EAAHNIKH AHMOKPATIA Tunua HAnpocpoleﬁ]q Kal TI:])\EI'IIK(')IV(DVI(E)V
, , AvanTtuén AoyIouIKOU Yia AiKTua Kal

Edvikov kou KanodigTtprakov ;
TnAENIKOIVWVIEG

HNovemotuov Adnvov Xeluepivd EEaunvo 2021-2022

AIGAEEN
MQ Telemetry Transport (MQTT)

- Internet of Things
 Publish — Subscribe model

. MQTT

1 Internet of

hings (Io

IoT applications

Libelium Smart World

Air Pollution

Control of CO, emissions of factories, pollution
emitted by cars and toxic gases generated in
farms.

Forest Fire Detection

Monitoring of combustion gases and preemptive
fire conditions to define alert zones.

Wine Quality Enhancing

Monitoring soil moisture and trunk diameter
in vineyards to control the amount of sugar in
grapes and grapevine health.

Offspring Care

Control of growing conditions of the offspring in
animal farms to ensure its survival and health.

Sportsmen Care

Vital signs monitoring in high performance
centers and fields.

Structural Health

Monitoring of vibrations and material conditions
in buildings, bridges and historical monuments.

Quality of Shipment Conditions

or cold chain maintenance for insurance purposes.

Monitoring of vibrations, strokes, container openings

Smartphones Detection

Detect iPhone and Android devices and in
general any device which works with Wifi or
Bluetooth interfaces.

Perimeter Access Control

Access control to restricted areas and detection
of people in non-authorized areas.

Radiation Levels
Distributed measurement of radiation levels

in nuclear power stations surroundings to
generate leakage alerts.

Water Quality

Study of water suitability in rivers and the
sea for fauna and eligibility for drinkable
use. the green.

Electromagnetic Levels

Measurement of the energy radiated
by cell stations and WiFi routers.

Traffic Congestion

Monitoring of vehicles and pedestrian
affluence to optimize driving and walking
routes.

Waste Management

Detection of rubbish levels in containers
to optimize the trash collection routes.

Smart Parking

Monitoring of parking spaces availability

in the city.

Golf Courses

Selective irrigation in dry zones to
reduce the water resources required in

Smart Roads

Warning messages and diversions
according to climate conditions and
unexpected events like accidents or
traffic jams.

Smart Lighting

Intelligent and weather adaptive lighting
in street lights.

Intelligent Shopping

Getting advices in the point of sale
according to customer habits, preferences,
presence of allergic components for them
or expiring dates.

Noise Urban Maps

Sound monitoring in bar areas and
centric zones in real time.

Water Leakages

Detection of liquid presence outside tanks
and pressure variations along pipes.

Vehicle Auto-diagnosis

Information collection from CanBus to
send real time alarms to emergencies
or provide advice to drivers

Item Location

Search of individual items in big surfaces
like warehouses or harbours.

UbelRia

www.libelium.com

IoT applications

[0 Devices

B Programming Boards, Sensors, Actuators, Smart
Phones

[0 Programming languages

B Java, Android, Javascript, Python
[1 Messaging
m MQTT, Constrained Application Protocol (CoAP)

[0 Scaled scenarios

B Home automation, smart cities, industrial applications

Publish — subscribe model

Publish-subscribe

[0 Message pattern] message queue paradigm n
message oriented middleware 1 messaging
protocol n connectivity protocol

0 Aocuyxpovn €nikoivwvia

B anooTtoAn 6edoNEVWY OE NPAYNATIKO XPOVO
O MikpO peEyEBOC NNVUNATWV

B dedopeva aiobntTnpwv
O XaunAn katavaAwon ynartapiag

B smartphone, embedded boards

Publish-subscribe

Publish [|] [| J
Subscriber Subscriber
B Anuooisuon HNVUNATWY EVOC
OUYKEKpPIMEVOU topic oTov
message broker Subscribe: Subscribe:
truck/telematics/ truck/telematics/#
Subscribe location
B Eyypapn o€ CUYKEKPIPEVO Broker
topic oTov message broker
Broker Publish: Publish:
truck/telematics/ truck/telematics/
B [lpoypappa diapecoAaBnTn location speed
via Tn dlaxeipion nvupaTwy
METAEU €TEPOYEVWV
messaging NPwWTOKOAAWV. [Publisher] [Publisher J

