orizontal Gene i1ransrter over iime

Relative



(l.ore !ene Dataset !Vennk

EDL933

MG1655

CFTO73 S. flex 2a 301

Salmonella



Horizontally Acquired DNA

198
192
186
by
180
174
168
162
1 1
[ I
156 -
150
144
138
132
126
120

204 210 6

E.coli MG1655
S.flexneri 2a 301
E.coli CFTOT3
E.coli EDL933

S.bongori 12419
S.arizonae RSK2980
S.typhi CT18

S.typhi TY2
S.paratyphi A SARB42
s.paratyphi A AKU12601
S.typhimurium SL1344
S.typhimurium DT104
S.typhimurium LT2
S.enteritidis PT4
s.gallinarum 287/91

) - —— -

1)

1 T %
4 108 102

12
18

24

30
36
42
48
1]
&0
66
12
78



Methods for Comparative Analysis

Method Genome coverage (%) Core genes Dispensable genes
16s rRNA 0.072 Yes No
MLST 0.22 Yes No
SNPs 20 Yes Yes
Whole-genome 100 Yes Yes

Estimates have been calculated based on:
o 2Neisseria meningitidis: genome size ~2.2 Mb (Bentley et a/., 2007)
=16S rRNA length ~1.5kb (Sacchi et a/., 2002)
»length of MLST loci ~4kb (Maiden et a/., 1998)
ebSalmonella typhi: genome size ~4.8 Mb (Deng et al., 2003)

*SNPs on gene fragments covering ~89 Kb (Roumagnac et a/., 2006)

Medini, 2008



MAUVE

o g B

Algorithm: MAUVE.
1.

Identify multiple maximal unique matches (multi-MUMs), i.e. local alignments of exactly
matching (single-copy) sequences that are shared between 2 or more chromosomes.

Calculate a phylogenetic guide tree based on the multi-MUMs sequences.
Partition a subset (anchors) of the multi-MUMs into LCBs.

Do recursive anchoring to identify new anchors within and outside the LCBs.
Align each LCB based on the guide tree.

Note: Formally, an LCB is a sequence of multi-MUMs that satisfies a total ordering property,

such that the left end of the th multi-MUM occurs before the left end of the A1 multi-
MUM, for all multi-MUMs in the LCB and for all the genomes compared.

Source: (Darling et al., 2004).
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Tree Building Methods

Table 3.3° Properties of four widely uzed tree-building methods.

Method Pros Cons
Neighbor- Verv fast. O(n?)for n taxa Does not necessarily produce the
Joining y ) ) minimum-evelution (optimall tree.
Maximum- | Provides information on the Amb1gum;_lhs results if hnmmpla;y lﬁ
Parsimony | ancestral sequences common (long branch attraction”).

- : o Underestimates branch lengths.
Maximum- | Site-specific likelihoods. Computationally intensive
Likelihood | Accurate branch lengths. puts y T
Baveszian- | Faster than ML. Reliez on the prior distribution over the
inference Accurate branch lengths. parameters of the model.




Number of Tree Topologies (1)

Generally speaking, the number of all different possible tree
topologies grows rapidly with the number of taxa. It can be shown
(Felsenstein, 1978) that the number of alternative topologies for an

unrooted tree as a function of the number of taxa (7). is:

AT) = ﬁ(Zr’ —5)

while for a rooted tree, that number is:

A(T)=(2T - S)H(z;' -5)

That means that for 10 and 20 taxa, there are approximately 2 x 10° and

2.2 x 102? alternative unrooted tree topologies, respectively.




ree 10poiogies

OTUs | Rooted trees | Unrooted trees
2 1 1
3 3 1
4 15 3
5 105 15
6 954 105
7 10,395 954
8 135,135 10,395
9 2,027,025 135,135
10 34,459,425 2.027.025
11 = 654x10° = 34x10°
15 ~ 213x10%° = Rl
20 > 8x10%! > 2x10%°
50 > 6x108! > 2x1070

The obhservable universe has about 8.8x1077 atoms

There 1z not memory neither time to evaluate all the trees!!

For 11 or fewer taxa, a brute-force exhaustive search is feasible!!
For more than 11 taxa an heuristic search is the best solution!!

Dopazo 2006



earcning iree 10poliogies

9.2. Exhaustive search methods

¢ Every possible tree is examined; the shortest tree will always be
found.

