a 2 X 2 block matrix of the

form
7 nT+ (B -1)1 a?l
- —BI T — oI
where T = tridiag{1, -2,1}, 7, = h%_;i—g and 7 = h%‘s—é

The exact eigenvalues of J are known since there exists a quadratic relation be-
tween the eigenvalues of the matrix A and those of the classical difference matrix
tridiag{1, —2,1}. The following is the Matlab M-file for computing the 2m eigenval-
ues of J:

h = 1/(m+1); taul = deltal/(h*L)"2; tau2 = delta2/(h#*L)"2;

for j=1:m,

eigofT(j) = -2*%(1- cos(pi*j*h) ); % eigenvalues of T
end;
for j=1:m,

coeff(1) = 1;

coeff(2) = alpha™2 - (beta - 1) - (taul+tau2)*eigofT(j);
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coeff(3) = betaxalpha™2 + taul#tau2*eigofT(j)~2 + ...
tau2*(beta-1)*eigofT(j) - ...
alpha”2*taul*eigofT(j) - alpha”2x(beta-1);
d = roots(coeff);
Jeig(j) = d(1); Jeig(m+j) = d(2); % eigenvalues of J
end;

The following figure shows the 32 rightmost eigenvalue distribution of 200 by 200 of
the matrix J (m = 100) corresponding to the set of parameters §; = 0.008, §; =
%51 =0.004, «a =2, §=5.45,L =~ 0.51302 as used in Saad’s book.

The 32 Rightmost Eigenvalues of 200 x 200 Brusselator Matrix
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Subroutine: FORTRAN calling sequences for forming matrix-vector Jz and J7z is
SUBROUTINE MVMBWM( TRANS, N, X, Z )
with

TRANS (input) CHARACTER*1
if TRANS = ’N’, computes the product Jz,
if TRANS = °T’, computes the product JTz,

N (input) INTEGER
The order of the matrix J.

X (input) REAL array, dimension ( N )
contains the vector z.

Z (output) REAL array, dimension ( N )

On return, Z contains the product Jz if TRANS = ’N’, or the product
JTz if TRANS = °T?,

In addition, the parameters é1, 62, L, @ and [ should be passed using a common block.

Data files:

Filename/Key Order Number of entries
BW200 200 796
BW2000 2000 7996
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References:

P. Raschman, M. Kubicek and M. Maros, Waves in distributed chemical systems: ex-
periments and computations, P. J. Holmes ed., New Approaches to Nonlinear Prob-
lems in Dynamics - Proceedings of the Asilomar Conference Ground, Pacific Grove,
California 1979. The Engineering Foundation, STAM, pp.271-288, 1980.

Y. Saad, Numerical Methods for Large Eigenvalue Problems, Halsted Press, Div. of
John Wiley & Sons, Inc., New York, 1992
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Title: Model 2-D Convection Diffusion Problem
Subroutine name: MVMMCD

Source: not sure
Discipline: computational fluid dynamics

Further details: This test matrix is from the following constant-coefficient convection-
diffusion equation, which is widely used in literature for testing and analyzing numer-
ical methods for the solution of linear system of equations. The equation reads

—Au+ 2p1uy + 2pouy —p3u = f in
v = g on 00

where € is the unit square {(z,y) € R2%,0 < z,y < 1}, p1,p2 and p3 are positive

constants. Discretization by finite differences with a 5-point stencil on a uniform
m X m grid gives rise to a sparse linear system of equations

Au=1>%

where A is of order n = m? and u and b are now vectors of size n. If the grid points
are numbered using the rowwise natural ordering, then A is a block tridiagonal matrix
of the form

T (B+1)I
(-B+ 1)1 T B+ I
A . .
B+ 1)1
(-g+1)I T
with
4—0c ~v-1
—v—-1 4—-0 v-1
T_ . . ,
v—1
—v—-1 4—-0¢

where 8 = p1h,y = p2h,0 = pgh? and A = 1/(n+ 1). The exact eigenvalues of A are
known and are given by

I

n+1

kmr

1 +2(1 — 4%} cos

A =4—0+2(1— 822 cos
n

for k,1=1,2,...,n. The following figure shows the eigenvalue distribution of 961 by
961 convection diffusion matrix with p; = 25, p» = 50 and p3 = 250.
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We note that, in practice, the choice of the mesh size h and the coefficients p;, p2 and
p3 have to satisfy certain conditions for the discretization to be stable. We refer the
reader to the references for the discussion of this issue.

