
• PROJECT TITLE: AI-ENABLED DRONE SWARM NETWORK AND INFORMATION
MANAGEMENT
SUBTITLE: OBJECT DETECTION, DRONE2DRONE INFORMATION EXCHANGE
AND COLLABORATIVE AWARENESS

SWARM
NETWORKS -
NEW GENERATION
NETWORK
MANAGEMENT

AI-BASED
DRONE2DRONE
INFORMATION
MANAGEMENT

PROJECT – OPERATIONAL CONDITIONS

Students will be
engaged to groups
dedicated to work on
tasks

1. Students will be split

in 4 groups

depending on the

tasks they will be

working on

2. The groups will have

specific target

outcomes

Students will be responsible to deliver their own
tasks and contribute to the integration with other
groups

The level of completeness and accuracy of task

outcome, as well as dedication to the task will

determine the grade of the student effort

Every Tuesday all groups will have meetings

during the course to present the status of work

progress

Fridays will be used for system integration

meetings and targeted presentations

4

TEAM COLLABORATION AND ROADMAP

Students will be
responsible to provide
the integration of the
solutions

• Integration &

Evaluation : Ensure

seamless

interoperability

between all

components.

Team Assignments

AI & Object Detection Team: Implement and optimize YOLOv5 /

v8 for drone applications.

Communication Protocol Team: Develop and test the MQTT-

based data exchange framework.

LLM & Decision-Making Team: Fine-tune and deploy LLaMA2

for inter-drone understanding.(OR Rule-Based Communication

(Replace LLMs with structured rule-based messaging))

Simulation & Testing Team: Set up ROS2 & Gazebo for multi-

drone environments.

5

OBJECTIVE: DESIGN AND IMPLEMENT AN AI-BASED INTER-
DRONE COMMUNICATION SYSTEM FOR COLLABORATIVE
AWARENESS.

•Phase 1: Individual module development (Weeks 1-8)

• Object detection implementation

• MQTT setup for communication

• LLaMA2 model training (OR Rule-Based Communication (Replace LLMs with structured
rule-based messaging))

•Phase 2: Initial system integration (Weeks 7-10)

• Connecting YOLOv5, MQTT, and LLaMA2

• Testing information flow between drones

•Phase 3: Simulation & Performance Evaluation (Weeks 10-12)

• Running full drone swarm simulations

• Fine-tuning performance metrics

•Phase 4: Final Testing & Report (Weeks 12-14)

• Refining all components

• Documenting results and preparing presentations

6

OBJECTIVE: DESIGN AND IMPLEMENT AN AI-BASED INTER-
DRONE COMMUNICATION SYSTEM FOR COLLABORATIVE
AWARENESS.

Key Technologies:

o AI-based object detection (YOLOv5)

o MQTT for communication

o LLaMA2-based small LLM for inter-drone message interpretation
(OR Rule-Based Communication (Replace LLMs with structured

rule-based messaging))

o ROS2 & Gazebo for simulation

7

CHALLENGES IN DRONE SWARM COMMUNICATION

o High bandwidth consumption with raw sensor/image data
exchange

o Real-time decision-making and obstacle avoidance

o Efficient collaborative awareness

8

PROPOSED SOLUTION

o Onboard AI for Local Processing (Detect and classify objects
locally using YOLOv5)

o Optimized Information Exchange (Use MQTT for lightweight data
sharing)

o LLM-Based Communication (Use LLaMA2 to enhance
understanding and decision-making)

9

OBJECT DETECTION USING YOLOV5/V8

•YOLOv5/v8 Overview:

• Fast, lightweight, and optimized for edge devices

• Pre-trained on dataset, fine-tuned for drone environments

•Implementation Workflow:

• Capture image from drone camera

• Run inference using YOLOv5

• Extract object type, position, and movement

• Encode findings into structured data (JSON format)

10

OBJECT DETECTION USING YOLOV5

11

•YOLOv5 Overview:

• Accessible via Google Colab or hosted API (Roboflow, Hugging

Face)

• Pre-trained on COCO dataset, fine-tuned for drone environments

•Implementation Workflow:

• Upload image to YOLOv5 API

• Run inference and receive detection results (object type, position)

• Encode findings into structured JSON format

INFORMATION EXCHANGE USING MQTT

•Why MQTT?
• Low bandwidth, lightweight, and ideal for real-time applications
• Publish/Subscribe model for efficient communication

•Implementation:
• Broker setup (Mosquitto)
• Message format (JSON-encoded insights, not raw data)
• Priority-based communication for critical alerts
• Use Mosquitto MQTT (local or cloud-based)
• Drones send detected objects and positions
• Messages formatted as JSON (e.g., {"object": "car", "x": 5, "y": 10})

12

LLAMA2-BASED INTER-DRONE COMMUNICATION

•Why Use LLMs?