¢ Taxon addition sequence is important only in that the algorithm needs
to remember where it is,

e Search will also generate a list of the lenths of all possible trees, which
can be plotted as an histogram,

9.3. Heuristic search methods

When a data set is too large to permit the use of exact methods, optimal
trees must be sought via heuristic approaches that sacrifice the guarantee of
optimality in favor of reduced computing time

Two kind of algorithms can be used:
1. Greedy Algorithms
2. Branch Swapping Algorithms

Dopazo 2006
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9.3.1. Greedy Algorithms

Strategies of this sort are often called the ithm b

the first improvement that they see. Two
e Stepwise Addition,

¢ Star Decomposition'®

Both algoritms are prone to e

9.3.2. Branch Swapping Algorithms IF start here

gnd up here but global maximum is here

It may be possible to improve the greedy Solutions Dy perfolIning sels of pre-
defined rearrangements, or branch swappings. Examples of branch swapping
algorithms are:

NNI - Nearest Neighbor Interchange, SPR - Subtree Pruning and Regrafting,
TBR - Tree Bisection and Reconnection.

Dopazo 2006
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3.22.1 UPGMA

The =simplest (and less efficient) tree-building method is UPGMA: this
method, exploits a sequential clustering algorithm that starts by
identifying the two most similar (given a distance matrix) operational
taxonomic units (OTUs) and then builds step-wise the phylogenetic tree
topology, evaluating the similarities between the remaining OTUs! the two
most similar OTUs of the previous step. are treated as a single OTU in
subsequent clustering steps. The main disadvantage of the UPGMA
method 1s that it is based on the assumption that the rate of evolution is
constant over time in all the evolutionary lineages (molecular clock
hypothesis): in other words, the UPGMA clustering finds the correct tree
topology only if the distances between the different taxa are ultrametrie,
ie. dlA.B) £ max [dlA.C), dB,C)l, for all A, B and C: where dlx,j) is the

distance metric between OTUs x and y (Figure 3.2).
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Maximum Parsimony (1)

3.2.2.2 Maximum Parsimony

MP exploits the concept of parsimony that favours generally simpler over
more complicated hypotheses. As such, MP iz based on the assumption
that the best tree topology 1s the one that requires the minimum number
changes to explain the observed differences between the taxa., and
searches for the topology with the minimal cost. If Sia) denotes the

minimal cost for assignment of character a to node 4, such that:

St(a) =muns(Si(b) + S(a.b)) +muns(S(b) + S(a.D))




Maximum Parsimony (2)

the topology with the minimal cost can be found by minimizing the above
function for all characters a and all nodes k& of the tree! 7 and ; denote the
daughter nodes of node k and Sla.b) denotes the cost of substituting a
with b.

The MP algorithm consists of two steps: 1) the computation of the
cost for a given tree and 2) a search through all trees, to find the overall
minimum of this cost: for a amall number of taxa e.g. (= 10), an exhaustive
search of all the possible tree topologies can be carried out: for a higher
number of taxa, however, heuristic methods have to be exploited. Broadly
speaking there are two major MP algorithms: weighted parsimony and
traditional parsimony (Fitch, 1971). In the first algorithm, each character
substitution is assigned a cost while the second algorithm counts simply

the number of character substitutions.




Bayesian Inference (1)

3223 DBayesian inference

A Bavesian approach produces the tree (or a set of equally optimal trees)
that is most likely to be explained by the data (ie sequences); in other
words it estimates the posterior probability PIH/D) of the hypothesis given
the data. This is different from ML that finds the tree that is most likely to
have produced the data. evaluating the probability of seeing the data
given the hypothesis. i.e. PID/H). The posterior probability, in a Bayesian

implementation. is calculated exploiting Bayes theorem:

P(9)-P(D/9)

P(8/D) = )

where P{8/D) iz the posterior probability of the tree. P(8) is the prior
probability of the tree. P(I}G/is the likelihood of the data given the tree
and P([)/ is the probability of the data (can be calculated as a marginal

probability and serves as a normalizing constant. i.e. the sum of the




Bayesian Inference

posterior probabilities is 1), The posterior probahilities can he
approximated by a Markov Chain Monte Carle (MCMC) approach
(Hastings, 1970: Metropolis er al. 1953) that performs a random walk
through the parameter space, randomly modifving the parameters l=.g.
the tree topologyv., a branch length or a substitution medel parameter)
accepting or rejecting proposed moves based on their posterior probability.
If the new posterior computed is larger than the current one. the propozed
move is taken. otherwise depending on the level of decrease the move is
rejected or accepted. therefore. the Markov chain visits the different
regions in the parameter space proportionally to their posterior

probability.




