
Advanced search

 IBM home | Products & services | Support & downloads | My account

IBM : developerWorks : Web services : Web services articles

Web services architect, Part 3: Is Web services the reincarnation of
CORBA?

Contents:
A brief history of
Communication Protocol
Models

What is CORBA?

What is DCOM?

Basic RPC architecture

Subtle differences impact
interoperability

Why CORBA and DCOM
success is limited

What is needed for an
improved RPC solution

Reliance on open Internet
standards

The road to success

Recap

Resources

About the author

Rate this article

Related content:
Web services architect, Part
1

Web services architect, Part
2

More dW Web services
resources

Dan Gisolfi (gisolfi@us.ibm.com)
Solutions Architect, IBM jStart Emerging Technologies
July 2001

Even during these early stages of the evangelism of Web
services, customers have already begun to ask how this
technology differs from CORBA. Isn’t it just another form of
distributed computing? In this installment of the Web services
architect, Dan Gisolfi offers a brief overview of the differences
between SOAP, DCOM, and CORBA and suggests a value
proposition for Web services within the distributed computing
realm.

Participate in the discussion forum on this article by clicking
Discuss at the top or bottom of the article.

In previous articles, I have discussed the vision of Dynamic e-business and
the available technologies that enable us to achieve that vision, namely
SOAP, WSDL, and UDDI. For the inquisitive reader the entire topic of
Dynamic e-business is nothing more than another form of distributive
computing. The justification for this new distributed computing model is
cross-platform and cross-programming language interoperability. For the
first time since distributive computing has been a mainstream concept, we
have a solution based on open standards that can truly support
interoperability.

Throughout my travels promoting Web services, a healthy skepticism
always seems to arise among the people I talk to. Regardless of the audience,
skepticism about Web services usually comes in the form of one of the
following (and related) questions:

 How is Web Service Technology different from CORBA?●

 Why will Web services succeed where CORBA failed?●

I welcome these questions for two reasons. First and foremost, they reflect a
familiarity with distributed computing that helps to frame the conversation.
Distributed computing programming models have been mainstream in the IT industry for some time. I
would guess that they have been around for the last two decades at the very least. As a result, the
conversation can be focused on the shortcomings of previous solutions and future requirements for
successful solutions.

Second, since we are not dealing with a new concept the associated risk for adopting Web services is low,
which reflects its foundation on open standards and the pervasiveness of these standards in vendor
solutions. The low risk is also a reflection of the real efforts that have been going on to advance
interoperability for Web services (as opposed to the elusive promise of vendor interoperability that
previous solutions have offered -- I'll have more on this later).

In the past, the Object Management Group (OMG) and its 700+ member companies have attempted to
define how vendors needed to design object request brokers (ORBs) so that interoperability might be
achieved. However, the reality has been that vendors compete on ORB implementations and thus there no
motivation existed from a business perspective to achieve interoperability. In fact, the real ORB vendor

developerWorks : Web services : Web services architect, Part 3

http://www-106.ibm.com/developerworks/library/ws-arc3/index.html (1 of 7) [7/5/2001 10:23:09 AM]

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-109.ibm.com/redirectdWPS.htm
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www.ibm.com/
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/webservices/
http://www-105.ibm.com/developerworks/papers.nsf/dw/webservices-papers-bytitle?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
javascript:void forumWindow()
javascript:void newWindow()
http://www-106.ibm.com/developerworks/webservices/library/ws-arc1/
http://www-106.ibm.com/developerworks/webservices/library/ws-arc1/
http://www-106.ibm.com/developerworks/webservices/library/ws-arc2.html
http://www-106.ibm.com/developerworks/webservices/library/ws-arc2.html
http://www-106.ibm.com/developerworks/webservices/?article=wsr
http://www-106.ibm.com/developerworks/webservices/?article=wsr
mailto:gisolfi@us.ibm.com
javascript:void forumWindow()
http://www-106.ibm.com/developerworks/library/ws-arc3/index.html

business objective was to sell their solutions at both ends of the distributive computing application:
requestor and provider nodes.

SOAP is a great distributive computing solution because it achieves interoperability through open
standards at the specification level as well as the implementation level. But I am jumping ahead of myself.
Lets step back and take a look at CORBA, DCOM, and, finally, SOAP. I will provide some key
differences and present a case for why Web services based on SOAP technology encompass a better
distributed-computing solution.