• Enhance message comprehension and decision-making

• Translate structured data into actionable commands

•Fine-Tuning LLaMA2 for Drone Communication

• Dataset with typical drone interactions

• Training using Hugging Face and PyTorch

13

SENSOR DATA PROCESSING

•Objective:Enable each drone to locally process sensor data (e.g., from LiDAR and cameras) to detect and
recognize objects or environmental features. Instead of sharing raw data, drones should share extracted
information.

•Solution:

• Object Detection and Recognition: Use YOLOv5 for real-time object detection. Models should be pre-
trained on relevant datasets (e.g., COCO) and fine-tuned for specific environmental features relevant to
the mission.

• Data Summarization and Encoding: Extract key information like object type, location, size, and
movement vector.

• Use compact JSON-like structures for encoding information.

• Example:

14

SENSOR DATA PROCESSING

• Implementation Tools:

• OpenCV for image processing.

• PyTorch or TensorFlow for model deployment.

15

INFORMATION EXCHANGE PROTOCOL

16

Objective:
Facilitate reliable and low-latency communication between drones over a new
generation network (e.g., 5G/6G).
Solution:
•Communication Protocol Design:

•Use MQTT for lightweight publish-subscribe messaging.
•Design custom message topics like /drone1/obstacles, /drone2/navigation,
etc.
•Implement priority-based message handling to ensure critical data (e.g.,
collision warnings) is delivered first.

•Implementation Tools:
•(ns-3 or OMNeT++ for network simulation.)- not obligatory
•Paho MQTT for messaging.

INTER-DRONE COMMUNICATION USING LLM

17

Objective:

Enable context-aware communication between drones using a small, fine-tuned LLM. The

LLM should help interpret messages and facilitate collaborative decision-making.

Solution:

•Choosing the Model:

• Use a compact LLM such as LLaMA 2 (7B variant) suitable for edge inference.

• Fine-tune the model on a custom dataset with domain-specific dialogues, commands,

and status reports.

•Message Encoding and Decoding:

• Encode messages with semantic meaning, e.g., translating numerical data into

contextual statements.

• Example:

{

 "message": "Obstacle detected: Tree at 15m ahead. Suggested course adjustment: 5

degrees right."

}

INTER-DRONE COMMUNICATION USING LLM

18

Contextual Decision Making:

• The LLM should generate context-aware responses by understanding past exchanges and

current mission goals.

• Implement conversation history management to maintain context across multiple

messages.

Implementation Tools:

Hugging Face Transformers for model fine-tuning.

INTEGRATION AND TESTING

19

Simulation Environment:
Use ROS 2 with Gazebo for end-to-end testing.
Simulate environmental scenarios (e.g., forest, disaster zones).

IMPLEMENTATION

OBJECT DETECTION USING YOLOV8

Object detection

We will use the YOLOv5 model from the

Ultralytics package for real-time object

detection on drones.

Requirements:

ultralytics for YOLOv5

OpenCV for video processing

torch for PyTorch modeldeployment

Installation:

pip install ultralytics opencv-python-

headless torch

21

CODE SAMPLE

import cv2

from ultralytics import YOLO

Load YOLOv5 model

model = YOLO('yolov5n.pt') # 'n'

variant for lightweight and fast

inference

Open video stream (use 0 for

webcam or provide video file path)

cap = cv2.VideoCapture(0)

while True:

 ret, frame = cap.read()

 if not ret:

 break

Run object detection

 results = model(frame)

 # Process detections

 for result in results.pred[0]:

 # Get bounding box, confidence

and class

 x1, y1, x2, y2, conf, cls = result

 x1, y1, x2, y2 = map(int, [x1, y1,

x2, y2])

 label = model.names[int(cls)]

22

Draw bounding box and label

 cv2.rectangle(frame, (x1, y1),

(x2, y2), (0, 255, 0), 2)

 cv2.putText(frame, f"{label}

{conf:.2f}", (x1, y1 - 10),

cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,

255, 0), 2)

 # Display the result

 cv2.imshow("YOLOv8 Object

Detection", frame)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

cap.release()

cv2.destroyAllWindows()

KEY FEATURES:

23

•Real-time object detection from a video stream or

camera.

•Displays detected objects with bounding boxes and

confidence scores.

Optimization for Edge Devices:

To optimize for NVIDIA Jetson or other edge devices,

export the model to TensorRT:

yolo export model=yolov5n.pt format=engine

COMMUNICATION PROTOCOL
DESIGN USING MQTT

This example demonstrates inter-drone
communication using the MQTT protocol, enabling
drones to exchange processed information
efficiently.