O Emkaiponoinon
O MeTaoxXnuaTiopog
O ApopoAoynon

1 MQ Telemetry Transport

MQ Telemetry Transport (MQTT)

0 =ekivnoe ano Touc Dr Andy Stanford-Clark Tnc
IBM kal Arlen Nipper Tng Arcom (onuepIvi
Eurotech) To 1999

0 Xpnoiponoinbnke ano 1o Facebook Messenger
TO 2011

O H ekdoon 3.1.1 gyive dekTtn w¢ OASIS standard
TO 2014

MQ Telemetry Transport (MQTT)

O

MQTT anoTeAei eva €€alpeTika anAo kal eEAappu
NPWTOKOAAO HETAPOPAC UNVUNATWV (Mmessaging protocol)

B To MQTT pnRvupa €ival 66o 1o duvaTov PIKPOTEPO.

B >71aBepoO header (2 bytes), n kata anaitnon push-style message
dlavoun Twv pnvupatwy diatnpei To network utilization xaunAo.

H apxiTekTovikn TUNou publish/subscribe exel oxediaoTei yia
va €ival avoikTn Kal eUKOAN oTnv uAonoinon

B XIAIG0eC OUOKEUEC XpNOTEC va ouvdeovTdl o€ evav MQTT server (broker)

B Aev anaiteital adeia xprnong ano TIC OUCKEUEC/AEITOUPYIKA
ouoTNNATa/MAATPOPUEC KTA

B Ol epapuOYEC/OUOKEUEG Mou oTeAvouv dedopeva dev xpelaleTal va
yvwpilouv oTIONMNOTE YIA TOUG ANNTEG

Eival 10avikO yia neplopioheva nepifailovra:

B XaunAopuBun ouvdeon, uwnAn KABuoTEPNON, OUOKEUEC UE MEPIOPICHEVN
ene€epyaoTikn 1I0XU KAl pvAun (MIkpo peyedoc BIBAIOBNKWV)

10

MQ Telemetry Transport (MQTT)

O

MoAAanAa enineda noiotnTac unnpeoiac (Quality of
Service 3) divouv sueAi€ia oTn dlaxeipion KNVURATWV
dIaPOPETIKOU TUMNOU

B most once, at least once, exactly once.

AMAO OUVOAO EVTOAWV
m CONNECT, PUBLISH, SUBSCRIBE, UNSUBSCRIBE DISCONNECT

EVoOwPaTWPEVN UNOCTNPIEN VIa OTAV UNAPXEl ANWAEIA
ouvOEoNnC

B O server evnuUeEPWVETAl OTav N ouvdeon dIAKONTETAI

B Ta ynvupata EavaoTteAvovTal | KpatouvTal yia napadocon apyoTepa

11

MQTT

MQTT Publisher Client
Broker
Topic 1

CONNE:;:\\\\
DISCONNECT
= Topic 2
CONNECT/

DISCONNECT
MQTT Subscriber
Client

Broker - 0 evOIGuecog
ECUTTNPETNTNG (Server) TTou
dlavENEl TNV TTAnpo@opia
oToug TTeAATEG (client) TTou
gival oUVOEUEVOI OE QUTOV
Kal evOIAPEPOPEVOI VIa Eva
B£ua (topic).

Client - n ouokeur) TUTTOU
TTEAATNG TTOU Eival
ouvOoeuEVN oTov broker
TTPOKEIUEVOU VA OTTOCTEIAEI
N AGBel TTAnpo@opia.
Topic - To B€pa 1o oTT0iO
evolapépel Toug clients. O
clients kavouv publish,
subscribe, i ka1 Ta duo, o€
Eva topic.

MQTT Publisher Client

Publish to topic
“Topicl”

Subscribe to topic
“Topicl”

MQTT Subscriber
Client

MQTT

Broker
Topic 1
Topic 2

Publisher - Oi1 Clients 1ToU
oTéAvouv TTAnpogopia aTtov Broker
TTPOKEIMEVOU VA TNV DIAVEiEI OTOUG
evOIQPEPOPEVOUC YIa TO topic
clients.