A brief history of Communication Protocol Models
Distributed applications require a protocol which defines the communication mechanism between two
concurrent processes. Two communication protocol models for building such applications exist:
messaging passing/queuing and request/response. While both messaging and request/response models
have their advantages, either one can be implemented in terms of the other. For example, messaging
systems can be built using lower-level request/response protocols. This was the case with Microsoft’s
Distributed Computing Environment (DCE) . For Remote Procedure Call (RPC) applications, the
synchronous request/response design style is usually a natural fit.

In the 1980s, communication protocol models focused on the network layer, such as the Network File
System (NFS) developed originally by Sun Microsystems -- which most networked Unix systems use as
their distributed file system -- and Microsoft’s DCE RPC application on Windows NT. In the 1990s the
object-oriented programming community pushed for an Object RPC (ORPC) protocol which would link
application objects to network protocols. The primary difference between ORPC and the RPC protocols
that preceded them was that ORPC codified the mapping of a communication endpoint to a language-level
object (see A Young Person's Guide to The Simple Object Access Protocol in Resources).

This mapping allowed server-side middleware to locate and instantiate a target object in the server
process. Techniques such as mapping indices into an array or associating symbolic names as hash table
keys were used to achieve the endpoint to object mapping. Prior to the advent of SOAP and Web services,
Microsoft DCOM and CORBA’s Internet Inter-ORB Protocol (IIOP) flavor of the General Inter-ORB
Protocol (GIOP) were the dominating ORPC protocols in the industry.

What is CORBA?
The Common Object Request Broker Architecture (CORBA) is the Object Management Group's
specification for achieving interoperability between distributed computing nodes. Their objective was to
define an architecture that would allow heterogeneous environments to communicate at the object level
regardless of who designed the two endpoints of the distributive application.

CORBA 1.1 was introduced in 1991 by Object Management Group (OMG). It defined the Interface
Definition Language (IDL) and the Application Programming Interfaces (API) that enable client/server
object interaction within a specific implementation of an Object Request Broker (ORB). The ORB is the
middleware that establishes the requestor-provider relationships between distributed objects.

CORBA 2.0 , adopted in December of 1994, addressed interoperability by specifying how ORBs from
different vendors can interoperate (see Resources).

An ORB would receive an invocation message to invoke a specific method for a registered object. The
ORB would then intercept the message and be responsible for finding an object that could implement the
request, pass it the parameters, invoke its method, and return the results. In theory, the requesting node
does not have to be aware of where the object is located, its programming language, its operating system,
or any other system aspects that are not part of an object's interface.

A CORBA object is represented to the outside world by an interface with a set of methods. A particular
instance of an object is identified by an object reference. The client of a CORBA object acquires its object
reference and uses it as a handle to make method calls, as if the object were located in the client's address
space. The ORB is responsible for all the mechanisms required to find the object's implementation,
prepare it to receive the request, communicate the request to it, and carry the reply (if any) back to the
client.

What is DCOM?
DCOM is the distributed extension of Microsoft's COM (Component Object Model) (see COM95 in

developerWorks : Web services : Web services architect, Part 3

http://www-106.ibm.com/developerworks/library/ws-arc3/index.html (2 of 7) [7/5/2001 10:23:09 AM]

Resources), which builds an object remote procedure call (ORPC) layer on top of DCE RPC (see DCE95
in Resources) to support remote objects. A COM server can create object instances of multiple object
classes. A COM object can support multiple interfaces, each representing a different view or behavior of
the object. An interface consists of a set of functionally related methods. A COM client interacts with a
COM object by acquiring a pointer to one of the object's interfaces and invoking methods through that
pointer, as if the object resides in the client's address space. COM specifies that any interface must follow
a standard memory layout, which is the same as the C++ virtual function table (see Rogerson96 in
Resources). Since the specification is at the binary level, it allows integration of binary components
possibly written in different programming languages such as C++, Java, and Visual Basic (see Resources).

