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Hidden Markov Models
...a little bit of history

Hidden Markov Models: a very general form of probabilistic model for
sequences of symbols. Types of question we can answer with HMMs, include:
“"Does this sequence belong to a particular family?” “"Assuming the sequence
does come from some family what can we say about its internal structure?
(e.qg. identify an alpha helix in a protein sequence)”.
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Hidden Markov Models: a very general form of probabilistic model for
sequences of symbols. Types of question we can answer with HMMs, include:
“"Does this sequence belong to a particular family?” “"Assuming the sequence
does come from some family what can we say about its internal structure?
(e.qg. identify an alpha helix in a protein sequence)”.

The overwhelming majority of literature on HMMs sits on speech recognition,
where HMMs were first applied in the 1970s (Rabiner 1989). After recording, a
speech signal is divided into pieces, called frames, of 10-20 milliseconds. After
some preprocessing each frame is assigned to one out of a large number
(typically 256) of predefined categories.

The speech signal is then represented as a long sequence of category labels
and from that the speech recognizer has to find out what sequence of
phonemes (or words) was spoken. The problems are that there are variations
in the actual sound uttered, and there are also variations in the time taken to
say various parts of the word.
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Hidden Markov Models
...a little bit of history

In biology we have similar problems to deal with, e.g. we typically want to know
what protein family a given sequence belongs to. Here the primary sequence of
amino acids is analogous to the speech signal and the protein family to the spoken
word it represents. The time-variation of the speech signal corresponds to having
insertions and deletions in the protein sequences.
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methyl-C mutating into a T, with the consequence that in general CpG dinucleotides
are rarer in the genome that would be expected from the independent probabilities
of C and G.
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In biology we have similar problems to deal with, e.g. we typically want to know
what protein family a given sequence belongs to. Here the primary sequence of
amino acids is analogous to the speech signal and the protein family to the spoken
word it represents. The time-variation of the speech signal corresponds to having
insertions and deletions in the protein sequences.

Example: CpG islands

In the human genome wherever the dinucleotide CG occurs, the C nucleotide is

typically chemically modified by methylation. There is a relative high chance of this
methyl-C mutating into a T, with the consequence that in general CpG dinucleotides
are rarer in the genome that would be expected from the independent probabilities
of C and G.

For biological important reasons the methylation process is suppressed in short
stretches of the genome, such as around promoters or start regions of many genes.
In these regions we see many more CpG dinucleotides than elsewhere, and in fact
more C and G in general. Such regions are called CpG islands (Bird 1987). They are
typically a few hundred to a few thousand bases long.




CpG islands & Markov chains

A. Given a short stretch of genomic sequence, how would we decide if it comes from a CpG
island or not?

B. Given a long piece of sequence how would we find the CpG island in it, if there are any?
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the probability of a symbol depends on the previous symbol. The simplest such model is a
classical Markov chain:




CpG islands & Markov chains

A. Given a short stretch of genomic sequence, how would we decide if it comes from a CpG
island or not?

B. Given a long piece of sequence how would we find the CpG island in it, if there are any?

What short of probabilistic model should we use for CpG islands? We know that
dinucleotides are important. We therefore want a model that generates sequences in which
the probability of a symbol depends on the previous symbol. The simplest such model is a
classical Markov chain:

where we see a state for each of the four letters A, C, G and T. A probability parameter is
associated with each arrow in the figure, which determines the probability of a certain
residue following another residue, or one state following another state. There probability
parameters are called the transition probabilities, which we will write a_,:




Markov chains

For any probabilistic model of sequences we can write the probability of the
sequences as

P(x)=P(x,,x; 5.0 X))
=P(x, | X, 5 X)) P(X,_ | X, _55eees X))o P(X)

by applying (PX,Y) = P(Y)P(X|Y) many times.




Markov chains

For any probabilistic model of sequences we can write the probability of the
sequences as

P(x)=P(x,,Xx;_|5.esX;)

=P(x, | X, 5 X)) P(X,_ | X, _55eees X))o P(X)
by applying (PX,Y) = P(Y)P(X|Y) many times.
The key property of a Markov chain is that the probability of each symbol x; depends
only on the value of the preceding symbol x, ;,, not the entire previous sequence, i.e.

