OBJECT
L OBJECTS

PROJECT TITLE: AI-ENABLED DRONE SWARM NETWORK AND INFORMATION

MANAGEMENT
SUBTITLE: OBJECT DETECTION, DRONE2DRONE INFORMATION EXCHANGE

AND COLLABORATIVE AWARENESS

MQTT

COMMUNICATION FOR COLLABORATIVE DRONES

*Swarm-based drone operations
*How drones can share navigation data
*Key communication challenges: latency, reliability, scalability

*Solution: Lightweight MQTT protocol with Mosquitto broker

MQTT PROTOCOL BASICS

Understanding MQTT for Drone Communication

1.MQTT (Message Queuing Telemetry Transport)
1.Lightweight, low-bandwidth, real-time messaging
2.Publisher-Subscriber model
3.QoS levels: 0 (At most once), 1 (At least once), 2 (Exactly once)

2.Mosquitto as an MQTT broker

SYSTEM ARCHITECTURE

Drone Swarm Communication Architecture
1. Components:Drones with MQTT clients
* Mosquitto broker (central or distributed)
* Object detection module
2. Communication flow:
* Drone detects obstacle
* Publishes obstacle data to MQTT topic

* Other drones subscribe and adjust navigation

SETTING UP MQTT WITH MOSQUITTO

Installing Mosquitto MQTT Broker
1.Install Mosquitto:
sudo apt update
sudo apt install mosquitto mosquitto-clients
2. Start the Mosquitto broker:
sudo systemctl start mosquito
3. Test publishing and subscribing:
mosquitto_sub -h localhost -t "drone/obstacles*

mosquitto_pub -h localhost -t "drone/obstacles"
x,y, Height: z, Not moving"

-m "Obstacle: Tree, Position:

MQTT TOPICS AND MESSAGE FORMAT

Defining Topics and Payload Structure

Example topic structure:
drone/obstacles
drone/navigation

JSON-based message format:
{
"'type": "obstacle",
"object": "tree",
"position": {"x": 25, "y": 30},
"height": 15,
"movement": "stationary*

IMPLEMENTING MQTT IN DRONES

Integrating MQTT with Drone Software - Example
* Install MQTT Python client:
pip install paho-mqtt
* Implement a drone publisher:
import paho.mqtt.client as mqtt
import json
client = mqtt.Client()
client.connect("localhost", 1883, 60)

obstacle_data = {

"type'": "obstacle",

"object": "tree",

"position": {""x": 25, "y": 30},

"height": 15,

"movement": "stationary“

}

client.publish("drone/obstacles", json.dumps(obstacle_data))
client.disconnect()

HANDLING MESSAGES IN SUBSCRIBER DRONES

Receiving and Processing Obstacle Data
1.Implement a drone subscriber:
def on_message(client, userdata, msg):
data = json.loads(msg.payload)
print(f'"Received obstacle: {data}")
Adjust navigation accordingly

client = mqtt.Client()
client.on_message = on_message
client.connect("localhost", 1883, 60)
client.subscribe("drone/obstacles")
client.loop_forever()

ENHANCING COMMUNICATION

Improving the System...

* Implement QoS for reliable delivery

* Use distributed MQTT brokers for scalability
* Encrypt messages using TLS for security

* Integrate GPS and real-time Al / smallLLM processing

THINGSBOARD (1)

ThingsBoard CE - https://thingsboard.io/

* Open-source loT Platform

* Device management, data collection, processing and visualization for your loT
solution (drones in our case)

Temperature fluctuations L Humidity
37.8%

15°C

10°C

10°C

- Dac 22 Dec 27 Jan 1 Jan & Jan 11 Jan 16 Jan 21

https://thingsboard.io/

THINGSBOARD (2)

* Create custom sensors to store and present drone-related

data (battery level, status, availability for detection,
payload)

* Sensors' values should be updated from a dataset or
randomly periodically.

* Drones should be able to send their data to Thingsboard.

Drones and LLM should be able to retrieve data from
Thingsboard.

THINGSBOARD — INSTALLATION (2)

https://thingsboard.io/docs/user-guide/install/ubuntu/
https://thingsboard.io/docs/user-guide/install/windows/

Follow the guides above and choose the following:

For the Database:

PostgreSQL

(recommended for < 5K msg/sec)

For the queue service:

In Memory
(built-in and default)

You are free to try other options but the recommended choices are the simplest
ones.

13

https://thingsboard.io/docs/user-guide/install/ubuntu/
https://thingsboard.io/docs/user-guide/install/windows/

THINGSBOARD - USAGE (1)

https://thingsboard.io/docs/user-guide/install/ubuntu/
https://thingsboard.io/docs/user-guide/install/windows/

Getting started guides - These guides provide quick overview of main ThingsBoard features.
Designed to be completed in 15-30 minutes.

