EAAHNIKH AEMOKPATIA TuAua I'I)\'r]pocpoler']c; Kal T'r])\eanglvwwd)v
Edvikov kot Konodictprakov AvanTugn Aoyiopikou yia AikTua Kal
TNAENIKOIVWVIEG

[Moavemotuov Adnvov Xelpepivo EEGunvo 2022-2023

AIGAEEN

Message Queuing Telemetry
Transport (MQTT)

« Internet of Things
« Publish = Subscribe model

. MQTT

1 Internet of Things (IoT)

e : WA 0 C
Billions of smart devices b*». . ,
instrument our world "9 G e O
today _. e &, oY

AP Bt vl I
: A /e
0 \ S .

»
-
A\

)" Interconnecting these smart
n# devices creates a kind of global
central nervous system

IoT applications
Libelium Smart World

according to climate conditions and
unexpected events like accidents or

Smartphones Detection Electromagnetic Levels irafficisms:

Detect iPhone and Android devices and in Measurement of the energy radiated
general any device which works with Wifi or by cell stations and WiFi routers.
Bluetooth interfaces.

Air Pollution

Control of CO, emissions of factories, pollution
emitted by cars and toxic gases generated in
farms.

Smart Lighting

Intelligent and weather adaptive lighting

I = . B in street lights.
Perimeter Access Control Traffic Congestion

Intelligent Shopping

Access control to restricted areas and detection Monitoring of vehicles and pedestrian
of people in non-authorized areas. affluence to optimize driving and walking

. routes.
Radiation Levels

Distributed measurement of radiation levels
in nuclear power stations surroundings to
generate leakage alerts.

Forest Fire Detection

Monitoring of combustion gases and preemptive
fire conditions to define alert zones.

Getting advices in the point of sale
according to customer habits, preferences,
presence of allergic components for them
or expiring dates.

Wine Quality Enhancing

Monitoring soil moisture and trunk diameter
in vineyards to control the amount of sugar in
grapes and grapevine health.

Noise Urban Maps

Sound monitoring in bar areas and
centric zones in real time.

Offspring Care

Control of growing conditions of the offspring in
animal farms to ensure its survival and health.

Sportsmen Care

Vital signs monitoring in high performance
centers and fields.

Structural Health

Monitoring of vibrations and material conditions
in buildings, bridges and historical monuments.
A\

>/

Water Leakages

Detection of liquid presence outside tanks
and pressure variations along pipes.

Vehicle Auto-diagnosis

Information collection from CanBus to
send real time alarms to emergencies
or provide advice to drivers,

Waste Management

Detection of rubbish levels in containers
to optimize the trash collection routes.

Smart Parking Item Location

Monitoring of parking spaces availability Search of individual items in big surfaces
in the city. like warehouses or harbours.

Quality of Shipment Conditions Water Quality Golf Courses o

Monitoring of vibrations, strokes, container openings Study of water suitability in rivers and the Selective irrigation in dry zones to . .\%

or cold chain maintenance for insurance purposes. sea for fauna and eligibility for drinkable reduce the water resources required in llbetllm
use. the;green; www.libelium.com

Smarter Planet - 3 Is

[1 Instrumented: Information is captured wherever it
exists, such as through the use of remote sensors.

[1 Interconnected: Information is moved from the
collection point to wherever it can be usefully
consumed.

1 Intelligent: Information is processed, analyzed, and
acted upon to derive maximum value and knowledge.

s R]

Instrumented Interconnected Intelligent Smarter Planet

Devices

O

O

O

O

Devices: tiny sensors, RFID tags in stand-alone products,
through smartphones and location-aware GPS devices
to notebook PCs and embedded systems.

These devices typically have enough computing power to
gather and transmit data, and some have enough to
respond to requests to modify their behavior.

These devices also are nearly all connected to some
extent. Most have, or will have, an Internet address of their
own, with which they can communicate directly across local
networks or indirectly by way of clouds.

The next steps, then, are gathering all of the data that is
collected by these small, medium, or even large devices,
routing that data to where it is best interpreted, and
using the world’s vast computational resources.