P(X X1y «ver X1) = P(X[X.1) = Q1

The previous equation therefore becomes:

P(x)=P(x, [x, )P(x;_; | x; ,)P(x, | x))...P(x;)

P [a., G2
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... modelling the beginning and end of sequences

Notice that as well as specifying the transition probabilities we must also give
the probability P(x,) of starting in a particular state. It is possible to introduce
an extra begin (B) and end (E) state to the model:

which is the probability of ending with residue t. We can treat those two new
states are “silent” states.




Using Markov chains for discrimination

We can use equation 3.2 to calculate the values for a likelihood ratio test. From a
set of human DNA sequences we extract a total of 48 putative CpG islands and
derive two Markov chain models, one for the regions labeled as CpG islands (+
model) and the other from the remainder of the sequence (- model). The transition
probabilities for each model are set using the equation

and its analogue for the - model, where C_* is the number of times letter ¢ is
followed by letter s in the labeled regions (i.e. the ML estimators for the transition
probabilities):

+| A C G T - A C G T

A | 0.180 | 0.274 | 0.426 | 0.120 | A | 0.300 | 0.205 | 0.285 | 0.210
C | 0.171 | 0.368 | 0.274 | 0.188 | € | 0.322 | 0.298 | 0.078 | 0.302
G | 0.161 | 0.339 | 0.375 | 0.125 | G | 0.248 | 0.246 | 0.298 | 0.208
T | 0.079 | 0.355 | 0.384 | 0.182 | T | 0.177 | 0.239 | 0.292 | 0.292
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Using Markov chains for discrimination

where the first row in these case contains the frequencies with which an A
is followed by each of the four bases, and so on for the other rows, so
each row sums to one. These numbers are not the same; G following A is

much more common than T following A.

To use these models for discrimination, we calculate the log-odds ratio

P(x|model”) &, al . &
S(x)=1o =) Jlog X=X — o
(x) =log P | model) le 8- Zﬁ

Xi—1X1
where x is the sequence and B A = = T
By.1x are the log likelihood A | -0.740 |0.4190.580 | -0.803
ratios of the corresponding
transition probabilities. A table < -0.913 0.302 | 1.812 | -0.685
B is given below in bits: G| -0.624 |0.461]0.331]-0.730
T -1.169 0.573 | 0.393 | -0.679
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where the first row in these case contains the frequencies with which an A
is followed by each of the four bases, and so on for the other rows, so
each row sums to one. These numbers are not the same; G following A is

much more common than T following A.

To use these models for discrimination, we calculate the log-odds ratio

P(x|model”) &, al . &
S(x)=1o =) Jlog X=X — o
(x) =log P | model) le 8- Zﬁ

Xi—1xi
where x is the sequence and B A ¢ G /I\
By-1xi are the log likelihood A | -0.740 | o0.419( 0.580)|(-0.803
ratios of the corresponding
transition probabilities. A table €] -0.513 ]0.302)1.812-0.685
B is given below in bits: G| -0.624 |0.4610.331-0.730
T | -1.169 |0.573|0.393|-0.679
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Figure 3.2 The histogram of the length-normalised scores for all the se-
quences. CpG islands are shown with dark grey and non-CpG with light

grey.

Figure 3.3 An HMM for CpG islands. In addition to the transitions shown,
there is also a complete set of transitions within each set, as in the earlier
simple Markov chains.




Hidden Markov Models

“How do we find CpG islands in a long unannotated sequence?”

A simple approach would be to use the Markov chain models that we
built earlier by calculating the log-odds score for a window size, say, 100
nucleotides around every nucleotide in the sequence and plotting it. We

would expect CpG islands to stand out with positive values.
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“How do we find CpG islands in a long unannotated sequence?”

A simple approach would be to use the Markov chain models that we
built earlier by calculating the log-odds score for a window size, say, 100
nucleotides around every nucleotide in the sequence and plotting it. We

would expect CpG islands to stand out with positive values.

However this is somehow unsatisfactory if we believe that CpG islands
have sharp boundaries and are of variable lengths. Why use a window
size of 100? A more satisfactory approach is to build a single model for
the entire sequence and incorporate both Markov chains.




