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ien
e Department, Los Angeles, CA 90095-1596Abstra
tIn this paper we present PEAS, a robust energy-
onserving proto
ol that 
an build long-lived, resilientsensor networks using a very large number of small sen-sors with short battery lifetime. PEAS extends the net-work lifetime by maintaining a ne
essary set of workingnodes and turning o� redundant ones. PEAS opera-tions are based on individual node's observation of thelo
al environment and do not require any node to main-tain per neighbor node state. PEAS performan
e pos-sesses a high degree of robustness in the presen
e of bothnode power depletions and unexpe
ted failures. Oursimulations and analysis show that PEAS 
an main-tain an adequate working node density in the fa
e ofup to 38% node failures, and it 
an maintain roughly a
onstant overhead level under various deployment 
on-ditions ranging from sparse to very dense node deploy-ment by using less than 1% of total energy 
onsump-tion. As a result, PEAS 
an extend a sensor network'sfun
tioning time in linear proportion to the deployedsensor population.Keywords: sensor networks, energy-
onserving,robust network proto
ol1 Introdu
tionSmall, inexpensive sensors with 
onstrained 
omput-ing power, limited memory and short battery lifetimeare 
oming into reality [7, 5℄. When su
h nodes aredeployed in an adverse environment that has high de-grees of humidity, temperature, or even intentional de-stru
tions from mali
ious entities, in addition to nodepower depletion, unexpe
ted node failures are likely tobe
ome norms rather than ex
eptions. Appli
ations ofsensor networks, on the other hand, desire a robustsensing system with extended life time. It is a great�Jesse Cheng's email is jesse
�u
la.edu

resear
h 
hallenge to build a resilient, long-lived sensornetwork with su
h small, fallible sensors.This paper presents PEAS1, a simple and dis-tributed proto
ol that 
an build and maintain a re-silient, long-lived sensor network out of large quantitiesof unreliable, short-lived sensor nodes. PEAS extendsa network's fun
tioning time by keeping only a ne
es-sary set of sensors in working mode and putting therest into sleep mode. Sleeping nodes wake up on
e ina while to probe their neighborhood and repla
e anyfailed working nodes as needed. To be implementableon small sensors with stringent resour
e limitations,PEAS maintains a minimal amount of state at ea
hnode and involves very simple operations. Sensor nodeskeep no per-neighbor node state, nor any informationabout the topology or lifetime estimation of their neigh-bors. When a node wakes up, it only needs to �nd outwhether there exists any working neighbor within alo
al probing range to de
ide whether it should startworking or go ba
k to sleep. The wakeup frequen
y ofsleeping nodes is self-adjusted to both maintain ade-quate working node density and minimize energy 
on-sumption. As shown by our analysis and simulationresults, PEAS 
an extend a sensor network's fun
tion-ing time in linear proportion to the number of deployednodes, using less than 1% of the total energy 
onsump-tion and withstanding up to 38% node failures.Di�erent from the proto
ols designed for ad-ho
 net-works whi
h assume dynami
 
hanges in 
onne
tivitybut not frequent node failures, PEAS targets at a harshworking environment in whi
h node failures may hap-pen frequently. PEAS design also di�ers from existingenergy-saving proto
ols, su
h as GAF[10℄, SPAN[4℄,ASCENT[3℄, and AFECA[9℄. The above mentionedproto
ols are targeted for either ad-ho
 networks ora relatively stable sensor network environment wherenodes do not fail unexpe
tedly. Although they 
anall maintain a stable number of working nodes in the1PEAS stands for Probing Environment and Adaptive Sleep-ing.1



presen
e of battery depletions, their operations eitherdepend on the predi
tability of individual nodes' life-time, or require ea
h node maintain the state of all itsneighbors. In 
ontrast, PEAS assumes that the densityof deployed nodes may be orders of magnitude higherthan that of the working nodes, and that individualnodes may fail unexpe
tedly. These two assumptionsmake it infeasible to keep per neighbor node state orto reliably predi
t a node's lifetime.The rest of the paper is organized as follows. Wepresent the design of PEAS in Se
tion 2 and analyzethe 
onditions for asymptoti
 
