
Resolving the Structural Features of Genomic 

Islands



Genomic Island Structure

�Large inserts of horizontally acquired DNA (10 to 200kb)

�Sequence composition different from the core backbone composition

�Insertion usually adjacent to RNA genes

�Often flanked by direct repeats or insertion sequence (IS) elements

�Limited phylogenetic distribution i.e. present in some genomes but absent 

from closely related ones

�Often mosaic structures of several individual acquisitions

�Genetic instability

�Presence of mobility genes (e.g. integrase, transposase)



Hacker J et al., Mol Microbiol 1997

Genomic Island Structural
Variation (1)



Hacker J et al., Mol Microbiol 1997

Genomic Island Structural
Variation (1)



Hacker J et al., Mol Microbiol 1997

Genomic Island Structural
Variation (1)



Hacker J et al., Mol Microbiol 1997

Genomic Island Structural
Variation (1)



Hacker J et al., Mol Microbiol 1997

Genomic Island Structural
Variation (1)



Hacker J et al., Mol Microbiol 1997

Genomic Island Structural
Variation (1)

�What is the structure of Genomic 

Islands (GIs)?

�How can we reliably predict GIs 

given their structural variation?
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-110-5.5132850SPI-10S. typhi CT184683690..4716539

-111-2.42133562SPI-7S. typhi CT184409511..4543072

-000-7.7424672SPI-4S. typhi CT184321943..4346614

-100-517348SPI-3S. typhi CT183883111..3900458

-111-14.036809SPI-8S. typhi CT183132606..3139414

-111-3.016364SPI-15S. typhi CT183053654..3060017

-000-6.2239773SPI-1S. typhi CT182859262..2899034

-1004.6216281SPI-9S. typhi CT182742876..2759156

-100-13.395122SPI-17S. typhi CT182460780..2465939

-100-4.9139740SPI-2S. typhi CT181625084..1664823

-110-8.527580SPI-5S. typhi CT181085156..1092735

-111-9.984478SPI-16S. typhi CT18605515..609992

-100-0.5758896SPI-6S. typhi CT18302172..361067

+111-6.375544PAI11S. agalactiae NEM3161255736..126127

+1002.0433890PAI10S. agalactiae NEM3161163554..1197443

+0001.6647068PAI8S. agalactiae NEM3161013026..1060093

+0011.6247213PAI7S. agalactiae NEM316711791..759003

+0011.6447095PAI3S. agalactiae NEM316385739..432833

+010-1.7414707vSh3S. haemolyticus JCSC14352578642..2593348

+111-4.0616326vSh2S. haemolyticus JCSC14352117669..2133994

+011-2.8710870vSh1S. haemolyticus JCSC14351012154..1023023

+111-6.438415vSe2S. epidermidis ATCC153051519667..1558081

+001-1.4315019vSe1S. epidermidis RP62A2251120..2266138

+011-2.5615680vSa4S. aureus Mu502133112..2148791

+110-4.1626453vSaßS. aureus Mu501932974..1959426

+100-4.2432137vSaßS. aureus MW21891660..1923796

+111-4.4914457vSa3S. aureus MW2839352..853808

GramRNAIntegraseRepeats
G+C% 
deviation

SizeGIHostCoordinates
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Training Dataset (Phylogeny)



11 Salmonella Strains + 4 outgroups 13 Staphylococcus Strains + 4 outgroups

13 Streptococcus Strains + 4 outgroups
668337331Gram +/-

266127120Gram +

421210211Gram -

1407466Staphylococcus

1075354Streptococcus

421210211Salmonella

Total
Negative

examples

Positive

examples
Datasets
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Test dataset

1567878Staphylococcus

688344344Gram +/-

266133133Gram +

422211211Gram -

55

211

Non HGTs

110

422

Total

55Streptococcus

211Salmonella

HGTsGenomes

Comparative 
analysis

Random Sampling following the 
size distribution of GIs
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Generalized Linear Models

Generalized linear models (GLMs) are a commonly used form of model for both

classification (separate data into two or more classes) and regression (estimate the value 

of a continuous function) problems. GLMs take the form:
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where φ is a set of M basis functions (which can be arbitrary real-valued functions) and β

is a vector of weights.