Hidden Markov Models

To simulate in one model the “islands” in a “sea” of non-island genomic
sequence, we want to have both the Markov chains in the same model, with

a small probability of switching from one chain to the other at each transition
point.
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a small probability of switching from one chain to the other at each transition
point.

We re-label the states as follows: A, C,, G,, T, which emit A, C, G, T in CpG
island regions and A_, C_, G_, T_ which emit A, C, G, T in non-island regions.
The transition probabilities in this model are set so that within each group
they are close to the transition probabilities of the original component model,
but with a small chance of switching into the other component. Overall there

is more chance of switching from + to — than vice versa, so if left to run free,

the model will spend more of its time in the - non-island states than in the
island states.
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To simulate in one model the “islands” in a “sea” of non-island genomic
sequence, we want to have both the Markov chains in the same model, with
a small probability of switching from one chain to the other at each transition
point.

We re-label the states as follows: A, C,, G,, T, which emit A, C, G, T in CpG
island regions and A_, C_, G_, T_ which emit A, C, G, T in non-island regions.
The transition probabilities in this model are set so that within each group
they are close to the transition probabilities of the original component model,
but with a small chance of switching into the other component. Overall there

is more chance of switching from + to — than vice versa, so if left to run free,
the model will spend more of its time in the - non-island states than in the
island states.

The essential difference between a Markov chain and a hidden Markov model
is that for a hidden Markov model there is not a one-to-one correspondence
between the states and the symbols. It is no longer possible to tell what
state the model was in when x; was generated just by looking at x;, i.e. there
is no way to tell by looking at a single C symbol in isolation whether it was
emitted by state C, or state C_
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We need to distinguish the sequence of states from the sequence of symbols.
Let us call the state sequence the path, n. The ith state in the path is called r;:

ay=P(r, =1|7n_ =k) (3.4)
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Let us call the state sequence the path, n. The ith state in the path is called r;:

ay=P(r, =1|7n_ =k) (3.4)

Because we have decoupled the symbol b from the states k, we must introduce
a new set of parameters for the model, e, (b):

e,()=P(x,=b|zm,=k)  (3.5)

the probability that symbol b is seen in state k (i.e. the emission probabilities).
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Hidden Markov Models

We need to distinguish the sequence of states from the sequence of symbols.
Let us call the state sequence the path, n. The ith state in the path is called r;:

ay=P(r, =1|7n_ =k) (3.4)

Because we have decoupled the symbol b from the states k, we must introduce
a new set of parameters for the model, e, (b):

e,()=P(x,=b|zm,=k)  (3.5)

the probability that symbol b is seen in state k (i.e. the emission probabilities).

To illustrate emission probabilities we switch back to the casino example. In a
casino they use a fair die most of the time, but occasionally they switch to a
loaded die. The loaded die has probability 0.5 of a six and probability 0.1 for
the numbers one to five. Assume that the casino switches from a fair to a
loaded die with probability 0.05 and 0.1 for switching back.
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Then the switch between dice is a Markov process:

Loaded

What is hidden in the above model?
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Then the switch between dice is a Markov process:

Loaded

What is hidden in the above model? If you can just see a sequence of rolls you
do not know which rolls used a loaded die and which used a fair one, because
that is kept secret by the casino; that is the state sequence is hidden.




R RN,
Hidden Markov Models

Then the switch between dice is a Markov process:

Loaded

What is hidden in the above model? If you can just see a sequence of rolls you
do not know which rolls used a loaded die and which used a fair one, because
that is kept secret by the casino; that is the state sequence is hidden.

It is now easy to write down the joint probability of an observed sequence x
and a state sequence :

L
P(.X, 72-) = aOm H em' (xi )am'm'ﬂ (3 6)
i=1
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... the Viterbi algorithm

Although it is no longer possible to tell what state the system is in by
looking at the corresponding symbol, it is often the sequence of underlying
states that we are interested in.
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There are several approaches to decoding; here we will discuss the most
common one, called the Viterbi algorithm.
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In general there may be many state sequences that could give rise to any
particular sequence of symbols, for example:
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[C.G.C.G_]
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would all generate the symbol sequence CGCG. However they do so with
very different probabilities.




Most probable state path
... the Viterbi algorithm

Although it is no longer possible to tell what state the system is in by
looking at the corresponding symbol, it is often the sequence of underlying
states that we are interested in.

