

The Sun Small Programmable Object
Technology (Sun SPOT): Java(tm)
Technology-Based Wireless Sensor
Networks

Angela Caicedo
Technology Evangelist
Sun Microsystems

Agenda
• Introduction
• Sun Small Programmable Object Technology
• The Squawk Java VM
• Java Programming for Sun SPOTs
• Sun SPOTs Communication
• Conclusion and Resources

Project Sun SPOT
• Sun has licensed Java on

over 1 billion cell phones

• How do we encourage Sun
technology in whatever
comes next?

1 Trillion!
Traditional

Network
Devices

17 Billion

Source: IDC Estimates, 2004

RFID Tags and Sensors

“Internet of Things”

Sun SPOT project

• Sun SPOT project started Nov 2004
> Follow-on to Epsilon and Anteater

projects
> Wireless Sensor Networks are a hot

research topic
> Found difficult tools and limited

hardware

• How can we accelerate the development of the internet of
things?
> Need new tools - HW & SW
> Need to inspire new developers

Sun’s Opportunities
• Strengths

> Operating Environment - Squawk VM/Java
> Development/Deployment Tools - Net Beans, SPOTWorld
> Security/DRM - Sizzle, OpenMediaCommons.org
> Scalability/Back-end support

• Other Differentiators
> Local Processing - 32-bit processing
> Actuation/Control - robotics, toys, etc
> Platform for experimentation/inspiration - don’t optimize

prematurely, design for flexibility

• 40% of energy costs in an office building
is lighting

• U.S. movie theaters
> Some have energy costs >$400 per day
> Can vary by a factor of 10

• Sensor market in 2001 was ~$11 Billion*

> Wiring installation costs > $100 Billion
• Wireless sensor market in 2010 of $7 Billion†

• 1.5 Billion transducer devices installed by 2010‡

* Freedonia Group report on sensors, 2002 † ON World Report ‡Harbour research report

The Need for Better Sensor
Networks

The State of the Art
• Ideas of “Smart Dust”

> Berkeley, Kris Pister, 1998–2001
• Berkeley motes, TinyOS

> Mica2, Mica2Dot: 8-bit microcontroller, 7.37/4.0 Mhz clock,
128 KB flash, 4 KB SRAM, CC1000, 512 KB external flash, 2
AA batteries/3V lithium cell battery

• Intel Mote
> Zeevo module (ARM7 core, SRAM and flash memory,

Bluetooth wireless), TinyOS
> Mote 2: 32-bit Xscale PXA 271 CPU, large RAM and flash

memories, runs Linux and the Java VM

• Hard to develop applications using current
technologies

• Low-level C-like languages
• Unproductive development tools

> Hardly any debugging support
• Too many low-level concerns in current systems

> Most high-level software developers do not know how
hardware works, or even have an appreciation any more

• Not accessible to majority of software developers

Applications: Chicken and Egg
Problem

Wireless

Gateway
Server

PC

Sensors

PDA

Wireless
Transducer

Robot

Fridge

MotorSet Top BoxCell PhoneLaptop

The Future:
Connected Wireless Networks

Wireless Sensor Networks

M

S

M

S

M

S

S

M

S

M

S

M

S

M

S

M

S

M

S

M

M

S

M

S

M

S

M

S

G

M

To Host PC,
LAN, or
Internet

Node
Sensor and Data Acquisition Boards

Processor/Radio Boards

Gateway

Target Audience

• Education
> Classroom teaching tool for everything from embedded systems to

robotics to design classes

• Research
> Flexible, easy to deploy platform for wide range of research from

wireless networks to gesture interfaces to new security devices

• Hobbyist
> Powerful platform - easy to program and easy to interface

Education
• Essex University

> Pervasive Computing and Ambient
Intelligence

> Used to teach embedded
development

> Sun SPOTs popular among students
and teachers

• Art Center College of Design
> Designer (not engineers)
> Single programmer supported

projects for ~20 student class
> Apps ranged from autonomous

blimps to consumer music devices

Industrial Research
• Volkswagen Passat Showcar

> Quickly built working demo of home
security check integra-ted with
existing in-car equipment and in-dash
display

• Defense Customer
> Developed tamper resistant device

for authenticating users
> Used Sun SPOTs to sense

orientation of drum to allow a user to
enter a PIN

> User is authenticated securely over
the radio

Hobby
• Rocket Science

> One day project start to finish
> Built rocket and software and

launched rocket in the afternoon
> Rocket had two Sun SPOTs for

redundancy
> Data was streamed live to

laptops in the parking lot
> Recorded 3D acceleration, light

and temperature

SPOTs at the ZeroOne San Jose - CA
• Accessed via two telescope-like interface devices situated

at ground level in the park.
• Use infra-red beam illuminates or "turns on" embedded

elements along the viewer's line of sight.
• For example, lights turn on in rooms at the Fairmont, over

200 feet away.