One way of looking at generalized linear models is that the basis functions define a

projection of the data into a high-dimensional space (called feature space) where the

data is either linear (for regression problems) or linearly separable (for classification

problems). An important step in GLM learning is to find a feature space which allows a 

linear model to fit the training data, while not being of such high dimensionality that 

overfitting becomes a problem.
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The Relevance Vector Machine (RVM) is a sparse method for training 

generalized linear models. This means that it will generally select only a 

subset (often a small subset) of the provided basis functions to use in the 

final model.

Relevance Vector Machine

RVM download:

http://www.miketipping.com/index.php?page=rvm

http://www.vectoranomaly.com/downloads/downloads.htm
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the weights. If we merely wished to perform classical GLM training, we would have no preference for any particular 

value of the weights, and would encode this by providing a very broad (“non-informative”) prior. However, as discussed 

previously, we believe that simple models are more likely to make useful generalizations. A preference for simplicity

can be encoded using an Automatic Relevance Determination prior. In this case, we introduce an additional vector of 

parameters, α. Each element of the  vector controls the width of the prior over the corresponding weight:
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The RVM “trick” is to define the inverse variances of 

these Gaussian distributions, α, as variables, and to 

infer their values as well. This form of prior is known as 

an automatic relevance determination (ARD) in Mackay 

1994. The inclusion of an ARD prior rewards simplicity.
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To include these new  parameter in the inference process, we also need to specify a hyperprior over values of α. 

For the RVM, a very broad gamma distribution is used.

Considering just a single basis function, there are two possibilities:

• The basis function provides additional information about the specified classification problem. When its weight is 

set to some non-zero value, the amount of misclassified training data is reduced. This increases the value of 

equation 7, and therefore the probability of that model given the data.

• If the basis function provides no information because it is irrelevant to the problem, there is no value of the 

weight that will lead to a significant increase in the likelihood. At this point, the prior term in the model comes into 

play: by setting the αi parameter to a large value, the prior distribution P(Wi) becomes sharply peaked around 

zero. By then setting Wi to zero, the posterior probability of the model is maximized. 

•Similarly, when two basis functions offer redundant information, the posterior is maximized by using only one of 

them in the model. When a basis function has a sufficiently high α, it can be marked as irrelevant, and removed 

from the model. As a result, the RVM will learn simple models even when presented with a large starting set of 

basis functions. In addition, the computational cost if each iteration falls with the number of dimensions under 

consideration.
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[Relevance or Support] Vector Machine?

SVM key feature, in the classification case: its target function attempts to minimise a measure of error on the training 

set while simultaneously maximising the 'margin' between the two classes (in the feature space implicitly defined by 

the kernel). 

This is a highly effective mechanism for avoiding overfitting, which leads to good generalisation, and which 

furthermore results in a sparse model dependent only on a subset of kernel functions: those associated with training 

examples that lie either on the margin or on the 'wrong' side of it.

However, despite its success, we can identify a number of significant and practical disadvantages:

Although relatively sparse, SVMs make unnecessarily liberal use of basis functions since the number of support 

vectors required typically grows linearly with the size of the training set.

Predictions are not probabilistic. In regression the SVM outputs a point estimate, and in classification, a 'hard‘ binary 

decision. Ideally, we desire to estimate the conditional distribution in order to capture uncertainty in our prediction. 

Posterior probability estimates have been coerced from SVMs via post-processing (Platt, 2000), although we argue 

that these estimates are unreliable.

It is necessary to estimate the error/margin trade-off parameter 'C'. This generally entails a cross-validation.

Tipping 2001
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that these estimates are unreliable.

•It is necessary to estimate the error/margin trade-off parameter 'C'. This generally entails a cross-validation.

Tipping 2001



[Relevance or Support] Vector Machine?

SVM key feature, in the classification case: its target function attempts to minimise a measure of error on the training 

set while simultaneously maximising the 'margin' between the two classes (in the feature space implicitly defined by 

the kernel). 