To find out what the observation sequence "means” by considering the
underlying states is called decoding in the jargon of speech recognition.
There are several approaches to decoding; here we will discuss the most
common one, called the Viterbi algorithm.

In general there may be many state sequences that could give rise to any
particular sequence of symbols, for example:

[C.G . C G.]
[C.G.C.G_]
[C.G.C G_]

would all generate the symbol sequence CGCG. However they do so with
very different probabilities.

p
/ﬁ\ Find the most probable path n



Most probable state path
... the Viterbi algorithm

A predicted path through the HMM will tell us which part of the sequence is
predicted as a CpG island, because we assumed that each state was assignhed to
model either CpG islands or other regions. If we are to choose just one path,
perhaps the one with the highest probability should be chosen:

r*=argmax P(x,7) (3.7)

T
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The most probable path 7" can be found recursively. Suppose the probability u,(i)

of the most probable path ending in state k with observation /j is known for all
states k. Then these probabilities can be calculated for the observation x,,, as

w (i+1)=¢/(x,,) m]?X(uk (Da,) (3.8)




Most probable state path
... the Viterbi algorithm

A predicted path through the HMM will tell us which part of the sequence is
predicted as a CpG island, because we assumed that each state was assignhed to
model either CpG islands or other regions. If we are to choose just one path,
perhaps the one with the highest probability should be chosen:

r*=argmax P(x,7) (3.7)

T

The most probable path 7" can be found recursively. Suppose the probability u,(i)

of the most probable path ending in state k with observation /j is known for all
states k. Then these probabilities can be calculated for the observation x,,, as

w (i+1)=¢/(x,,) m]?X(uk (Da,) (3.8)

All sequences have to start in state 0 (the begin state), so the initial condition is
that v,(0) =1. By keeping pointers backwards, the actual state sequence can be
found by backtracing. The full algorithm is:




Most probable state path
... the Viterbi algorithm

Initialisation (i = 0): u,(0) =1, u, (0) = 0 fork >0

Recursions (i = 1 ... L): u,(i) = e(xi)max, (u, (i-1a,,)

ptr,(l) =argmax, (u, (i —1)a,, )

Termination: P(x,7*) = max (Uk (L)ako)
”Z =argmax  (u, (L)a,,)

*

Tracecback (i =L ... 1): 7. = ptr(r)




Most probable state path
... the Viterbi algorithm

Initialisation (i = 0): u,(0) =1, u, (0) = 0 fork >0

Recursions (i =1 ... L): u,(i) = e(xi)max, (u, (i—1a,,)

ptri(l) = argmax, (u, (i —1)ay,)

Termination: P(x,7*) = max, (uk (L)ako)

m, =argmax, (u, (L)a,,)

Tracecback (i =L ... 1): n. = ptr(x)

R Multiplying many probabilities always yields very small numbers that will
@ give overflow errors on any computer. For this reason the Viterbi algorithm
should always be done in log space.



The occasionally dishonest casino

Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFFFFFFFFFPFFPFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
Viterbili FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLL

Rolls 651166453132651245636664631636663162326455236266666625151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFE
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF

Rolls 222555441666566563564324364131513465146353411126414626253356
Die FEFFPFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFL
Viterbl FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE

Rolls 366163666466232534413661661163252562462255265252266435353336
Die LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFEEFEE
Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFER

Rolls 2331216253644714432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFPFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbli FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFF




The forward algorithm

To calculate the probability of an entire sequence P(x) for an HMM we must add the
probabilities for all possible paths to obtain the full probability of x, because many
different state paths can give rise to the same sequence x:

P(x)= ZP(x, 7) (3.9
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This probability can be calculated by a similar dynamic programming procedure to the

Viterbi algorithm, replacing maximization steps with sums. This is called the forward
algorithm.




The forward algorithm

To calculate the probability of an entire sequence P(x) for an HMM we must add the
probabilities for all possible paths to obtain the full probability of x, because many
different state paths can give rise to the same sequence x:

P(x)= ZP(x, 7) (3.9

This probability can be calculated by a similar dynamic programming procedure to the
Viterbi algorithm, replacing maximization steps with sums. This is called the forward
algorithm.

