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Abstract: We generalise a differential detection
technique, introduced elsewhere for a Gaussian
minimum shift keying (GMSK) scheme, to include
any correlative encoded continuous phase modu-
lated (CECPM) signalling format. The proposed
symbol-by-symbol receivers employ decision feed-
back to partially remove the effects of the destruc-
tive intersymbol interference (ISI) which corrupts
the differentially detected CECPM signal. After
achieving wider eye opening with the decision
feedback, the outputs of the two or more differen-
tial detectors are jointly utilised to further
improve the performance. As a typical example of
the CECPM family of signals and because of its
excellent spectral characteristics, the new receiver
configurations employing up to 3-bit differential
detectors have been applied to a tamed frequency
modulation (TEM) signal. Bit error rate (BER)
performance evaluation results have indicated that
performance improvements of more than 5 dB (at
BER = 107%) over a conventionally differential
detected TFM scheme are possible. As compared
with a limiter/discriminator receiver employing
maximum likelihood sequence estimation (MLSE),
the proposed receivers offer gains of more than 2
dB (at BER = 1079%),

1 Introduction

In a recent paper [1], a new detection technique based on
decision feedback and signal combining, which improves
the performance of differential detected GMSK schemes,
has been introduced. GMSK belongs to the family of
CECPM signals, which have well known attractive
properties such as constant envelope and compact spec-
trum [2, 3]. Examples of other popular CECPM signals
include partial response continuous phase modulation
(PRCPM) [4], correlative phase shift keying (CPSK) [5],
duobinary frequency shift keying (DFSK) [6], tamed fre-
quency modulation (TFM) [7] and generalized TFM
(GTFM) [8].
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Since the various CECPM schemes have advantages
and disadvantages, the choice of signal depends on the
particular application. In general the tradeoffs considered
are narrow power spectrum, low out-of-band energy,
better bit error rate (BER) performance, and low overall
implementation complexity [9].

Motivated by the performance improvements of the
detection technique reported in [1], in this paper we
present its generalisation so that any CECPM scheme
employing differential detection can be accommodated.
As an example, we apply the proposed generalised tech-
nique to improve the performance of a differentially
detected TFM signal.

2 m-Bit differential detection of CECPM schemes

The block diagram of the system under consideration is
given in Fig. 1. Its transmitter consists of a differential
encoder (DE), a correlative encoder (CE), a premodula-
tion lowpass filter (LPF), which has an impuise response
h(f), and an FM modulator with a modulation index
m,, = 0.5. The DE is optional, and its presence and struc-
ture depend on the particular CECPM scheme as well as
on the differential receiver to be employed. When the DE
is not used, g, = b,. The a;s are equiprobable binary
random variables taking values from the alphabet {+1}.
The CE is described by the following system polynomial
[10]:

1
D

> gD 0]

en j=—1

F(D) =

where D is the delay operator corresponding to a T
second delay [10], and

D= Y g @

In eqn. 2 the g;s represent the coefficients of the correla-
tive encoder, and /, n are integers greater than or equal to
zero. Furthermore, it will be assumed that the LPF, h(z),
satisfies the following relation:

KT 12 ifk=0
h(z) dr = 3
J,:T,T () dz {0 otherwise &
The input to the CE is a sequence of impulses, i.e.
biy= Y bt —kT) 4
k=—w
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where T is the symbol duration. The output of the LPF
can be expressed as

i c h(t — kT)

an m-bit differential detector. In general, the output of the
m-bit differential detector, d,(f), is obtained by lowpass
filtering the product y(:) with an mT delayed and 0,

s(t) = ®)] phase-shifted version of itself, i.e.
k=—w
with ¢, given by d,(t) = rit)r(t — mT) cos [an,,
1 n o) t
“=p 2 b jg; ©) x ¥ c,f Wz —jT)dt — em] +n,{t) (10
en j=-1 e demT
dy(t)
X = LPF
T 8,
FM WGN =
mod. g
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| el DE | =] CE BPF S
}4 ht) @ \:b . ‘g
optional mh:O 5 . §
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Fig. 1 Block diagram of the system under consideration
Finally, the output of the FM modulator is the following ~ where
signal:
0 — 90° for m odd (11
x(t) = Ay cos [w ¢t + ¢(t) + ] ) m=9%0° for meven