Requirements :

paho-mqtt for MQTT communication

Install using:

pip install paho-mqtt

MQTT Broker Setup:

Use Eclipse Mosquitto as the MQTT broker.

Install it locally or use a cloud broker

To install Mosquitto on Ubuntu:

sudo apt update

sudo apt install mosquitto mosquitto-clients

sudo systemctl start mosquitto

sudo systemctl enable mosquitto

24

COMMUNICATION PROTOCOL
DESIGN USING MQTT

Publisher (Drone 1):Drone 1 detects an obstacle and
publishes processed information.

import paho.mqtt.client as mqtt

import json

import time

MQTT Broker details

BROKER = 'localhost'

PORT = 1883

TOPIC = 'drones/obstacle'

Data to publish

obstacle_data = {

 "drone_id": "drone_1",

 "object": "tree",

 "location": [34.5, -118.2, 15.0],

 "size": [2.5, 7.0],

 "velocity": [0, 0, 0]

}

Data to publish

obstacle_data = {

 "drone_id": "drone_1",

 "object": "tree",

 "location": [34.5, -118.2, 15.0],

 "size": [2.5, 7.0],

 "velocity": [0, 0, 0]

def on_connect(client, userdata, flags, rc):

 print(f"Connected with result code {rc}")

Setup MQTT Client

client = mqtt.Client()

client.on_connect = on_connect

client.connect(BROKER, PORT, 60)

Publish information

while True:

 message = json.dumps(obstacle_data)

 client.publish(TOPIC, message)

 print(f"Published: {message}")

 time.sleep(5) # Send every 5 seconds

COMMUNICATION PROTOCOL
DESIGN USING MQTT

Subscriber (Drone 2):Drone 2 subscribes to the topic to receive obstacle information.

import paho.mqtt.client as mqtt

import json

MQTT Broker details

BROKER = 'localhost'

PORT = 1883

TOPIC = 'drones/obstacle'

def on_connect(client, userdata, flags, rc):

 print(f"Connected with result code {rc}")

 client.subscribe(TOPIC)

def on_message(client, userdata, msg):

 data = json.loads(msg.payload)

 print(f"Received Data: {data}")

 # Process received data (e.g., adjust

flight path)

Setup MQTT Client

client = mqtt.Client()

client.on_connect = on_connect

client.on_message = on_message

client.connect(BROKER, PORT, 60)

client.loop_forever()

Key Features:

•Publisher-Subscriber
Model: Ensures
efficient, asynchronous
communication.

•Lightweight Protocol:
MQTT is suitable for
bandwidth-constrained
networks.

INTER-DRONE COMMUNICATION USING LLAMA2-BASED
LLM
We’ll use a small variant of LLaMA2 (7B) fine-tuned for drone communication to interpret and
contextualize messages..

Requirements:

transformers and accelerate from Hugging Face

Install using:

pip install torch transformers accelerate

Key Features:

Encodes messages with contextual awareness.

Generates responses that facilitate

collaborative decision-making.

Code Sample:

from transformers import AutoTokenizer,

AutoModelForCausalLM

Load LLaMA2 Model and Tokenizer

model_name = "meta-llama/Llama-2-

7b-hf"

tokenizer =

AutoTokenizer.from_pretrained(model_na

me)

model =

AutoModelForCausalLM.from_pretrained

(model_name, device_map="auto")

Encode message

message = "Obstacle detected: Tree at

15m ahead."

input_ids = tokenizer.encode(message,

return_tensors='pt').to('cuda')

Generate response

output = model.generate(input_ids,

max_length=50)

response = tokenizer.decode(output[0],

skip_special_tokens=True)

print("Drone Response:", response)

SIMULATION SETUP FOR DRONE SWARM

We will use ROS 2 with Gazebo for simulating the drone swarm.

Requirements:
•ROS 2 Humble or Foxy
•Gazebo with MAVROS plugins
Key Components:
•Multiple drone models configured with LiDAR and camera sensors.
•Topics for inter-drone communication using ROS 2 nodes.
•Rviz for real-time visualization.
Simulation Steps:
1.Install ROS 2 and Gazebo.
2.Setup MAVROS for drone control.
3.Launch multiple drones in Gazebo with a shared ROS 2 namespace.
4.Use ROS 2 topics for inter-drone communication and information exchange.

AI MODEL TRAINING FOR INTER-DRONE INFORMATION
EXCHANGE

Fine-tuning LLaMA2 on custom dialogues for inter-drone communication.