The quantity corresponding to the Viterbi variable u, (i) in the forward algorithm is

£.3()=P(x..x,m, =k) (3.10)

which is the probability of the observed sequence up to and including x;, requiring that
n = K.




The forward algorithm

Initialisation (i = 0): fo(o) _ Lfk(()) — Ofor k >0

Recursions (i = 1 ... L):

5@ = ¢ (Xi)z fi(i—Day,

Termination: P(x)= ka(L)akO
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The Viterbi algorithm finds the most probable path through the model. But what if we
want to know what the most probable state is for an observation x;?
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given the observed sequence, i.e. P(n, = k|x). This is the posterior probability of state
k at time / when the emitted sequence is known.
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More generally we may want the probability that observation x; came from state k

given the observed sequence, i.e. P(n, = k|x). This is the posterior probability of state
k at time / when the emitted sequence is known.

We first calculate the probability of producing the entire observed sequence with the
ith symbol being produced by state k:

P(x,m, =k)=P(x,..x,, 7, =k)P(x,

i+1°°

x, |7 =k) (3.12)




The backward algorithm

The Viterbi algorithm finds the most probable path through the model. But what if we
want to know what the most probable state is for an observation x;?

More generally we may want the probability that observation x; came from state k
given the observed sequence, i.e. P(n, = k|x). This is the posterior probability of state
k at time / when the emitted sequence is known.

We first calculate the probability of producing the entire observed sequence with the
ith symbol being produced by state k:

P(x,m, =k)=P(x,..x,, 7, =k)P(x,

i+1°°

x, |7 =k) (3.12)

The first term is recognized as f,(i) that was calculated by the forward algorithm. The
second term is called b.(i):

b, (i) = P(x,

+1°°°

x, |7 =k) (3.13)




The backward algorithm

It is analogous to the forward variable, but instead obtained by a backwards
recursion starting at the end of the sequence:

Initialisation (/ = L):

b, (L) = a,, forallk

Recursions (i = L-1, ..., 1):

b(i) = D aye(xi+)b(i+1)

Termination: P(x)= Zawe, (x0)b, (1)
[
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The backward algorithm

Equation 3.12 can be written as P(x,n, = k) = f,(i)b,(i) and from it we obtain
the required posterior probabilities:

P(r. =k|x)= ﬂgzik)(i) (3.14)

where P(x) is the result of the forward (or backward) calculation.

0 50 - 200 250 300

Figure 3.6 The posterior probability of being in the state corresponding to
the fair die in the casino example. The x axis shows the number of the roll.
The shaded areas show when the roll was generated by the loaded die.
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[F] [B] [V] algorithms

v'"What is the probability of observing X?

Forward algorithm

v'"What is the probability that the internal state at time / was a specific
state k?

Backward algorithm

v'"What is the most probable path of hidden states?
Viterbi algorithm




HMMs ... parameter estimation

We assume that we have a set of example sequences
(training sequences) of the type that we want to model. Let
these be xI, ..., x” . Working in log space the log probability
of the sequences is:

I(x...,x" |0) =log P(x',....x" | ) = > log P(x’ | 6) (3.17)
j=1

where 6 represents the entire current set of values of the
parameters in the model (all the as and es).




HMMs ... parameter estimation
when the state sequence is known

When the paths are known the estimation of the probability
parameters is easy. We can simply count the number of times

each particular transition or emission is used in the training
dataset. Let these be A,,and E,(b). Then the ML estimators for
be ag,,and e, (b) are:

E,(b)
> L E(b)

and e, (b) = (3.18)
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When the paths are known the estimation of the probability
parameters is easy. We can simply count the number of times

each particular transition or emission is used in the training

dataset. Let these be A,,and E,(b). Then the ML estimators for
be a,,and e (b) are:

Z‘% and e, (b) = ZE’fbfb()b ; (3.18)

To avoid overfitting if there are insufficient data, we should
add pseudocounts to the A,,and E,(b) before suing 3.18.

a, =

A,, = number of transitions k to / in the training data + r,.

E.(b) = number of emissions of b from k in the training data +
ri(b).
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When the paths are unknown for the training sequences, there is no
longer a direct closed form equation for the estimated parameter
values, and some form of iterative procedure must be used.
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HMMs ... parameter estimation
when the paths are unknown

When the paths are unknown for the training sequences, there is no
longer a direct closed form equation for the estimated parameter
values, and some form of iterative procedure must be used.