Telemetry and the Internet

[

L

Telemetry technology allows things to be
measured or monitored from a distance.

In addition, today, improvements in telemetry
technology make it possible to interconnect
measuring and monitoring devices at different
locations and to reduce the cost of building
applications that can run on these smart devices
to make them even more useful.

MQ Telemetry Transport (MQTT) provides
telemetry technology to meet the information
challenges of today’s Internet

users.

Publish — subscribe model

Publish-subscribe

[

Message pattern n message queue (MQ)
paradigm n message oriented middleware n
messaging protocol 1 connectivity protocol

Aouyxpovn EMIKOIVWVIa

B anooTtoAn 0edouEVWYV OE NPAYNATIKO XpOVO
MIkKpO HEYEDOC UNVUNATWV

B Jedopeva aiodnTnpwv

XaunAn katavaAwon unarapiac

B smartphone, embedded boards

Publish-subscribe

Subscribe

B Eyypagn O£ CUYKEKPIUEVO [Subscriber] [Subscriber }
topic oTov message broker

Publish

B Anpocicuon PMNVUPATWV €VOC
OUYKEKpPINEVOU topic oTov
message broker

Subscribe:
truck/telematics/#

Subscribe:
truck/telematics/
location

Broker

® Tpdypauua diapecoraBnTn Publish: Publish:
yia Tn d1axeipion PNVUPATWV truck/telematics/ truck/telematics/
METAEU €TEPOYEVWV location speed

messaging npwToKOAAWV.

O Emkaiponoinon

. [Publisher] [Publisher J
O MeTaoxnuaTionog

O ApopoAodoynon

Messa
(MQTT

e

Queuing Telemetry Transport

10

MQ Telemetry Transport (MQTT)

[0 =ekivnoe ano Tou¢ Dr Andy Stanford-Clark Tng
IBM kai Arlen Nipper Tn¢ Arcom (onuepivn
Eurotech) 1o 1999

O Xpnoigonoinbnke ano 1o Facebook Messenger
TO 2011

O H ekdoon 3.1.1 gyive dekTtrn wc OASIS standard
TO 2014

11

MQ Telemetry Transport (MQTT)

O

MQTT anoTeAei eva eEaipeTika anAo kal eAa@pu
NPWTOKOAAO PNETAPOPAC NNVUNATWV (messaging protocol)

B To MQTT pnRvupa €ival 0o 1o duvaTov PIKPOTEPO.

B >71a6epo header (2 bytes), n kata anaitnon push-style message
dlavoun Twv Pnvupatwy diatnpei To network utilization xapnAo.

H apxiTekToVvikn TUNOU publish/subscribe exel oxediaoTei via
va €ival avoiKTn Kal eUKoAn oTnVv uAonoinon

B XIAIGOEC CUOKEUEG XpnoTeC va auvdeovTal o€ evav MQTT server (broker)

B Aev anaiteital adsia xpnong and TIC CUOKEUEC/AEIToUpyYIKa
ouoTAHATA/NAATQOPUEC KTA

B Ol epapUOYEC/CUOKEUEC NMou oTeAvouyv dedoueva dev XpelaleTal va
Yvwpidouv oTIONMNOTE YIa TOUG ANNTEC

Eival 16aviko yia nepiopioheva nepifailovra:

B XaunAdpubun ouvdeon, uwnAn KabuoTEPNON, OUCOKEUEC UE MEPIOPICHEVN
ene€epyaoTikn 10XV Kal HvAun (HiIkpd peyedocg BIBAIOBNKWYV)

12

MQ Telemetry Transport (MQTT)

O

AMAO OUVOAO EVTOAWV

B CONNECT, PUBLISH, SUBSCRIBE, UNSUBSCRIBE, DISCONNECT

EvowpaTwpevn unooTnpién yvia oTav unapxel anwAeia
ouvoeoNC

B O server evnuepwWVETal OTav n ouvdeon dlakONTETAI
B Ta pnvuparta EavaoTeAvovTal N KpaTtouvTal yia napadocon apyoTepa

MoAAanAa enineda noioTntac unnpeoiac (Quality of
Service 3) divouv gueAi€ia oTn diaxeipion PNVUPATWV
d1apopeTIKOU TUMOU

B most once, at least once, exactly once.