Subroutine: FORTRAN calling sequences for forming matrix-vector Az and zT A is

SUBROUTINE MVMMCD( TRANS, N, X, Z )

with

TRANS (input) CHARACTER*1
if TRANS = ’N’, computes the product Az,
if TRANS = ’T’, computes the product ATz,

N (input) INTEGER
The order of the matrix C.

X (input) REAL array, dimension ( N )
contains the vector z.

VA (output) REAL array, dimension ( N )

On return, Z contains the product Az if TRANS = ’N’, or the product
ATz if TRANS = °T?,

In addition, the parameters p;, p2 and p3 should be passed to the subroutine using a
common block.

Data files:

Elman and Streit tested preconditioners for linear systems on six convection-diffusion
matrices arising on a 31 by 31 grid. Note that when p; and py are large compared to
the grid size, the local error in the discretization is significant. Also note that when
p1 and ps are large the solution, u, forms boundary layers which are not practical to
resolve using regular grids. The matrices correspond to the following choices of p1,p2
and p3.
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Filename/Key Order Number of entries  (p1, p2, p3)

CDDE1 961 4681 (1,2,30)
CDDE2 961 4681 (25,50,30)
CDDE3 961 4681 (1,2,80)
CDDE4 961 4681 (25,50,80)
CDDE5 961 4681 (1,2,250)
CDDES$ 961 4681 (25,50,250)

References:

H. C. Elman and R. L Streit, Polynomial iteration for nonsymmetric indefinite linear
systems, Lec. Notes in Math. Vol. 1230, J. P. Hennart, ed. Numerical Analysis
Proceedings, Gauuajsato, Mexico, Springe Verlag, 1984.

Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large unsym-
metric matrices, Lin. Alg. Appl. 34:269-295, 1980.

Z. Bai and G. W. Stewart, SRRIT — A FORTRAN subroutine to calculator the dom-
inant invariant subspaces of a nonsymmetric matrix, Comp. Sci. Dept. Tech. Rep.

TR-2908, Univ. of Maryland, MD, April 1992, (submitted to ACM TOMS).

Z. Jia, Some numerical methods for large unsymmetric eigenproblems, Ph.D. thesis,
The faculty of Mathematics, University of Bielefeld, Germany, Feb. 1994.

R. B. Lehoucq, Analysis and implementation of an implicitly Restarted Arnoldi It-
eration, Ph.D thesis, Department of Computational and Applied Methematics, Rice
University, TR95-13, May 1995.
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Title: Grecar Matrix
Subroutine name: MVMGRA

Source: J. Grear, Sandia National Lab.
Discipline: numerical linear algebra

Further details: An n x n Grecar matrix is a nonsymmetric Toeplitz matrix:

A: t. .
-1 1 1 11
-1 1 11
-1 11
-1 1

The matrix has sensitive eigenvalues. The following figure shows the eigenvalue dis-
tribution of 100 by 100 Grcar matrix.

Eigenvalue Distribution of 100 x 100 Grcar Matrix
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Subroutine: FORTRAN calling sequences for forming matrix-vector Az and ATz is
SUBROUTINE MVMGRA( TRANS, N, X, Z )

with

TRANS (input) CHARACTER*1
if TRANS = ’N’, computes the product Az,
if TRANS = ’T’, computes the product ATz,

N (input) INTEGER
The order of the matrix J.
X (input) REAL array, dimension ( N )

contains the vector z.
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Z (output) REAL array, dimension ( N )
On return, Z contains the product Az if TRANS = ’N’, or the product
ATz if TRANS = °T°,
References:

J. Grcar, Operator coeflicient methods for linear equations, Sandia National Lab.
Rep. SANDS89-8691, Nov. 1989.

N.M. Nachtigal, L. Reichel and L.N. Trefethen, A hybrid GMRES algorithm for non-
symmetric linear systems, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 796-825.