Neighbor Joining (1)

3.224 Neighbor — Joining

NJ (Saitou and Nei, 1987) exploits the concept of minimum evolution
(Rzhetsky and Nei. 1993). 1.e. at each step the topology with the minimum
total branch length is preferred. The NJ algorithm 15 a star-decomposition
algorithm, i.e. the initial tree is a star-like topology that does not however
cuarantee that the optimal tree topology will be found (greedy algorithm)
given that it iz prone to converge over a local rather than a global maxima.

NJ iz a distance-bazed. tree building algorithm like UPGMA that
nonetheless overcomes the limitation of assuming a constant evolutionary
rate for all lineages. This property is very important, and can efficiently
avold converging over the wrong tree topology in ecaze of different
evolutionary rates (ie. the ultrametric condition dees not apply). instead
of selecting simply the taxa with the minimum distance dlx ) (that micht
well not be true neighbouring taxa. see Figure 3.2). NJ builds a new
distance matrix (that corrects for different rates) by subtracting from
dx 1) distance the average distances of the two taxa x and » to all the

other taxa. The pseudo-code describing the NJ algorithm is given below:




eighbor Joining

Algorithm: Neighbor-Joining.

Define:
Dy= diy—n+ ), where
1 Zt’f
It =———— ik
| L|-2

ksl

| L| denotes the size of the set L of leaves. and dijiz the distance between taxza 7and 7

Initialization:

Define Tto be the set of leaf nodes, one per sequence, and set L= T
Tteration:

Pick a pair 7 jin L for which Dyis minimal

Define a new node & and set diw= %% (diw+ diw— dyf for all m = L
Add kto T with edges of lengths dp=% (dy+ ry— . dig= dy— dz

joining k& te 7 and 7 respectively. Remove 7, jfrom L and add &
Termination:

When L consists of two leaves, 7and ;. add the remaining edge between them. with length
.

Source: (Durbin er af, 1938).




Maximum Likelihood (1)

3.225 Maximum Likelihood

As mentioned earlier. the aim in a maximum likelihood approach is to
maximize the likelihood of a tree P (dataltree). i.e. the probability of the
data given a tree topology and a model of evolution (see next section). For
a set x of n sequences &3 for 1= 1...n given a model of evolution, the aim 1s
two-fold (1) to =earch through all the possible tree topologies Twith the n
zequences assigned at the corresponding leaves of the tree and (2) to
search over all possible branch lengths ¢ with the objective of finding the
maximum likelihood tree, i.e. the tree with topologv T and branch lengths
t that maximizes Pl x| T £).

In the case of two sequences x1 and x», there is only one possible
rooted tres topologvy T, therefore the likelihood of the tree will vary
relative to the branch lengths A and #. In this example, let x1. wand x» m
denote the residues at the mth site of the two sequences. Assigning a

residue a to the root of the tree. we can ecalculate the probability (g of




Maximum Likelihood (1)

3.225 Maximum Likelihood

As mentioned earlier. the aim in a maximum likelihood approach is to

M The likelihood of a sequence =
d Suppose we have: r
2 ¢ Data: a sequence of 10 mucleotides long, say AAAAAAAATG =
t o Model: Jukes-Cantor — fi4comr) =1 11
= . Y _1.1.1. 1 o
o Model: Modely — flacer) =585 M

3 e
I Lic= (1% (1)(3) = (p" = 9.53x107" g
t Lay = (380" 14).(4) = 7.81x107%

Lys, is almost 100 times higher than to Lo model e
1 Thus the JC model is not the best model to explain this data o
rd m

denote the residues at the mth site of the two sequences. Assigning a

residue a to the root of the tree. we can ecalculate the probability (g of




Maximum Likelihood

having @ at the root of T and of having substitutions of a by x1. wand x m

as follows:

P(I],m._xl:m..{;" | T..fl.,fl) - ffﬂP(Il:m | ﬁ,?l)P(Ilm ﬂ'..r!)

