Θεωρία Πληροφορίας και Κωδίκων

Δρ. Νικόλαος Κολοκοτρώνης Λέκτορας

Πανεπιστήμιο Πελοποννήσου Τμήμα Επιστήμης και Τεχνολογίας Υπολογιστών Τέρμα Οδού Καραϊσκάκη, 22100 Τρίπολη

E-mail: nkolok@uop.gr Web: http://www.uop.gr/~nkolok/

Ενότητα 3^η: σχεδιασμός απλών τμηματικών κωδίκων

http://eclass.uop.gr/courses/CST273/

Περιεχόμενα Ομιλίας

- 🕕 Περιεχόμενα της ομιλίας
- ② Οικογένειες γραμμικών τμηματικών κωδίκων
 - Κώδικες Hamming
 - Κώδικες LDPC
- 3 Σύνοψη & βιβλιογραφία

Ορισμός Κωδίκων Hamming

Definition (Hamming Codes)

For any positive integer $m \geq 3$ there exists an (n,k) code $\mathscr C$ with the following parameters

- code length $n = 2^m 1$;
- number of information symbols $k = 2^m m 1$;
- number of parity-check symbols m = n k; and
- error correcting capability t = 1 ($d_{min} = 3$).

Such a code is called a Hamming code

Ορισμός Κωδίκων Hamming (συν.)

Property

Hamming codes have the following properties:

- the parity-check matrix *H* consists of all the nonzero *m*-tuples as its columns
- in systematic form $\mathbf{H} = \begin{pmatrix} \mathbf{I}_m & \mathbf{P}^t \end{pmatrix}$ and the rows of \mathbf{P} are the nonzero m-tuples of weight ≥ 2
- in systematic form $G = (P I_{2^m-m-1})$

The minimum distance of \mathscr{C} equals 3 since, for any columns \mathbf{h}_i , \mathbf{h}_j of \mathbf{H} , we have

$$\exists \mathbf{h}_k : \mathbf{h}_k = \mathbf{h}_i + \mathbf{h}_j \Rightarrow \mathbf{h}_i + \mathbf{h}_j + \mathbf{h}_k = 0$$

(hint:
$$\mathbf{v} \cdot \mathbf{H}^t = \mathbf{0}$$
)

Παράδειγμα (7,4) Κώδικα (συν.)

The parity-check matrix of the (7,4) linear block code \mathscr{C} is given by

$$\mathbf{H} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \mathbf{G} = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

This is a Hamming code with parameters

- code length $n = 7(2^3 1)$
- number of information symbols $k = 4(2^3 3 1)$
- number of parity-check symbols m = 3 (7 4)

Ιδιότητες Κωδίκων Hamming

Definition (Perfect Codes)

An (n, k) t-error-correcting code $\mathscr C$ is called a *perfect code* if its standard array has all error patterns of weight $\leq t$ as coset leaders, and no others

Proposition

Hamming codes are perfect single-error-correcting codes

Proof

There exist 2^{2^m-1} possible words, 2^{2^m-m-1} codewords, and 2^m error patterns of weight ≤ 1 (and length 2^m-1)

Ιδιότητες Κωδίκων Hamming (συν.)

Definition (Shortened Hamming Codes)

Any code obtained from an $(2^m - 1, 2^m - m - 1)$ Hamming code \mathscr{C} by deleting l columns from H is called a *shortened Hamming code*

Such codes have the following parameters

- code length $n = 2^m l 1$;
- number of information symbols $k = 2^m m l 1$;
- number of parity–check symbols m = n k; and
- error correcting capability $d_{\min} \geq 3$.

Note: rate is decreased

Ιδιότητες Κωδίκων Hamming (συν.)

Example

Suppose we delete from P^t in H all even-weight columns; then we obtain a code of length 2^{m-1} , and

- all columns in *H* have odd weight;
- no three columns add to zero; and
- minimum distance equals $d_{\min} = 4$.

Definition (Dual Hamming Codes)

The dual of an $(2^m-1,2^m-m-1)$ Hamming code $\mathscr C$ is an $(2^m-1,m)$ linear block code

• its codewords are the $2^m - 1$ vectors of weight 2^{m-1} , plus the all–zero vector

Ιδιότητες Κωδίκων Hamming (συν.)