onne
tivity of PEAS inSe
tion 3. We address several pra
ti
al implementa-tion issues in Se
tion 4, and present the performan
eevaluation of PEAS in Se
tion 5. Related work is dis-
ussed in Se
tion 6, followed by the 
on
lusion se
tion.We would like to 
larify that PEAS' role in a sensornetwork is to maintain a desired level of working sen-sor density to ensure both the sensing 
overage andnetwork 
onne
tivity. The a
tual sensing data deliveryis 
arried out by a separate data forwarding proto
ol,su
h as those des
ribed in [11, 6℄.2 PEAS DesignPEAS works with a sensor network 
onsisting of alarge number of inexpensive sensor nodes that 
an failunpredi
tably. PEAS has two 
omponents: ProbingEnvironment and Adaptive Sleeping. Probing Envi-ronment allows a newly wakeup node to probe its lo-
al neighborhood to dis
over whether a working nodeexists within a 
ertain probing range. If no workingnode exists in that range, it starts working. Other-wise, it sleeps again. Adaptive Sleeping de
ides whena sleeping node should wake up again(or equivalently,the probing rate of ea
h sleeping node). It ensurestimely probing by sleeping nodes in a distributed man-ner. The goal is to make disruptions in sensing and
ommuni
ations (due to node failures) within what istolerable by appli
ations, while minimizing the probingoverhead.The designs of these two 
omponents are des
ribedin Se
tions 2.1 and 2.2, respe
tively. In the following,we assume that ea
h sensor node may vary its transmis-sion power and 
hoose a power level to 
over a 
ir
ulararea given a radius2. We dis
uss how PEAS works with�xed transmission power in Se
tion 4.2Some state-of-the-art hardware, e.g., MOTES, already al-lows variable transmission power [5℄.

2.1 Probing EnvironmentEa
h node in PEAS has three operation modes:Sleeping, Probing and Working. The state transitiondiagram among these three modes is shown in Figure1. Nodes are initially in the Sleeping mode. Ea
h nodesleeps for an exponentially distributed duration gener-ated a

ording to a probability density fun
tion (PDF)f(ts) = �e��ts ; where � is the probing rate of the nodeand ts denotes the sleeping time duration.After a node wakes up, it enters the Probing mode.A probing node seeks to dete
t whether any workingnode is present within a 
ertain probing range Rp.The probing node uses an appropriate transmissionpower to broad
ast a PROBE message within its lo-
al probing range Rp. Any working node(s) withinthat range should respond with a REPLYmessage, alsosent within the range of Rp. It is possible that multipleworking nodes exist within Rp when a node probes. Toredu
e 
ollisions, ea
h working node waits for a smallrandom period before it sends ba
k the REPLY.If the probing node hears a REPLY, it goes ba
k tothe Sleeping mode for another random period of timets, generated a

ording to the same PDF. But � is ad-justed a

ording to the Adaptive Sleeping algorithm inSe
tion 2.2 based on the feedba
k information 
arriedin the REPLY. If the probing node does not hear anyREPLY, it enters the Working mode and starts fun
-tioning until it fails or 
onsumes all its energy.Figure 2 gives a simple example for illustration. Attime t1, nodes 2 and 3 are in the working mode. Node1 wakes up and broad
asts a PROBE message withina probing range Rp. Be
ause no working nodes existwithin Rp, node 1 starts working. At time t2, sleep-ing node 4 wakes up and probes. Be
ause node 2 iswithin node 4's probing range, it responds with a RE-PLY message. Upon hearing the REPLY, node 4 sleepsagain. Then node 2 dies at time t3, and node 6 wakesup at time t4. After probing, node 6 starts workingand repla
es node 2.The initial value of � de
ides how qui
kly the net-work a
quires enough number of working nodes dur-ing the boot-up phase. For instan
e, 50% of the de-ployed nodes are required for the network to fun
tionand the appli
ation requires the network start fun
tion-ing 1-minute after deployment. Based on the PDF, we
an 
al
ulate that an initial � of 0.012 ensures that50% of the nodes wake up at least on
e within the�rst minute after deployment. Sin
e PEAS adjusts theprobing rates, we may 
hoose a higher � to ensure afast-fun
tioning network.The probing range Rp determines the redundan
y2
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Figure 2. An Example of Probing Environmentof working nodes. It is spe
i�ed by the appli
ationbased on its requirements for both robust sensing androbust 
ommuni
ating. These two fun
tions may re-quire di�erent densities of working nodes. For example,a type of sensors 
an dete
t animals within 10 metersand transmit up to 20 meters. Suppose an appli
ationde
ides that working nodes should be spa
ed at most3 meters for robust sensing, but 6 meters are enoughfor robust 
ommuni
ation. The appli
ation may sim-ply 
hoose the probing range Rp as the smaller valueof 3 meters3. The 
hoi
e of Rp also a�e
ts network
onne
tivity; this is to be analyzed in Se
tion 3.2.1.1 Design rationaleWemake two important de
isions in the design of Prob-ing Environment: (1) a node's lo
ation de
ides whetherit should be turned on or not, and (2) the sleeping timeof a node is randomized. We now explain the rationale.Lo
ation-dependent working nodes Unlike otherrelated s
hemes that 
hoose to turn on nodes with moreenergy or more neighbors [10, 4℄, PEAS does not favorsu
h nodes and treats all of them equally. This is moti-vated by the sensor network 
hara
teristi
s. In a sensornetwork built by unreliable, densely distributed nodes,it is the number, not the 
apability of ea
h individualnode that really matters. The system relies on the 
ol-le
tive behavior of nodes to fun
tion reliably. As longas PEAS maintains enough working nodes, they 
anperform required sensing and 
ommuni
ating tasks.Lo
ation-based probing rule also ensures that adja-
ent working nodes be pla
ed at an appropriate dis-tan
e, whi
h allows for desired redundan
y to guar-antee resilient sensing and 
ommuni
ating fun
tions.3Designing sensor hardware that balan
es these two fun
tionsis not the topi
 of this paper. We expe
t hardware developers toaddress this issue.