In a second step. in order to calculate the probability of generating
x1, m and i, m residues at the two leaves of T we have to sum over all
different pozszible values of o, zince we do not have any prior knowledge of

what the residue at the root of the tree is:
P(:‘I.-].: m. X2 m | T.F].f:) = Z QQP(.T]., m | a. rle(I],m | . Fz)
a

The final step is to calculate the full likelihood over the entire length (14

of the two sequences x and x=°

M
P(x1,x2 | T.t,12) :]__[P(Il:m=.\'2,!rr | T, 1.12)

-]




Maximum Likelihood (3)

In order to calculate the probability Plz| v.#) of a sequence z arising
from an ancestral sequence y over the branch length ¢, we need a model of
evolution that describes how residues are substituted by others. Details of
such evolutionary models will be discussed in the next section. It can he
shown that given a transition probabilitv matrix At) = 97 that determines
the probahbility that a given residue a will become b after time # (& denotes
the substitution-rate matrix that determines the rate of change between
pairs of nucleotides in an infinitely small time interval 4f). we can
compute the maximum likelihood estimate (MLE) of a given branch length
t, i.e. the value of #that maximizes the likelihood of the tree.

For example, in the case of two hypothetical nucleotide sequences x
and . each 95 nuecleotides long with ¥ different nuclectides, exploiting the
simplest evolutionary model of Jukes and Cantor (Jukes and Cantor,
1969) (see next section for details) the MLE of the branch length between

xi and x can be estimated (Figure 3.3) applyving an expectation




Maximum Likelihood (4)

maximization (EM) algorithm. Generally in the case of n sequences x1. ...,
xp with m residues, the probability of generating those residues at the n
leaves of T with branch lengths ¢ can be calculated by taking the produect

of the probabilities of substitutions on all branches of the tree:

P[:.Tl:m...ﬂi'rr_m | Tq?‘) =

2n-2

L
> Qe | [ Pla| aar. t)] [ P(xe.m | Gacir, 1)
=]

i+l @n+3, _.a3n-1 i=n+l i

where ali) denotes the parent node of node i Note that the sum is over all
possible assignments of ar to non-leaf nodes & 1e nodes n+l1 ... 2n-1. The
above probability can be calculated pursuing a post-order traversal (ie.
leaves — root direction) of the tree. exploiting the pruning algorithm
introduced by Felsenstein (Felsenstein, 1981). If the residue at node £is a
then the probability of all the leaves below kis P(L;| a). Having computed
the probabilities P(L;| ) and P(L;| ¢ of all b and ¢, at the daughter nodes
iand jof k the probability P(Li| @) can be calculated as follows:




axXimum LiIKellnoo

Algorithm: Maximum-Likelihood (Felsenstein).
Initialige:
Set! £=2n-1.
Recursion: Compute P(Li| o) for all a as follows:
If kiz leaf node:

Set PlLelad =1ifa = xkm (Lel @) =0if a7 xkm
If £iz an internal node:

Compute P(Ls| @) and P(L;| al for all a at the daughter nodes 1 and j. and set’
P(L:| ) =[ S P(b|a.t)P(Li| b) ]x [ S P(c|a.t)P(Li| ©) } (3.1)
b c

Termination:
Likelihood at site o

P(Im | T,I) = ZQRP(LZJE -1 | Iﬂ}

Source: (Durbin er 2/, 1998).




Maximum Likelihood

Assuming that all 14 sites are independent, the full likelihood is:

M
P(x|T.0) = [ P(x | T.1)
m=1

Note that the pruning algorithm of Felsenstein's calculates
successively the probahbilities of the data on each subtree of the tree
topology T Therefore it is erucial to sum over all the ancestral states of a
node only after having done so for all of its child nodes. In equation 3.1.
the two terms represent the probability that residue a will become & (or ¢
over the branch length # (or £ times the probability of observing the tips
of node i (or j) given the state & (or ¢), summed over all possible states b (or

el




Lengths

branch length {at)
-155 1 I I I I 1 1 1 I 1
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Figure 3.3 The Jog likelihood Plxiam| T o) for two sequences x1. i
with 9 different nucleotidez (nt) and a total length of 95nt,

exploiting the Jukesz and Cantor model. The MLE (0.10123) of the
branch length is shown.