This is a highly effective mechanism for avoiding overfitting, which leads to good generalisation, and which 

furthermore results in a sparse model dependent only on a subset of kernel functions: those associated with training 

examples that lie either on the margin or on the 'wrong' side of it.

However, despite its success, we can identify a number of significant and practical disadvantages:

•Although relatively sparse, SVMs make unnecessarily liberal use of basis functions since the number of support

vectors required typically grows linearly with the size of the training set.

•Predictions are not probabilistic. In regression the SVM outputs a point estimate, and in classification, a 'hard‘ binary 

decision. Ideally, we desire to estimate the conditional distribution in order to capture uncertainty in our prediction. 

Posterior probability estimates have been coerced from SVMs via post-processing (Platt, 2000), although we argue 

that these estimates are unreliable.

•It is necessary to estimate the error/margin trade-off parameter 'C'. This generally entails a cross-validation.

Tipping 2001

RVM - none of the above limitations:

•Exploits overall fewer basis functions

•Increased sparsity

•Avoid overfitting

•Simpler models

•Probabilistic Bayesian Learning with posterior probability estimates



SVM

RVM



http://biojava.org/wiki/Main_Page

Biojava Project
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GI structural models

Vernikos GS et al., Genome Res 2008



GI structural models
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GI structural models

StaphStrep

Strep
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GI structural models

StaphStrep

Strep
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Vernikos GS et al., Genome Res 2008



GI structural models

Feature Importance
IVOM

INSP

SIZE

DENSITY

REPEATS

INTEGRASE

PHAGE

RNA

Salmonella

Staphylococcus

Streptococcus

Salm-Staph-Strep (all)

Vernikos GS et al., Genome Res 2008
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Multi vs single-featured GI structural models

Staphylococcus
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Multi vs single-featured GI structural models

Staphylococcus
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Multi vs single-featured GI structural models

Staphylococcus
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Multi vs single-featured GI structural models

Staphylococcus
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Multi vs single-featured GI structural models

Staphylococcus
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Multi vs single-featured GI structural models

Staphylococcus
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Multi vs single-featured GI structural models

Staphylococcus
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1) Si = -0.764 + 6.203 (x)IVOM + 0.000(x)INSP + -4.956(x)SIZE + 0.000(x)DENS + 0.635(x)REPEATS + 0.995(x)INT + 2.086(x)PHAGE + 1.968(x)RNA

2) Si = -2.978 + 4.151 (x)IVOM + 3.219(x)INSP +  0.000(x)SIZE + 0.000(x)DENS + 2.185(x)REPEATS + 3.351(x)INT + 0.000(x)PHAGE + 0.000(x)RNA

3) Si = -0.005 + 0.000 (x)IVOM + 0.000(x)INSP + -4.324(x)SIZE + 0.000(x)DENS + 0.360(x)REPEATS + 1.303(x)INT + 3.995(x)PHAGE + 0.000(x)RNA

4) Si = -4.583 +12.752 (x)IVOM + 0.000(x)INSP + -2.843(x)SIZE + 2.486(x)DENS + 0.000(x)REPEATS + 1.552(x)INT + 2.157(x)PHAGE + 0.000(x)RNA

5) Si = -1.544 + 3.756 (x)IVOM + 2.842(x)INSP + -2.583(x)SIZE + 0.000(x)DENS + 1.297(x)REPEATS + 1.892(x)INT + 2.554(x)PHAGE + 0.000(x)RNA

6) Si = -0.923 + 6.528 (x)IVOM + 0.000(x)INSP + -4.462(x)SIZE + 0.000(x)DENS + 0.771(x)REPEATS + 1.404(x)INT + 2.441(x)PHAGE + 1.159(x)RNA

7) Si = -0.763 + 4.330 (x)IVOM + 2.516(x)INSP + -4.941(x)SIZE + 0.000(x)DENS + 1.030(x)REPEATS + 1.630(x)INT + 2.027(x)PHAGE + 1.842(x)RNA