Fine-Tuning Script:

from transformers import
AutoModelForCausalLM,
AutoTokenizer, TrainingArguments,
Trainer

model_name = "meta-llama/Llama-
2-7b-hf"

tokenizer =
AutoTokenizer.from_pretrained(mode
l_name)

model =
AutoModelForCausalLM.from_pretrai
ned(model_name)

Load dataset

from datasets import load_dataset

dataset = load_dataset('json',
data_files={'train': 'train.jsonl',
'validation': 'valid.jsonl'})

Training Configuration

training_args = TrainingArguments(

 output_dir="./llama2-drone",

 per_device_train_batch_size=2,

 per_device_eval_batch_size=2,

 evaluation_strategy="epoch",

 num_train_epochs=3

)

Dataset Preparation:
• Collect dialogues relevant to

drone swarm
communication, e.g.,
obstacle detection,
navigation adjustments.

• Format data in JSONL with
"input" and "output" pairs.

Initialize Trainer

trainer = Trainer(

 model=model,

 args=training_args,

train_dataset=dataset['train'],

eval_dataset=dataset['validati
on']

)

trainer.train()

RUNNING YOLOV5 WITHOUT A DEDICATED GPU

30

•Google Colab: Run YOLOv5 in Google Colab, which provides free GPU
access.
•Remote Servers: Use cloud services like AWS, Google Cloud, or Azure to run
YOLOv5 and retrieve results via an API.
•Local CPU Execution: If no GPU is available, YOLOv5 can run on a CPU,
though it will be slower.

CONNECTING TO YOLOV5 VIA THE INTERNET

31

Access YOLOv5 remotely without needing to install it locally:
•Use a Hosted YOLOv5 API:

•Roboflow provides an online YOLOv5 API where users can upload
images and get detection results.
•Users can also deploy their own API using Flask or FastAPI on a cloud
server.

•Pre-trained Model Weights:
•They can download and use pre-trained YOLOv5 models via GitHub or
Hugging Face.
•No training is required, just inference.

RUNNING OTHER COMPONENTS ON LAPTOPS

32

•MQTT Communication:
•Can be tested locally using Mosquitto (lightweight and runs on any OS).
•Cloud MQTT brokers (e.g., HiveMQ, Eclipse Mosquitto) allow users to connect
remotely.

•Simulation (Optional)
•Gazebo/AirSim: If needed, run simple drone simulations locally.
•Alternative: work with 2D grid-based mapping using Python libraries like
pygame.

RUNNING EVERYTHING ON LAPTOPS

33

•Tools Used:
•Object Detection: Google Colab, online YOLOv5 API
•MQTT Messaging: Mosquitto (local or cloud)
•Mapping & Visualization: Python (matplotlib, pygame)

•No Drones or Special Hardware Required!
•Scenario Examples:

•Simulating drone swarm object detection on laptops
•Sharing detected object data

THANK YOU

34

	Slide 1: Project Title: AI-Enabled Drone Swarm network and information management Subtitle: Object Detection, DRONE2DRONE Information Exchange and Collaborative AWARENESS
	Slide 2: SWARM networks - new generation network management
	Slide 3: Ai-based DRONE2DRONE information management
	Slide 4: Project – operational conditions
	Slide 5: Team Collaboration and Roadmap
	Slide 6: Objective: Design and implement an AI-based inter-drone communication system for collaborative awareness.
	Slide 7: Objective: Design and implement an AI-based inter-drone communication system for collaborative awareness.
	Slide 8: Challenges in Drone Swarm Communication
	Slide 9: Proposed Solution
	Slide 10: Object Detection Using YOLOv5/V8
	Slide 11: Object Detection Using YOLOv5
	Slide 12: Information Exchange Using MQTT
	Slide 13: LLaMA2-Based Inter-Drone Communication
	Slide 14: Sensor Data Processing
	Slide 15: Sensor Data Processing
	Slide 16: Information Exchange Protocol
	Slide 17: Inter-Drone Communication Using LLM
	Slide 18: Inter-Drone Communication Using LLM
	Slide 19: Integration and Testing
	Slide 20: implementation
	Slide 21: Object Detection using YOLOv8
	Slide 22: Code Sample
	Slide 23: Key Features:
	Slide 24: Communication Protocol Design using MQTT
	Slide 25: Communication Protocol Design using MQTT
	Slide 26: Communication Protocol Design using MQTT
	Slide 27: Inter-Drone Communication using LLaMA2-based LLM
	Slide 28: Simulation Setup for Drone Swarm
	Slide 29: AI Model Training for Inter-Drone Information Exchange
	Slide 30: Running YOLOv5 Without a Dedicated GPU
	Slide 31: Connecting to YOLOv5 via the Internet
	Slide 32: Running Other Components on Laptops
	Slide 33: Running Everything on Laptops
	Slide 34: THANK YOU