Subscriber - Oi clients
evnuepwvouv To broker yia troio/a
BEpa/Ta evdiagépovtal. OTav Evag
client eyypdeeral o€ €va topic, OAa
TQ JAVUPOTA TTOU OTEAVOVTQI OTOV
broker oTéAvovTtal oTOUg
subscribers 1ToU €ival
eyyeypauuévol oto topic. Oi Clients
MTTOPOUV va KAVOUV

unsubscribe yiava oTapaThoouy
va AapBdavouv pnvuuaTta yia To
OUYKEKPIMEVO topic.

QoS - Mol10TNTa UNNPECIac

O Kabe MQTT ouvdeon unopei va kabopioesl TNV noioTNTA
unnpeoiac oTov broker Ye yia akepaia TiPn nou
kKupaiveTal ano 0-2. To QoS dev ennpeadel Tov XEIPIOPO
TWV PNETAOOOEWV dedopevwy TCP, yovo PHETAEU TwV
neAatwv MQTT.

B HTiyn 0 kaBopilel anooToAn To NOAU pia ¢popa N hia kai
MOVO Hia gopd Xwpic va anaiteital eniBeBaioon napadoonc.
AUTO avaQeEPETAl CUXVA WG «NUPOBOANCTE KAl EEXACTE>.

B HTign 1 kabopilel TouAaxioTov hia gopd. To ynvupa
anooTeAAETAI NOAAEC POPEC HEXPI VA ANPOEi pIa
eniBeBaiwon, yvwoTn aAAIwG wc eniBeBaiwpevn napadoon.
Mnopei va unap&ouv noAAanAa avTiypaga.

B H T1iun 2 kabopilel akpifwc pia opa. O1 NEAATEC anoOTOAEA
Kal NapaAnnTeG Xpnaoidonolouv Xeipayia duo eninedwyv yia
va e€aopaAioouv 0TI AauBaveTal poOvo €va avTiypapo Tou
MNVUNATOC, YVWOTO WG €Eacpaliouevn napadoan.

QoS

M QTT Quality of Service for reliable messaging

QoS 0

at most once =d m

\ PUBLISH!

- doesn't survive failures
- never duplicated

MQTT QoS 2

Broker exactly once

QoS 1

at least once

PUBCOMP - survives connection loss
- never duplicated

PUBACK

- survives connection loss
- ¢can be duplicated

https://atadiat.com/en/e-mqtt-101-tutorial-introduction-and-eclipse-mosquitto/

IoT device 1 Sensor Node 2- IoT
Sensor Node 1 - Data Data producer - | device
producer —~MQTT Publisher Client 2 2
Publisher Client 1
Publish to topic
"roomB\sensor3
Publish to topic
"roomA\sensor1 Sensor Node 3-
MQTT) Data producer -
Broker Publisher 3
Publish to topic
. IoT
roomC\sensor3 device

3

Sensor Node 1 - Data
producer -MQTT
Publisher Client 1

=N\

MQTT

Subscribe to topics Broker
"roomA\sensorl”,
"roomB\sensor2”,

"roomC\sensor3”

Sensor Data
Gatherer - Edge
Subscriber Client | Server

Sensor Node 2-
Data producer -
Publisher Client 2

Sensor Node 3-
Data producer -

Publisher 3

MQTT
Broker

Publish to topic
"Alerts\Devicel”

Edge
Server

Data producer -
MQTT Publisher
Client 4

Subscribe to topic
"Alerts\Devicel”

Alert device -
Subscriber Client

Android device

IoT device 1

Sensor Node 1 - Data
producer -MQTT
Publisher Client 1

MQTT

Broker
e \
Server

Sensor Node 2-
Data producer -
Publisher Client 2

IoT
device

Sensor Data Data producer -
Gatherer - MQTT Publisher
Subscriber Client Client 4

Sensor Node 3-
Data producer -
Publisher 3

IoT
device

3

Alert device

Subscriber Client

Android device

EpyaAesia

IoT - Android eqpappoyn

B Android SDK

B Java

B Eclipse Paho Android Client (Publisher)

Android - Android eqpappoyn

B Android SDK

B Java

B Eclipse Paho Android Client (Subscriber)

EpyaAesia

Broker
B Mosquitto broker

Edge server

B Java IDE

B Java

B Eclipse Paho Java client

http://mqtt.org/

A\ 1
N\ o
\ m News Docs Wiki Software Community FAQ

' I]

MQTT is @ machine-to-machine (M2M)/"Internet of Things" connectivity protocol. It was designed as an
extremely lightweight publish/subscribe messaging transport. It is useful for connections with remote

locations where a small code footprint is required and/or network bandwidth is at a premium. For example, it

has been used in sensors communicating to a broker via satellite link, over occasional dial-up connections

with healthcare providers, and in a range of home automation and small device scenarios. It is also ideal for

mobile applications because of its small size, low power usage, minimised data packets, and efficient
distribution of information to one or many receivers (more...

News

MQTT v3.1.1 now an OASIS Standard
Movember 7th, 2014 - 5 Comments
Good news everyone! MQTT v3.1.1 has now become an QOASIS Standard.

This marks not just the result of 18 months hard work by the Technical Committee, but also the last
15 years of work started by Andy and Arlen. Congratulations to everyone involved.

| A——

\ .
\ ;OU
‘ (2] News Docs Wiki Software Community FAQ

' ! ’

Documentation

Protocol Specifications

MQTT v3.1.1 is an OASIS Standard. The specification is available as either single-page HTML or
PDE.

For historical reference, the previous version of MQTT v3.1 is available here.

MQTT-SN v1.2, formerly known as MQTT-S, is available here. MQTT for Sensor Metworks is aimed
at embedded devices on non-TCP/IP networks, such as Zigbee. MQTT-SN is a publish/subscribe
messaging protocol for wireless sensor networks (WSN), with the aim of extending the MQTT
protocol beyond the reach of TCP/IP infrastructure for Sensor and Actuator selutions. Read more
about it at the IBM Zurich Research website.

Using MQTT

We encourage you to explore (and contribute to!) the mqgtt.org wiki for examples and background,
but these are some of the longer and mere formal documents on MQTT.

« Building Smarter Planet Solutions with MOTT and IBM WebSphere MQ Telemetry from IBM
Redbooks

« Developing Applications for WebSphere elemetry in the WebSphere nroCenter

= Using WebSphere MQ Telemetry and Pachube to connect to remote sensors and devices

» Using MOTT with Android (Chinese, IBM developerworks)

« Using MO Telemetry Transport with WebSphere Business Integration Message Broker

» Using the IBM Lotus Expeditor micro broker MQTT client to publish messages

For language-specific API information, contact the authors of the individual client APIs {listed on the
Software page). If you have a tutorial or guide you think could be added to this list, please let us

10 & 20 kepaAaia

http://mqtt.org/

Mosquitto

MQTT - Mosquitto (mosquitto.org)

O To Mosquitto Broker ekteAsital (apXIKEC pubuiceIC) HE TNV
NapaKaTw EVTOAN:

/{path}/{to}/mosquitto -c /{path}/{to}/mosquitto.conf
[0 Mosquitto Publisher
[0 Mosquitto Subscriber

O Xpnoigol cuvOeaol
[| https://mosquitto.org/download/

| https://m itto.or cumentation

23

https://mosquitto.org/download/
https://mosquitto.org/documentation/
https://sivatechworld.wordpress.com/2015/06/11/step-by-step-installing-and-configuring-mosquitto-with-windows-7/
http://www.steves-internet-guide.com/install-mosquitto-broker/
http://test.mosquitto.org/

Mosguitto Test @ windows

O 2710 1° napabupo:
B C:\Program Files\mosquitto>mosquitto -p 1883

C:\Program Files\mosquitto»mosquitto -p 1883

O e 2°napabupo
B Netstat —an -p tcp
LISTENING

O >to 1810 mapabupo

[] mosquitto_sub -t rooms/rooml/sensors/temp

O e 3° napabupo:

B C:\Program Files\mosquitto>mosquitto_pub -t
rooms/rooml/sensors/temp -m "1 2 3 4"

O Yto 2° gpdaviletatr 1 2 3 4

MQTT 101 Tutorial: Introduction and Hands-on using Eclipse Mosquitto - Atadiat

https://atadiat.com/en/e-mqtt-101-tutorial-introduction-and-eclipse-mosquitto/#Simple_PublisherSubscriber

BIBAIOOHKEZ ' IA JAVA &
ANDROID

Eclipse Paho Java client

% eCIIpse pahoo Components - Documentation = Community Pahois aniot eclipse.org project

Eclipse Paho Java Client

The Paho Java Client is an MQTT client library written in Java for developing applications that run on the JWM or other Java compatible platforms such as Android

The Paho Java Client provides two APls: MattAsyncClient provides a fully asychronous APl where completion of activities is notified via registered callbacks. MattClient is a synchronous
wrapper around MgttAsyncClient where functions appear synchronous to the application.

Features

MOTT 3.1 v Offline Buffering v
MQTT 3.1.1 v WebSocket Support v
LWT v Standard TCP Support v
SSL/TLS v Non-Blocking API v
Message Persistence v Blocking API v
Automatic Reconnect v High Availability v

Project description:

The Paho project has been created to provide reliable open-source implementations of open and standard messaging protocols aimed at new, existing, and emerging applications for
Machine-to-Machine (M2M]) and Internet of Things {loT). Paho reflects the inherent physical and cost constraints of device connectivity. Its objectives include effective levels of decoupling
between devices and applications, designed to keep markets open and encourage the rapid growth of scalable Web and Enterprise middleware and applications.

Links

Project Website: https:/
» Eclipse Project Information: http
» Paho Java Client Page: hit
e GitHub:h thub.com/ecli
* Twitter:

O https://eclipse.org/paho/clients/java/

26

https://eclipse.org/paho/clients/java/

Eclipse Paho Java client

% ecnpse pahOD Components ~ Documentation Community ~ Paho is an ot eclipse.org project

Using the Paho Java Client

Downloading

Eclipse hosts a Nexus repository for those who want to use Maven to manage their dependencies. The released libraries are also available in the Maven Central repository.

Add the repository definition and the dependency definition shown below to your pom.xml.

epositories/paho-snaps

Replace zrerourL® with either ntt / forthe official releases, or nttp
the nightly snapshots. Replace %6WVERSIOMN% with the level required . The latest release version is 1.2.2 and the current snapshot versionis 1.2.2 .

ho-releases

org/content/reposi

repo.ec

<project ...>»
<repositories:>
<repository>
<idrEclipse Paho Repo</id»
<url>¥REPOURLE</url:
</repository>
</repositories>

<dependencies:>
<dependency>
<groupIdrorg.eclipse.paho</groupld:>
<artifactIdrorg.eclipse.paho.client.mgttv3</artifactId>
<version>¥VERSION®</ v
</dependency>

rsion>

</dependencies>
</project>

If you find that there is functionality missing or bugs in the release version, you may want to try using the snapshot version to see if this helps before raising a feature request or an issue.

Building from source

There are two active branches on the Paho Java git repository, master which is used to produce stable releases, and develop where active development is carried out. By default cloning the

git repository will download the master branch, to build from develcp make sure you switch to the remote branch: git checkout -b develop remotes/origin/develop
To then build the library run the following maven command: mvn package -DskipTests

0. client.mgttva/target directory

This will build the client library without running the tests. The jars for the library, source and javadoc can be found inthe org.ec

Documentation

Reference documentation is online at: hit ww.eclipse.org/paho/files/javadoc/index.html

Logand Debug in the Java Client: https: eclipse.org/Paho/LoganadDebuginthe favaclient

HTMPOrt Org.cCHpSCE. PallO. CHENL. ITIGQLLVO . IVIQLLLONTIECLUPLION,S,
import org.eclipse.paho.client.mqgttv3.MqttException;

import org.eclipse.paho.client.mgttv3.MqttMessage;

import org.eclipse.paho.client.mqttv3.persist. MemoryPersistence;

public class MqttPublishSample {
public static void main(String[] args) {

String topic = "MQTT Examples";
String content = "Message from MqttPublishSample";
int qos = 2;
String broker = "tcp://iot.eclipse.org:1883";
String clientld = "JavaSample";
MemoryPersistence persistence = new MemoryPersistence();

try {
MqttClient sampleClient = new MqttClient(broker, clientld, persistence);
MgqttConnectOptions connOpts = new MqttConnectOptions();
connOpts.setCleanSession(true);
System.out.printIn("Connecting to broker: "+broker);
sampleClient.connect(connOpts);
System.out.printIn("Connected");