In the above equation, A4, is the envelope of the transmit-
ted signal, w, is the carrier radian frequency, ¥ is the
initial phase of the modulator, and ¢(z) is the information
carrying phase, which is given by

¢(t) = 2nm, JI s(t) dt

=2mm, Y cjj h(t —jT) dt ®)
J=—® - @

where m, is the modulation index and equals 0.5. It
should be mentioned that, without any loss of generality,
in eqn. 7 A, will be assumed to be equal to one and ¥
equal to zero.

x(¢) is corrupted by additive white Gaussian noise
(AWGN) with a one-sided power spectral density of Ny .
The signal at the output of the roofing bandpass filter
(BPF) can then be represented as

W) = r(t) cos [w .t + ¢'()] + ny, (1) )

where ¢'(t) is the distorted signal phase, () is the time-
varying envelope of the signal and n,,(t) is the narrow-
band Gaussian noise. In order to simplify the
mathematical analysis, we shall assume that ¢'(t) = ¢(t);
however, in the computer simulations the distortion due
to filtering is included.

As shown in Fig. 1, the receiver consists of a bank of
multiple differential detectors of maximum order m, i.e.
the maximum delay element is mT, which corresponds to
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and n,(f) represents the baseband noise terms. At ¢t = kT,
d,,(t) becomes

d,(kT) = (kT)rkT — mT)

X COS < Y Vi — 0,,,) + n,(kT) (12)
Jj=—®
where
kT
vy, =2zm, j Wt — jT) de (13)
kT —mT
Using eqns. 3 and 13 we find that
am, fork>0andk<m
Ve = 14
* {0 otherwise (14
Eqn. 6 enables us to write eqn. 12 in the form
d (kT) = nkT)(kT — mT)
x cos (AUT —6,) + n,(kT) (15)
where
AUT= Y b_;UT (16)
i=—
m 1 ‘ m
Uj =D Z g: Vi 17)

en i=—1
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For the 1-bit differential detector (m = 1) we have

AU} = Z g,bk ; (18)

en j=—1

2D,
Similarly, for the 2-bit differential detector (m = 2) we get

AU% - 2D¢,, [bk n—19n

+ X bk—;(9j+gj~1)+bk+1g—1j| (19)
j=1-1

-
For the m>3 and

n+l+1>=

1+j
AUY = — Z by _ J Zgl-ﬂ
2D

en j=—1

more general case where
m, eqn. 16 becomes

2D Zbk, Zg, )

en j=m—1

2D Z b, ,( .;o gn—i) (20)

en j=n

Finally, for the case where the order of the differential
detector is greater than the memory introduced by the
correlative encoder, i.e. m > n + 1, we have

1+j pmot
Z b, _ ,(Zg H;)"‘E thj
ji=n

cn j=—1

n+m n+m+1
2D Z by ;( ig'o gn—i> 21

en j=m—1

AUP =

Eqns. 18-21 provide the mathematical expressions for the
differential phase (at the time instant kT’ at the output of
an mth-order differential detector. As these equations are
general enough to accommodate any CECPM signal,
they are inevitably complex. However, it should be
pointed out that by employing a specific CECPM signal,
these expressions will become considerably simplified.
This will also be demonstrated in the next section.

3 Application to TFM schemes

Among the great variety of signals belonging to the
CECPM family, TFM is a typical example. Because of its
compact spectrum, TFM and other narrowband constant
envelope digital modulation methods have been pro-
posed to meet the stringent requirements on bandwidth
utilisation for future communication services [8]. Thus in
this paper we have chosen to analyse TFM as a typical
example of a CECPM signal. Nevertheless, it should be
noted that the proposed differential detection technique
described in this and the subsequent sections can be
applied in a relatively straightforward manner to any
other member of the CECPM family of signals.

For a TFM signal, we have in eqn. 2 =1, n=1,
g, =¢g_; =025 and g, = 0.5. Substituting these values
into eqns. 18-21 we obtain the following expressions:

For m = 1 (1-bit differential detector):

n n n
AU§=bk+1§+ka+bh1§ 22)
For m = 2 (2-bit differential detector):
n 3n 3n n
AUf:bk+1§+bk?+bk—1?"'bk—zg (23)
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For m > 3 (3-bit or higher differential detector):
3n "2 T
AUk_bk+18+bk8+ Zbk i3
3n n
+bk—m+1?+bu-m§ (24

In the next section we shall briefly describe the operation
of the conventional 1-, 2- and 3-bit differential detection
of TFM signals. Since the basic principles are the same as
in [1], only the end resuit will be given here.