Sun Small Programmable Object
Technology (Sun SPOT)

Sun SPOTs
• A Java Platform for Developing

Applications for Wireless
Networks of Small Devices

• More than just sensors:
– Robotics
– Art
– Toys
– Personal Electronics
– Commercial Applications

• Program the world!

Sun SPOT Device
• Basic device has three

layers
> Battery
> Processor Board with Radio
> Sensor Board (application

specific)

• Processor Board alone acts
as a base-station

• User programs the device
entirely in Java using
standard Java tools

Sun SPOT Hardware
• 180 Mhz 32-bit ARM920T core

> 512K RAM/4M ROM
• ChipCon 2420 radio

> 2.4 GHz IEEE 802.15.4
• USB interface
• 3.7V rechargeable 750 mAh prismatic

lithium ion battery
• 40 uA deep sleep mode, 40 mA to 100+

mA
• 64 mm x 38 mm
• Double sided connector for stackable

boards

Demo Sensor Board

• 8 tri-color LEDs
• 3D accelerometer
• 5 general purpose I/O pins
• 4 hi current output pins
• 1 A/D converter
• Temperature sensor
• Light sensor

The Sun SPOT SDK—Libraries
• Squawk Java VM: desktop and Sun SPOT
• Libraries

> Java ME CLDC 1.1 libraries
> Hardware libraries

> SPI, AIC, TC, PIO drivers all written in the Java programming
language

> Demo sensor board library
> Radio libraries
> Network libraries

> 802.15.4 MAC layer written in the Java programming language,
uses GCF

> Desktop libraries

The Sun SPOT SDK—Tools

• DebugClient
• ant tasks
• IDE integrations
• Sample NetBeans™ based projects
• SPOTWorld

Sun SPOT developer’s kit
• Two Full Sun SPOTs with

eDemoSensor boards and batteries
• One base-station Sun SPOT
• Software

> Squawk VM
> Java SDK
> Netbeans

• USB cable
• Mounting clips

> Two wall mounts
> One PC board mount

• $499 introductory price
> Available Q4 2006

The Squawk Java VM

The Squawk Java VM
• Java VM mainly written in the Java programming

language
> Interpreter written in C
> Garbage collector translated from the Java to the C

programming language
• Java ME CLDC 1.1
• Extra features

> Runs on the bare ARM without an underlying OS
> Interrupts and device drivers written in the Java programming

language
> Supports isolate application model

Java Class Library

VerifierLoader

Garbage
Collector Interpreter

Compiler

I/O Library Native Code

Thread Scheduler

Standard Java VM

VerifierLoader

Garbage
Collector Interpreter

Compiler

I/O Library Native Code

Thread
Scheduler

Squawk Java VM

C Code

Exporter

Transformer
Java
Code

Device Driver Architecture

Java Class Library

Standard Java VM Vs.
Squawk Java VM

Squawk’s Split VM Architecture
.class/.jar

.suite

Serializer

Loader

Verifier

Transformer
(Optimizer)

Digital Signer

Host

Suite creator

.suite

Native Code

Bootloader

Interpreted
 VM

Java Libraries

Device

On-device VM

Isolate Application Model
• JSR 121: Application Isolation API Specification
• Application state is an object Isolate

> start -exit -moveTo
> resume -pause

• Every isolate has its own state for all static variables
• Allows for running multiple applications in one VM
• Inter-isolate communication

> Provides lower-level asynchronous message delivery
• Can migrate from one device to another

Multiple Isolates (Applications)
on the One Java VM

Squawk Java VMStandard Java VM

JVM OS Process

Isolate Isolate

JVM OS Process

Non-
shareable

object
memory

Shareable
object

memory

JVM OS Process

Isolate Migration
• State of a running application is migrated to another

device
> Continues running on target device where it left off

• Target device must have suite of the application
• Constraints on external state

> There must be none, or
> I/O sub-system must be homogeneous at both ends (Sun

SPOT Squawk), or
> I/O sub-system must be serializable (desktop Squawk)

Uses of Isolates and Isolate Migration
• Uses of isolates

> Represent applications as objects
> Support hardware resource sharing
> Field hardware replacement

• Uses of isolate migration
> Load balancing and fault tolerance
> Local debugging of remote application
> Seamless client-server programming model

Ease of Development
• Java technology
• Can run on desktop as well as on-device
• Runs with standard IDEs or command-line
• Supports standard Java debuggers

> Stepping, breakpoint
• On-device debugging

Debugger

• Use standard Java Debug Wire Protocol (JDWP)
debuggers

• Debug via USB or over-the-air (OTA) on-device
• Challenges

> Not much memory on-device
> Slow communication link to debugger client
> Bytecode patching too slow (stored in flash)

Debugger
Java Debugger

Developer
Workstation

Sun SPOT

Class Files

Squawk Debug
Agent (SDA)

Application
Isolate

Squawk VM

Squawk Debug
Proxy (SDP)

SDA VM Support

SDWP/Wireless

Reads

JDWP
TCP

Squawk on the Sun SPOT:
Flash Memory

• 4 MB flash
> Very low power
> 1 million cycles/sector

endurance
• 1/3 reserved for

System
> Not all in use

• 2/3 reserved for
applications and data

Standard JVM

1 square = 8KB

System
memory

User
memory

VM Binary
149 used of 256KB

VM Suite (Java)
363 used of 512KB D D D D D D D D

Library Suite
156 used of 448KB Loader

Available Application Slot A
384KB

Available Application Slot B
384KB

Available Data Space
2040KB

Squawk on the Sun SPOT: RAM

1 square = 1KB

System
memory

User
memory • 512 KB pSRAM

> Active current ≈ low mAs
> Inactive current ≈ low µAs

• >80% available for
application objects

subject to
change

C Stack (8K) GC Stack (8K)
C Heap (16K)

C Data (5K) (14KB used at startup)

Java Heap
14 used of 459KB

Java Programming for Sun
SPOTs

Build and Deploy Process

Java Project

.jar
ant Deployant Compile

ant Run

Sun SPOT Programming
Environment
• Standard J2ME™ CLDC application environment
• Libraries are CLDC-based with extensions
• Squawk uses a form of JSR 121 isolation API

> Multiple applications running on one Java Virtual
Machine (JVM)

• Connection framework for device specific features
> radio:// for 802.15.4 communication
> msg:// for inter-isolate communication (proposed)

Sun SPOT Libraries
• Standard J2ME libraries

> CLDC 1.0
• Hardware libraries

> SPI, AIC, TC, PIO drivers all in Java technology
> Sensor board hardware driven by Java technology (no C)
> ADCs, GPIO, IrDA, etc.

• Radio libraries
> To drive Chipcon CC2420 from Java technology (no C)

Sun SPOT Libraries (Cont.)
• Network libraries

> 802.15.4 MAC layer in Java technology (no C)
> Connection framework interface

• Desktop libraries
> Create connections from standard J2SE VM to SPOT
> Utilize SPOT in testboard as a gateway

Security and Sun SPOT
• Data sent to your SPOT is cryptographically signed.

> Ensure valid bytecodes
> Prevent remote attackers from downloading dangerous

code to your SPOT.
• SPOT contain public-private key

> Created en user first required a key
> Only owner is allowed to install new apps

• ant deletepublickey
• ant deploy -Dremote=0014.4f01.0000.0006

Sun SPOTs Communication

The Sun SPOT Radio Stack

Radio: Protocol Radiogram: Protocol

IEEE 805.15.4, 250 kbps OTA

802.15.4 Physical

802.15.4 MAC

lowpan

Using the Base Station

• Spot - Spot communication:
> Sender sent radio package & no acknowledgment from

target → NoAckException
• Host – Target communication:

> No NoAckException only confirms delivery to
the base station

> If base station fail to deliver package to target
→ System.out warning

Host USB
802.15.4 radio

TargetBase station

SPOT Communication Protocol
• Radio Protocol:

> Socket-like peer-to-peer protocol that provides
reliable, buffered streambased IO between two
devices
RadioConnection conn =
(RadioConnection)Connector.open("radio://<des
tinationAddr>:<portNo>");

• Radiogram Protocol:
> Client-server protocol that provides reliable, buffered

datagram-based IO between two devices
> Server:
 RadiogramConnection conn =
(RadiogramConnection)Connector.open
("radiogram://:<portNo>");

SPOT Communication Protocol

• Radiogram Protocol:
> Client:
 RadiogramConnection conn = (RadiogramConnection)Connector.open ("radiogram://<serveraddr>:<portNo>");

• Broadcasting:
 RadiogramConnection conn = (RadiogramConnection)Connector.open ("radiogram://broadcast:<portNo>");

Example: Welcome Message...

1. Write “Hello up there”
2. Flush
3. Wait for answer

6. Print answer

0014:4F01.0000.0006

4. Read buffer
5. Answer
6. Flush

0014:4F01.0000.0007
Port 100

Port 100

Radio Connection: Program 1
1. RadioConnection conn = (RadioConnection)Connector.
 open("radio://0014:4F01.0000.0006:100");

2. DataInputStream dis = conn.openDataInputStream();
3. DataOutputStream dos=conn.openDataOutputStream();
4. String answer = "";
5. try {
6. dos.writeUTF("Hello up there");
7. dos.flush();
8. answer = dis.readUTF();
9. System.out.println ("Answer was: " + answer);
10.} catch (NoAckException e) {
11. System.out.println ("No reply from
12. 0014.4F01.0000.00006");
13.} finally {
14. dis.close();
15. dos.close();
16. conn.close();
17.}

Radio Connection: Program 2
1. RadioConnection conn = (RadioConnection)Connector.
 open("radio://0014.4F01.0000.00007:100");

2. DataInputStream dis = conn.openDataInputStream();
3. DataOutputStream dos=conn.openDataOutputStream();
4. String question = "";
5. try {
6. question = dis.readUTF();
7. if (question.equals("Hello up there") {
8. dos.writeUTF("Hello down there");
9. } else
10. dos.writeUTF("What???");
11. dos.flush();
12.} catch (NoAckException e) {
13. System.out.println("No reply from
14. 0014:4F01.0000.0007");
15.} finally {
16. dis.close();
17. dos.close();
18. conn.close();}}

Radiogram Client Connection
1. RadiogramConnection conn = (RadiogramConnection)
2. Connector.open("radiogram://0014.4F01.0000.00006:10");3. Datagram dg = 4. conn.newDatagram(conn.getMaximumLength());5. String answer = "";6. try {7. dg.writeUTF("Hello up there");8. conn.send(dg);9. conn.receive(dg);10. answer = dg.readUTF();11. System.out.println ("Received: " + answer);12.} catch (NoAckException e) {
13. System.out.println ("No-reply 0014.4F01.0000.00006");
14.} finally {15. conn.close();16.}

Radiogram Server Connection
1. RadiogramConnection conn = (RadiogramConnection) 2. Connector.open("radiogram://:10");
3. Datagram dg = 4. conn.newDatagram(conn.getMaximumLength());
5. Datagram dgreply = 6. conn.newDatagram(conn.getMaximumLength());
7. String question = "";8. try {
9. conn.receive(dg);10. question = dg.readUTF();
11. dgreply.reset(); //reset stream pointer12. dgreply.setAddress(dg); //copy reply addr from input
13. if (question.equals("Hello up there"){14. dgreply.writeUTF("Hello down there");
15. } else {16. dgreply.writeUTF("What???");
17. }conn.send(dgreply);18.} catch (NoReplyException e) {
19. System.out.println ("No reply from " + 20. dgreply.getAddress());
21.} finally {22. conn.close();
23.}

SPOT Sensor Code
1. EDemoBoard demoBoard = EDemoBoard.getInstance();2. ILightSensor a =demoBoard.getLightSensor();3. int x= a.getValue()4. 5. ITemperatureIcon tempSPOT = demoBoard.getADCTemperature();
6.
7. //Power on8. ITriColorLED[] allLEDs = demoBoard.getLEDs();9. ITriColorLED powerOn = allLEDs[allLEDs.length -1];10.
11.
12. IAccelerometer3D myAccelerometer = demoBoard. 13. getAccelerometer();14. IScalarInput x = myAccelerometer.getXAxis();15. IScalarInput y = myAccelerometer.getYAxis();16. IScalarInput z = myAccelerometer.getZAxis();17. 18. //Set PowerON19. powerOn.setRGB(100,100,100);20. powerOn.setOn();