Connect your device - Learn how to connect devices based on your connectivity technology or
solution.

Data visualization - These guides contain instructions how to configure complex ThingsBoard
dashboards.

Data processing & actions - Learn how to use ThingsBoard Rule Engine.
loT Data analytics - Learn how to use rule engine to perform basic analytics tasks.
Hardware samples - Learn how to connect various hardware platforms to ThingsBoard.

A n f res - Learn about advanced ThingsBoard features.

14

https://thingsboard.io/docs/user-guide/install/ubuntu/
https://thingsboard.io/docs/user-guide/install/windows/
https://thingsboard.io/docs/guides/
https://thingsboard.io/docs/guides/
https://thingsboard.io/docs/guides/
https://thingsboard.io/docs/guides/
https://thingsboard.io/docs/guides/
https://thingsboard.io/docs/guides/
https://thingsboard.io/docs/guides/

Hello world e

Learn how to collect loT device data
using MQTT, HTTP or CoAP and
visualize it on a simple dashboard.
Provides variety of sample scripts
that you can run on your PC or
laptop to simulate the device.

Getting started with Rule
Engine

Learn about ThingsBoard rule
engine and typical use cases you
can implement. Review Hello World
example and learn how-to enable
filtering of incoming telemetry
messages.

THINGSBOARD - USAGE (2)

End user loT dashboards e

Learn how to perform basic
operations over Devices, Customers,
and Dashboards.

Device data management @M

Learn how to perform basic
operations over device attributes to
implement practical device
mandgement use cases.

15

INTERDRONE
COMMUNICATION
WITH LLM

PREREQUISITES

LLM-Based Inter-Drone Communication
*Step 1: Choosing the LLM Model

* Compact and efficient models are preferred for edge inference.
Options:
LLaMA 2 (7B): Small enough for fine-tuning while maintaining strong reasoning abilities.
LLaMA 3 (8GB): Small enough for fine-tuning while maintaining strong reasoning abilities.
GPT-NeoX-20B: Larger, but may require cloud-based inference.
Mistral-7B: A newer, efficient alternative.

*We propose LLaMA 2/3 since it is open-source and provides a balance of efficiency and accuracy.

There are mqny guides online for running ollama locally Wlth WebUI but an example could be:

17

https://dev.to/timesurgelabs/how-to-run-llama-3-locally-with-ollama-and-open-webui-297d

FINE-TUNING THE LLM FOR DRONE COMMUNICATION

Objective: Train the LLM on structured drone communications to understand
and generate meaningful responses.

Dataset Requirements:
Drone telemetry logs.
Example drone dialogues.
Mission objectives and collaborative decision-making samples.

EXAMPLE TRAINING DATA FORMAT (JSONL)

{"input": "Drone 1: Obstacle detected at (15m, North). Suggested action?",
"output": "Adjust course 5 degrees right to avoid the obstacle."}

{"input": "Drone 2: Low battery warning. How should | proceed?", "output":
"Return to base if below 20% charge; otherwise, continue with mission."}

{"input": "Drone 3: Clear path detected. Continue mission?", "output":
"Affirmative. Proceed along planned route."}

FINE-TUNING THE LLM FOR DRONE COMMUNICATION

Fine-tuning Approach:

Using LLaMA 2: Use QLoRA or LoRA for lightweight fine-tuning.
Steps:

Load dataset in Hugging Face format.

Apply LoRA for efficient fine-tuning.

Save the fine-tuned model for deployment.

IMPLEMENTING MESSAGE ENCODING AND

The LLM will convert numerical sensor data into human-readable contextual messages.
Example: Row Drone Data

{

"drone_id": "Drone_1",

"sensor_data": {
"obstacle_distance": 15,
"direction": "North"

b

"'command": "suggest_action"

}

Encoded Message with LLM

{

"message": "Obstacle detected: Tree at 156m ahead. Suggested course adjustment: 5 degrees right."

}

IMPLEMENTING CONTEXTUAL DECISION-M

Maintaining Conversation History: Drones need memory of past exchanges.
Approach: Use Sliding Context Window (last 3 messages).
Implementation: Store past messages and append them for input processing.

class DronelLLM:
def __init__(self, model_path):
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.history = [] # Store last N messages

def process_message(self, new_input):
Append new message to history
self.history.append(new_input)
if len(self.history) > 3: # Keep only last 3 messages
self.history.pop(0)

FINE-TUNING THE MODEL - OPTIMIZING FOR BE
RESULTS

Create prompt for LLM
context = " ".join(self.history)
input_text = f"Context: {context}\nDrone: {new_input}\nLLM Response:"