13

MQTT

MQTT Publisher Client
Broker
Topic 1

CONNE;;:\\\\
DISCONNECT
= Topic 2
CONNECT/
DISCONNECT

MQTT Subscriber
Client

Broker - 0 evdiGueoog
eCUTTNPETNTAG (Server) TTou
OIAVENEI TRV TTANPOYPOPIa OTOUG
TTeENATEG (client) TTou gival
OuUVvOEUEVOI O€ AUTOV Kal
evolaPePOUEVOI VIa Eva BEUa
(topic).

Client - n cuokeun TUTTOU TTEAATNG
TTOU €ival ouvOepEvVn OoTov broker
TTPOKEINEVOU VA ATTOCOTEIAEI () AABEI
TTANPOYoOpiIa.

Topic - To B€ua 1o oT1T0IO
evola@épel Toug clients. Oi clients
Kavouv publish, subscribe, i kai Ta
duUo, o€ £va topic.

MQTT Publisher Client

Publish to topic
“Topic 1”7

Subscribe/
Unsubscribe to topic
“Topic 1”7

MQTT Subscriber
Client

MQTT

Broker
Topic 1
Topic 2

Publisher - Oi1 Clients 1T0U
oTéEAvouv TTAnpoopia otov Broker
TTPOKEIMEVOU VA TNV OIAVEIUEI OTOUG
EVOIQPEPOPEVOUG YIa TO topic
clients.

Subscriber - Oi clients
evnUEPWVOUV 1O broker yia TToio/a
Béua/ta evolapépovtal. OTtav £vag
client eyypagetal o€ €va topic, OAa
T JNVUUOTA TTOU OTEAVOVTOI OTOV
broker oTéAvovTal 0TOUG
subscribers TTOU E€ivail
eyyeypapuévol ato topic. Or Clients
MTTOPOUV va KAVOUV

unsubscribe yia va otaparqoouv
va AauBavouv unvupaTa yia 1o
OUYKEKPIYEVO topic.

QoS - lNoloTnTa unnpeaoiac

0 Kabe MQTT ouvdeon pnopei va kabopioel TNV NoloTnTa
unnpeoiac otov broker pe pia akepaia TIUN NOU KUPAiveTal
ano 0-2. To QoS dev ennpeadel TOV XEIPIOHNO TWV HETAOOOEWV
dedopevwy TCP, povo peTa&u Twv neAatwv MQTT.

B H Tign 0 kaBopilel anooToAn To NoAU pia gopa n pia kair Jovo
huia popd Xwpic va anaiteital enifeBaiwon napadoonc (most
once). AUTO ava@ePEeTAl ouXVA WG «NUPOPBOANCTE KAl EEXAOTE™.

B H Tiun 1 kaBopilel TouhaxioTov pia gopd. To yAvupa
anoOoTEAAETAI MOAANEC POPEC HEXPI va AnpBei pia eniBeBaiwon,
YyvwoTn aAAIwG w¢ eniBeBaiwpevn napadoon , (at least once).
Mnopei va unap&ouv noAAanAd avTiypagpa.

B H Tiun 2 kaBopilel akpIBwc pia gopd. O1 NEAATEC anooToAEa Kdl
NapaAnnTeC Xpnoigonolouyv xeipawia dUo ninedwv yia vda
eEaopalioouv OTI AauBaveral yOvo €va avtiypagpo Tou
unvupaTocg (exactly once), yvwoTo w¢ eEacPaAIOUEVN
napadoaon.