System.out.printIn("Publishing message: "+content);
MqttMessage message = new MqttMessage(content.getBytes());
message.setQos(qos);

sampleClient.publish(topic, message);
System.out.printIn("Message published");

sampleClient.disconnect();
System.out.printIn("Disconnected");
System.exit(0);

} catch(MgttException me) {
System.out.printIn("reason "+me.getReasonCode());
System.out.printIn("msg "+me.getMessage());
System.out.printIn("loc "+me.getLocalizedMessage());
System.out.printIn("cause "+me.getCause());
System.out.printIn("excep "+me);
me.printStackTrace();

JAVA Publisher

28

JAVA subscriber

package com.anap.second;

import com.sun. jmx.snmp. Timestamp;

import org.eclipse.paho.client. mgttv3.*;

impart org.eclipse. paho.client. mgttv3. perslst MemoryFersistence;

public class Main implements MqgttCallback]

public static void main(String[] args) {

String topic ="MOTT Example”;

int gos =2

String broker = t|:|:| [/localhost:1883";
String clientld = JavaEampIeSuhscrlher

MEH‘IDWPEFSiStEI‘IEE‘ persistence = new MemePersiﬁtEHCE[];

try {

J/Connect client to MQTT Broker

mMgttClient sampleClient = new MgttClient{broker, clientld, persistence);
MattConnectOptions connOpts = new “wﬂqttfunnectﬂptmns[]

connOpts.setCleanSession(true);

J/Set callback

Main main = new Mainl);
sampleClient.setCallback{main);

System.out.println("Connecting to broker: "+broker]);
sampleClient.connect{connOpts);
System.out.printin{"Connected”);

J/Subscribe to a topic

System.out.println{"Subscribing to topic \""+topic+"\" gos "+qos);
sampleClient.subscribe(topic, gos);

}catch(MattException me) {

System.out.printin("reason * + me.getReasonCodeal());
System.out.println"msg " + me.getMessage());
System.out.println"loc © + me.getLocalizedMessage());
System.out.printin{"cause " + me.getCause(});
System.out.printin{"excep " + me);
me.printstackTrace();

Subscriber in JAVA

& &

* @see MgttCallback#connectionLost(Throwable)
£

public void connectionLost(Throwable cause) {

// This method is called when the connection to the server is lost.
System.out.printin("Connection lost!" + cause);
System.exit(1);

/.ﬁi‘ *
*/@see MagttCallback#deliveryComplete(IMgttDeliveryToken)
E

public void deliveryComplete(IMgttDeliveryToken token) {
/{/Called when delivery fofr a message has been completed, and all acknowledgments have been received
}

A& &

* @see MgttCallback#messageArrived(String, MgttMessage)

*/

public void messageArrived(String topic, MqttMessage message) throws MqttException {
//This method is called when a message arrives from the server.

String time = new Timestamp(System.currentTimeMillis()).toString();
System.out.printin("Time:\t" +time +

" Topic:\t" + topic +

! Message:\t” + new String(message.getPayload()) +

" QoS:\t" + message.getQos());

Eclipse Paho Android Client

% eCIIpse pahoo Components ~ Documentation ~ Community + Pahois aniot eclipse.org project

Eclipse Paho Android Service

The Paho Android Service is an MQTT client library written in Java for developing applications on Android.

To get started, download Andreoid Studio. You will also need to download the Android SDK, Currently you will need the SDK for 19,21 and 22, This will hopefully be simplified soon.

Features

MQTT 3.1 v Offline Buffering v
MQTT 3.1.1 v ‘WebSocket Support v
LWT v Standard TCP Support v
SSL/TLS v Non-Blocking API v
Message Persistence v Blocking API x
Automatic Reconnect v High Availability v

Project description

The Paho project has been created to provide reliable open-source implementations of open and standard messaging protocols aimed at new, existing, and emerging applications for
Machine-to-Machine (M2M) and Internet of Things (loT). Paho reflects the inherent physical and cost constraints of device connectivity. Its objectives include effective levels of decoupling
between devices and applications, designed to keep markets open and encourage the rapid growth of scalable Web and Enterprise middleware and applications.

Links

Project Website: http:
* Eclipse Project Information: hitps

pse.org/projects/iot.paho
* Paho Android Client Page: https://eclipse.org/paho/clients/android/

* GitHub: https
s Twitter: @ epaho

* Issues: https:/github.com/eclipse/paho.magtt.android/issues

* Mailing-list: https:/dev.eclipse.org/mailman/listinfo/paho-dev

‘github.com/eclipse/paho.mqtt.android

O https://eclipse.org/paho/clients/android/

31

https://eclipse.org/paho/clients/android/

Eclipse Paho Android Client

Project description

The Paho project has been created to provide reliable open-source implementations of open and standard messaging protocols aimed at new, existing, and emerging applications for
Machine-to-Machine (M2M) and Internet of Things (loT). Paho reflects the inherent physical and cost constraints of device connectivit, objectives include effective levels of decoupling
between devices and applications, designed to keep markets open and encourage the rapid growth of scalable Web and Enterprise middleware and applications.

Links

Project Website: http:
Eclipse Project Information:
Paho Android Client Pas

org/projects/iot.paho
‘android,

* Mailing-list: https:/dev.eclipse.org/mailman/listinfo/paho-dev

Using the Paho Android Client

Downloading
Maven

Gradle

If yvou are using Android Studio and / or Gradle to manage your application dependencies and build then you can use the same repository to get the Paho Android Service. Add the Eclipse
Maven repository to your bu gradle file and then add the Paho dependency tothe dep

ndencies section

repositories {
maven {

url "https://repo.eclipse.org/content/repositories/paho-snapshots/"

dependencies {
compile ‘org.eclipse.paho:org.eclipse.paho.client.mgttv3:1.08.2"
compile ‘org.eclipse.paho:org.eclipse.paho.android.service:1.0.2"

MNote: currently you have to include the org.ec

paho:org. client.mgt

ip 2 dependency as well. We are attempting to get the build to produce an Android ass file that
t's dependencies, however this is still experimental. If you wish to try it. remove the org.
dependency and append gaar tothe end of the Android Service dependency. E.5. org.eclipse.paho

contains both the Android service as well a

e.paho:org. e

se.paho.client.mgttv3

If you find that there is functionality missing or bugs in the release version, you may want to try using the snapshot version to see if this helps before raising a festure request or an issue.

Building from source

* Open aterminal and navigate to this directory (org.eclipse.paho.android.service}

* Runthecommand ./gradlew clean

ar or on Windows: gradl

Running the sample app:

* Open the this current directory in Android Studio (org.eclipse.paho.android.service).

* Inthe toolbar along the top, there should be a dropdown menu. Make sure that it contains ‘org.eclipse.android.sample’ then click the Green 'Run’ Triangle. It should now build and
launch an Virtual Android Device to run the App. If you have an Android device with developer mode turned on plugged in, you will have the oppertunity to run it directly on that.

* [f you have any problems, check out the Android Developer Documentation for help: https:/developerandroid.com

32

XpNoIHOoI GUVOECHOIN

O MQTT

B http://mqgtt.org/

[0 Eclipse Paho Java client

B https://eclipse.org/paho/clients/java/

B https://www.eclipse.org/paho/files/javadoc/org/eclipse
/paho/client/mqgttv3/package-summary.html

[0 Eclipse Paho Android Client

B https://eclipse.org/paho/clients/android/

[0 Mosquitto Broker

B https://mosquitto.org

http://mqtt.org/
https://eclipse.org/paho/clients/java/
https://www.eclipse.org/paho/files/javadoc/org/eclipse/paho/client/mqttv3/package-summary.html
https://eclipse.org/paho/clients/android/
https://mosquitto.org/

XpNoIHOoI GUVOECHOIN

O Introduction to MOTT - learn.sparkfun.com

O MQTT 101 Tutorial: Introduction and Hands-on
using Eclipse Mosquitto - Atadiat

https://learn.sparkfun.com/tutorials/introduction-to-mqtt/all#the-basics
https://atadiat.com/en/e-mqtt-101-tutorial-introduction-and-eclipse-mosquitto/