Basic RPC architecture
In both DCOM and CORBA, the interactions between a client process and an object server are
implemented as object-oriented RPC-style communications. Figure 1 shows a typical RPC structure. To
invoke a remote function, the client makes a call to the client stub. The stub packs the call parameters into
a request message, and invokes a transport protocol to ship the message to the server. At the server side,
the transport protocol delivers the message to the server stub, which then unpacks the request message and
calls the actual function on the object. In DCOM, the client stub is referred to as the proxy and the server
stub is referred to as the stub. In contrast, the client stub in CORBA is called the stub and the server stub is
called the skeleton. Sometimes, the term proxy is also used to refer to a running instance of the stub in
CORBA. With respect to SOAP and Web services, we refer to the client stub as the service proxy and the
server stub as the service implementation template. Table 1 illustrates these different names for the
concepts.

Table 1: Client and Server components in different RPC architectures

RPC architectures Client Stub Server Stub
CORBA Stub Skeleton
DCOM Proxy Stub
Web services Service Proxy Service Implementation Template

Figure 1: Basic RPC Architecture

Subtle differences impact interoperability
DCOM and CORBA IIOP have many similarities. Both protocols use endpoint identifiers to identify a
target object within the server-side middleware and they both use method identifiers to determine the
signature of the method to be invocated.

Table 2: Implementation Attribute names in CORBA vs. DCOM

Implementation Attribute DCOM CORBA

Endpoint Naming OBJREF IOR

Interfaces / Object Multiple Single

Payload Parameter Value Format DR CDR

developerWorks : Web services : Web services architect, Part 3

http://www-106.ibm.com/developerworks/library/ws-arc3/index.html (3 of 7) [7/5/2001 10:23:09 AM]

However, with these similarities come some differences that impact interoperability. As illustrated in
Table 2, the three major differences are:

Naming of communication endpoints: In ORPC protocols, some message representation of an
ORPC endpoint is needed to communicate object references across the network. In CORBA/IIOP,
this representation is called an Interoperable Object Reference (IOR). IORs contain addressing
information in a portable format which any CORBA product can resolve to an object endpoint. In
DCOM, this representation is called an OBJREF, which combines distributed reference counting
with endpoint/object identification. Unfortunately, IORs do not correlate to OBJREFs, which results
in an interoperability problem between CORBA and DCOM applications.

●

Support for multiple interfaces per object: In CORBA, the interface identifier is implicit because
only one object interface is supported, whereas DCOM supports multiple interfaces per object.

●

Format for payload parameter values: In DCOM, the payload is written in a format known as
Network Data Representation (DR). In IIOP/GIOP, the payload is written using Common Data
Representation (CDR) format. Both DR and CDR deal with the differing data representations used
on various platforms. It should be noted that some minor differences exist between these two
formats which make them incompatible with one another.

●

Why CORBA and DCOM success is limited
Although CORBA and DCOM have been implemented on various platforms, the reality is that any
solution built on these protocols will be dependent on a single vendor’s implementation. Thus, if one were
to develop a DCOM application, all participating nodes in the distributed application would have to be
running a flavor of Windows. In the case of CORBA, every node in the application environment would
need to run the same ORB product. Now there are cases where CORBA ORBs from different vendors do
interoperate. However, that interoperability does not extend into higher-level services such as security and
transaction management. Furthermore, any vendor specific optimizations would be lost in this situation.

Both these protocols depend on a closely administered environment. The odds of two random computers
being able to successfully make DCOM or IIOP calls out of the box are fairly low (see Resources). In
addition, programmers must deal with protocol unique message format rules for data alignment and data
types. DCOM and CORBA are both reasonable protocols for server-to-server communications. However,
both they have severe weaknesses for client-to-server communications, especially when the client
machines are scattered across the Internet.

What is needed for an improved RPC solution
While CORBA and DCOM have their limitations, a distributed computing model is badly needed, and so
they are widely used. In fact, with the advent of the Internet, businesses have a stronger desire to integrate
with distributed applications outside of their enterprise. So what attributes are required for a successful
distributed computing model? Well, for starters the solution must be vendor, platform, and language
agnostic. Furthermore, it must offer more than the promise of interoperability; it must make strides at
proving interoperability. Additionally, it must be simple for programmers to use the protocol and deploy
applications. This requires easy access to client and server side implementations of the protocol. Simply
stated, we need a new distributed computing model based on open Internet standards.

Reliance on open Internet standards
Enter the Web Services Technology stack, a set of open specifications that are either existing Internet
standards or specifications that are widely accepted and are proceeding through the normal procedures to
become standards. The basic stack is comprised of HTTP, XML, SOAP, WSDL, UDDI, and WSFL.