This feature is important be
ause overly dense work-ing nodes not only in
rease 
ollisions, but also unne
-essarily waste pre
ious energy resour
es. Whereas toosparse working nodes may not satisfy the required de-gree of redundan
y, e.g., 
ertain areas may be left un-monitored.
Time
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Figure 3. In PEAS, sleeping nodes A and B haverandomized sleeping timesRandomized sleeping time A node in PEASsleeps for a randomized period of time. The wakeups ofnodes are spread over time (shown in Figure 3). Thisis di�erent from the related s
hemes [10, 4℄ whi
h typ-i
ally take the deterministi
 approa
h of syn
hronizedsleeping and waking-up: All sleeping nodes (in a lo
alneighborhood) doze for the same predi
ted period oftime, whi
h is normally their working neighbors' a
tivetime. Then they all wake up almost simultaneously tore-ele
t new working nodes.Su
h a deterministi
 approa
h is feasible only if itsintended environment is predi
table (i.e., the lifespanfor a working node 
an be reliably estimated before-hand), whi
h again depends on the assumption of re-liable nodes. In a harsh environment with unreliablesensors, the predi
tability of a node's lifespan no longerholds. When a working node fails unexpe
tedly beforeits expe
ted lifespan, there 
ome large \gaps" in thesystem during whi
h no working node is available (il-lustrated in Figure 4).Therefore, PEAS 
hooses to distribute node wake-ups over time, rather than to 
luster them at a few timeinstants. Shown in Figure 5, node wakeups 
ome at3
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Figure 4. Syn
hronized operation has big gapswhen nodes fail
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Figure 5. Distributing wakeups over time shortensgapsmu
h shorter time intervals. Thus the average gap be-tween two su

essive working nodes in any lo
al neigh-borhood 
an be greatly shortened. The spreading alsoredu
es 
ollisions in
urred by syn
hronized wakeups.A remaining question about Probing Environmentis why it uses exponential distribution for the randomsleeping time. We will show in Se
tion 2.2 that expo-nential distribution leads to a Poisson pro
ess of prob-ing events; this exhibits ni
e properties that the Adap-tive Sleeping is built upon.
2.2 Adaptive SleepingAdaptive Sleeping adjusts the probing rate � of ea
hsleeping node. The goal is to keep the aggregate prob-ing rate �� of all the sleeping neighbors of ea
h workingnode at about a desired rate �d, whi
h is spe
i�ed bythe appli
ation. This way, the transient interruptionsin sensing and 
ommuni
ation are a

eptable to the ap-pli
ation, while keeping the probing frequen
y in 
he
k.The design issue is that, the number of sleepingneighbors of a working node 
hanges over time, variesin di�erent lo
ations, and � has to be adjusted dynam-i
ally to adapt to su
h varying 
onditions. The basi
idea is to let ea
h working node measure the aggregateprobing rate �� it per
eives from all its sleeping neigh-bors. The working node then in
ludes the measuredrate �� when sending a REPLY message to a probingneighbor. Ea
h probing node then adjusts its prob-ing rate � a

ordingly to generate a new sleeping timeperiod. The details are as follows.Measuring aggregate �� at a working node Ea
hworking node maintains two states:� N : a 
ounter that re
ords how many PROBEshave been re
eived.

� t0: the most re
ent time when N is set to 0.
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Figure 6. Measure ��When the working node hears the �rst PROBEmes-sage, it sets the 
ounter to 0, and t0 to the 
urrent timet. After that, ea
h time a new PROBE is re
eived,the 
ounter in
rements by one. Eventually when the
ounter rea
hes a threshold value k (k is set to 32 aswe explained in Se
tion 2.2.1), a measurement �̂ of thea
tual probing rate �� is 
al
ulated as follows4:�̂ = kt� t0 ; (1)where t is the 
urrent time. The node then sets t0 to t,resets the 
ounter to 0, and repeats the above pro
ess(see Figure 6 for an illustration). Whenever a workingnode re
eives a PROBEmessage, it in
ludes its 
urrentprobing rate measurement �̂ and the desired probingrate �d in its REPLY message.Adjusting per-node probing rate � at ea
h prob-ing node Upon re
eiving a REPLYmessage from theworking node, the probing node updates its 
urrentprobing rate � based on the re
eived �̂:�new = ��d̂� : (2)Then the probing rate will use �new to generate a newsleeping period ts a