Nucleotide Substitution Models

323 Nucleotide substitution models

Generally, DINA sequences derived from a common ancestor will, over
time, gradually diverge due to substitution of their nuclestidez. The
diztance between two sequences reflects the expected number of nucleotide
substitutions per site, and assuming A constant over time evolutionary
rate, the distance i1z a linear fumction of the time of divergence. The
simplest estimate of the distance between two zequences 15 the proportion
ip) of sites at which the two sequences differ. For example for two
sequences, each 100nt long with 20 different zites, p= 20% = 0.2. However
because over time. the two seguences will accumulate more and more
subztitutions and =zome sites will have changed multiple times, the
ochzerved differencez do not neceszarily reprezent the true number of
substitutions that have occcurred szince the divergence of the two
CEgUEnCes.

Therefore, for seguences diverged long time aro, p underestimates
the number of substitutions, since it doez not take into account multiple
substitutions (Figure 3.4). For that reason, more sophisticated and
realiztic evolutiomary modelz have to be exploited in order to estimate
mors reliably the true evolutionary time =lapsed since the divergsnce of
two zequences, taking into account the various aspects of the dymamics

dictating the substitutions of nucleotide residues.
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Sequences are not what we see ...
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Only two observed
substitutions (p = 0.2)

are inferred, while the [Q;
true number of
substitutions is (p = 1.0)
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Observed vs. Expected number of DNA substitutions. As time since divergence increases, multiple
substitutions start to occur, making number of visible substitutions smaller than the number of actual

ones. Eventually, after long-long time there will be substitutions at every site. Two random sequences
with equal frequencies of base pairs will differ on average in 3/4 of sites. Correction is required to
compensate for the difference in observed and expected number of substitutions.
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3.231 JukesCantor model

The simplest evolutionary model (Fioure 3.3), introduced by Jukes and
Cantor (Jukes and Cantor, 1969), assumes that every nuclectide changes
into any other nucleotide with exactly the same rate o For two nucleotide
residues 7and jiwhere 1 j=T, C, A or G, let gy denote the instantansous
rate of substitution of 7 by 7 Those substitution rates for all 16 different
combinationz of nucleotide pairs can be reprezented in the form of a

substitution-rate matrix &




ukes Cantor

3.23.1 Jukes-Cantor model

The simplest evolutionary model (Fioure 3.3), introduced by Jukes and
Cantor (Jukes and Cantor, 1969), assumes that every nuclectide changes
into any other nucleotide with exactly the same rate o For two nucleotide
residues 7and jiwhere 1 j=T, C, A or G, let gy denote the instantansous
rate of substitution of 7 by 7 Those substitution rates for all 16 different
combinationz of nucleotide pairs can be reprezented in the form of a

substitution-rate matrix &

SBa o o o
o -3¢ o o
O ={qi} =

o -3¢ o

o o o -3

Note that for any nucleotide 7 the total rate of substitution is 3a. and the

order of nucleotides in the matrixis! T, C, A, G.




3.23.1 Jukes-Cantor model

The simplest evolutionary model (Fioure 3.3), introduced by Jukes and
Cantor (Jukes and Cantor, 1969), assumes that every nuclectide changes
into any other nucleotide with exactly the same rate o For two nucleotide
residues 7and jiwhere 1 j=T, C, A or G, let gy denote the instantansous
rate of substitution of 7 by 7 Those substitution rates for all 16 different
combinationz of nucleotide pairs can be reprezented in the form of a

substitution-rate matrix &

SBa o o o

o -3¢ o o

O ={g} =

o -3¢ o

o o a -3a gy dr reprezentz the probability of 7 — 7 change over an infinitely small

nme interval gr However in the caze of biological sequences, We are mors
Note that for anv nuclestide 7 the mterested in longer time rir= 0) periods, over which residue substitutions

order of nucleotides in the matrix i ocour. In other words we want to estimate the ransmion probakbty pe (0

of I being substtuted by ;7 after ume r The 16 different tranziton

probabilitiez pd0 can be represented in the form of a rransiron-

Jukes Cantor (1)

probabilicy matry
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whers:
pelt) = l(1 +3e™)
4

PO =(1-e™)

Uszing the fransition-probabilityr matriz Flft we can calculate over
the time period ¢ the probability of nucleotide § having being substituted
by 7 (Figure 3.6). Note that for f—w, pr(t) = p=() = %4, suggesting that the
nuclzatide eguilibrium frequencies according to the JC model are gr= gc =
ga = go = . In other words, after fime f—w, at every cite of the seguence
so many substitutions have occurred that the target nucleotide 15 random

ii.e. with equal probakility of chserving any of the four nuclestides).




Jukes Cantor (2)

whers:
pr(f) = l[l + 37 |
J; 3

PO={1-e*)

Uszing the tfransitron-probabifitr matriz P we can calculate over

the time period ¢ the probability of nucleotide 1 hy

by 5iFigure 3 61 Note that for f—wo, pe(t) = peirl= 14
— paald)

o PAT()

nuclzotide eguilibrium frequencies according to the
@a = g = 5. In other words, after time ¢, at evf | 0.75
so many substitutions have occurred that the targ

ii.e with equal probakility of cheerving any of the f 0.5 4

(1,25 —fmme s s emmmmm s e r e e A mm S s rssmmsmmsesmpll e

u T T T T T 1
0 0.5 1 1.5 2 2.5 3

d
Figure 3.6 Jukes and Cantor model: transition probabilities prz! and pst/ plotted against
distance o (=3af) & i= expressed as the expected number of substitutions per site.
Accuming that for any nucleotide, the total substitution rate i= 3o (see substifution-rate
matrix @, if two hypothetical sequences are zeparated by time ¢ (ie. diverged from their
common ancestor £/2 ago) the distance dbetween them iz Sar
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Under the JC model, for any nucleotide the total substitution rate i=s 3a.
while the probability p of a nucleotide being different from the nuclectide

of the ancestral sequence is:

3 3(, -3
=3p(r)==(1-e*)=2|1-¢?
p=3p:t) _4[ ) 4[ .]

Consequently, if we know the propeortion p of different sites between

two sequences, we can estimate their distance:

d=_3m{1-%5)
4 3°)

The above equation represents the MLE (Figure 3.3) of the distance
between the two sequences. Note that if two sequences are different in
over 10% of their sites, the above estimate is not applicable. since their

estimated distance becomes infinite.




3.2.3.2 Kimura — 2 parameter model

The JC model fails to capture a very important parameter driving the
dynamics behind nucleotide substitutions, purine to purine (A — G) or
pyrimidine to pyrimidine (T < C) substitutions (i.e. transitions) occur
more frequently than substitutions between purines and pyrimidines (A G
+— (7,C), i.e. transversions. A slightly more complex model of nucleotide
substitutions that accounts for different transition and transversion rates,
was introduced by Kimura (Kimura, 1980). However this model is still far
from realistic. since it assumes (as the JC meodel does) that the nuclectide

equilibrium frequencies are equal. The substitution-rate matrix for the

Kimura (1)

Kimura 2-parameter model (K80) 1s:

| —(@+28) « g B
a —(a+1p) 14 B
I B —(a+2f5) o
Jéj Jéi 4 —(ax+25)]




Kimura (2)

where a denotes the transition and £ the transversion substitution rates.
rezpectivelv. Note that the diztance 4 between two sequences iz now {(a +
28t and the total substitution rate for each nucleotide iz a + 28 In a
similar principle to the one used for the JC model. it can be shown that the

estimate of the distance between two sequences is:

d=—tin(1-25-7)-1in(1-27)
2 v

where S and |V are the fractions of transitions and transversions in the
alisnment of two sequences, respectively. Exploiting the K80 model with
transition/transversion rate (& = 0.75), for the same example of the two

segquences (each 95nt long with 9 different nucleotides! used in Figure 3.3,

the MLE of their distance is 0.10136. (JC distance = 0.10128); note that
the K850 model with £ = 0.5 reduces to the JC model. giving the same

distance estimate.




3.233 F84 model

A more sophisticated model (F84) of substitution with five free
parameters, allowing different transition and transversion substitution
rates ( a = #). as well as different nucleotide equilibrium frequencies (gt =
gc = gu = go) was proposed by Felsenstein: this model is the one exploited
by the DNAML module of the PHYLIP package (Felzenstein, 1989) and
the transition probabilities for this model were firstly deseribed by Kishino
and Hasegawa (Kishino and Hasegawa. 1989). The F84 model reduces to
the K80 model for gr = gc = g1 = gc. and the JC model for 2a = fand g7 =

gC = ga = 4G.
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Figure 3.5. Three models of nucleotide substitution: JC (Jukes and Cantor,
1969). K80 (Kimura, 1980) and F84 (Kishino and Hasegawa, 1989) Arrows of

different thickness represent different substitution rates and circles of different
zize the different nucleotide equilibrium frequencies.