N. J. Higham, A collection of test matrices in MATLAB, ACM Trans. Math. Softw.
17:289-305, 1991. Second edition, .....
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Title: Ising model for ferromagnetic materials
Subroutine name: MVMISI

Source: B. Friedman
Discipline: Material science

Further details: This test matrix is from the analysis of the Ising model for ferromagnetic
materials. The matrix A is the product of the two 2m by 2m matrices K and L,

A=KL

where

E cos 3 —sin 3

E F
E sin 3 cos 3
E:( cos & sina), F:( C?Sﬂ sinﬂ)'
—sina cosa —sinf cosf
It can be shown that the eigenvalues of A are the 2m numbers that are obtained by
computing the eigenvalues of the m 2 by 2 matrices

cosa sina cosfp —6*sinp
—sino cosa 6™ *sin 8 cos 8

for k = 1,2,...,m. The following figure shows the eigenvalue distribution of 100 by
100 Ising matrix with o = 7/4 and 8 = 7/4
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SUBROUTINE: FORTRAN calling sequences (heading) for forming matrix-vector Az and
T
zt A.
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SUBROUTINE MVMISI( TRANS, N, X, Z )

with

TRANS (input) CHARACTER*1
if TRANS = ’N’, computes the product Az,
if TRANS = ’T’, computes the product ATz,

N (input) INTEGER
The order of the matrix A.

X (input) REAL array, dimension ( N )
contains the vector z.

Z (output) REAL array, dimension ( N )

On return, Z contains the product Az if TRANS = ’N’, or the product
ATz if TRANS = °T°,

In addition, the parameters o and 3 should be passed using a common block.

Data files: not available, need to find out what are the values of parameters and how large
of the matrix size.

References:

B. Kaufman, Crystal statistics II, Phys. Rev. 76, pp.1232, 1949.

B. Friedman, Eigenvalues of Composite matrices, Proc. Cambridge Philos. Soc. 57,
pp.37-49, 1961

M. Marcus and H. Minc, A survey of Matrix Theory and matrix inequalities, Dover
edition, New York, 1992.

Afternotes:

This Ising model was proposed to explain properties of ferromagnets but since then
it has found application to topics in chemistry and biology as well as physics. For

any reader unfamiliar with the model an excellent introduction is [B. A. Cipra, An
Introduction to the Ising Model, American Mathematical Monthly, 94:937-959, 1987].

A numerical method for approximating the leading eigenvalues of 2D Ising models
using a transfer matrix of order 2" with n = 30 is reported in [B. Parlett and W. Heng,
The Method of Minimal Representations in 2D Ising Model Calculations, PAM-549,
University of California, Berkeley, May 1992].

We plan to include the transfer matrix in the future version of this collection.
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Title: Model Eigenvalue Problem of ODE
Subroutine name: MVMODE

Source: G. W. Stewart, University of Maryland
Discipline: Model eigenvalue problem of ordinary differential equation.

Further details: Consider the following eigenvalue problem of an ordinary differential
equation

y' +uly=0 (3)
with the boundary conditions
y(0)=0 and 3'(0)+~y'(1)=0, 0<y<1.
It can be shown that the eigenvalues p are given by
u = icosh~H(—y7Y),
which are complex. Using the basic complex analysis, one obtains that

p? = ((2k+ 1)%12 —1n% o) — i(2(2k + V)7 In o),

for k =0,4+1,+2,..., where 0 = 1/y+ /1/% - 1.