The output of the 1-bit differential detector can be
expressed as

d,(kT) = r(kT)kT — T) sin (AUy) + ny(kT) (25)
Similar to [1] and by using this equation, the differential
phase angles AU; which correspond to all possible input

data combinations have been calculated and are given in
Table 1. In Fig. 2 we also illustrate the equivalent phase-

.2
3
@ —X
4
@5

Fig. 2  Differential phase angles (phase states) AU, of conventional
1-bit differential detector of TFM
Since states 3 and 4 coincide (i.e. their differential phase angle is zero) convention-

al symbol-by-symbol detection is not possible and thus there is no decision
threshold indicated

Table 1: Differential phase angles (phase states) AU} of the
1-bit differential detector of TFM corresponding to the
various combinations of the input data (see also Fig. 2 for
equivalent geometrical representations of AU})

Bit combinations State AU}

(degrees)

bk71 bk bk+|

1 1 1 1 90.0

1 1 - 2 45.0
-1 1 1 2 450
-1 1 1 3 0.0

1 -1 1 4 0.0

1 -1 5 ~45.0
-1 1 5 -450
-1 -1 -1 6 -90.0

state diagram. It is interesting to notice that when the bit
combination {b,_,, b;, by,,} takes the values {—1, 1,
—1} or {1, —1, 1}, the differential phase angle is zero.
Therefore in this case the detector cannot distinguish
between positive and negative values of b, . This results in
a completely closed eye and makes symbol-by-symbol
detection, when using this conventional 1-bit differential
detector, impossible.

For the 2-bit differential detector, the output is given
by

dy(kT) = nkTYkT — 2T) cos (AUZ) + ny(kT) (26)
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For this detector, the differential phase angles AU? are
given in Table 2, and the corresponding phase-state
diagram is illustrated in Fig. 3. Clearly, in this case the
minimum phase difference between states with opposite
polarity of the bits {b,_,, b_1, by, brry), 1. states 14

Table 2: Differential phase angles (phase states) AU} of the
2-bit differential detector of TFM corresponding to the
various input data combinations (see also Fig. 3 for equiva-
lent geometric representations of AUj)

Bit combinations State AUZ
(degrees)
bk—2 bk,1 bk bk+|
1 1 -1 1 7 450
1 -1 1 1 7 45.0
1 1 -1 -1 8 0.0
1 -1 1 -1 8 0.0
-1 1 -1 1 8 0.0
-1 -1 1 1 8 0.0
-1 1 -1 -1 9 -45.0
-1 -1 1 -1 9 -45.0
1 1 -1 1 10 -90.0
1 -1 -1 1 1 -135.0
-1 -1 -1 1 1 -135.0
-1 -1 -1 1 12 -180.0
1 1 1 1 12 180.0
1 1 1 -1 13 135.0
-1 1 1 1 13 135.0
-1 1 1 -1 14 90.0
Y z
14 decision
threshold
e /. 7
45°
12 ® 8 X
45° \.
11 9
fo

Fig. 3  Differential phase angles (phase states) AU} of conventional
2-bit differential detector of TFM

The decision rule for this detector is &, = sgn [d,(kT) — (/(2))/4], assuming that
the states are located on a unity circle

and 7 or 10 and 9, is 45°. To determine the polarity of the
decoded bit, the decision threshold zz' illustrated in Fig. 3
will be considered. When the differential phase angle AU?
is to the right of zz’ (ie. —n/4 < AUZ < m/4), then from
Table 2 it can be seen that b, b, _, = —1. (Notice that
since a 2-bit differential detector is considered here, only
b, and b,_, will influence the detection process at
t = kT.) Otherwise we have b, b,_, = 1. Similarly to [1],
when a 2-bit differential detector is used, a DE with an
output b, = —a,b,_, is needed. This differential encod-
ing operation is necessary so that the decisions made at
the receiver represent decisions on the true input data
sequence (in this case {a,}) and not a differentially
decoded version of it, as would be the case without the
differential encoder at the transmitter [11, 12]. Equiva-
lently, this differential encoding can eliminate error prop-
agations. To see this, assume that the DE is absent, i.e.
a, = b,. Then the estimate of b,, denoted b,, can be
determined by using the already decoded b, _,. However,
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with this approach an error in b, will result in erron-
eous decisions for the subsequent bits. A differential
encoder with an output b, = —a,b,_, will correct this
error propagation because the detection at the output of
the differential detector is based upon the rule a4, =
—b,b,_,. Thus the decision rule for this detector,
assuming that the states in Fig. 3 are located on the unity
circle, is given by