A standardly used algorithm is the Baum-Welch algorithm (Baum
1972). It first estimates the A,, and E,(b) by considering probable
paths for the training sequences using the current values of a,, and
e.(b). The BW algorithm is a special case of a very powerful general
approach to probabilistic parameter estimation called EM algorithm.

Then 3.18 is used to derive new values of the as and es. This
process is iterated until some stopping criterion is reached. The
overall log likelihood of the model is increased by the iteration, and
hence the process will converge to a local maximum.
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When the paths are unknown for the training sequences, there is no
longer a direct closed form equation for the estimated parameter
values, and some form of iterative procedure must be used.

A standardly used algorithm is the Baum-Welch algorithm (Baum
1972). It first estimates the A,, and E,(b) by considering probable
paths for the training sequences using the current values of a,, and
e.(b). The BW algorithm is a special case of a very powerful general
approach to probabilistic parameter estimation called EM algorithm.

Then 3.18 is used to derive new values of the as and es. This
process is iterated until some stopping criterion is reached. The
overall log likelihood of the model is increased by the iteration, and
hence the process will converge to a local maximum.

Unfortunately there are usually many local maxima, and which one
you end up with depends strongly on the starting values of the
parameters.




HMMs ... parameter estimation
when the paths are unknown

More formally the Baum-Welch algorithm calculates A,, and E,(b) as the
expected number of times each transition or emission is used given the

training sequences. To do this it uses the same forward and backward
values as the posterior probability decoding method. The probability
that g,, is used at position / in sequence x is:
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More formally the Baum-Welch algorithm calculates A,, and E,(b) as the
expected number of times each transition or emission is used given the

training sequences. To do this it uses the same forward and backward
values as the posterior probability decoding method. The probability
that g,, is used at position / in sequence x is:

P(ﬂi — k77z-i+1 — l | X, 9) — fk(i)aklel (xi+1)bl (l+1) (319)
P(x)

From this we can derive the expected number of times that g, is used
by summing over all positions and over all training sequences:

4=% P(ij) IACTEICATIERICED

where fJ(i) is the forward variable calculated for sequence j and b/(i) is

the corresponding backward variable.



HMMs ... parameter estimation
when the paths are unknown

Similarly we can find the expected number of times that letter b

appears in state k:

> fLOb (H(3.21)

1
E (b)=) —
J P(xj){i\xij:b}

where the inner sum is over those positions i for which the
symbol emitted is b.
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Similarly we can find the expected number of times that letter b

appears in state k:

> fLOb ()(3.21)

J) {i|x/ =b}

Ei(6)= ZP(x

where the inner sum is over those positions i for which the
symbol emitted is b.

Having calculated these expectations the new model parameters

are calculated again via 3.18. We can iterate using the new
values of the parameters to obtain new values of the As and Es
but since we are converging in a continuous-values space we will
never in fact reach the maximum, so we need to set a
convergence criterion.




HMMs ... parameter estimation
when the paths are unknown

Summary of Baum-welch:

Initialisation: Pick arbitrary model parameters.

Recurrence:
Set all the A and E variables to their pseudocount values r or to zero.
For each sequence j = 1...n:

Calculate £, (i) for sequence j using the forward algorithm.

Calculate b, (i) for sequence j using the backward algorithm.

Add the contribution of sequence j to A (3.20) and E (3.21).
Calculate the new model parameters using 3.18
Calculate the new log likelihood of the model.

Termination: Stop if the change in log likelihood is less than some predefined
threshold.




The occasional dishonest casino

We are suspicious that a casino is using a loaded die, but we do not know for
certain. Night after night we collect data observing rolls. When we have enough we

want to estimate the model. From this sequence of observations a model was
estimated using BW. Initially all the probabilities were set to random numbers.