QoS

M QTT Quality of Service for reliable messaging

QoS 0

at most once

=] Qos2

- doesn't survive failures
- never duplicated

T B exactly once

QoS 1

at least once

PUBCOMP - survives connection loss
- never duplicated

PUBACK

- survives connection loss
- ¢can be duplicated

Mnyn: MQTT 101 Tutorial: Introduction and Hands-on using Eclipse Mosquitto - Atadiat

https://atadiat.com/en/e-mqtt-101-tutorial-introduction-and-eclipse-mosquitto/

MQTT & Devices

IoT device 1 Sensor Node 2- IoT
Sensor Node 1 - Data Data producer - | device
producer _MQ-l—r Publisher Client 2 2

Publisher Client 1

Publish to topic
"roomB\sensorZ2
Publish to topic

"roomA\sensorl Sensor Node 3-
MQTT « Data producer -

Broker Publisher 3

Publish to topic IoT
"roomC\sensor3 device

3

Sensor Node 1 - Data
producer —-MQTT
Publisher Client 1

=N\

MQTT

Subscribe to topics Broker
"roomA\sensorl”,
"roomB\sensor2”,

"roomC\sensor3”

Sensor Data
Gatherer - Edge
Subscriber Client Server

Sensor Node 2-
Data producer -
Publisher Client 2

Sensor Node 3-
Data producer -
Publisher 3

A

@ Edge Server:
SuAdoyn,
Ene&epyaaia,
AnoBnkeuon Aedouevwv

MQTT
Broker

Publish to topic
"Alerts\Devicel”

Edge
Server

Data producer -
MQTT Publisher
Client 4

Subscribe to topic
“"Alerts\Devicel”

Alert device -
Subscriber Client

Android device

IoT device 1 Sensor Node 2- IoT

Sensor Node 1 - Data Data producer - | device
producer _MQ-l—r Publisher Client 2 2

Publisher Client 1

\ Sensor Node 3-

MQTT « Data producer -
Broker Publisher 3
IoT
Edge \ .
Server \ de\élce
Sensor Data Data producer - Alert device -
Subscriber Client Client 4

Android device

EpyaAeia yia Tnv €pyaocia

IoT - Android eqpappoyn

B Android SDK

® Java

B Eclipse Paho Android Client (Publisher)

Android - Android epappoyn

B Android SDK

B Java

B Eclipse Paho Android Client (Subscriber)

EpyaAcia

Broker
B Mosquitto broker (uploTauevoc)

Edge server

B Java IDE

B Java

B Eclipse Paho Java client

http://matt.org/

a1
m\ m News Docs Wiki Software Community FAQ

r !]

MQTT is @ machine-to-machine (M2M)/"Internet of Things" connectivity protocol. It was designed as an
extremely lightweight publish/subscribe messaging transport. It is useful for connections with remote

locations where a small code footprint is required and/or network bandwidth is at a premium. For example, it

has been used in sensors communicating to a broker via satellite link, over occasional dial-up connections

with healthcare providers, and in a range of home automation and small device scenarios. It is also ideal for

mobile applications because of its small size, low power usage, minimised data packets, and efficient
distribution of information to one or many receivers (more...)

News

MQTT v3.1.1 now an OASIS Standard
November 7th, 2014 - 3 Comments
Good news everyone! MQTT v3.1.1 has now become an QASIS Standard.

This marks not just the result of 18 months hard work by the Technical Committee, but also the last
15 years of work started by Andy and Arlen. Congratulations to everyone invalved.

| —

\ =

ﬁ m News Docs Wiki Software Community FAQ
I

=T

Documentation

Protocol Specifications

MQTT v3.1.1 is an OASIS Standard. The specification is available as either single-page HTML or
FDFE.

For historical reference, the previous version of MQTT v3.1 is available here.

MQTT-SN v1.2, formerly known as MQTT-S, is available here. MQTT for Sensor Netwaorks is aimed
at embedded devices on non-TCR/IP networks, such as Zigbee. MQTT-SN is a publish/subscribe
messaging protocol for wireless sensor networks (WSN), with the aim of extending the MQTT
protocol beyond the reach of TCP/IP infrastructure for Sensor and Actuator selutions. Read more
about it at the IBM Zurich Research website.