Substitution Rate Variation (1)

3.2.34 Substitution rate variation
So far all the evolutionary models discussed rely on a very simplifying
assumption. each site in the sequence is evolving with the same rate. 1.e. a
single substitution matrix describes all the different nucleotide sites.
However in biological sequences. this assumption rarely holds: for
example, in the case of protein coding genes for each codon there are three
different nuclectide pozitions, ie. pesition 1, 2 and 3, and because of the
genetlic code degeneracy each pesition 1s under different mutational
pressure. In the case of RINA coding genes. secondary loop and stem
structures evelve with different substitutions rates. Therefore, assuming a
single evolutionary rate across all the nucleotide sites underestimates the
true distance between two seqguences.

The rate variation among sites can be approximated by a statistical
distribution, in which case the rate r for any site is a random variable
drawn from that distribution. It has been shown that the rate variation

among sites approximates the gamma distribution (Yang, 1994, Yang.

1996):




Substitution Rate Variation (2)

r ~ E—ﬁ:'ra’—lﬁa
g{}yg:,ﬁ}_ 1_.(&_:]

for 0 = r, @ = =, where a and £ are the shape and the scale parameters.
respectively. The mean of the distribution is Flr)=a/ & and the variance
varir!l = @/ #2. The rate variation among sites is inversely correlated with

the a parameter (Figure 3.7):

» If @< 1. then most sites have very low substitution rates, and very
few have very high rates,

* 1f @+ =, then all sites have the same rate.

* 1f o> 1. then most sites have intermediate rates and few sites have

either very high or very low rates.




Figure 3.7: (Gamma distribution g (r a 8: probability densities for different values of
the a parameter. In thiz example, @ = £ The mean of the distribution iz Flri=a/ =1
and the variance varlr' = a/ %= 1/a.
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I will give an example showing that ignoring the rate variation among
sites, leads to underestimation of the true distance between two
sequences. Considering again the hypothetical sequences (length: 95nt.
mismatches: 9nt) discussed in the Maximum Likelihood section above, the
JC distance with the a parameter set to 0.5 (i.e. most sites have very low
substitution rate), iz 0.11627, much higher than the JC distance (=

0.10128) ignoring the rate variation among sites.




Substitution Rate Variation (5)

One way of estimating the different substitution rates of different
sites in a multiple-alignment of sequences, is to treat the unknown 7 rate
of each site 7 as the hidden state and the residues of each column in the
alienment as the observed state in a Hidden Markov Model (HMM). With
a HMM implementation., we can estimate the most probable state (ie.
rate) path that best describes the data. Defining the number of expected
number k& of different rates 17y and a prior probability distribution that
determines the probabilities of occourrence of each rate. we can infer for
each site 7 the most probable rate 17 An EM technigue, eg the Baum-
Welch algorithm (Baum. 1972) can be uszed to estimate the parameters

(i.e. emiszsion and transition prebabilities) of the HMM and a dynamie
programming approach. e g. the Viterbi algorithm (Viterbi, 1967) can be

used to estimate the most probable rate path (Figure 3.8). For details
about the Viterbi and the Baum-Welch algorithm refer to chapter 2. A
HMM-based implementation for inferring different rates of evolution at
different sites, was introduced by Felsenstein and Churchill (Felsenstein
and Churchill, 1996) and implemented in the DNAML module of the
PHYLIP package (Felsenstein, 1989).




1 2 3 45 617 8
AGCTGAAG
CAAAGGAG
CGTGGGAG
CGGCGAAG

[ OOm-mOD0O00D
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Figure 3.8° An example of four hypothetical sequences, sach 2nt long.
Each nucleotide site evolves under a different substitution rate (nn =
> r3). Azzuming that there arve & (=3) different substitution rates,
implementing a Hidden Markeov Model (HMM) approach, we can infer
the most likely rate rifor each site.

Substitution Rate Variation (6)




drameter Ccstimation

3235 Parameter estimation

Although the Maximum Likelihood method can produce a very reliable
tree topology with all the parameters (e.g. node/branch order and branch
length) optimized. in the case of a large number of sequences it can be very
computationally intensive. The overall aim is two-fold; search through all
the possible tree topologies and then for each topology compute the
maximum likelihood estimate of its branch lengths Although the ML
method is not applicable in the case of a large number of sequences,
searching for the ML tree for a set of four (nucleotide or protein) sequences

is a very straight forward computation (15 different rooted tree topologies).