2
a; = sgn l:dz(kT) — #}
where sgn [ -] is the signum function.
Finally, the output of the 3-bit differential detector is
given by

dy(kT) = HkT)HKT — 3T) sin (AUR) + ny(kT)  (27)

The differential phase angles AU} corresponding to all
combinations of b, _3, bx_2, bx_1, by, by+y are given in
Table 3, and the equivalent state-space diagram is shown

Table 3: Differential phase angles (phase states) AU} of the
3-bit differential detector of TFM corresponding to the
various combinations of the input data (see also Fig. 4 for
equivalent geometrical representations of AU})

State AU}
(degrees)

Bit combinations

b s be 2 by [

1 -1 -1 -1 1 15 180.0
1 1 1 -1 1 16 135.0
1 -1 1 1 1 16 135.0
1 -1 -1 -1 16 135.0
-1 -1 -1 -1 1 16 136.0
1 1 -1 1 1 17 90.0
-1 -1 -1 -1 -1 17 90.0
1 1 1 -1 -1 17 90.0
1 -1 1 1 17 90.0
-1 1 1 -1 1 17 30.0
-1 -1 1 1 1 17 80.0
1 1 -1 1 -1 18 45.0
-1 1 -1 1 i 18 45.0
-1 1 1 -1 -1 18 45.0
-1 -1 1 1 -1 18 45.0
-1 1 -1 1 19 0.0
1 -1 1 -1 1 20 0.0
1 1 -1 -1 121 -45.0
1 -1 -1 1 1 21 -45.0
1 -1 1 -1 - 21 -45.0
-1 -1 1 -1 1 21 -45.0
1 1 -1 -1 -1 22 -90.0
1 -1 -1 1 22 -90.0
-1 1 -1 -1 1 22 -90.0
-1 -1 -1 1 1 22 -90.0
1 1 1 1 1 22 -90.0
-1 -1 1 -1 -1 22 -90.0
1 1 1 1 23 -135.0
-1 -1 -1 1 -1 23 -135.0
-1 1 1 1 1 23 -135.0
-1 1 -1 -1 -1 23 -135.0
-1 1 1 1 24 -180.0

in Fig. 4. AU} is positive when b.b,_;b,_, is —1,
whereas AU} is negative when b, b, b, _, is 1. Thus for
the 3-bit differential detector, in order to avoid error
propagation the data should be differentially encoded as
b, = —ayb,_,b,_,. Clearly with this encoding law we
have a, = —b, b, b,_,, and therefore whenever a;, =1
then O<AU?<n and whenever aq = —1 then
—n < AU} < 0. Notice, however, that states 15 and 19
(b, = 1) and states 20 and 24 (b, = —1) lie on the same
X-axis, so that the eye of the 3-bit differential detector is
completely closed.

Examining detectors with m > 3 we found that:

(a) For m odd the eye diagram is completely closed.
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(b) For m even, the eye is asymmetric and open.
However, the eye is always the same as that of the 2-bit
detector. For m > 2 a differential decoder is needed to
avoid catastrophic error propagation. This differential

16g PRt
15 19
2 ° 20 X
230 @21

T

Fig. 4 Differential phase angles (phase states) AU} of conventional
3-bit differential detector of TFM

Similarly to the 1-bit detector, since states 15 and 19 coincide with states 24 and
20, conventional symbol-by-symbol detection is not possible and thus there is no
decision threshold indicated

decoder becomes more complex with increasing m, and at
the same time the performance of the detector does not
exceed the performance of the 2-bit detector.

In concluding this section we can state that the best
choice for conventional differential detection of TFM is
the 2-bit detector.