ording to the probability densityfun
tion f(ts) = �newe��newts .2.2.1 ExplanationWe now explain why the above algorithm keeps the ag-gregate �� around the desired �d. From the probabilitytheory [8℄, the exponentially distributed intervals be-tween su

essive wakeups observe a Poisson pro
ess ofwakeup events. Probings from di�erent sleeping neigh-bors still 
onstru
t a Poisson pro
ess, but with a pa-rameter ��, the sum of all sleeping nodes' rates �i:�� = nXi=1 �i; (3)4We also tried a moving average measurement, but the 
hoi
ewe present here turned out to work better.4



where n is the number of sleeping neighbors and �i isthe probing rate of the ith neighbor.We utilize the property of Poisson pro
esses to mea-sure ��. It is known that the average interval �Ts ofthe aggregate Poisson pro
ess is given as �Ts = 1�� . Bymeasuring the average interval �Ts, we 
an derive theaggregate rate ��. This is exa
tly what (1) does.To obtain an a

urate estimate �̂ that is 
lose to thea
tual ��, the 
onstant k in (1) has to be large enough.Be
ause the intervals are i.i.d. random variables, weapply the 
entral limit theorem [8℄ to estimate howlarge k should be for a reasonably good measurement.It turns out that when k > 16, with over 99% 
on-�den
e the measured average has only 1% error 
om-pared with the real value. We sele
t k = 32 based onexperimental studies. This also a

ounts for the shortrandom time ea
h working node waits before sendingits REPLY and the laten
y in 
ommuni
ation and mes-sage pro
essing.Assume that the measured rate �̂ is a

urate, i.e.,�̂ � ��. After ea
h sleeping neighbor adjusts its probingrate a

ording to (2), the new aggregate probing ratebe
omes��new = nXi=1 �newi = nXi=1 �i �d̂� � �d�� �� = �d:Thus the aggregate probing rate rea
hes the desiredrate �d.The above derivation is idealisti
 sin
e it assumesthat all sleeping nodes hear the measurement and ad-just their rates on time. In pra
ti
e, if some nodes sleepfor longer periods and miss the 
urrent measurement,they may re
eive a di�erent measurement. Thus �� maynot be the same as �d. But as long as the working nodekeeps measuring and feeding-ba
k this information, ��should be 
u
tuating around �d. We further evaluatethe e�e
tiveness of Adaptive Sleeping in Se
tion 5.It is possible to 
al
ulate �� dire
tly by using (3) (aworking node sums up all �i dire
tly). However, thisposes the diÆ
ulty of keeping per-neighbor state �i.Due to unexpe
ted failures and potentially dense de-ployment, a working node may not know pre
isely howmany sleeping neighbors it has. Thus it does not knowwhen it has 
olle
ted all �is for its sleeping neighbors.In addition, if some neighbor fails during sleeping, theworking one does not know whether it is be
ause thenode has failed, or be
ause it has a very long sleep-ing period. Hen
e, it 
annot de
ide whether the 
orre-sponding �i should be kept or removed.In the design, we intentionally make design 
hoi
esthat trade-o� optimality for simpli
ity and better ro-bustness. This is why in Adaptive Sleeping no nodekeeps per-neighbor state. A more 
omplex design may

in
lude per neighbor states to optimize the energy 
on-sumption. However, as long as the required 
onne
tiv-ity and 
overage are satis�ed, we opt for the simplestdesign to make PEAS robust and implementable onvery small nodes.A �nal 
omment is that the desired probing rate�d should be given by the appli
ation and depends onthe appli
ation's toleran
e of interruptions in sensingand/or 
ommuni
ation. For example, if an animal-tra
king sensor network allows for monitoring inter-ruptions up to 5 minutes, �d 
an be set at 1 per 300se
onds to ensure that the lengths of \gaps" in sensingare a

eptable to the appli
ation.3 Asymptoti
 Conne
tivity of PEASA PEAS model We present the following PEASmodel to aid the analysis. Consider a two-dimensionalnetwork �eld5. We imagine ea
h working node as around pea that o

upies a 
ir
ular area of radius Rp=2.Sleeping or probing nodes do not o

upy any area. Thedistan
e between the 
enters of any two peas is at leastRp=2 + Rp=2 = Rp, whi
h holds true when two peasare tangent to ea
h other.This is exa
tly what the prob-ing rule produ
es. On the other hand, any two workingnodes are separated by a distan
e of at least Rp. There-fore, positioning of working nodes is equivalent to thepla
ement of peas on the plane.To �nd out the 
onditions under whi
h PEAS en-sures a.a.s. 
onne
tivity, let us 
onsider a suÆ
ientlylarge network R = [0; l℄2 that is divided into square
ells, ea
h of whi
h is of size 
� 
 and 
 = Rp. We �rstderive the 
onditions under whi
h ea
h 
ell has at leastone node a.a.s. based on Blough's Theorem 2 in [2℄.We then show that, if ea
h 
ell has at least one node,PEAS ensures 
onne
tivity a.a.s. when the maximumtransmitting range Rt � (1 +p5)Rp.The following Lemma 3.1 spe
i�es the 
ondition un-der whi
h ea
h 
ell has at least one node a.a.s. The
omplete proof is similar to that of Theorem 2 in [2℄.Due to spa
e limit we put it in a te
hni
al report [12℄.Lemma 3.1 Consider the 
ase when n nodes are uni-formly distributed in R = [0; l℄d for d = 2, and as-sume that 
dn = kld ln l for some 
onstant k > 0. Let�0(n) be the random variable denoting the number ofempty 
ells. If k > d, then liml!1 E[�0(n)℄ = 0, whereE[�0(n)℄ is the expe
ted number of empty 
ells.Given the above 
ondition, we haveLemma 3.2 When Lemma 3.1 holds, i.e.,ea
h 
ell has at least one node a.a.s., for any5The model applies to three-dimensional as well.5
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Figure 8. A \dis
onne
ted" 
omponent always has an-other working node 
onne
tedworking node A and its working neighbor B,liml!1 P (min(Dist(A;B)) < (1 + p5)
) = 1,where Dist(A;B) denotes the distan
e between A andB, and min(Dist(A;B)) is the distan
e between Aand the 
losest working neighbor.Proof Be
ause Lemma 3.1 holds a.a.s. no matterhow the grid is oriented or where the grid is positioned,without any loss of generality, we let node A be at the
enter of 
ells 1, 2, 3 and 4 (Figure 7). A

ording to thepeas model, ea
h working node is a round pea of radius
=2 and peas do not overlap with ea
h other. To avoidobs
uring the main idea, we will 
onsider boundary
ases later.Consider the worst-
ase s
enario in whi
h all otherworking nodes are as far away from node A as possible.In su
h 
ases, other nodes in 
ells 2, 3 and 4 are allwithin the probing range of A, and they are all sleeping.Consider node C in 
ell 5, whi
h is to the right of 
ell1. Give that node C is uniformly distributed and 
anbe anywhere in 
ell 5, the farthest it 
an be from A isat the upper right 
orner b of 
ell 5.In order to put node C (
entered at 
orner b) intothe sleeping mode, node B must be working within theprobing range of C. Based on geometry 
al
ulations,the farthest position where B 
an be from node A, isin 
ell 6 and with a distan
e of (1 + p5)
. This isthe minimum distan
e within whi
h there must existat least another working node. Otherwise, if all work-ing neighbors are farther than this minimum distan
eaway, node C will always be working, no matter whereit is lo
ated within 
ell 5.We next 
onsider the boundary 
ase. The numberof nodes in boundary 
ells is O(l), whi
h is an order ofmagnitude lower than the total number O(l2). There-fore, it follows that P (min(Dist(A;B)) < (1 + p5)
)still approa
hes 1 as l!1.

Now we derive the 
ondition for asymptoti
 
onne
-tivity in PEAS.Theorem 3.1 If the transmitting range Rt � (1 +p5)Rp, and the 
onditions in Lemma 3.1 are satis�ed,then liml!1 P
onn(PEAS) = 1, where P
onn(PEAS)denotes the probability that working nodes in PEAS are
onne
ted.Proof We prove the theorem by 
ontradi
tion.Suppose the working nodes are not 
onne
ted. Let us
onsider a 
onne
ted 
omponent S1 formed by a subsetof working nodes. Any working node in S1 has workingneighbors only in S1. Without any loss of generality, we
onsider the \rightmost" node A in S1, and draw a gridthat is 
entered with A at a 
rossing point. A verti
alline L is tangent to A (Figure 8). Any pea (workingnode) in S1 is to the left of L. Using arguments similarto Lemma 3.2, there must be a working node B whi
h isto the right of L and has at most a distan
e of (1+p5)
to A. Sin
e the transmitting range Rt � (1 + p5)Rpand Rp = 
, nodes A and B are 
onne
ted. This 
on-tradi
ts the assumption that any working node in S1 isonly 
onne
ted to other nodes in S1. Therefore, thereis no su
h a dis
onne
ted 
omponent. Note that basedon similar reasoning, the boundary 
ase does not a�e
tthe asymptoti
 
onne
tivity as l!1. This 
ompletesthe proof.4 Dis
ussionsCompensate pa
ket losses Due to 
ollisions,PROBE and REPLY messages may get lost and 
auseprobing nodes to work unne
essarily. To redu
esu
h errors, we let a probing node transmit multiplePROBEs thus ea
h working node reply multiple times.These multiple messages are randomly spread over a6



small time interval to redu
e 
ollisions. In experimentswe found that three PROBEs work well against lossrates of up to 10%. These multiple messages will in-
rease energy but our evaluation in Se
tion 5 showsthat the energy overhead is still smaller than 1%.To further 
orre
t su
h errors on
e they happen, we
an make unne
essary working nodes go ba
k to sleep:Ea
h working node rea
ts to REPLYs sent by its work-ing neighbors, whi
h respond to probing nodes. Be-
ause REPLYs are also sent within a distan
e of Rp,two working nodes are less than Rp away if they 
anhear the REPLYs from ea
h other. We 
an let oneof them go ba
k to sleep. In pra
ti
e, if either of thetwo working neighbors 
an turn o� the other, they maytake turns to work and 
ause an unstable working nodetopology. Sin
e many routing proto
ols have to rebuildrouting states in new working nodes and su�er from un-stable topologies, we favor the one that has been work-ing for a longer time to stablize the topology: Ea
hworking node re
ords the time when it starts working.It 
al
ulates and in
ludes the time Tw { how long ithas been working { in its REPLYs. When a workingnode hears a REPLY, it goes to sleep only if its Tw isless than that of the sender's. So nodes that have beenworking for longer times 
an turn o� new working ones,but not vi
e versa.Probing nodes with more than one workingneighbors When a probing node has more than oneworking neighbors within its probing range, it may hearseveral REPLY messages, ea
h of whi
h 
ontains a dif-ferent ��. Su
h a node 
annot repla
e any of the workingneighbors alone be
ause it 
an work only when all su
hworking neighbors die. The probing from this node isnot 
riti
al to the repla
ement of its working neighbors.We simply let su
h a probing node adjust its � a

ord-ing to the largest measurement value, resulting in thelowest probing rate.Nodes with �xed transmission power In Se
tion2 we assume that ea
h node 
an 
hoose a transmittingpower to rea
h a desired probing range Rp. For sensorswith �xed transmission power, they 
an use a thresh-old �ltering rule regarding the re
eived signal strength.A working node rea
ts only to PROBE messages withsignal strengths greater than a threshold Sth. Simi-larly, a probing node goes to sleep again only if theREPLY has a signal strength greater than Sth. In aharsh environment, irregularities in signal attenuationmay generate di�erent signal strengths in di�erent ar-eas, thus working nodes in areas with poorer signalre
eption 
an be denser than those in other areas. Webelieve that this is desirable be
ause it is only with

more working nodes in su
h areas that the same levelof robustness is maintained.Distribution of deployed nodes As long as the de-ployed nodes are dense enough everywhere, PEAS 
ankeep enough working nodes in ea
h region, indepen-dent of the parti
ular distribution of deployed nodes.But the deployment distribution of sensor nodes doesa�e
t the performan
e of the network. An uneven dis-tribution may 
ause the system to fun
tion for less timebe
ause regions with fewer nodes will die out mu
h ear-lier. This argues for evenly distributed sensor deploy-ment. Although a 
omplete study of this issue is outof the s
ope of this paper, we believe evenly deployednodes will work longer than those deployed irregularly.5 Performan
e Evaluation
5.1 Methodology and MetricsWe implement PEAS in PARSEC [1℄ and sele
t sen-sor hardware parameters similar to Berkeley Motes [5℄.The node power 
onsumptions in transmission, re
ep-tion, idle and sleep modes are 60mW, 12mW, 12mWand 0.03mW, respe
tively. The initial energy of anode is randomly 
hosen from the range of 54 � 60Jules to simulate the varian
e of battery lifetime, al-lowing the node to operate about 4500 � 5000 se
ondsin re
eption/idle modes. The sensing and maximumtransmitting ranges are both 10 meters. Ea
h nodehas a raw wireless 
ommuni
ation 
apa
ity of 20Kbps.The pa
ket size of PROBE and REPLY messages is 25bytes, whi
h is enough to hold the information theyneed to 
arry.
5.2 Prolong system functioning timeWe use a 50�50m2 network �eld, and nodes are uni-formly distributed in the �eld initially and remain sta-tionary on
e deployed. A sour
e and a sink are pla
edin opposite 
orners of the �eld. The sour
e generatesa data report every 10 se
onds and the data report isdelivered to the sink using the GRAB forwarding pro-to
ol [11℄. The initial per-node probing rate � is 
hosenas 0.1 wakeup/se
 so that the number of working nodesqui
kly stabilizes. The probing range is set to 3 meters.The desired aggregate probing rate �d is 
hosen as 0.02wakeup/se
, whi
h is equivalent to a wakeup every 50se
onds per
eived by a working node.To evaluate the robustness of PEAS proto
ol, wearti�
ially inje
t node failures whi
h are randomly dis-tributed over time in the simulation. The failure ratedenotes the average number of failures per unit time.7
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Figure 11. Average TotalWakeup Count for DeploymentNumbersThe failure per
entage is the per
entage of failed nodes.Note that failures are deaths not in
urred by energydepletions.The main metri
s used are sensing 
overage life-time and data delivery lifetime. The sensing 
overageis de�ned as the per
entage of the �eld monitored byworking nodes. An appli
ation may require that ea
hpoint in the �eld be monitored by at least K workingnodes for robustness. We de�ne K-
overage (or 
over-age K) as the per
entage of the �eld size monitored byat leastK working nodes. The lifetime of K-
overage isthe time duration from the beginning until K-
overagedrops below a threshold value. It 
hara
terizes howlong the system ensures that interested events are mon-itored and reported properly.The data su

ess ratio at any time is the ratio ofthe number of reports su

essfully re
eived at the sinkto the total number of reports generated by the sour
eup to that time. Data delivery lifetime is de�ned asthe time when the data su

ess ratio drops below athreshold. It spe
i�es how long the network 
an deliverreports to users. Both threshold values are 
hosen as90%.We measure the overhead of PEAS by the numberof wakeups and 
al
ulate the energy 
onsumed by itsoperations.To see how PEAS adapts to varying node popula-tion, we set the node number as 160, 320, 480, 640and 800 and simulate for a suÆ
iently long period oftime until all nodes die. We assume the appli
ationrequires that ea
h point be monitored by at least 4working nodes. Given a probing range of 3 meters, 160nodes result in a 
lose to 100% 4-
overage ratio but lessthan 95% 5-
overage, so we 
hoose 160 as the \base"number. Given ea
h node population, the results areaveraged over 5 simulation runs, ea
h of whi
h uses afailure rate of 10.66 failures/5000 se
onds.We now present how PEAS extends the 
overageand data delivery lifetimes with more deployed nodes.

Node Number Energy Overhead Overhead Ratio160 11.58J 0.143%320 34.18J 0.207%480 58.68J 0.236%640 83.53J 0.25%800 111.11J 0.267%
Table 1. Energy Overhead for Deployment NumbersFigure 9 shows the lifetimes of 3, 4 and 5-
overage.As the sensor population in
reases, ea
h lifetime in-
reases almost linearly. This is be
ause PEAS keepsonly a ne
essary number of nodes working, while turn-ing o� others. The more deployed nodes, the more inthe sleeping mode, and the longer they 
an keep thesensing 
overage. We also observe that the lifetimes of3-
overage are longer than those of 4-
overage, be
auseless working nodes are required to 
over ea
h area byat least 3 nodes. Similar is true for the 
ases of 4- and5-
overage.The data delivery lifetime is shown in Figure 10.Given 160 nodes, the data delivery lifetime is about6600 se
onds, longer than the maximum idling lifetimeof a node. This is be
ause the working nodes thatrepla
e the initial set of working ones still deliver somereports. So it takes some time after 5000 se
onds forthe total su

ess ratio to drop below the 90% thresholdvalue.As the deployment number in
reases, the averagedata delivery lifetime in
reases linearly. Ea
h addi-tional in
rease in node number prolongs the deliverylifetime for about another 6000 se
onds. The aboveresults demonstrate that PEAS is able to in
rease thenetwork fun
tioning lifetime (sensing and 
ommuni
at-ing) in proportional to node population.We then look at the overhead in
urred for PEAS'operations. Figure 11 shows the average number ofwakeups for ea
h deployment number. This numberalso grows linearly as the node population in
reases.8
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Figure 14. Average TotalWakeup Count for Failure RatesThis is be
ause Adaptive Sleeping adjusts the wakeupfrequen
y to the desired level. When the network fun
-tions longer, more wakeups happen.To measure the energy overhead, we �rst 
al
ulatethe energy used in ea
h wakeup. The energy usedin a wakeup 
onsists of the amount in transmittingand re
eiving PROBE and REPLY messages, and theamount a probing node waits in idling to re
eive RE-PLYs. Based on the 
urrent implementation in whi
ha probing node transmits three PROBEs and waitsfor 100ms during whi
h working nodes randomly ba
ko� to send REPLYs, the amount is 0.00316 Joule perwakeup. Using this estimation, we plot the amount ofenergy overhead and its ratio 
ompared with the to-tal energy 
onsumption in Table 1. The table showsthat the energy overhead is less than 0.3% of the to-tal energy 
onsumption. This small energy overheaddemonstrates the eÆ
ien
y a
hieved by the simpli
ityand adaptivity of PEAS.
5.3 Robustness against node failuresWe now evaluate the robustness of PEAS againstnode failures. The initial node population is set to480 and we in
rease the failure rate from 5.33 to 48failures per 5000 se
onds at in
remental steps of 5.33.We 
al
ulate the average failure per
entage | the ratioof failed nodes to the total deployed nodes and �nd thatthere are about 38% nodes that fail in the maximumfailure rate 
ase.Similarly, we use the 
overage and data delivery life-times to evaluate the robustness of PEAS. If PEASis not robust enough to maintain suÆ
ient workingnodes in the presen
e of severe node failures, the systemwould work for disproportionately less time or mightnot fun
tion at all.Figure 12 plots the 
overage lifetimes under the fail-ure rates from 5.33 to 48. As the failure rate in
reases,system lifetime tends to de
rease. However, as longas there are enough sleeping nodes to over
ome node

failures, PEAS maintains a high 
overage above thethreshold. Even with the most severe failures (with38% node failure), the 
overage lifetime drops only be-tween 12% to 20%. This shows that not only failednodes are repla
ed, but also the repla
ements happenqui
kly enough to minimize interruptions (The few ab-normal points were 
aused by random fa
tors).The average data delivery lifetime for ea
h failurerate is shown in Figure 13. The drop is about 20%,similar to that of 
overage lifetime. This shows thatPEAS maintains enough working nodes to provide highquality 
ommuni
ation 
onne
tivity in the presen
e ofsevere node failures.Finally we present the wakeup and energy overhead.The robustness of a proto
ol should not 
ome at the
ost of ex
essive overhead to 
ombat failures. ForPEAS, the number of wakeups de
reases as the fail-ure rate in
reases (Figure 14). This is be
ause thereare less sleeping nodes for higher failure rates. We alsomeasure the energy overhead for all failure rates, andit is 
onstantly less than 0.25% of the total energy 
on-sumption. The same level of small overhead for varyingfailure rates demonstrates that PEAS a
hieves robust-ness at roughly 
onstant overhead and does not 
on-sume ex
essive energy to over
ome failures.6 Related WorkTo preserve the limited battery power, various ap-proa
hes have been explored to put unne
essary nodesinto sleeping mode for both wireless ad ho
 networks(e.g. GAF[10℄, SPAN[4℄, AFECA[9℄) and sensor net-works (e.g. ASCENT[3℄). SPAN lets ea
h node keep alist of all its working neighbors and ex
hange this listwith its neighbor nodes. As a result, all nodes learnthe 
onne
tivity within their 2-hop neighborhood tode
ide whi
h nodes to turn o�. The sleeping nodeswake up at a s
heduled time interval to re-ele
t work-ing ones. GAF divides the network into grid 
ells. As-suming ea
h node knows its lo
ation through GPS or9



other lo
ation servi
e, ea
h node knows whi
h grid itis in. Within ea
h grid only one node stays up and therest goes to sleep, with the sleep time set as a fun
-tion of the remaining energy of the working node. Asa result, the number of wakeups in GAF is propor-tional to the number of deployed nodes. In AFECA,ea
h node maintains a list of neighbor identi�ers in or-der to keep tra
k of the number of neighbors, basedon whi
h it de
ides the sleeping period. In ASCENT,ea
h node measures the number of a
tive neighbors andper-link data loss rates through data traÆ
. The nodede
ides whether it should work or go to sleep based ona fun
tion of the above fa
tors. In summary, the abovementioned solutions either maintain some per-neighbornode state at ea
h node, or operate based on the pre-di
ted lifetime of the working nodes (or do both).To prolong the system lifetime PEAS uses the samebasi
 approa
h of turning o� unused nodes to preserveenergy. However to be both resilient against unpre-di
table node failures in a harsh or even hostile en-vironment and versatile under various degrees of de-ployment density, in PEAS nodes do not keep any per-neighbor information. PEAS utilizes a random wakeupalgorithm that adapts to observed node failure rate.Instead of 
ounting the number of neighbor nodes, awakeup node in PEAS probes the spa
e surroundingitself to de
ide whether to go ba
k to sleep. Insteadof relying on multiple node 
oordination su
h as anele
tion to de
ide who should be the working node,PEAS design exploits randomization and adaptivity toa
hieve simpli
ity and s
alability.7 Con
lusionAlthough it is e
onomi
ally feasible to build large-s
ale sensor networks using large quantities of inex-pensive sensors, building a resilient, long-lived networkwith unreliable, short-lived sensors remains a resear
h
hallenge. Sin
e a real operational environment may beharsh or hostile, nodes may fail unexpe
tedly beforetheir power depletion. Existing energy-saving proto-
ols have mostly fo
used on maintaining a stable set ofworking nodes in the presen
e of node power depletion,without paying attention to unexpe
ted node failures.We have developed PEAS, a distributed and ran-domized energy-saving proto
ol for sensor networks.PEAS lets ea
h node probe its lo
al operating spa
e tomaintain a desired working node density while avoidingthe overhead of keeping per neighbor state. To handleunpredi
table node failures, PEAS uses a randomizedwakeup algorithm that 
an self-adapt to node failures.PEAS keeps the working node density approximately
onstant independent of the node deployment density

with roughly the same overhead. As a result, PEAS
an prolong the overall system lifetime proportionallyto the total number of deployed nodes. Our analysisand simulation results 
on�rmed the e�e
tiveness ofthe design.Referen
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