8) Si = -0.879 + 4.659 (x)IVOM + 2.795(x)INSP + -4.434(x)SIZE + 0.000(x)DENS + 0.897(x)REPEATS + 1.553(x)INT + 2.433(x)PHAGE + 1.319(x)RNA

9) Si = -1.293 + 5.285 (x)IVOM + 3.072(x)INSP + -3.914(x)SIZE + 0.000(x)DENS + 1.007(x)REPEATS + 1.668(x)INT + 2.847(x)PHAGE + 0.000(x)RNA

10)Si = -1.057 + 4.234 (x)IVOM + 3.003(x)INSP + -3.396(x)SIZE + 0.000(x)DENS + 0.927(x)REPEATS + 1.722(x)INT + 1.664(x)PHAGE + 1.539(x)RNA

11)Si = -1.627 + 3.552 (x)IVOM + 0.000(x)INSP + -4.138(x)SIZE + 0.727(x)DENS + 1.449(x)REPEATS + 1.728(x)INT + 3.685(x)PHAGE + 0.000(x)RNA

1) Salmonella

2) Streptococcus

3) Staphylococcus (with rRNA)

4) Staphylococcus

5) Staph-Strep

6) Salm-Staph

7) Salm-Strep

8) Salm-Staph-Strep (all3)

9) Salm-Staph-Strep (set1)

10) Salm-Staph-Strep (set2)

11) Salm-Staph-Strep (set3)

Generalized Linear Models



Generalized Linear Models

1) Si = -0.764 + 6.203 (x)IVOM + 0.000(x)INSP + -4.956(x)SIZE + 0.000(x)DENS..

2) Si = -2.978 + 4.151 (x)IVOM + 3.219(x)INSP +  0.000(x)SIZE + 0.000(x)DENS..

3) Si = -0.005 + 0.000 (x)IVOM + 0.000(x)INSP + -4.324(x)SIZE + 0.000(x)DENS..

4) Si = -4.583 +12.752 (x)IVOM + 0.000(x)INSP + -2.843(x)SIZE + 2.486(x)DENS..

5) Si = -1.544 + 3.756 (x)IVOM + 2.842(x)INSP + -2.583(x)SIZE + 0.000(x)DENS..

6) Si = -0.923 + 6.528 (x)IVOM + 0.000(x)INSP + -4.462(x)SIZE + 0.000(x)DENS..

7) Si = -0.763 + 4.330 (x)IVOM + 2.516(x)INSP + -4.941(x)SIZE + 0.000(x)DENS..

8) Si = -0.879 + 4.659 (x)IVOM + 2.795(x)INSP + -4.434(x)SIZE + 0.000(x)DENS..

9) Si = -1.293 + 5.285 (x)IVOM + 3.072(x)INSP + -3.914(x)SIZE + 0.000(x)DENS..

10)Si = -1.057 + 4.234 (x)IVOM + 3.003(x)INSP + -3.396(x)SIZE + 0.000(x)DENS..

11)Si = -1.627 + 3.552 (x)IVOM + 0.000(x)INSP + -4.138(x)SIZE + 0.727(x)DENS..



“Genus-blind” cross validation
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GI Superfamily
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GI Superfamily

GI Families
Superfamily:

�Composition

�Phage Pfam domains

�Integrase Pfam domains

�Size

Salmonella:

�RNA
Staphylococcus:

�Gene density

Streptococcus:

�Repeats

�Insertion point 

within CDS loci



1. 10-20%

2. Structural intersection between true GIs and random regions

3. Some random regions were sampled close (e.g. tRNA locus) to true GIs

4. Phylogenetic resolution:

A. Some GIs might not be true GIs if we increase the resolution

B. Some random regions might be sampled over ancient GIs (not included 

in the true GI dataset)

Error Margin



�Training on cross-genera dataset → GLMs converge over similar GI 

structure

�GIs represent a superfamily of mobile elements with core and variable

structural features rather than a well-defined family

�When the taxa resolution increases, i.e. looking within genera/species 

boundaries, distinct families of GI structures emerge

Summary