4 ISI reduction by means of decision feedback

In order to reduce the effects of the ISI, which, as shown
in the previous section, is present in the differential detec-
tion of TFM signals, a decision feedback technique
similar to that suggested in [1] will be employed. It
should be mentioned that although we will present
results only for TFM signals, the application of the pro-
posed technique to any other CECPM scheme is
straightforward. For this purpose, we include the general
forms of equations for this decision feedback technique;
however, whenever possible extensive mathematical
manipulations have been avoided.

4.1 Decision feedback for the 1-bit differential

detector
For the 1-bit differential detection of TFM, at the instant
t = kT, AU} depends on b, b,_, and b, , (see eqn. 22).
When b, is to be decided, the estimate of b, _;, which will
be denoted b, _,, is already available. Hence by intro-
ducing the new phase shift y,, which includes the phase
0, = 7/2 (see eqn. 11) and is given by

n n n

X1 =§+ Ek—IU} =E+Ek—1 g
in the T second delay arm, the effect of b, _, on the signal
phase can be cancelled. The new differential phase angle
AU; , becomes

(28)

AU 4= b+ Ut +ka(l)=bu+1g+bk§ 29

For states 3 and 4, the effects of b, _, are always destruc-
tive since b, # b,_,. A phase shift equal to b,_, U} will
increase the distance from the decision threshold (i.e.

IEE PROCEEDINGS-I, Vol. 138, No. 5, OCTOBER 199]

X-axis) by an angle U} = n/8. For states 2 and 5, the
effect of b, _; can be constructive or destructive. If b, #
b,_,, its effect is destructive and the application of deci-
sion feedback increases the differential phase by 7/8. On
the other hand, when b, = b,_, the decision feedback
reduces the differential phase by n/8.

States 1 and 6, which have the widest separation,
always have b, = b,_,, and the application of decision
feedback reduces the differential phase angle by =/8.
However, notice that in terms of the system performance
the critical states are 3 and 4. Hence the reduction of
AU,f‘,, for states 1, 2, 5 and 6 is several times compen-
sated by its equivalent increase for states 3 and 4.

The phase states at the sampling instants, after apply-
ing decision feedback, are shown in Fig. 5. It is clear from
this figure that there is a n/4 rad phase separation

decision
threshold

Fig. 5  Phase-state diagram of the 1-bit differential detector of TFM
with decision feedback
The decision rule for this detector is &, = sgn [d{(kT})]

between the states closest to the threshold (X-axis). The
decision rule for this detector is

bi = sgn [dy(kT)]

where dy(kT) denotes the equivalent signal d,(kT) which
includes the additional phase shift y,. Notice that for the
1-bit differential detector no differential encoding is
needed and thus g, = b;.

4.2 Decision feedback for the 2-bit differential
detector

For the 2-bit differential detector, there are four symbols

that introduce ISI at AUZ. These are b, {, by, b,_, and

b, _,. By introducing at the 2T delay arm a phase shift

equal to

- 3n n
Xlz=bk—1Uf+Bk—zU§=5k~1?+Bk—z§ (30)

where b, _, is the estimate of b,_,, the ISI due to b,_,
and b,_, is eliminated. The new differential phase angle
AU} jequals

n 3n
AUf.d=bk+1U2—1+ka(2)=bk+1§+bk? (31

Since —n/2 < AUZ ; < n/2 and the decision threshold is
the X-axis, we have to introduce an additional n/2 phase
shift at the 27" delay arm in order to observe at the
output sin (AU? ,). Consequently the new overall phase
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shift y,, which includes 8, = n/2, is
n
X2=3 +b,_ U} +b,_,U}

n 3z T
:§+Bk-1?+5k—2g (32)
The phase states, after applying these decision feedback
phase shifts, are shown in Fig. 6. Notice that the resulting
phase states are symmetric and their minimum separa-
tion has increased from 45° to 90°, as was the case for the
conventional 2-bit differential detector. The decision rule
for this 2-bit differential detector with feedback is

&, = sgn [dy(kT)]
where the signal d5(kT) includes the additional phase
shift y, .