Using MQTT

We encourage you to explore (and contribute to!) the mqgtt.org wiki for examples and background,
but these are some of the longer and more formal documents on MQTT.

« Building Smarter Planst Solutions with MOTT and IBM WebSphere MQ Telemetry from IBM
Redbooks
« Developing Applications tor WebSphere

elemeatry In the WebSphere nroCenter
« Using WebSphere MQ Telemetry and Pachube to connect to remote sensors and devices
* Using MOTT with Android (Chinese, IBM developerworks)

« Using MQ Telemetry Transport with WebSphere Business Integration Message Broker

« Using the IBM Lotus Expeditor micro broker MQTT client to publish messages

For language-specific API information, contact the authors of the individual client APIs (listed on the
Software page). If you have a tutorial or guide you think could be added to this list, please let us

1o & 20 kepdaAaia

http://mqtt.org/

Mosquitto broker, publisher, subscriber

MQTT - Mosquitto (https://mosquitto.org)

O To Mosquitto Broker ekTeAeital (apXIkec pubBuioEeIC) ME TNV
NapakaTw EVTOAN:

/{path}/{to}/mosquitto -c /{path}/{to}/mosquitto.conf

O
O
O

Mosquitto Publisher

Mosquitto Subscriber

Xpnoigol cuvdeouol

https://mosquitto.org/download/

https://mosquitto.org/documentation/

https://sivatechworld.wordpress.com/2015/06/11/step-by-step-installing-and-configuring-mosquitto-with-
windows-7/

http://www.steves-internet-guide.com/install-mosquitto-broker/

http://test.mosquitto.org/

25

https://mosquitto.org/
https://mosquitto.org/download/
https://mosquitto.org/documentation/
https://sivatechworld.wordpress.com/2015/06/11/step-by-step-installing-and-configuring-mosquitto-with-windows-7/
http://www.steves-internet-guide.com/install-mosquitto-broker/
http://test.mosquitto.org/

Mosguitto Test @ windows

O =710 1° napaBupo (broker):
B C:\Program Files\mosquitto>mosquitto -p 1883

C:\Program Files‘mosquitto»mosquitto -p 1883

O e 2° napabupo
B Netstat —-an -p tcp

8.8.8.8:6 LISTENING

O 3to 1810 mapabupo kaAeiltat o subsubscriber

B mosquitto sub -t rooms/rooml/sensors/temp

O e 3° napabupo kaieitat o publisher

B C:\Program Files\mosquitto>mosquitto pub -t
rooms/rooml/sensors/temp -m "1 2 3 4"

0 >to 2° gudavilstatr 1 2 3 4

MQTT 101 Tutorial: Introduction and Hands-on using Eclipse Mosquitto - Atadiat

https://atadiat.com/en/e-mqtt-101-tutorial-introduction-and-eclipse-mosquitto/#Simple_PublisherSubscriber

TexvoAoyiec & oevapia

[0 Devices

B Programming Boards, Sensors, Smart Phones

[0 Programming languages

B Java, Android, Javascript, Python
[1 Messaging
m MQTT, Constrained Application Protocol (CoAP)

[0 Scaled scenarios

B Home automation, smart cities, industrial applications

27

BIBAIOOHKEZ I'A JAVA &
ANDROID

Eclipse Paho Java client

% eChpse pahoo Components + Documentation Community ~ Pzhoiszniot eclipse.org project

Eclipse Paho Java Client

The Paho Java Clientis an MQTT client library written in Java for developing applications that run on the WM or other Java compatible platforms such as Android

The Paho Java Client provides two APls: MattAsyncClient provides a fully asychronous APl where completion of activities is notified via registered callbacks. MgttClient is a synchronous
wrapper around MgttAsyncClient where functions appear synchronous to the application.

Features

MQTT 3.1 Offline Buffering
MQTT 3.1.1 WebSocket Support
LWT Standard TCP Support

SSL/TLS Non-Blocking API

Message Persistence Blocking API

L 4 £ < < ¢«
A S N T T

Automatic Reconnect High Availability

Project description:

The Paho project has been created to provide reliable open-source implementations of open and standard messaging protocols aimed at new, existing, and emerging applications for
Machine-to-Machine (M2M) and Internet of Things (loT). Paho reflects the inherent physical and cost constraints of device connectivity. Its objectives include effective levels of decoupling
between devices and applications, designed to keep markets open and encourage the rapid growth of scalable Web and Enterprise middleware and applications.

Links

Project Website: https:/ W
» Eclipse Project Information: http
» Paho Java Client Page: hit
¢ GitHub:h Ygithub.com/ecli
* Twitter: psepaho

» Issues: hifps

paho.mqgtt.java

ib.com/eclipse/paho.matt.]

&

& Mailing-list: https:/dev.eclipse.org/mailman/listinfo/paho-dev

O https://eclipse.org/paho/clients/java/

https://eclipse.org/paho/clients/java/

Eclipse Paho Java client

% ecnpse pahOO Components ~ Documentation ~ Community Pahoisaniot eclipse.org project

Using the Paho Java Client

Downloading

Eclipse hosts a Nexus repository for those who want to use Maven to manage their dependencies. The released libraries are also available in the Maven Central repository.

Add the repository definition and the dependency definition shown below to your pom.xml.

Replace %rerourLx with either ntt repo.eclipse.org/content/repositories/paho-releases/ for the official releases, or nttps

{ rg/content/repositories/paho-snapshots/ for
the nightly snapshots. Replace %WVERSION% with the level required . The latest release versionis 1.e.2 and the current snapshot versionis 1.2.2
<project ...»
<repositories>
<repository>
<id>Eclipse Paho Repo</id>»
<url>¥REPOURLE< /url>
</repository>
</repositories>

<dependencies>
<dependency>
<groupIdrorg.eclipse.paho</groupId:
e.paho.client.mgttvi</artifactId:>
rsion>

<artifactIdrorg.eclip
<version>¥VERSIONR< /v
</dependency>

</dependencies>
</project>

If you find that there is functionality missing or bugs in the release version, you may want to try using the snapshot version to see if this helps before raising a feature request or an issue.

Building from source

There are two active branches on the Paho Java git repository, master which is used to produce stable releases, and develop where active development is carried out. By default cloning the

git repository will download the master branch,to build from develep make sure you switch to the remote branch: git checkout -b develop remotes/origin/develop
To then build the library run the following maven command: mvn package -DskipTests

sho.client.mgttva/target directory:.

Documentation

Reference documentation is online at: hit ww.eclipse.org/paho/files/javadoc/index.html

Log and Debug in the Java Client: https: i.eclipse.org/Paho/LogandDebuginthe/avaclient

30

HMPOTrt Org.CCHPSE.PANO.CHENLIMIGLIVS . AVIQLLLONTNICCLUPUON,,
import org.eclipse.paho.client.mqttv3.MqttException;

import org.eclipse.paho.client.mqgttv3.MqttMessage;

import org.eclipse.paho.client.mqttv3.persist. MemoryPersistence;

public class MqttPublishSample {
public static void main(String[] args) {
String topic = "MQTT Examples";

String content = "Message from MqttPublishSample";

int qos = 2;
String broker = "tcp://iot.eclipse.org:1883";
String clientld = "JavaSample";

MemoryPersistence persistence = new MemoryPersistence();

try {

MaqttClient sampleClient = new MqttClient(broker, clientld, persistence);
MqttConnectOptions connOpts = new MqttConnectOptions();

connOpts.setCleanSession(true);

System.out.printIn("Connecting to broker: "+broker);

sampleClient.connect(connOpts);
System.out.printIn("Connected");

System.out.printIn("Publishing message: "+content);
MqttMessage message = new MqttMessage(content.getBytes());

message.setQos(qos);

sampleClient.publish(topic, message);
System.out.printIn("Message published");

sampleClient.disconnect();

System.out.printin("Disconnected");