Generate response

inputs = self.tokenizer(input_text, return_tensors="pt")

output = self.model.generate(* *inputs, max_length=100)

response = self.tokenizer.decode(output[0], skip_special_tokens=True)

return response

IMPLEMENTING LLAMA 2 FOR INTER-DRONE
COMMUNICATION

Requirements:

. Hugging Face Transformers
. LoRA for fine-tuning

. MQTT for communication

IMPLEMENTING LLAMA 2 FOR INTER-DRONE
COMMUNICATION

Load LLaMA 2 Model

from transformers import AutoModelForCausalLM, AutoTokenizer

import torch

Load LLaMA 2 (7B)
model_path = "meta-llama/Llama-2-7b-chat-hf"
tokenizer = AutoTokenizer.from_pretrained(model_path)

model = AutoModelForCausalLM.from_pretrained(model_path,
device_map="auto")

IMPLEMENT MESSAGE PROCESSING
def generate_drone_response(input_message):
prompt = f"Drone: {input_message}\nLLM Response:"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(* *inputs, max_length=100)

response = tokenizer.decode(outputs[0], skip_special_tokens=True)

return response

IMPLEMENT MESSAGE PROCESSING

Example:
message = "Obstacle detected at 15m. What should | do?"
response = generate_drone_response(message)
print(response)

Expected Output:

"Adjust course 5 degrees right to avoid the obstacle."

REAL-TIME COMMUNICATION VIA MQTT

To integrate drones, we use MQTT for real-time 3.2 Drone LLM Publisher

message exchange. import paho.mqtt.client as mqtt
3.1 Install MQTT Library import json
pip install paho-maqtt broker = "mqtt.eclipseprojects.io"

topic = "drones/lim"
client = mqtt.Client()
client.connect(broker)
message = {

"drone_id": "Drone_1",

"message": "Obstacle detected at 15m. What should |
do?"

}
client.publish(topic, json.dumps(message))
print("Sent message:", message)

client.disconnect()

DRONE LLM SUBSCRIBER

def on_message(client, userdata, msg):
data = json.loads(msg.payload)

print(f"Received from {data['drone_id']}: {data['message']}")

response = generate_drone_response(data['message'])

print("LLM Response:", response)

client = mqtt.Client()
client.connect(broker)
client.subscribe(topic)
client.on_message = on_message

client.loop_forever()

ATAAIKAXTIKA MAOHMATOX OMAAQON MQTT + LLM
* 1 atouo TG opadac MQTT Ba ocvvepyaoTel pe 1
dtopo TG opadag LLM

* Qa BaBporoynBei n ocvppetoyxn oto HABNuUa, OXL HOVO
TO TEALKO ATIOTEAEO U

	Διαφάνεια 1: Project Title: AI-Enabled Drone Swarm network and information management Subtitle: Object Detection, DRONE2DRONE Information Exchange and Collaborative AWARENESS
	Διαφάνεια 2: MQTT
	Διαφάνεια 3: Communication for Collaborative Drones
	Διαφάνεια 4: MQTT Protocol Basics
	Διαφάνεια 5: System Architecture
	Διαφάνεια 6: Setting Up MQTT with Mosquitto
	Διαφάνεια 7: MQTT Topics and Message Format
	Διαφάνεια 8: Implementing MQTT in Drones
	Διαφάνεια 9: Handling Messages in Subscriber Drones
	Διαφάνεια 10: Enhancing Communication
	Διαφάνεια 11: THINGSBOARD (1)
	Διαφάνεια 12: THINGSBOARD (2)
	Διαφάνεια 13: Thingsboard – Installation (2)
	Διαφάνεια 14: Thingsboard – Usage (1)
	Διαφάνεια 15: Thingsboard – Usage (2)
	Διαφάνεια 16: Interdrone communication with LLM
	Διαφάνεια 17: Prerequisites
	Διαφάνεια 18: Fine-Tuning the LLM for Drone Communication
	Διαφάνεια 19: Example Training Data Format (JSONL)
	Διαφάνεια 20: Fine-Tuning the LLM for Drone Communication
	Διαφάνεια 21: Implementing Message Encoding and Decoding
	Διαφάνεια 22: Implementing Contextual Decision-Making
	Διαφάνεια 23: Fine-Tuning the Model - Optimizing for Better Results
	Διαφάνεια 24: Implementing LLaMA 2 for Inter-Drone Communication
	Διαφάνεια 25: Implementing LLaMA 2 for Inter-Drone Communication
	Διαφάνεια 26: Implement Message Processing
	Διαφάνεια 27: Implement Message Processing
	Διαφάνεια 28: Real-Time Communication via MQTT
	Διαφάνεια 29: Drone LLM Subscriber
	Διαφάνεια 30: Διαδικαστικα ΜΑΘΗΜΑΤΟΣ ΟΜΑΔΩΝ mqtt + llm