One other interesting point is that the shifting rule
which was introduced in eqn. 32 is not the only one
which produces these improved results. If the signal is
phase shifted according to

Y2 = (5k—z —b,_ U3 = (5k—z - 5:;—1) ‘g
then the phase state diagram illustrated in Fig. 7 results.
It is the same diagram as Fig. 6 but +90° phase shifted.
Note that both eqns. 32 and 33 will result in exactly the
same eye diagram, since U? + U3 = n/2. As a matter of
fact, by using this identity eqn. 33 can be derived from

(33)

Y

12 748 13
13

90°

9
14

decision
threshold

7
10
8 11712 8

Fig. 6  Phase-state diagram of the 2-bit differential detector of TFM
with decision feedback when the shifting rule of eqn. 32 is being used

The decision rule for this detector is &, = sgn [d3(kT)]

Y decision
threshold
13 . 7
14 %0 8
13 M 74
— @& @ —X
12 8
" 90" 8
10 9

Fig. 7  Phase-state diagram of the 2-bit differential detector with deci-
sion feedback when the shifting rule of eqn. 33 is being used
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eqn. 32. By comparing the two relations it can be seen
that the second is more suitable for implementation.
Thus by manipulating the initial phase shift rules, con-
siderable implementation simplifications can be achicved.

4.3 Decision feedback for the 3-bit differential
detector

For the 3-bit detector, the phase shift which should be

introduced is

n .
B=5+ b Ul + b, 2 Us + b3 U3
ki

T 3n n
2+B,‘,15+Bk,2?+5k,3§ (34)
As in eqns. 28 and 32, the first term of this equation rep-
resents the phase shift 8, = /2 of eqn. 11. The decision
rule associated with eqn. 34 is given by

&, = sgn [d3(kT)]

where d3(kT) includes the phase shift x5 .
A further simplification of eqn. 34 results in

7= By — b U =Gy —bin)g (5)

The corresponding state-space diagrams are illustrated in
Figs. 8 (for eqn. 34) and 9 (for eqn. 35). It is clear from
these figures that for both cases the minimum differential
phase angle is 90°.

decision
threshold
17 16
15 17
23 30° 20
18 21
23 17
16 21
—® —®—— X
17 18
22 22
16 > 19
21 S 18
22 22
24 23
Fig. 8  Phase-state diagram for the 3-bit differential detector with deci-

sion feedback when the shifting rule of eqn. 34 is employed.
The decision rule for this detector is &, = sgn [d3(kT)]

Y
16 17,18
21 22,23
15 18, 22
17.,19,23
90°
decision M
threshold
16,20,22
17,21, 24

16 T 17,18
21 22,23
Fig. 9  Phase-state diagram for the 3-bit differential detector with deci-

sion feedback when the shifting rule of eqn. 35 is employed
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4.4 Decision feedback for the m-bit differential
detector

For the general case of the m-bit differential detector, the

shifting rule is

n n
An=75+ X b ;U7 (36)
25
It should be mentioned, however, that for most cases the
specific correlative encoding rules of a particular system
given by eqn. 2 may significantly simplify eqn. 36.

5 Multiple differential detectors combining and
BER performance evaluation results

In order to further improve the performance, the outputs
of multiple differential detectors which employ the deci-
sion feedback scheme will be jointly utilised. An optimal
(e.g. using the maximum likelihood ratio test, MLRT
[13]) utilisation of at least two of these differential detec-
tors’ outputs results in a nonlinear and therefore gener-
ally complex receiver structure [14]. A linear, reduced
complexity suboptimal receiver will result by employing
as decision law the following relation:

a, = sgn |: i{: Pm d;,l(kT)] (37

Fig. 10 Block diagram of the receiver 1 + 2DF which utilises the 1-
and 2-bit differential d s in a decision feedback structure

The d,(kT) represent the sampled outputs of the m-bit
detector after decision feedback, p,, are combining coeffi-
cients, and M is the maximum order of differential detec-
tors used.

For comparison purposes [1], here we shall examine
two of these receivers. For the first one, the decision feed-
back is applied to the 1-bit and 2-bit differential detec-
tors. Then the outputs of these detectors are combined.
This receiver will be denoted by 1 + 2DF, and thus the
decision law to be applied here is

a, = sgn [dy(kT) + p, d3(kT)] (38)

However, if instead of the phase shift rule of eqn. 32 we
use eqn. 33, the following decision law should be applied:

& = sgn [dy(KT) — p, a, - ,d5(kT)] (39)

The appearance of the —a,_, in the combining process is
due to the fact that the shifting of the signal d%(kT) by
n/2 rad is equivalent to the multiplication of the output
of the detector by —a,_;. Notice that, similarly to [1],
the transmitter corresponding to the 1+ 2DF receiver
does not require a differential encoder.