System.exit(0);
} catch(MgttException me) {

System.out.printIn("reason "+me.getReasonCode());
System.out.printin("msg "+me.getMessage());
System.out.printIn("loc "+me.getLocalizedMessage());
System.out.printIn("cause "+me.getCause());

System.out.printIn("excep "+me);
me.printStackTrace();

JAVA Publisher

Edge server

31

JAVA subscriber

Edge server

package com.anap.second;

import com.sun.jmxsnmp. Timestamp;

import org.eclipse.paho.client. mgttv3.*;

impaort org.eclipse.paho.client. mgttv3. perslst MemoryPersistence;
public class Main implements MottCallback]

public static void main{5tring[] args) {

5tring topic ="MQTT Example™;

int qos =2

String broker = "tcp://localhost:1883";
String clientld = Javaﬁample‘juhﬁcrlher

MemnryPersistencE persistence = new Memuwpersistencei];

try {

//Connect client to MQTT Broker

migttClient sampleClient = new MattClient{broker, clientld, persistence);
MattConnectOptions connOpts = new F\‘!qtt{funnectﬂ'ptluns[:l

connOpts. setCleansession(trua);

//Set callback
Main main = new Mainl();
sampleClient.setCallback{imain);

System.out.println{"Connecting to broker: "+broker);
sampleClient.connect{connQOpts);
System.out.println("Connected”);

//Subscribe to a topic

System.out.printin({"Subscribing to topic \""+topic+"\" gos "+gos);
sampleClient.subscribeftopic, gos);

} catchiMigttException me) {

System.out.println("reason " + me.getReasonCode());
System.out.println]"msg " + me.getMeszage());
System.out.println]"loc " + me. getLocalizedMessage());
System.out.printin("cause " + me.getCause());
System.out.printin("excep " + me);
me.printstackTrace();

Subscriber in JAVA

* %

* @see MgttCallback#connectionlLost(Throwable)
&*
public void connectionLost(Throwable cause) {

// This method is called when the connection to the server is lost.
System.out.println("Connection lost!" + cause);
System.exit(1);

Edge server

ff* *
*/@see MagttCallback#deliveryComplete(IMqgttDeliveryToken)
#*

public void deliveryComplete(IMgttDeliveryToken token) {
//Called when delivery for a message has been completed, and all acknowledgments have been received
}

* &

* @see MgttCallback#messageArrived(String, MgttMessage)

*/

public void messageArrived(String topic, MgttMessage message) throws MgttException {
//This method is called when a message arrives from the server.

String time = new Timestamp(System.currentTimeMillis()).toString();
System.out.printin("Time:\t" +time +

" Topic:\t" + topic +

! Message:\t" + new String(message.getPayload()) +

" QoS:\t" + message.getQos());

Eclipse Paho Android Client

% eCIIpse pahOQ Components ~ Documentation ~ Community + Pahois anioteclipse.org project

Eclipse Paho Android Service

The Paho Android Service is an MQTT client library written in Java for developing applications on Android.

To get started, download Android Studio. You will also need to download the Android SDK. Currently vou will need the SDK for 19,21 and 22, This will hopefully be simplified soon. I oT
1 4

Features Android

MQTT 3.1 Offline Buffering
MQTT3.1.1 WebSocket Support
LWT Standard TCP Support

SSL/TLS Non-Blocking API

Message Persistence Blocking API

€ £ € < < <
¢ x £ 4 £ <

Automatic Reconnect High Availability

Project description

The Paho project has been created to provide reliable open-source implementations of open and standard messaging protocols aimed at new, existing, and emerging applications for
Machine-to-Machine (M2M) and Internet of Things (loT). Paho reflects the inherent physical and cost constraints of device connectivity. Its objectives include effective levels of decoupling
between devices and applications, designed to keep markets open and encourage the rapid growth of scalable Web and Enterprise middleware and applications.