The weight enumerators A(z), B(z) of a Hamming code and its dual are given by

$$A(z) = 2^{-m} (1+z)^{-1} \left[(1+z)^{2^m} + (2^m - 1) (1-z^2)^{2^{m-1}} \right]$$
 (1)

$$B(z) = 1 + (2^{m} - 1)z^{2^{m-1}}$$
(2)

So, it is easier to compute the probability $Pr_u(E)$ using (2)

The Hamming codes can be decoded by using the techniques mentioned so far

Γενικά Περί LDPC Κωδίκων

- Low-density parity-check (LDPC) codes are an important class of Shannon limit (or channel capacity)-approaching codes
- They were discovered by Gallager in the early 60's but ignored; it was Tanner's work that played a key role
 - graphical interpretation of LDPC codes
- Gallager did not provide a method to allow for algebraic and systematic construction of LDPC codes
 - they are specified in terms of their parity-check matrices
 - constructions based on finite geometries are now used
- Compared to turbo codes, LDPC codes
 - do not require a long interleaver to achieve good performance
 - have better block error performance
 - have a much simpler decoding (as it is not Trellis based)

Ορισμός LDPC Κωδίκων

Definition (LDPC Code)

An LDPC code \mathscr{C} is defined as the null space of a parity–check matrix \boldsymbol{H} that has the following structural properties:

- **①** each row and column of ${\it H}$ consists of ρ and γ 1's respectively;
- ② the number λ of 1's in common between two columns of $\textbf{\textit{H}}$, satisfies $\lambda \leq 1$; and
- **3** both ρ, γ are small compared to the length n of the code and the number of rows in \mathbf{H}

Such an LDPC code is called (γ, ρ) -regular LDPC code; otherwise, it is called *irregular*.

Ορισμός LDPC Κωδίκων (συν.)

Definition (Density of LDPC Code)

The density r of an LDPC code \mathscr{C} is defined as the number of 1's in Hover the total number of its entries:

$$r = \frac{\rho}{n} \qquad \Leftrightarrow \qquad r = \frac{\gamma}{J}$$
 (3)

where *J* is the number of rows in *H* (hint: $\exists \rho J = \gamma n \text{ 1's in } H$)

Note

- Property 2 also implies that no two rows of **H** have more than one 1 in common
- The rows of **H** need not be LI; if they are LI, then J = n k
 - ▶ in general, we need to find rank(H)

Παράδειγμα LDPC Κώδικα

The parity–check matrix of an (15,7) LDPC code is shown next, with density 0.267

This is a (4,4)-regular LDPC code

Κατασκευή LDPC Κώδικα

Construction (Gallager)

- **①** Choose positive integer k > 1, and parameters ρ, γ
- **②** Construct a $k\gamma \times k\rho$ parity-check matrix **H** as follows

$$\boldsymbol{H} = \begin{pmatrix} \boldsymbol{H}_1 \\ \vdots \\ \boldsymbol{H}_{\gamma} \end{pmatrix} = \begin{pmatrix} \boldsymbol{H}_{11} & \cdots & \boldsymbol{H}_{1k} \\ \vdots & & \vdots \\ \boldsymbol{H}_{\gamma 1} & \cdots & \boldsymbol{H}_{\gamma k} \end{pmatrix} \tag{4}$$

and each block \mathbf{H}_i , $i = 1, ..., \gamma$, has size $k \times k\rho$ whereas block \mathbf{H}_{ii} , j = 1, ..., k, has size $k \times \rho$

3 Fix the ρ 1's of the jth row of H_1 to be in the jth row of H_{1j}

$$H_{1j} = \begin{pmatrix} \dots \\ \mathbf{1}_{\rho} \\ \dots \end{pmatrix} \leftarrow j \text{th row}$$
 (5)

Κατασκευή LDPC Κώδικα (συν.)

- **1** Obtain the other submatrices H_2, \ldots, H_{γ} from H_i by appropriate column permutations
- **5** The parity-check matrix **H** has $k\rho\gamma$ 1's and a total of $k^2\rho\gamma$ entries; therefore its density is

$$r = \frac{1}{k}$$

Note

- We can make the density arbitrarily low by choosing large k
- The problem with this construction is that no systematic way is proposed for choosing the column permutations for H_2, \ldots, H_{γ}

Προτεινόμενη Βιβλιογραφία

T. M. Cover and J. A. Thomas Elements of Information Theory John Wiley & Sons, 2006

R. Gallager Information Theory and Reliable Communication John Wiley & Sons, 1968

S. Lin and D. Costello Error Control Coding, 2nd ed. Prentice-Hall, 2004