The second receiver configuration we evaluated utilises
the 2- and 3-bit differential detectors. By applying the
rule described by eqn. 37, its decision law is found to be

4 =sgn [ —a,_ \dokT) + p3 8,8, d5(kT)] (40)

By using at the transmitter the differential encoder b, =
—a b, _, this equation can be modified as

5k = sgn [_Ek—1d’z(kT) + p35k-15k—2d,3(kT)] 41

and the information sequence {a,} can now be recovered
from {b,} as follows:

@ = 'Bk 51“ 1 42)
Multiplying both sides of eqn. 41 with —b&,_,, the follow-
ing decision rule can be obtained:

& = sgn [dy(kT) — p; B, dy(kT)] @)

This receiver will be denoted as 2 + 3DF. The structures
of the proposed receivers in block diagram form are illus-
trated in Figs. 10 and 11.

by_3

k-2

y(t)

1-bit b
E . l

ax

Fig. 11

IEE PROCEEDINGS-1, Vol. 138, No. 5, OCTOBER 1991

Block diagram of the receiver 2 + 3DF which utilises the 2- and 3-bit differential detectors in a decision feedback structure
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In order to evaluate their performance, computer
simulation (Monte Carlo error counting techniques) was
employed. For comparison purposes the performance of
a conventional 2-bit differentially detected TFM scheme
was also obtained. The bit error rate (BER) performance
evaluation results of the three receivers considered here
are plotted for different values of E,/N, (E, is the bit
energy) in Fig. 12. In all three cases for the receiver BPF

107

bit error rate

15
Ey/Ng. dB

Fig. 12 Bit error rate (BER) performance evaluation results of the

various differential detector schemes for a TFM signal

a conventional 2-bit differential detector

b bit-by-bit limiter/discriminator detector [8]

¢ MLSE limiter/discriminator [8]

d 1- and 2-bit differential detector structure (1 + 2DF)
e 2- and 3-bit differential detector structure (2 + 3DF)

a fourth-order Butterworth filter was employed. The per-
formance evaluation results obtained for the TFM
scheme indicate that at a BER of 10™* the 1 + 2DF and
2 + 3DF receivers achieve approximately 3.8 and 5.2 dB
improvement over the conventional 2-bit differential
detector, respectively. The reason why the 2 4+ 3DF recei-
ver outperforms the equivalent 1 + 2DF receiver is that
the combination of a 2- and 3-bit differential detector
with decision feedback results in a larger minimum differ-
ential phase angle as compared with the equivalent com-
bination of the 1- and 2-bit differential detector. Finally,
in Fig. 12 we have included from [8] the performance of
a TFM system employing a limiter/discriminator receiver
with both bit-by-bit and maximum likelihood sequence
estimation (MLSE) detection. It can be seen that both the
1+ 2DF and 2 + 3DF receivers perform better than
these limiter/discriminator receivers.

As a closing remark, it is worth pointing out that for
other differentially detected CECPM signals, BER per-
formance improvements similar to those reported here
for TFM should be expected.

6 Conclusions

New symbol-by-symbol detectors for the differential
detection of CECPM signals have been introduced. As a
generalisation of the work reported in [1], the proposed
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detectors use decision feedback to partially remove the
destructive effects of ISI which appears at the output of
the differential detector. Furthermore, the outputs of
more than one differential detector were jointly utilised
to further improve the overall BER performance.

As a typical example of the CECPM family of signals,
the proposed detection technique has been applied to a
TFM scheme. Two receiver structures which jointly
employ 1-, 2- and 3-bit differential detectors with decision
feedback have been proposed. Performance evaluation
results have indicated that gains of up to 52 dB (at a
BER of 107%) over a 2-bit conventionally differential
detected TFM scheme are possible. As compared with
an equivalent TFM scheme employing a limiter/
discriminator with MLSE detection [8], the proposed
2 + 3DF receiver offers a gain of more than 2 dB at the
same BER.
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