At the base of the stack we have HTTP, an RPC-like protocol that is simple, widely deployed, and
firewall-friendly. Next, we have a common data representation language in XML, which is also extremely
pervasive. SOAP, an XML-based messaging protocol is platform and language agnostic. It supports both
message passing and request/response communication models. Like CORBA and DCOM, it requires an
IDL. What it uses, WSDL, is an XML-based service IDL that defines the service interface as well as its
implementation characteristics.

Let's revisit Table 2 and concentrate on the value HTTP and XML bring to Web services as a new
distributed computing model. In HTTP, both the request and response messages can contain arbitrary

developerWorks : Web services : Web services architect, Part 3

http://www-106.ibm.com/developerworks/library/ws-arc3/index.html (4 of 7) [7/5/2001 10:23:09 AM]

payload information. HTTP headers are just plain text, which makes it easy to use by the average Internet
programmer. Typically these headers contain a content-length and content-type. Furthermore, HTTP
employs TCP/IP as the network communications protocol for its request/response messages. An HTTP
client connects to an HTTP server using TCP. After establishing the TCP connection, the client can send
an HTTP request message to the server. The server then sends an HTTP response message back to the
client after processing the request. Simply put, HTTP is an elegant, payload agnostic transport that offers
most of the connection management features found in CORBA and DCOM. It also makes use of URLs for
object references that coincides with IORs and OBJREFs, found in CORBA and DCOM, respectively.

Since HTTP is payload agnostic, it does lack a mechanism for representing parameter values in the RPC
messages. This is where XML comes into the picture. XML is a platform-neutral tagged-data
representation language. It allows data to be serialized into a message format that is easily decoded on any
platform. However, unlike DR and CDR, XML is simple to use, offers a flexible easy-to-extend data
format, and is supported on virtually every computing platform. Once again, it is open and widely adopted.
Table 2 depicts how HTTP and XML address the interoperability issues that plague CORBA and DCOM.

The Web Services Technology stack offers SOAP as the open standard ORPC for mapping application
objects to network protocols (see Table 3). Although SOAP is not tied to a specific transport protocol,
HTTP has become the early favorite among SOAP adopters. Using HTTP, a SOAP envelope uses XML as
an encoding scheme for request and response parameters. A SOAP message is basically an HTTP request
and response that complies with the SOAP encoding rules. A SOAP endpoint is just an HTTP-based URL
that identifies a target for method invocation. Like CORBA, SOAP does not require that a specific object
be tied to a given endpoint. Rather, it is up to the implementer to decide how to map the object endpoint
identifier onto a server-side object. The namespace URI that scopes the method name in SOAP is
functionally equivalent to the interface ID that scopes a method name in DCOM or CORBA.

Table 3: Interoperability Attributes for Web Services

Implementation Attribute Web services

Endpoint Naming URL

Interfaces / Object Multiple - WSDL

Payload Parameter Value Format XML

The road to success
Reliance on open, widely adopted standards is just part of the solution. We also need to make sure that the
solution offers a high degree of interoperability and that implementations of the protocol are easily
accessible. This is where I feel Web services has a promising future. Vendors are coming together in favor
of the standards that comprise the Web services stack. Maybe it is due to timing and economics, or maybe
it is due to the Internet's impact on programming models. Regardless of the cause, the result is very
satisfying. Unlike the single-vendor implementation requirements that resulted from DCOM and CORBA
solutions, vendors agree that it is in everyone’s best interest to define a distributed computing model for
which applications can achieve interoperability.

Recently, IBM hosted an Interoperability workshop for a large group of SOAP vendors. Companies like
Microsoft and WebMethods willingly participated to insure that their SOAP solutions would interoperate
with other vendor solutions. This is a 180-degree cultural turnaround from the ORB battles of the 1990s.
And this workshop was just the start. Another workshop, hosted by a different vendor, is already being
planned.

The story gets even better when we introduce the notion of open source implementations. Implementations
for the core of the Web services stack, namely HTTP, XML, and SOAP, are freely available through the
Apache open-source community. And free implementations of WSDL exist from Microsoft and IBM. So
the average programmer can openly acquire the necessary tools to quickly develop a distributed
application and furthermore, they will rest assured that deployment dependencies for these applications
will be easily and cost-effectively resolved by application users.