Demos: Netbeans 5.0

Reactomatic Demo
 protected void startApp() throws MIDletStateChangeException {
 EDemoBoard demoBoard = EDemoBoard.getInstance();
 ITriColorLED[] allLeds = demoBoard.getLEDs();
 ITriColorLED onIndicatorLed = allLeds[allLeds.length - 1];
 onIndicatorLed.setRGB(0, 255, 0);
 onIndicatorLed.setOn();
 ITriColorLED[] activityIndicatorLeds =
 ITriColorLED[allLeds.length - 1];
 System.arraycopy(allLeds, 0, activityIndicatorLeds, 0,
 activityIndicatorLeds.length);
 for (int i = 0; i < activityIndicatorLeds.length; i++) {
 activityIndicatorLeds[i].setOn(); // switch LED on
 activityIndicatorLeds[i].setRGB(0, 0, 0);
 }

Reactomatic Demo
 IAccelerometer3D accelerometer = demoBoard.getAccelerometer();
 accelerometer.setRange(0);
 IScalarInput x = accelerometer.getXAxis();
 ...
 int lastX = 0, lastY = 0, lastZ = 0;
 while (true) {
 int r, g, b;
 try {
 int xValue = x.getValue();

 ...
 r = Math.abs(xValue - lastX) > JITTER ? 255 : 0;
 g = Math.abs(yValue - lastY) > JITTER ? 255 : 0;
 b = Math.abs(zValue - lastZ) > JITTER ? 255 : 0;
 lastX = xValue;
 ...
 } catch (IOException e) {...}
 for (int i = 0; i < activityIndicatorLeds.length; i++) {
 activityIndicatorLeds[i].setRGB(r, g, b);
 }}}

Remote Reactomatic Demo

StreamConnection conn = (StreamConnection)
 Connector.open("radio://" +otherSpot+ ":100");
DataInputStream dis = conn.openDataInputStream();
DataOutputStream dos = conn.openDataOutputStream();

SensorSender sender=new SensorSender(dos, this);
SensorDisplay display=new SensorDisplay(dis, this);
new Thread(sender).start();
new Thread(display).start();

Remote Reactomatic Sender

 if ((lastR != r) || (lastG != g) || (lastB != b)) {
 output.writeInt(r);
 output.writeInt(g);
 output.writeInt(b);
 output.flush();
 lastR = r;
 lastG = g;
 lastB = b;
 }

Remote Reactomatic Receiver

while (true) { try {
 int r = input.readInt();
 int g = input.readInt();
 int b = input.readInt();
 startup.display(r, g, b);
 Thread.yield();
 } catch (Exception e) {
 startup.showStatusError("Display problem.", e);
 }
}

ServoBot Demo:
Movement Recognition
using the SPOTs

ServoBot: Getting ready

stopdatagram
who's theredatagram

1

2

3Accelerometer X = 0
Accelerometer Y = 0

Moving forward

forwarddatagram

Accelerometer X < 0
Accelerometer Y = 0

Moving backward

reversedatagram

Accelerometer X > 0
Accelerometer Y = 0

Turning right

rightdatagram

Accelerometer X = 0
Accelerometer Y > 0

Turning left

leftdatagram

Accelerometer X = 0
Accelerometer Y < 0

Minority Report

Join Us Later at:

18:15-19:15
Scandinavia Scene
Unleash the power of Java!
Angela Caicedo,Simon Ritter og Matt Thompson

Summary
• Java technology on “wireless sensor networks”

is here
> Better developer experience than the state-of-the-art

• Squawk: small Java-based VM
• Sun SPOT: mid-level sensor device that can be

battery powered
> Enable exploratory programming
> Enable more on device computation and reduce network

traffic
> Enable over-the-air programming

Future
• Collaborate with qualifying partners
• Use within Sun Labs

> Gesture based interfaces, building instrumentation, self-
organizing systems, etc.

• Iterate hardware design
> Smaller chips, lower power, cheaper, etc.

• Iterate VM
> Smaller footprint, faster, smarter interrupts, power

management, etc.
• Open schematics and VM to the community

For More Information
• Squawk

> http://research.sun.com/projects/squawk
• Sun SPOT

> http://www.sunspotworld.com
• Papers

> “Java™ on the Bare Metal of Wireless Sensor
Devices—The Squawk Java Virtual Machine”,
VEE, June 2006

> “The Squawk Virtual Machine: Java™ on the Bare Metal”,
Extended Abstract, OOPSLA, Oct 2005

Thank You!!!

Angela Caicedo
Technology Evangelist
Sun Microsystems