Links

Project Website: http
* Eclipse Project Information: https

projects.eclipse.org/projects/iot.paho
* Paho Android Client Page: https:/feclipse.org/paho/clients/android/

» GitHub: https
Twitter: @
lssues: hitp:

‘github.com/eclipse/paho.mgtt.android

sepaho

‘github.com/eclipse/paho.mgtt.android/issues

Mailing-list: https://dev.eclipse.org/mailman/listinfo/paho-dev

O https://eclipse.org/paho/clients/android/

34

https://eclipse.org/paho/clients/android/

Eclipse Paho Android Client

pcumentation

Project description

The Paho project has been created to provide reliable open-source implementations of open and standard messaging protocols aimed at new, existing, and emersging applications for
Machine-to-Machine (M2M) and Internet of Things (loT). Paho reflects the inherent physical and cost constraints of device connectivity objectives include effective levels of decoupling
between devices and applications, designed to keep markets open and encourage the rapid growth of scalable Web and Enterprise middleware and applications.

Links

* Project Website: hitps:/ X ho

® Eclipse Project Information: https://projects.eclipse.org/projects/iot.paho
 Paho Android Client Page: https:/aclipse.org/paho/clients/an

* GitHub: ub.com/eclipse/paho.matt.android

o Twitter: @

. ib.com/eclipse/paho.matt.android.

® Mailing-list: https:/dev.eclipse.org/mailman/listinfo/t

Using the Paho Android Client

Downloading
Maven

Gradle

If you are using Android Studio and / or Gradle to manage your application dependencies and build then you can use the same repository to get the Paho Android Service. Add the Eclipse

Maven repository to your build.gradle file and then add the Paho dependency tothe dependencies section

repositories

-

maven {
url "https://repo.eclipse.org/content/repositories/paho-snapshots/"

dependencies {
compile ‘org.eclipse.paho:org.eclipse.paho.client.mgttv3:1.8.2"
compile 'org.eclipse.paho:org.eclipse.paho.android.service:1.8.2"

Mote: currently you have to include the org.zc

ip client.mgttva dependency as well. We are attempting to get the build to produce an Android asr file that
t's dependencies, however this is still experimental. If you wish to try it, remove the org.

dependency and append @aar tothe end of the Android Service dependency. E.g. org.ecli

pahoiorg. ipse.

contains both the Android service as well a pse.pahe

.paho

If you find that there is functionality missing or bugs in the release version, you may want to try using the snapshot version to see if this helps before raising a feature request or an issue.

Building from source

* Open aterminal and navigate to this directory (org.eclipse.paho.android.service)
* Runthecommand ./gradlsw clean as

rtizr oronWindows: gradl

Running the sample app:

* Open the this current directory in Android Studio (org.eclipse.paho.android.service).

* Inthe toolbar along the top, there should be a dropdown menu. Make sure that it contains ‘orgeclipse.android.sample’ then click the Green 'Run’ Triangle. It should now build and
launch an Virtual Android Device to run the App. If you have an Android device with developer mode turned on plugged in, you will have the oppertunity to run it directly on that.

* [fyou have any problems, check out the Android Developer Documentation for help: https://developerandroid.com

35

XpNoIJOolI CUVOECGHOI

O MQTT

B http://magtt.org/

[0 Eclipse Paho Java client

B https://eclipse.org/paho/clients/java/

B https://www.eclipse.org/paho/files/javadoc/org/eclipse
/paho/client/mqgttv3/package-summary.html

[0 Eclipse Paho Android Client

B https://eclipse.org/paho/clients/android/

[0 Mosquitto Broker

m https://mosquitto.org

http://mqtt.org/
https://eclipse.org/paho/clients/java/
https://www.eclipse.org/paho/files/javadoc/org/eclipse/paho/client/mqttv3/package-summary.html
https://eclipse.org/paho/clients/android/
https://mosquitto.org/

XpNoIJOolI CUVOECGHOI

O Introduction to MQTT - learn.sparkfun.com
O MQTT 101 Tutorial: Introduction and Hands-on

using Eclipse Mosquitto - Atadiat

https://learn.sparkfun.com/tutorials/introduction-to-mqtt/all#the-basics
https://atadiat.com/en/e-mqtt-101-tutorial-introduction-and-eclipse-mosquitto/