The eigenproblem of (3) can be approximated by finite differences as follows. Let y;
denote the approximate solution at the point z; = i/(n+1) (¢ =0,1,...,n). Replacing
the derivatives in (3) with three point difference operators, we obtain the following
(n+4 1) by (n + 1) generalized matrix eigenvalue problem for ¥y = (y1,y2,. -+, Yns1) :

Ay = —u* By, (4)
where
-2 1
1 -2 1
1 -2 1
A=
1 -2 1
4 -1 - v =4y 3y
and B = h’diag(1,1,...,1,0). Problem (4) can be recast as the standard eigenvalue
problem
1
Cy= — Y

where C = A!B.
Subroutine: The matrix-vector products z = Cz can be formed by solving the linear
system Az = Bz for z using the banded Gaussian elimination.

The matrix-vector products 27 = zTC can be formed by solving the linear system
ATw = z for w using the banded Gaussian elimination and then compute 2z = w’ B.

FORTRAN calling sequences for forming matrix-vector Cz and z7C is
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SUBROUTINE MVMODE( TRANS, N, X, Z )

with

TRANS (input) CHARACTER*1
if TRANS = ’N’, computes the product Cz,
if TRANS = ’T’, computes the product CTz,

N (input) INTEGER
The order of the matrix C.

X (input) REAL array, dimension ( N )
contains the vector z.

Z (output) REAL array, dimension ( N )

On return, Z contains the product C'z if TRANS = ’N’, or the product
CTz if TRANS = °T°,

In addition, the parameter 7 should be passed to the subroutine as a common variable.
Data Files : In the data files, v = 1/100.

Data files: In the data files, v = 1/100.

Filename/Key Order Number of entries
ODEPA400 400 1201
ODEPB400 400 399

References:
G. W. Stewart, SRRIT — A FORTRAN subroutine to calculator the dominant invari-
ant subspaces of a real matrix, Comp. Sci. Dept. Tech. Rep. TR-514, Univ. of
Maryland, College Park, Nov. 1978.
Z. Bai and G. W. Stewart, SRRIT — A FORTRAN subroutine to calculator the dom-

inant invariant subspaces of a nonsymmetric matrix, Comp. Sci. Dept. Tech. Rep.

TR-2908, Univ. of Maryland, MD, April 1992, (submitted to ACM TOMS).
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Title: Partial differential equation
Subroutine name: MVMPDE

Source: H. Elman, University of Maryland
Discipline: partial differential equation

Further details: This test matrix is obtained from the finite difference discretization of
the following two-dimensional partial differential operator

0 Ou 0 Oou ou 0
_ 2 -zy¥%y U zy OU ou o
ou 0
7($+y)3—y‘|—’}’3—y((fﬂ—|—y)u)—|— 71+$—I—yu

on the unit square (0,1) x (0,1), where 5,7 € R are parameters used to control the
degree of nonormality of the matrices generated. We discretize the operator using
central differences on an m X m grid with mesh size o = 1/(m + 1). This leads to
a nonsymmetric matrix of order n = m?2. It is suggested to use values of 3 and v
between 0 and 250. The object is to estimate those eigenvalues with the largest real
parts and to determine whether or not there are significant gaps in the spectrum.

The following figure shows the eigenvalue distribution for orders 225 (m = 15) and
400 (m = 20) of the matrix with § = 20 and v = 0.

Eigenvalue Distribution of 225 x 225 Model PDE Matrix Eigenvalue Distribution of 400 x 400 Model PDE Matrix
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Subroutine: FORTRAN calling sequences for forming matrix-vector Az and zT A is
SUBROUTINE MVMPDE( TRANS, N, X, Z )

with

TRANS (input) CHARACTER*1
if TRANS = ’N’, computes the product Az,
if TRANS = ’T’, computes the product ATz,
N (input) INTEGER
The order of the matrix C.
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X (input) REAL array, dimension ( N )
contains the vector z.

Z (output) REAL array, dimension ( N )
On return, Z contains the product Az if TRANS = ’N°, or the product
AT if TRANS = °T?,

In addition, the parameters 3 and -y should be passed using a common block.

Data files:
Filename/Key Order Number of entries
PDE225 225 1065
PDE900 900 4380
PDE2961 2961
References:

H. Elman, Iterative Methods for Large Sparse Nonsymmetric Systems of Linear Equa-
tions. PhD thesis, Yale University, New Haven, CT, 1982.

J. Cullum and R. A. Willoughby, A Practical Procedure for Computing Eigenvalues of
Large Sparse Nonsymmetric Matrices, In Large Scale Eigenvalue Problem, J. Cullum

and R. A. Willoughby eds. Elsevier Science Pub. North-Holland, 1986.

R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal. An implementation of the
look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comput.,
14:137-158, 1993.
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Title: Markov Chain Transition Matrix
Subroutine name: MVMRWK

Source: G. W. Stewart, University of Maryland
Discipline: Probability theory and its applications

Further details: Consider a random walk on an (m+1)x(m+1) triangular grid, illustrated
below for m = 6.

=N Wk Ot

0
i
The points of the grid are labeled (7,),(:=0,...,m,5=0,...,m—1). From the point
(7,1), a transition may take place to one of the four adjacent points (7 + 1,7), (5,7 +
1),(7 — 1,%), (4,2 — 1). The probability of jumping to either of the nodes (7 — 1,%) or
(ja 1— 1) is

[y RN BN JENN BN JENN BN
— & © & o o o
e o o o o
w e o o o

-~ & o @

pd(j,i) =21 (5)

with the probability being split equally between the two nodes when both nodes are
on the grid. The probability of jumping to either of the nodes (j+1,%) or (5,74 1) is

with the probability again being split when both nodes are on the grid.

If the (m + 1)(m+ 2)/2 nodes (7, ) are numbered 1,2,...,(m+ 1)(m +2)/2 in some
fashion, then the random walk can be expressed as a finite Markov chain whose
transition matrix A of order n = (m + 1)(m + 2)/2 consisting of the probabilities ax;
of jumping from node ! to node k (A is actually the transpose of the usual transition
matrix; see [Feller]).

We are interested in the steady state probabilities of the chain, which is ordinarily the
appropriately scaled eigenvector corresponding to the eigenvalue unity. However, if we
number the diagonals on the grid that are parallel to the hypotenuse by 0,1,2,...,n,
then an individual on an even diagonal can only jump to an odd diagonal, and vice
versa. This means that the chain is cyclic with period two. Computationally it means
that A has an eigenvalue of —1 as well as 1.

The following plot shows the sparsity pattern of the resulted random walk matrix of
order 136 (i.e. m = 15).
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0 20 40 60 80 100 120
nz = 480

Subroutine: To calculate the ¢th element of the vector Az one need only regard the com-
ponents of ¢ as the average number of individuals at the nodes of the grid and use
the probabilities (5) and (6) to calculate how many individuals will be at node ¢ after
the next transition.

FORTRAN calling sequences (heading) for forming matrix-vector Az and z7 A4 is

with

TRANS

Data files:

References:

SUBROUTINE MVMRWK( TRANS, N, X, Z )

(input) CHARACTER*1

if TRANS = ’N’, computes the product Az,

if TRANS = ’T’, computes the product ATz,

(input) INTEGER

The order of the matrix C.

(input) REAL array, dimension ( N )

contains the vector z.

(output) REAL array, dimension ( N )

On return, Z contains the product Az if TRANS = ’N’, or the product
ATz if TRANS = °T°,

Filename/Key Order Number of entries

RW136 136 479
RW496 496 1859
RW5151 5151 20199

W. Feller, An introduction to probability theory and its applications, John Wiley,
New York, 1961

G. W. Stewart, SRRIT — A FORTRAN subroutine to calculator the dominant invari-
ant subspaces of a real matrix, Comp. Sci. Dept. Tech. Rep. TR-514, Univ. of
Maryland, College Park, Nov. 1978.
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Y. Saad, Numerical methods for large eigenvalue problems. Halsted Press, Div. of
John Wiley & Sons, Inc., New York, 1992.