0.95 0.9 0.73 0.71
O: 1/6 1:1/10/3 Ct 0.19 1: o.oo
2: 1/6 0.05 2:1/10 2: 0.19 0.27 2: 0.10
3 16 P W3 1/10 3: 023 3: 0.10
4 1/6 a4 1710 4: 0.08 M~ 4 017
5 1/6 0.1 5: 110 5: 0.23 029 |5: 0.05
6. 1/6 6. 1/2 6: 0.08 6: 0.52

——
Fair Loaded Fair Loaded

You can see they are fairly similar although the estimated transition probabilities

are quite different. This is problem of local maxim due to low number of
observations.
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We are suspicious that a casino is using a loaded die, but we do not know for
certain. Night after night we collect data observing rolls. When we have enough we

want to estimate the model. From this sequence of observations a model was
estimated using BW. Initially all the probabilities were set to random numbers.

0.95 0.9 0.73 0.71
O: 1/6 1:1/10/3 Ct 0.19 1: o.oo
2: 1/6 0.05 2:1/10 2: 0.19 0.27 2: 0.10
3 16 P W3 1/10 3: 023 3: 0.10
4 1/6 a4 1710 4: 0.08 M~ 4 017
5 1/6 0.1 5: 110 5: 0.23 029 |5: 0.05
6. 1/6 6. 1/2 6: 0.08 6: 0.52

——
Fair Loaded Fair Loaded

You can see they are fairly similar although the estimated transition probabilities

are quite different. This is problem of local maxim due to low number of
observations.

We repeat with 30000 random rolls:

And this time we came closer to the true model:

The correct model 0.101 bits

Model estimated from 300 rolls 0.097 bits

Model estimated from 30000 rolls 0.100 bits




Source: http://www.biojava.org/wiki/BioJava:Tutorial:Simple. HMMs_with BioJava

The resuftant HviM looks like this
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Output Alphabet
1123456 |

States
FL |
Transition Probabilities

0.95 0.05
010 0.90

[ »

1]

Emission Probabilities
0166 0.166 0.166 0.166 0166~ |
01000100 0100 0.100 0104

4] I [ 1]
Initial Probabilities
10.90.1 |

Output Sequence
|i1 513526664226111246 5653|

Apply Clear

Sequence: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLELLLLLL | FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF...

1teroi

emo

i 1 42 43 5 4
-1.8011 -3, 7482 -5.5052 Bri ]
-4, G052 -F013 -9,0465 -10,8936

am

| »

Source: http://www.cs.umb.edu/~srevilak/viterbi/
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Figure .: The architecture of the two-state (Native, Alien), second order HMM, used in
a change-point detection framework.
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Figure 2.4: Two side-specific HMMs trained for the left (HMML)
and for the right (HMMz) boundary of each predicted GI.




score S; of path | prioroveray, | change-point (bp)
iteration T*
1 -9643.868804 500! 1720
2 -9643.868873 1000t 1720
3 -9627.033373 20001 4870
4 -9627.033077 25001 4870
5 -9627.033131 30001 4870































Viterbi ...
online DEMO (exercise)

Source: http://www.cs.umb.edu/~srevilak/viterbi/
Target sequence: “ATGCATGCATGGGGCC”
Alphabet: [A, T, G ,C]

# of states: 2

Transition: There is 0.2 probability of switching from state1to state2. There is 0.9
probability of switching from state2 to state1.

Emission: In state1 the frequency of observing A, T, G, C is their expected
frequencies assuming a zero-th order alphabet. In state2 P, = P; =0.1 and P =
P..

Initial probabilities: The probability of the model starting in state1 is 0.6.
Deliverables:
A. Build the model.

Run the prediction.

B
C. Record the most probable state path.
D

Design the HMM architecture.



HMMER

hmmalign - align sequences to a profile HMM

hmmbuild - construct profile HMM(s) from multiple sequence alignment(s)
hmmconvert - convert profile file to a HMMER format

hmmemit - sample sequences from a profile HMM

hmmfetch - retrieve profile HMM(s) from a file

hmmpress - prepare an HMM database for hmmscan

hmmscan - search sequence(s) against a profile database

hmmsearch - search profile(s) against a sequence database

hmmsim - collect score distributions on random sequences

hmmstat - display summary statistics for a profile file

jackhmmer - iteratively search sequence(s) against a protein database

phmmer - search protein sequence(s) against a protein sequence database

SOURCE:




HMMER (cURL)

shell% curl -L -H 'Expect:' -H 'Accept:text/xml' -F seqdb=pdb -F algo=phmmer

-F seq="<test.seq' http://hmmer.janelia.org/search/phmmer









send




retrieve
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