Parameter Estimation (2)

This concept iz exploited bv the gquartet puzzling algorithm
(Strimmer and von Haeseler, 1996) and implemented bv the TREE-
PUZZLE software (Schmidt ef al. 2002). The guartet puzzling algorithm

consists of three steps. 1. All possible quartet ML trees are reconstructed
(ML step). 2. The quartet trees are repeatedly combined to an overall
intermediate tree l(puzzling step) adding sequences step-wise (with
multiple input orders). 3. In the consensus step. a majority rule consensus
of all intermediate trees is constructed. DBecause the quartet puzzling
algorithm 1s efficiently fast. the parameters e.g. the a shape parameter of
the gamma distribution for among site rate variation, the
transition/transverszion rate and the nucleotide frequenciez can he
accurately estimated from the data. prior to the tree building (e.g. NJ or

ML) method.




drameter Ccstimation

Using the whole-genome sequence alignment of the 15 (11
Salmonella and four outgroup strains) reference genomes, built by the
MAUVE method, and running the TREE-PUZZLE algorithm the
parameters of the evolutionary model were estimated from the data (Table

3.4). The multiple sequence alicnment and the estimated model
parameters were fed into the NEIGHEBOR and the DNAML meodules of
PHYLIP (Felsenstein. 1989) to build the Neighbor-Joining and the

Maximum Likelihood tree topology of the dataset, respectively.




Parameter Estimation (4)

Model of gubstitution

HEYES {Hasepawa e al, 1985}

Expected transition/TanSversion rato 222
Exzpected pyrimidine iransition/purine transition ratio 1.0
A-Crate 1.00000
A-Grate 4 38068
. A-T rate 1.00000
Rate matrix R
C-(z rate 1.00000
C-T rate 4 38058
T rate 1.00000
pilA) 23.8%
ids fre . piiCh 25.2%
Pl 26.0%
piiT) 23.9%

Camma distribution — alpha parameter

a=10.26,5E 000

Mumber of Gamma rate catezoriss” 4

Catepory Relative rate
1 (.0008
2 0.0696
3 0.5975
) 2.2321

Categories 1-4 approXimats a coltinmaous
Gamma-distrkbuncn with expectation 1 and
varlance 3.587.

Quartst Puzzling

Mumber of puzzling steps 1000
Analysed quartets 1365
Fully resolved quartets 1365
Partly resolved quartets 0
Unresolved guartets 0




Maximum Parsimony Algorithm

Algorithm’ Maximum Parzimony for inferring the relative time of HGT events.

Define: I iz the number of the node. ais the state of £ (07 or “1” for gene absence or
presence, respectively).

A Ancestral state reconstruction:
Iteration (post-order tree traversal 1e. leaves — root direction!:
If iz a leaf node:
Set Sr=a.
If iz an internal node:
Compute 37and 3 for all o at the daughter nodes rand 7 of &
SEl
For =0, compute:
A= la—Si+la-581 (1)
For a=1, compute:
B=la-Sil+la-58; (2)
if (A<B) then set Sxr=0
elsif (A>B) then set Sr=1
else set Sx =[0,1]

Note® In caze of equally parsimonicus ancestral ztates, ie. 3= [0.1] then compute (1) and
(2) for both statez of Sz

Termination:
If 2= 2pn -1 where »niz the number of taxa.

B. Relative time of acquisition inference:

For all £in the node path leading from the root of the tree to the node of the reference
genome:

If Sr=1 then set t =k, (break loop).

else £——

where " denotes the relative time of HGT in the Sa/monells lineage (relative to the
reference genome).
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Maximum Parsimony Example
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Summary

Tahble 3.5 A list of PHA genes. and their inferred relative time of insertion.

S typhi CT18 S paratyphi A SARB42 S typhimurium LT2
Relative time of | PHA Relative time of PHA Relative time of PHA
insertion genes |insertion genes | insertion genes
Branch 1 493 Branch 1 434 Branch 1 473
Branch 2 124 Branch 2 120 Branch 2 128
Branch 3 316 Branch 3 268 Branch 3 249
Branch 4 g G2 Branch 4 g 48 Branch 4 pos 109
Branch 5 zmq 343 Branch 5 [zpa 141 Branch 5 = 228
Branch CT18 76 Branch SARB42 0 Branch LT2 84
Total 1414 Total 1.011 Total 1,271
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