I. S. Duff and J. A. Scott, Computing selected eigenvalues of sparse unsymmetric
matrices using subspace iteration, ACM TOMS 19:137-159, 1993

Z. Bai and G. W. Stewart, SRRIT — A FORTRAN subroutine to calculator the dom-
inant invariant subspaces of a nonsymmetric matrix, Comp. Sci. Dept. Tech. Rep.
TR-2908, Univ. of Maryland, MD, April 1992 (submitted to ACM TOMS).
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Title: Tolosa Matrix
Subroutine name: MVMTLS

Source: S. Godet-Thobie, CERFACS and C. Bés, Aerospatiale, France
Discipline: Aeroelasticity

Future details: The Tolosa matrix arises in the stability analysis of a model of an airplane
in flight. The interesting modes of this system are described by complex eigenvalues
whose imaginary parts lie in a prescribed frequency range. The task is to compute the
eigenvalues with largest imaginary parts. The problem has been analyzed at CER-
FACS (Centre Europeen de Recherche et de Formation Avancee en Calcul Scientifique)

in cooperation with the Aerospatiale Aircraft Division®.

The matrix is a sparse 5 X b block matrix of order n = 90 + 5k. In practice, k is
around 10%. When n = 90, each block is of dimension 18 x 18 and

0 I 0 0 0
X1 Xp X3 Xy X5
0 I L O 0
0 I 0 Ly O
0 I 0 0 Ls

A=

where L, = 3;I,1=1,2,3, and X; and 3; are given data. In general

0 I 0 0 0
Y, V» V3 Y4 Ys

0 I 0 L, O
0 I 0 0 Lj
where
_ X1 0 o,
ho= ( 0 dia.g(m))’ z;, = —w;,2=1,...,m— 18,
_ X 0 o - )
Y2 N ( 0 dla,g(yl) )’ Yi = 2011(.4.)1, ’L—l,...,m 18,
_ Xr 0O B
Ve = ( 0 0)’ k=3,4,5,
and
.299

w; = 150 + 67, a; = c1t + ¢, c1 ¢y = 0.001 — ¢;.

~ /518’

The following fugures show the eigenvalue distribution of Tolosa matrices of orders 90
and 340.

!Tolosa is the latin name of Toulouse, France, the location of CERFACS.
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Figure 1: Eigenvalue distribution of 90 by 90 and 340 by 340 Tolosa matrices

Subroutine: It is necessary to read a small data file in the main program to initialize the
data structure for this matrix. See the sample main program.

The subroutines OPTOL and OPTOLT can used to compute Ag and p’ A, respectively.
The data file toldat is required to use this matrix.

o o o o o0 o0

(e]

PROGRAM TEST

INTEGER N, I, LDA

PARAMETER ( LDA = 500 )

DOUBLE PRECISION P( LDA ), QC LDA ), AQC LDA ), PA( LDA )

DOUBLE PRECISION ZERO, ONE

PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
DOUBLE PRECISION BLK( 18,90 )
COMMON /OPSTIF/ BLK( 18,90 )

The common block "OPSTIF" is used to store the data and used
in the subroutines OPTOL and OPTOLT

Read matrix size
READ(*,*)N
Data check

IF( N.LT.90 .OR. MOD( N-90,5 ).NE.O )THEN
WRITE( *,111 )
GO TO 20
ELSE IF( N.GT.LDA )THEN
WRITE( *,112 )
GO TO 20
END IF
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Read in the data structure for matrix

CALL READB( BLK )

For the purpose of illustration, P := (Q := ONES(N,1) ).

DO 10 I =1, N
P( I ) = ONE

QC I ) = ONE
10 CONTINUE

Compute A*Q and P t*A

CALL OPTOL( N, Q, AQ )
CALL OPTOLT( N, P, PA )

20 CONTINUE

111 FORMAT( ’Error: N must be 90 + Bk’ )
112 FORMAT( ’Error: N must not be larger than LDA’ )

STOP
END

Data files

REFERENCES

S. Godet-Thobie, Eigenvalues of large highly nonnormal matrices, Ph.D. thesis, Paris
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