Recap
Is Web services the reincarnation of CORBA? No, at least I do not view the Web services programming

developerWorks : Web services : Web services architect, Part 3

http://www-106.ibm.com/developerworks/library/ws-arc3/index.html (5 of 7) [7/5/2001 10:23:09 AM]

model as a reappearance or revitalization of CORBA. Instead, I see it as a new open solution that
addresses the same distributed computing issue that CORBA addressed with the further objective of
improving on some of CORBA’s shortcomings.

The technology of Web services offers a new programming model for building distributed applications
using open Internet standards. This new distributed computing solution exploits the openness of specific
Internet technologies to address many of the interoperability issues of CORBA and DCOM. Specifically,
Web services

uses HTTP to be firewall friendly and payload agnostic;●

employs XML as an encoding schema that is more widely adopted than DR and CDR;●

offers a free versus fee economic value proposition with regard to HTTP/SOAP server
environments versus ORB frameworks;

●

uses the pervasive Internet concept of URLs to address object identification; and●

offers more than a promise of interoperability. Vendors are actually working aggressively to prove
that their SOAP implementations do interoperate.

●

Is Web services a better RPC? I think so, but only time will tell.

Resources

Participate in the discussion forum on this article by clicking Discuss at the top or bottom of the
article.

●

Read my first and second columns in this series.●

Read the Web Services Conceptual Architecture for an overview of Web services.●

Checkout real world adoption scenarios for dynamic e-business.●

Review the Simple Object Access Protocol.●

Read about the Web services Description Language.●

Visit the Object Management Group's site to learn more about CORBA..●

Learn how to integrate a CORBA ORB with WebSphere Application Server.●

WebSphere Application Server supports CORBA, Web services, and J2EE.●

Learn more about Universal Description, Discovery, and Integration by visiting its homepage.●

Look to see who is part of the XML Protocol Workgroup.●

More dW Web services resources.●

About the author
A 13 year veteran of IBM, Dan Gisolfi holds a Masters Degree in Artificial Intelligence from
Polytechnic University, and a BA in Computer Science from Manhanttanville College. Prior to
1999, his career was focused on software and product development ranging from Expert
Systems, OS/2, and Secure Internet Payment Systems. As a member of the jStart (jump-Start)
Emerging Technologies Team, he keeps his hands dirty in both the business and technical

aspects of customer engagements. From Business Development Manger and Evangelist to Solution
Architect and Contract Negotiator he gets to wear many hats. As jStart Team Lead for Web services, he is
helping IBM drive the adoption of this emerging technology through real business solutions. You can
reach him at gisolfi@us.ibm.com.

developerWorks : Web services : Web services architect, Part 3

http://www-106.ibm.com/developerworks/library/ws-arc3/index.html (6 of 7) [7/5/2001 10:23:09 AM]

javascript:void forumWindow()
http://www-106.ibm.com/developerworks/webservices/library/ws-arc1/
http://www-106.ibm.com/developerworks/webservices/library/ws-arc2.html
http://www-4.ibm.com/software/solutions/webservices/pdf/WSCA.pdf
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/ebusiness/jstart/webservices.html&origin=ws
http://www-106.ibm.com/developerworks/webservices/library/w-wsdl.html
http://www.omg.org/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.boulder.ibm.com/wsdd/techjournal/0106_reyero/reyero.html&origin=ws
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/webservers/appserv/&origin=ws
http://www.uddi.org/
http://www.w3.org/2000/xp/
http://www-106.ibm.com/developerworks/webservices/?article=wsr
mailto:gisolfi@us.ibm.com
javascript:void forumWindow()
javascript:void newWindow()

What do you think of this article?

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)

Comments? Send us your comments or click Discuss to share your comments with others.

 About IBM | Privacy | Legal | Contact

developerWorks : Web services : Web services architect, Part 3

http://www-106.ibm.com/developerworks/library/ws-arc3/index.html (7 of 7) [7/5/2001 10:23:09 AM]

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	developerWorks : Web services : Web services architect, Part 3

	NBHNAFFMAHLCMOJLBBNGAOKOKGIIGEADJB:
	form1:
	x:
	f1: [dW]
	f2:

	f3:

	form2:
	x:
	f1: Web services architect, Part 3
	f2: Web services
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-webservices.html
	f4: Off
	f5:

	f6:

